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Approximate  Analysis of General  Queuing  Networks 

Abstract: An approximate iterative technique for the analysis of complex queuing networks with general service times is presented. 
The technique is based on an application of Norton’s  theorem from electrical circuit theory to queuing networks which obey local 
balance. The technique determines approximations of the queue length  and waiting time distributions  for each queue in the network. 
Comparison of results obtained by the approximate method with simulated and exact results shows that the approximate method has 
reasonable  accuracy. 

introduction 
Queuing network models are being widely used in the 
analysis of computer  systems  and teleprocessing  net- 
works [ 1 ,  21. Some efficient computational techniques 
for analyzing  complex networks, limited to problems 
which satisfy local balance,  have been  described [3] .  
Efficient methods  for  the analysis of specijic networks 
which do not  satisfy local balance exist [4]. Approxi- 
mating a general network by one which satisfies local 
balance results, usually, in unacceptable error  for com- 
puter  systems analysis. 

Green  and  Tang [5] suggest that  systems analysis 
techniques, which require modest  computation  time  and 
provide results within accuracy limits of 10 to 20 per- 
cent,  are  adequate  for  the configuration phase of telepro- 
cessing network  design;  subsequent  phases may require 
more  detailed, more accurate and  more expensive  tech- 
niques. The  present work is concerned with the configu- 
ration  phase. 

This  paper  presents  an  approximate, iterative  method 
for determining  performance  values of closed  queuing 
networks with first come, first served discipline and 
general service times. The method is a direct application 
of Norton’s  theorem [ 61, and it gives exact solutions for 
networks which satisfy local balance. The method may 
be extended  to  networks with other disciplines  and also 
to several classes of customers. 

Norton’s theorem for queuing networks 
Consider a closed  queuing  network R with M queues 
indexed 1 ,  2 ,  . . ., M and with N customers  (Fig. 1 ). The 
network is assumed  to  have only one  class of customers. 
(Extension  to several classes of customers is also pre- 
sented in [ 61 .) The  service time for any queue may de- 
pend on  the  state of that  queue  (for  instance,  the num- 

ber of customers in that  queue) but is assumed  to be 
independent of the  rest of the  network. A customer 
branches  to  queue j after  service in queue i with proba- 
bility pij  independent of the  state of the  system, i = 1 ,  2, 
. . .. R1 and j = 1,  2 , .  . ., M .  The  network is assumed to 
satisfy local balance [ 3, 61. For example, a queue may 
have  an exponential service time  and a first come, first 
served discipline or a general service time with a  rational 
Laplace transform and a  last come, first served preemp- 
tive-resume or a  processor-sharing  discipline, etc. 

Essential to  Norton’s theorem [ 61 is the  exact equiva- 
lence of the complement of a queue.  For  any  queue i in 
the  given network, i = 1 ,  . . ., M ,  there  exists a  reduced 
two-queue network consisting of queue i and  its “com- 
plementary queue” Bi (Fig. 2 )  such  that  the equilibrium 
queue length and wait time  distributions of queue i in the 
reduced network  are identical with those of queue i in 
the given network. We have  shown in [6] that  the  com- 
plementary queue Bi can have a first come, first served 
discipline, an independent  exponential service time and 
a service rate r i (n)  that is a function of the  number of 
customers n in queue B,;  the  rate r i (n)  is  the conditional 
rate  at which customers  arrive  at  queue i of the given 
network R ,  given that  there  are N - n customers in queue 
i (and n customers in the complementary queue Bi)  . The 
rate ri(  n )  is equal  to  the  number of customers  served  per 
unit time in queue i of the given  network when 1 )  the 
service time of queue i is identically zero  and 2) there 
are n customers in the  network, n = 1 ,  2 ,  . . ., N .  The 
complement of a set of queues  can be defined in the 
same manner. 

We have  shown how Norton’s  theorem can  be  applied 
in the parametric analysis of queuing networks.  It is of- 
ten required to  study  the behavior of a large network  as 43 

JANUARY 1975 APPROXIMATE  ANALYSIS OF QUEUING 



Queue 2 

I/O 1 

L C P U  bueue I 4 I I I I I I I 2 I I I I I I 3 

I 
I 

I 
I 

I 
I 
I 

I/O M 

Queue M 

Figure 1 The  central-server model: an example of a queuing 
network. 
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Figure 2 The reduced network of queue i. 

the  parameters of a single queue  or a small subset of 
queues  are varied over a wide range. I t  is much  simpler 
to  analyze  the reduced network, consisting of the subsys- 
tem of queues and  its complement, than to  analyze  the 
entire network as  the  subsystem  parameters  are varied 
over a range. For  networks which  satisfy local balance, 
Norton's  theorem provides us with an  exact  representa- 
tion of the complement and,  therefore,  an  exact analysis. 

Norton's theorem does  not  seem  to be applicable to 
networks which do  not satisfy local balance. In this  pa- 
per, however,  we  describe a procedure  for  approximat- 
ing complementary queues in networks which do not 
satisfy  local  balance. 

Complementary algorithm for general networks 

The principle 
The complement of a queue i in a network is a queue 
which completely captures  the interface  between queue i 
and  the  rest of the network.  Because of complex  interde- 
pendencies in general networks (which do not  satisfy 
local balance), this  complement cannot  be determined 
exactly and must be approximated. 

We approximate  the complement of a queue in a  gen- 
eral network by a queue with independent exponential 
service  times;  the  service  rate  for this queue,  however, 

44 is appropriately adjusted,  as will be  further  shown,  to 

account  for  the  assumptions of independence  and  expo- 
nentiality.  We  refer to  our approximation of the comple- 
mentary queue  as  the local balance  interface since  it  is 
computed by using assumptions of local balance. It is 
very likely that  other interfaces  with  non-exponential 
service times will give even  better  results;  however, this 
involves a great  deal of additional  computation. 

The complementary algorithm is carried out in itera- 
tive steps, sequentially  adjusting local balance interfaces 
to  better  approximate complementary queues.  On  the 
kth iteration of the algorithm, k = 0, 1, 2 , .  . ., local bal- 
ance interfaces are calculated using an auxiliary  network 
S ( k ) .  The auxiliary  network is identical to  the  actual net- 
work R except  that 

1. the service rates in S ( k )  are different and 
2. S") is assumed  to satisfy  local  balance. 

I t  is therefore possible to use Norton's  theorem  to com- 
pute  the complement of every  queue in S'". At  the kth 
iteration we use  the complement of queue i in S'k)  to 
approximate  the complement of queue i in R .  In  other 
words,  the  complement of queue i in S'" is used as  the 
local balance interface of queue i in R .  

The  queue length and wait time  distributions of queue 
i in R are obtained by analyzing the two-queue (re- 
duced)  network consisting of queue i and  its local bal- 
ance interface. This  two-queue network  can  be  analyzed 
by the method of Herzog,  Woo and Chandy [7] or 
Courtois and Georges [ 8 ] .  The method  suggested by 
Herzog,  Woo  and  Chandy  uses a  decomposition  tech- 
nique to  analyze  Markovian  systems with large,  struc- 
tured state  spaces.  It allows arbitrary  service distribu- 
tions with rational Laplace transforms. The method 
yields all steady state probabilities  and  can produce 
queue length and waiting time  distributions. This tech- 
nique also  has application to models with different classes 
of customers  and priorities. The technique developed by 
Courtois  and  Georges  uses  embedded  Markov pro- 
cesses.  It allows  service distributions which may not 
have rational Laplace  transforms.  The  technique yields 
the  queue length distribution and mean waiting time,  but 
not higher order moments of waiting time. 

The algorithm 

Outline The outline of the  complementary algorithm is 
presented  here; details of the  procedure  are  presented in 
following subsections. 

Initialization 

i) Set k = 0. 

i i )  Set  the mean service times of S'O' to  those of the giv- 
en network R .  
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Step  A 

For  each  queue i in the  network, i = 1,. . ., M ,  
i )  Determine  the complement of queue i in S”“. Set  the 

local balance interface of queue i in R equal to the 
complement of queue i in s‘““. 

i i )  Determine  queue length and waiting time distributions 
for  queue i in R by analyzing  the  two-queue  network 
consisting of queue i and  its local balance  interface. 

Step B 

Check  whether  the  queue length and throughput for 
all M queues of R interface  satisfactorily (for  details 
see  the following subsection). If they do, then stop; 
else go to  step  C. 

Step C 

Adjust the mean service times of queues in S‘k’ to 
obtain network Sik+ ” ;  set k = k + 1. The  extent  and 
direction of adjustment is determined  from the degree 
and manner in which individual queue lengths and 
throughputs  violate proper interface  conditions (for 
details see  the  subsection  on  adjustment of mean 
service  times). Go to  step A. 

An  example illustrating the  sequence of steps is 
shown in the Appendix. Clearly,  the  approximate solution 
is sensitive to  the  queue interface  conditions  checked in 
step B and the  manner in which service times of S‘h’ are 
adjusted in step C .  We shall now discuss  steps B and C 
in detail. 

The interface  checks  (step B )  Several parameters can 
be checked  to verify proper interface.  We have  chosen 
to check mean queue lengths and throughputs of each 
node. Let qi be the  queue length of queue i, and E ( q i )  be 
its mean value. Let ti be  the throughput (number of cus- 
tomers  served  per unit  time) of queue i. The  two condi- 
tions checked are: 

and 

The first condition checks  that  the sum of the  mean  queue 
lengths is equal to  the number of customers in the  sys- 
tem,  and  the second verifies that  the throughput  into  a 
node is equal  to  the throughput out of a  node. 

Gordon  and Newell [9] have defined a set of num- 
bers yi, i = 1 , .  . ., M ,  such  that 

(3  

We find it convenient  for  the  iterative  procedure  to de- 
fine the normalized  throughput ti‘ for  queue i as 

ti’ = t i /Yi .  

Using  normalized throughputs,  Eq. (2) becomes 

ti’yipij = tj’yj for j = 1 , .  . ., M .  
i 

The solution to these  equations is obviously 

t ’ = t ‘ =  . . .  = t  1 

Equation (6)  becomes  the  second interface  condition, 
which states  that all queues must have  the  same nor- 
malized throughput. 

Adjustment of mean  service  times  (step C )  We will 
find it convenient  to define an  error  tolerance E which 
will be typically set  to 0.0 I .  If 

1 2  M ’  (6)  

E ( q i )  > N ( 1  + E ) ,  (7 )  
i 

there is said to  be “excessive-queue-length’’ error,  and if 

there  is “insufficient-queue-length’’ error. We will also 
define t’ = Ci t i ’ / M ,  where ti‘ is  the normalized through- 
put for  queue i, computed by analysis of the reduced 
network  consisting of queue i and  its local balance in- 
terface. If ti’ > t’ ( 1 + E ) ,  then queue i has “excessive- 
throughput” error. If ti‘ < t’ ( 1 - E ) ,  then queue i has 
“insufficient-throughput’’ error.  The algorithm describ- 
ing the  adjustments in mean service times is presented 
next. 

Step 1 If there is excessive-queue-length error then go 
to  step 3a. If there is insufficient-queue-length error then 
go to  step 3b. Otherwise proceed to  step 2. 

Step 2 Let 1 / p j  be the mean service  time of queue i in 
the network S”“ and let 1 / p i ’  be the mean service time of 
queue i in the modified network S‘“+”. Set 

pi’ = piti’/ t‘ for i = 1 , .  . ., M .  

Now if pi( 1 - E) < pi’ < pi( 1 + E )  for all i = 1 , .  . ., M ,  
then the algorithm stops;  else  start  the  next, ( k  + 1) th, 
iteration. 

Step 3a For all queues i with insufficient-throughput 
error, modify service rates in the following manner: 

pi‘ = Piti’/  t‘. 

If no queue  has insufficient-throughput error,  go  to 
step 4. 

The rationale of this modification is  that, in the  next 
iteration, the local balance  interfaces of those  queues 
without  insufficient-throughput error (i.e., pi‘ = p i )  45 
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Figure 3 A six-queue  example. 

Figure 4 Comparison  between simulation and complementary 
algorithm results:  utilization for the  central server. 
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will have slower  input rates r , (n )  . In  other  words, in the 
reduced  network analysis  at  the next  iteration, the input 
rate r , (n )  into  queues without  insufficient-throughput 
error will become  smaller, thus reducing the  mean  queue 
length and throughputs of these  queues. 

Start  the ( k  + 1) th iteration  with these modified rates. 

Step 3b  For all queues with excessive-throughput error 
modify service  rates in the following manner: 

pi’ = piti’/ t‘ 

If no  queue  has excessive-throughput error,  go  to 
step 4. 

Start  the ( k  + 1 )  th iteration  with these modified rates. 
(The rationale for  step  3b is the  same  as  for  step 3a.) 

Step 4 The  service  rates  for all queues  are modified in 
46 the following manner: 
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pi’ = p i N / x  E(qJ for i =  l ; . . ,  M .  

The  effect of this step  is  to  reduce all rates r , ( n )  if there 
is excessive-queue-length error,  thus reducing mean 
queue lengths,  and to  increase all rates r i ( n )  if there is 
insufficient-queue-length error, thereby  increasing mean 
queue lengths. 

j 

Start  the ( k  + 1 )  th  step with the modified rates. 

Validation 
The algorithm was validated by comparing results ob- 
tained by the  algorithm with those obtained by simulation 
and  exact analysis.  We first discuss  the  error  “tolerance” 
of an algorithm. 

Tolerance 
The  error in a performance  value is the difference  be- 
tween the  exact value (obtained by Markov analysis or 
simulation)  and the value  obtained by the algorithm. 
The cycle  time T, of a queue i is the mean  time  between 
successive arrivals of a  particular customer  at  that 
queue, i.e., T, = N /  t i ,  where ti is  the number of customers 
served  per unit  time in queue i of network R and N is 
the number of customers in the system. In validating our 
algorithm, we  chose a set of criteria for assessing the 
accuracy of the approximation. The  present objective is 
concerned with the configuration phase of teleprocessing 
networks  and we feel that  the following tolerance values 
are  appropriate  for ordinary  ranges of M and N which 
are applicable to  these  networks. 

The algorithm is said to be within a tolerance z for  a 
given problem  when 

1 .  the utilization error  does not exceed z for all queues 
in the  network, 

2. the  error in mean  and standard  deviations of queue 
length for  every  queue in the network does  not ex- 
ceed z N ,  and 

3 .  the  error in mean  and standard  deviations of waiting 
time for  queue i does not exceed ZT, for i = 1 , .  . .. M .  

For  our investigation,  the accuracy is said to be good if 
the tolerance z is less  than 0.05, and it  is adequate if the 
tolerance is between 0.05 and 0.10. 

Comparison with  exact  results 
Sixty cases  were analyzed. The service  times  were hy- 
perexponential (with a coefficient of variation of 2 .  I 3  or 
3. lo) ,  second-order Erlang, or exponential. The number 
of customers varied  from 2 to 5. The  number of queues 
varied from 2 to 5, but 50 of the 60 cases had only  two 
queues.  Our validation  shows that  the approximation 
algorithm gives 57 good and  three  adequate  results.  In 
the  three  adequate  cases,  the utilization error is within 
0.05, while the  queue length error is slightly above 
0.05N. 
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Figure 5 Comparison between simulation and complementary 
algorithm results: mean waiting time for all queues. 

Comparison with simulation 
Eighteen cases of a seven-queue  central  server network 
(Fig. 1 )  and sixteen cases of a  six-queue  network (Fig. 
3 )  were simulated. The  number of customers  was var- 
ied from two  to twelve.  Service  times  were picked from 
the following random  variables:  hyperexponential with a 
coefficient of variation of 2; Erlang of orders 2, 4 and 6; 
constant service:  and  exponential.  Utilizations, mean 
and standard  deviations of queue lengths,  and waiting 
times were compared for each queue in the network. In 
every  case  the complementary algorithm gave good re- 
sults. Some of the  results  are presented in figures 4 through 
9. The  results give the utilization,  mean cycle time, mean 
and standard  deviations of queue length, and waiting time 
in a  central server model with seven queues.  Figures 4 
through 7 show  results when all queues  have 1 )  hyper- 
exponential  (coefficient of variation of 2 ) ,  2 )  exponen- 
tial, and 3) sixth-order  Erlangian service times. In addi- 
tion,  Figs. 8 and 9 present results  when the central  serv- 
er  (queue 1 )  has hyperexponential  and other  queues 
have sixth-order  Erlangian  service times. In all these 
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I I I 

4 
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I Number of customers 

Figure 6 Comparison  between simulation and complementary 
algorithm results: standard deviation of the queue length for all 
queues. 

cases,  the mean  service  times for all queues  are kept the 
same. When  comparing the  results of all these  cases, it is 
observed  that  the utilizations, queue lengths, and waiting 
times are often  quite different. Therefore,  as  was pointed 
out in the  introduction, approximating  a  general  network 
by an exponential network usually results in unaccept- 
able  errors. 

The number of iterations of our algorithm for  these 
problems  varies from 2 to 8. The  average number of iter- 
ations is less  than  four. 

Conclusion 
An  approximate  iterative technique for  the analysis of 
queuing networks  has been presented.  This technique is 
an extension of the previously reported application [6] 
of Norton’s theorem to queuing networks  that  do not 
necessarily  satisfy local balance. The algorithm is ade- 
quate for the configuration phase of computer and tele- 
processing  system  design, is general, and is limited only 
by the kinds of reduced networks  that  are analyzable. At 
the present time the algorithm has been  programmed  and 
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Figure 7 Comparison  between simulation  and  complementary 
algorithm results:  mean cycle time. 

Figure 8 Comparison  between  simulation and complementary 
algorithm results: mean ( M )  and  standard deviation (S) of the 
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Figure 9 Comparison between  simulation and complementary 
algorithm results: mean ( M )  add standard deviation (S) of the 
queue length for all queues. 

validated to handle  general networks with  general  service 
times  and the first come, first served discipline. The 
algorithm has  also been  programmed to handle  two 
classes of customers,  where  each  class may have different 
branching  probabilities,  service rates and  priorities; how- 
ever,  the program assumes  (at this  time) that service 
times for a  given class  are  independent exponential  ran- 
dom variables. The service  disciplines may be  preemp- 
tive or nonpreemptive priority disciplines or first come, 
first served. Validation of the complementary algorithm 
for  these  cases is not yet complete.  We also plan to pro- 
gram the algorithm to handle state dependent service 
rates. 

Appendix 
Consider a central-server model (Fig. 1) with 5 cus- 
tomers;  details regarding service  times and  branching 
probabilities are  shown in Tables 1 and 2. 

Zeroth step Let ri be an  N-vector whose jth element is 
the service rate of the local balance interface of queue i 
when  there  are j customers in the local balance  interface. 
Then  from S ' O '  we get r l ,  r2 and r3 (see  Table 3 ) .  

By analysis of the reduced networks we obtain the 
throughputs  and  mean queue lengths  shown in Table 4. 
Note  that  we  can  have y1 = 1 ,  yz  = 0.25 and ys  = 0.75. 
From  Eq. (4), we get the normalized  throughputs  shown 
in Table 4. With an  error  tolerance of 0.05 this  solution 
is well within the allowable queue length error. We 
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Table 1 Service times of the  example. 

~ 

Table 3 Rates of the local balance  interfaces. 

therefore proceed to  step 2 and modify the  service  rates 
of S‘”’ to  get S“’. However,  because the modified rates 
(or  S ” ’ )  are within 5% of the original rates (ofS“”).  the 
algorithm terminates. The performance  values  obtained 
by analysis of the reduced networks  are  the final outputs 
of the algorithm. 
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