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Approximate Analysis of General Queuing Networks

Abstract: An approximate iterative technique for the analysis of complex queuing networks with general service times is presented.
The technique is based on an application of Norton’s theorem from electrical circuit theory to queuing networks which obey local
balance. The technique determines approximations of the queue length and waiting time distributions for each queue in the network.
Comparison of results obtained by the approximate method with simulated and exact results shows that the approximate method has

reasonable accuracy.

Introduction

Queuing network models are being widely used in the
analysis of computer systems and teleprocessing net-
works [1, 2]. Some efficient computational techniques
for analyzing complex networks, limited to problems
which satisfy local balance, have been described [3].
Efficient methods for the analysis of specific networks
which do not satisfy local balance exist [4]. Approxi-
mating a general network by one which satisfies local
balance results, usually, in unacceptable error for com-
puter systems analysis.

Green and Tang [5] suggest that systems analysis
techniques, which require modest computation time and
provide results within accuracy limits of 10 to 20 per-
cent, are adequate for the configuration phase of telepro-
cessing network design; subsequent phases may require
more detailed, more accurate and more expensive tech-
niques. The present work is concerned with the configu-
ration phase.

This paper presents an approximate, iterative method
for determining performance values of closed queuing
networks with first come, first served discipline and
general service times. The method is a direct application
of Norton’s theorem [ 6], and it gives exact solutions for
networks which satisfy local balance. The method may
be extended to networks with other disciplines and also
to several classes of customers.

Norton’s theorem for queuing networks

Consider a closed queuing network R with M queues
indexed 1, 2,- -+, M and with N customers (Fig. 1). The
network is assumed to have only one class of customers.
(Extension to several classes of customers is also pre-
sented in [6].) The service time for any queue may de-
pend on the state of that queue (for instance, the num-
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ber of customers in that queue) but is assumed to be
independent of the rest of the network. A customer
branches to queue j after service in queue { with proba-
bility p; independent of the state of the system, i =1, 2,

.M and j=1, 2,--+, M. The network is assumed to
satisfy local balance [3, 6]. For example, a queue may
have an exponential service time and a first come, first
served discipline or a general service time with a rational
Laplace transform and a last come, first served preemp-
tive-resume or a processor-sharing discipline, etc.

Essential to Norton’s theorem [ 6] is the exact equiva-
lence of the complement of a queue. For any queue i in
the given network, i = 1,- -+, M, there exists a reduced
two-queue network consisting of queue i and its “com-
plementary queue” B, (Fig. 2) such that the equilibrium
queue length and wait time distributions of queue i in the
reduced network are identical with those of queue i in
the given network. We have shown in [6] that the com-
plementary queue B, can have a first come, first served
discipline, an independent exponential service time and
a service rate r;(n) that is a function of the number of
customers n in queue B;; the rate r,(n) is the conditional
rate at which customers arrive at queue i of the given
network R, given that there are N — n customers in queue
i (and n customers in the complementary queue B,). The
rate r,(n) is equal to the number of customers served per
unit time in queue i of the given network when 1) the
service time of queue i is identically zero and 2) there
are n customers in the network, n = 1, 2,+++, N. The
complement of a set of queues can be defined in the
same manner. ;

We have shown how Norton’s theorem can be applied
in the parametric analysis of queuing networks. It is of-
ten required to study the behavior of a large network as
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Figure 1 The central-server model: an example of a queuing
network.
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Figure 2 The reduced network of queue i.

the parameters of a single queue or a small subset of
queues are varied over a wide range. It is much simpler
to analyze the reduced network, consisting of the subsys-
tem of queues and its complement, than to analyze the
entire network as the subsystem parameters are varied
over a range. For networks which satisfy local balance,
Norton’s theorem provides us with an exact representa-
tion of the complement and, therefore, an exact analysis.

Norton’s theorem does not seem to be applicable to
networks which do not satisfy local balance. In this pa-
per, however, we describe a procedure for approximat-
ing complementary queues in networks which do not
satisfy local balance.

Complementary algorithm for general networks

* The principle

The complement of a queue i in a network is a queue
which completely captures the interface between queue {
and the rest of the network. Because of complex interde-
pendencies in general networks (which do not satisfy
local balance), this complement cannot be determined
exactly and must be approximated.

We approximate the complement of a queue in a gen-
eral network by a queue with independent exponential
service times; the service rate for this queue, however,
is appropriately adjusted, as will be further shown, to
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account for the assumptions of independence and expo-
nentiality. We refer to our approximation of the comple-
mentary queue as the local balance interface since it is
computed by using assumptions of local balance. It is
very likely that other interfaces with non-exponential
service times will give even better results; however, this
involves a great deal of additional computation.

The complementary algorithm is carried out in itera-
tive steps, sequentially adjusting local balance interfaces
to better approximate complementary queues. On the
kth iteration of the algorithm, £ = 0, 1, 2,-- -, local bal-
ance interfaces are calculated using an auxiliary network
$*. The auxiliary network is identical to the actual net-
work R except that

1. the service rates in S* are different and
2. §™ is assumed to satisfy local balance.

It is therefore possible to use Norton’s theorem to com-
pute the complement of every queue in S*’. At the kth
iteration we use the complement of queue i in $* to
approximate the complement of queue / in R. In other
words, the complement of queue i in S’ is used as the
local balance interface of queue i/ in R.

The queue length and wait time distributions of queue
i in R are obtained by analyzing the two-queue (re-
duced) network consisting of queue i and its local bal-
ance interface. This two-queue network can be analyzed
by the method of Herzog, Woo and Chandy [7] or
Courtois and Georges [8}. The method suggested by
Herzog, Woo and Chandy uses a decomposition tech-
nique to analyze Markovian systems with large, struc-
tured state spaces. It allows arbitrary service distribu-
tions with rational Laplace transforms. The method
yields all steady state probabilities and can produce
queue length and waiting time distributions. This tech-
nique also has application to models with different classes
of customers and priorities. The technique developed by
Courtois and Georges uses embedded Markov pro-
cesses. It allows service distributions which may not
have rational Laplace transforms. The technique yields
the queue length distribution and mean waiting time, but
not higher order moments of waiting time.

o The algorithm

Outline The outline of the complementary algorithm is
presented here; details of the procedure are presented in
following subsections.

Initialization
i) Setk=0.

if) Set the mean service times of S to those of the giv-
en network R.
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Step A

For each queue / in the network, i= 1, - M,

i) Determine the complement of queue i in S*’. Set the
local balance interface of queue i in R equal to the
complement of queue i in $%.

ii) Determine queue length and waiting time distributions
for queue / in R by analyzing the two-queue network
consisting of queue i and its local balance interface.

Step B

Check whether the queue length and throughput for
all M queues of R interface satisfactorily (for details
see the following subsection). If they do, then stop;
else go to step C.

Step C

Adjust the mean service times of queues in s% to
obtain network $“™"'; set k = k + 1. The extent and
direction of adjustment is determined from the degree
and manner in which individual queue lengths and
throughputs violate proper interface conditions (for
details see the subsection on adjustment of mean

service times). Go to step A.

An example illustrating the sequence of steps is
shown in the Appendix. Clearly, the approximate solution
is sensitive to the queue interface conditions checked in
step B and the manner in which service times of § *) are
adjusted in step C. We shall now discuss steps B and C

in detail.

The interface checks (step B) Several parameters can
be checked to verify proper interface. We have chosen
to check mean queue lengths and throughputs of each
node. Let g, be the queue length of queue i, and E(g;) be
its mean value. Let ¢, be the throughput (number of cus-
tomers served per unit time) of queue i. The two condi-
tions checked are:

> E(q) =N (1)
and
Etipij:tj’ j=1,2,"',M. (2)

The first condition checks that the sum of the mean queue
lengths is equal to the number of customers in the sys-
tem, and the second verifies that the throughput into a
node is equal to the throughput out of a node.

Gordon and Newell [9] have defined a set of num-
bers y, i=1,---, M, such that

zyipijzyj’ Jj=12, M. (3)
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We find it convenient for the iterative procedure to de-
fine the normalized throughput 7" for queue i as

t=t/y, 4)
Using normalized throughputs, Eq. (2} becomes
DLy =1ty forj=1,-- M. (5)
i

The solution to these equations is obviously
' =t'=-=1t,. (6)

Equation (6) becomes the second interface condition,
which states that all queues must have the same nor-
malized throughput.

Adjustment of mean service times (step C) We will
find it convenient to define an error tolerance ¢ which
will be typically set to 0.01. If

S E(g)>N(+e), (7

there is said to be “excessive-queue-length’ error, and if
S E(q) <N(1—e), (8)
i

there is “insufficient-queue-length” error. We will also
define ' = Z, 1,/ M, where ¢, is the normalized through-
put for queue i, computed by analysis of the reduced
network consisting of queue i and its local balance in-
terface. If 1/ > (1 + €), then queue i has “excessive-
throughput” error. If ¢t/ < ¢ (1 — €), then queue i has
“insufficient-throughput” error. The algorithm describ-
ing the adjustments in mean service times is presented
next.

Step I If there is excessive-queue-length error then go
to step 3a. If there is insufficient-queue-length error then
go to step 3b. Otherwise proceed to step 2.

Step 2 Let 1/u,; be the mean service time of queue / in
the network S’ and let 1/y,’ be the mean service time of
queue i in the modified network S**"’. Set

w =g/t fori=1,"- M.

Now if g, (1 —€) <p,’ <p;(1+e forali=1,--+, M,
then the algorithm stops; else start the next, (k + 1)th,
iteration.

Step 3a For all queues [ with insufficient-throughput
error, modify service rates in the following manner:

w' =t/

If no queue has insufficient-throughput error, go to
step 4.

The rationale of this modification is that, in the next
iteration, the local balance interfaces of those queues
without insufficient-throughput error (ie., u,/' = u,)
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Figure 3 A six-queue example.

Figure 4 Comparison between simulation and complementary
algorithm results: utilization for the central server.
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will have slower input rates r,(n). In other words, in the
reduced network analysis at the next iteration, the input
rate r;(n) into queues without insufficient-throughput
error will become smaller, thus reducing the mean queue
length and throughputs of these queues.

Start the (k + 1) th iteration with these modified rates.

Step 3b For all queues with excessive-throughput error
modify service rates in the following manner:

B =t/
If no queue has excessive-throughput error, go to
step 4.

Start the (k + 1)th iteration with these modified rates.
(The rationale for step 3b is the same as for step 3a.)

Step 4 The service rates for all queues are modified in
the following manner:
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78 :/‘“iN/E E(qj) fori=1,--, M.
i

The effect of this step is to reduce all rates r,(n) if there
is excessive-queue-length error, thus reducing mean
queue lengths, and to increase all rates r;(n) if there is
insufficient-queue-length error, thereby increasing mean
queue lengths.

Start the (k + 1)th step with the modified rates.

Validation

The algorithm was validated by comparing results ob-
tained by the algorithm with those obtained by simulation
and exact analysis. We first discuss the error “tolerance”
of an algorithm.

~ Tolerance
The error in a performance value is the difference be-
tween the exact value (obtained by Markov analysis or
simulation) and the value obtained by the algorithm.
The cycle time 7; of a queue i is the mean time between
successive arrivals of a particular customer at that
queue, i.e., ,= N/, where 1, is the number of customers
served per unit time in queue i of network R and N is
the number of customers in the system. In validating our
algorithm, we chose a set of criteria for assessing the
accuracy of the approximation. The present objective is
concerned with the configuration phase of teleprocessing
networks and we feel that the following tolerance values
are appropriate for ordinary ranges of M and N which
are applicable to these networks.

The algorithm is said to be within a tolerance z for a
given problem when

1. the utilization error does not exceed z for all queues
in the network,

2. the error in mean and standard deviations of queue
length for every queue in the network does not ex-
ceed 2N, and

3. the error in mean and standard deviations of waiting
time for queue i does not exceed zr, for i=1, - M.

For our investigation, the accuracy is said to be good if
the tolerance z is less than 0.05, and it is adequate if the
tolerance is between 0.05 and 0.10.

» Comparison with exact results

Sixty cases were analyzed. The service times were hy-
perexponential (with a coefficient of variation of 2.13 or
3.10), second-order Erlang, or exponential. The number
of customers varied from 2 to 5. The number of queues
varied from 2 to 5, but 50 of the 60 cases had only two
queues. Qur validation shows that the approximation
algorithm gives 57 good and three adequate results. In
the three adequate cases, the utilization error is within
0.05, while the queue length error is slightly above
0.05N.
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Figure 5 Comparison between simulation and complementary
algorithm results: mean waiting time for all queues.

s Comparison with simulation

Eighteen cases of a seven-queue central server network
(Fig. 1) and sixteen cases of a six-queue network (Fig.
3) were simulated. The number of customers was var-
ied from two to twelve. Service times were picked from
the following random variables: hyperexponential with a
coeflicient of variation of 2; Erlang of orders 2, 4 and 6;
constant service; and exponential. Utilizations, mean
and standard deviations of queue lengths, and waiting
times were compared for each queue in the network. In
every case the complementary algorithm gave good re-
sults. Some of the results are presented in figures 4 through
9. The results give the utilization, mean cycle time, mean
and standard deviations of queue length, and waiting time
in a central server model with seven queues. Figures 4
through 7 show results when all queues have 1) hyper-
exponential (coefficient of variation of 2}, 2) exponen-
tial, and 3) sixth-order Erlangian service times. In addi-
tion, Figs. 8 and 9 present results when the central serv-
er (queue 1) has hyperexponential and other queues
have sixth-order Erlangian service times. In all these
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Figure 6 Comparison between simulation and complementary
algorithm results: standard deviation of the queue length for all
queues.

cases, the mean service times for all queues are kept the
same. When comparing the results of all these cases, it is
observed that the utilizations, queue lengths, and waiting
times are often quite different. Therefore, as was pointed
out in the introduction, approximating a general network
by an exponential network usually results in unaccept-
able errors.

The number of iterations of our algorithm for these
problems varies from 2 to 8. The average number of iter-
ations is less than four.

Conclusion

An approximate iterative technique for the analysis of
queuing networks has been presented. This technique is
an extension of the previously reported application [ 6]
of Norton’s theorem to queuing networks that do not
necessarily satisfy local balance. The algorithm is ade-
quate for the configuration phase of computer and tele-
processing system design, is general, and is limited only
by the kinds of reduced networks that are analyzable. At
the present time the algorithm has been programmed and
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Figure 8 Comparison between simulation and complementary
algorithm results: mean (M) and standard deviation (S) of the
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Figure 9 Comparison between simulation and complementary
algorithm results: mean (M) and standard deviation (S) of the
queue length for all queues,

validated to handle general networks with general service
times and the first come, first served discipline. The
algorithm has also been programmed to handle two
classes of customers, where each class may have different
branching probabilities, service rates and priorities; how-
ever, the program assumes (at this time) that service
times for a given class are independent exponential ran-
dom variables. The service disciplines may be preemp-
tive or nonpreemptive priority disciplines or first come,
first served. Validation of the complementary aigorithm
for these cases is not yet complete. We also plan to pro-
gram the algorithm to handle state dependent service
rates.

Appendix

Consider a central-server model (Fig. 1) with 5 cus-
tomers; details regarding service times and branching
probabilities are shown in Tables 1 and 2.

Zeroth step Let r; be an N-vector whose jth element is
the service rate of the local balance interface of queue /
when there are j customers in the local balance interface.
Then from S we get r,, r, and r, (see Table 3).

By analysis of the reduced networks we obtain the
throughputs and mean queue lengths shown in Table 4.
Note that we can have y, = 1, y, = 0.25 and y, = 0.75.
From Eq. (4), we get the normalized throughputs shown
in Table 4. With an error tolerance of 0.05 this solution
is well within the allowable queue length error. We
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Table 1 Service times of the example.

Table 2 Branching probability matrix of the example.

Queue Service Coefficient of
number time Mean variation

i hyperexponential 3 2

2 Erlangian 4 1/V2

3 Constant 8/3 0

/ 2 3
! 0.25 0.75
2 1 0 0
3 1 0 0

Table 3 Rates of the local balance interfaces.

Table 4 Performance values obtained from reduced networks.

Number of

customers r r, ry
1 1/3 1/5 1/4
2 3/7 5/19 4/13
3 7/15 19/65 13/40
4 15/31 65/211 40/121
5 31/63 211/665 121/364

Queue number 1 2 3

mean queue

lengths 3.30 0.385 1.122
throughputs 0.29 0.075 0.0225
normalized

throughputs 0.589 0.596 0.601

therefore proceed to step 2 and modify the service rates
of § to get . However, because the modified rates
(or $'"") are within 5% of the original rates (of $'°"). the
algorithm terminates. The performance values obtained
by analysis of the reduced networks are the final outputs
of the algorithm.
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