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Scheme  for Invalidating References  to  Freed  Storage 

Abstract: A storage management scheme is described that  supports  the invalidation of addresses  to freed  storage  and thus, in that 
sense, provides  a secure  system.  Unlike previous virtual memory  techniques,  the  allocated areas of our  scheme  can vary  from the very 
large,  requiring multiple pages of storage, to  the very  small, in which several can be contained on a  single  page.  Special treatment is 
accorded  procedure activation storage so as  to provide  increased  effectiveness  for  this  important case.  The interaction of this  deletion 
scheme with  garbage  collection techniques is also  examined.  Finally, the relative advantages of retention and deletion  strategies of 
storage management are  considered. 

Introduction 
In modern high-level languages, e.g., ALGOL 68 [ 11 and 
PL/ I [ 21, in which references (or pointers) are  data val- 
ues and in which storage  can  be allocated  dynamically 
and, more specifically, deleted or  freed,  the problem 
arises of determining the validity of a  reference. This is 
the so-called dangling reference problem. Consider  the 
PL/ I program fragment of Table 1 .  The BASED declaration 
x on line ( I )  is first used to allocate  a FIXED point vari- 
able at line ( 2 ) .  At line (4) this FIXED point  variable is 
freed, i.e., destroyed,  its  storage being returned  to a free 
list. At line (5) an  attempt  is made to use this  variable, 
referenced via P. This  reference is dangling because  the 
variable no longer  exists. The dangling reference problem 
exists in other  variants  as well. Labels and procedures, 
when treated  as  data  values, can  give rise  to  the  same 
difficulty. The problem here  consists of determining 
when a procedure activation  exists. Dangling references, 
in  all their variants,  arise when references  or values that 
include  references can persist  longer  than the  storage 
objects to which they  refer. 

The following two  approaches  to coping with this 
problem have evolved, both representing attempts  to 
avoid the creation of dangling references: 

I .  Scope ruks Scope rules,  introduced in ALGOL 68, 
prevent  the assignment of references  (or  procedures 
and  labels that implicitly contain them)  to variables 
that can persist  longer  than the  objects  to which they 
refer.  Such scope rules have been instituted only for 
references  to  procedure activations  and for labels and 
procedures  that implicitly reference  activations, be- 
cause  the lifetime of activations is specified, i.e., the 
activations follow a stack discipline.  Assignment of 
references from higher in the stack (the stack  grow- 
ing down)  to variables  lower in the  stack is permit- 

ted, but not the  reverse.  The chief virtue of scope 
rules is that a  compile  time check is frequently suffi- 
cient to  assure  that  the rules have not been violated. 
This is not  always the  case, however, and full en- 
forcement of the rules requires run time interpreta- 
tion. Such  thorough  enforcement is not really antici- 
pated for ALGOL 68, it being considered too  expen- 
sive [ I ] .  Further, of course,  scope rules reduce func- 
tion,  although how seriously is a  subject of some  de- 
bate. 

2 .  Retention Even if scope rules  were  instituted to con- 
trol the  persistence of references involving procedure 
activations, this would not cope with based or heap 
storage  where  storage  objects  have no implicit life- 
time. The dangling reference problem can  be elimina- 
ted here by adopting the so-called retention strategy, 
i.e., no explicit FREE or  destroy  operator is provided. 
Thus objects  exist for  as long as  any  references  to 
them exist. What happens to an object when there are 
no outstanding references is not part of the semantics 
of the language being supported.  However,  the viabil- 
ity of the  retention  strategy depends on some form of 
storage reclamation, Le., “garbage  collection.” The 
retention  strategy can  also be applied to  procedure 
activation storage [ 3, 4, 51. Activations  then no long- 
er follow a stack discipline.  Several  implementation 
methods have been  described  recently to realize the 
retention  strategy for  procedure  activations in some 
reasonable fashion [ 6, 71. 

Unlike scope rules, there  seems  to be little that can 
be  done  at compile time to  reduce the cost of the reten- 
tion. This  cost is extra  storage consumed by the no- 
longer referenced  storage  objects,  extra time for gar- 
bage collection of this storage,  or  some combination 
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of the two. The retention strategy,  at least for based 
or heap  storage, also reduces  function. It is no longer 
possible for a  program to specify that a storage  object 
is to be  freed when it no longer serves  some sensible 
purpose. As a consequence, large amounts of data 
(perhaps  entire files) continue  to  exist until their  last 
accessible  references  are  destroyed. 

In contrast  to  these  two solutions there is the ap- 
proach that ignores the problem, i.e., dangling references 
are  created, and no effort is made to  detect them. The 
advantage of this approach is that  there is no perform- 
ance loss in run  time  checking or garbage  collection. 
Further,  there is no loss of function. Retention  for  heap 
storage can  be  supported by simply never freeing stor- 
age. What is lost,  however, is error  detection capability, 
and the integrity of programs and storage may be com- 
promised. 

This  paper  presents a method, not for eliminating dan- 
gling references, but rather for  automatically invalidating 
all such references. Thus,  an  attempt  to  access  storage 
using a dangling reference is detected, and an exception is 
indicated. This  approach  requires run time interpreta- 
tion. To make this interpretation  reasonably efficient 
requires  hardware  assistance, which greatly reduces 
time  and space penalties. The  cost is primarily in terms 
of extra logic, which, given current and  projected  tech- 
nologies, seems likely to be quite reasonable. 

Tombstones 
To invalidate dangling references, an indicator, called a 
tombstone, must  persist after  an object is destroyed.  The 
tombstone might be located in any of three places. 

1. I n  the references This requires that a list of  all refer- 
ences  to  an object be maintained, so that it is possible 
to find and  invalidate each reference  when the  storage 
is freed. This  approach is untenable  because of the 
enormous  overhead. 

2. I n  the  storage  area The idea  here is to  reserve part of 
each  storage  area  for its tombstone(s) . Each refer- 
ence  to  the  area must check a tombstone  to  deter- 
mine whether  the  reference is valid or dangling. 
There  are  two problems with this approach: 
a. One  cannot reclaim the  tombstone part of the  stor- 

age area when the  area is freed. This part  must 
persist to  trap dangling references. This  creates a 
serious  storage  fragmentation  problem. 

b. Selection of a subarea of a major area leads to 
difficulties. Each potential subarea could have its 
own tombstone, a  very  costly  solution, if it is a 
solution at all. Freeing  the  area would require  the 
resetting of all the  subarea  tombstones,  and none 
of them could be reclaimed.  Alternatively, all 

Table 1 A PL/I  procedure fragment  illustrating  dynamic 
storage  allocation and freeing. The use of P at ( 3 )  is valid where- 
as its  use al ( 5 )  is dangling because  the storage  referenced by P 
has just been  freed at (4). 

Q: PROC; 
DCL Y FIXED; 
DCL P POINTER; 

) DCL  X  BASED  FIXED; 

! j  ALLOCATE  X  SET  (P) ; 

( 3 )  Y = P + x; 

(4)  FREE P + X; 
( 5 )  Y = P + x; 

END; 

pointers to  subareas could  retain  knowledge of the 
location of the  tombstone  for  the major area. If 
one were to  do  this,  however, it would seem more 
desirable  to use alternative  three, which avoids  the 
storage fragmentation  problem. 

3 .  I n  a separate location As indicated above, this re- 
quires  that  each  address not  only  contain the location 
of the storage area it references  but, in additon,  the 
location for its tombstone.  This  approach  results in 
an  increase in the  size of an  address and requires a 
separate  access  to  the  tombstone each  time the ad- 
dress is used. However, it is this approach  that holds 
the most  promise, given the right kind of hardware 
assistance.  The remainder of the  paper  elaborates  on 
this  approach  and the  hardware  assistance needed to 
realize it. 

The area machine 
There  are .more potential difficulties with addresses than 
just  the dangling reference problem.  When implementing 
a high-level interface, it  is necessary  to keep track of the 
form of data referenced by each  address in order  to 
check  that  such  data  are  correctly  interpreted. Several 
techniques,  or combinations of them, can be  used for 
this purpose. I f  the language is sufficiently constrained, 
most of this  checking can be done  at compile time.  Run 
time  interpretation is only needed when checking at 
compile time is not feasible. 

Similarly, a low-level interface, when coupled with a 
virtual memory, e.g. [8, 9 lo], provides  a  mechanism 
for checking that  addresses  are used correctly though 
this  checking is  at a  more  primitive level. More specifi- 27 
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cally, when an address is used or  address computation is 
performed, the resulting address is checked to  assure 
that it references a valid segment  and is within the 
bounds specified by this  segment. This checking assures 
that derived addresses remain within the boundaries of 
the original areas. 

Here we describe a  method of realizing an area ma- 
chine. This machine  combines an essentially low-level 
interface  with  a  memory  very much like a  segmented 
virtual memory. The difference is a  pragmatic one.  Gen- 
erally one  cannot afford to  create a  new  segment every 
time  a new area of storage is allocated.  Segment creation 
is usually too  expensive  to be  used every time  a pro- 
cedure activation is created  or BASED storage is allocat- 
ed. Further, segments are typically paged, and  hence 
each is associated with its own page  table. This means 
that  the  amount of actual storage consumed by a seg- 
ment is some multiple of the page size, thus discouraging 
the allocation of small segments. Some Burroughs  Ma- 
chines [ lo] do not  page  segments,  but this leads  to a 
reduction in maximum segment  size  and to  storage frag- 
mentation [ 1 1 1 .  

The principal idea for  the  area machine, in a  segment- 
ed, paged, virtual memory framework, is to  associate  an 
area table with each  segment, in addition to a  page  table. 
Each  address includes  both  the  location of its storage 
area  (indirectly via  a page table)  and  an index identify- 
ing an area  table  entry.  The  area table entry,  at a mini- 
mum, contains  the  tombstone  for  the  area.  This makes it 
possible to  do multiple area allocations within a  segment 
in a secure  fashion, i.e., all addresses  to  an  area can 
be checked  to  determine if they are dangling by examin- 
ing the  tombstone in the indexed area  table  entry.  The 
segment identifier becomes, in essence, merely the  name 
of a page table. Another way of viewing this is to con- 
sider a  segment identifier as consisting of two  parts, a 
page table identifier and a suffix indicating a  segment 
within the storage  described by the page  table.  Viewed 
in this way, the  area machine is an implementation that 
permits  both multiple pages per segment  and multiple 
segments per page. The  latter  has been  suggested by 
Fabry [ 121 among others. 

Bounds  information for an area  can be  maintained ei- 
ther in the  references  or in the  area  table  entry.  Two 
conflicting pressures must  be  balanced. On  the  one 
hand,  there is generally  more than  one  address  to  an 
area, and thus it  is desirable  to keep the size of address- 
es small. On  the  other hand, an  area  table  entry is more 
or less permanent  and must  often exist  even if its area 
has been  freed  and no dangling references exist. Hence, 
keeping the  area  table  entry small is also important. 

There is yet  another way in which addresses may be 
validated. This is to rigorously control  how  they are 
generated.  The idea is to make it impossible to manufac- 

ture an address using ordinary data processing  opera- 
tions. This is done  as follows: All addresses  to major 
areas originate as a result of a storage allocation  opera- 
tion. Addresses  to  subareas  are  generated by means of 
selection operations, in which one argument is an ad- 
dress  to an area  (or  subarea)  and  the  other is a  displace- 
ment or index. These  operations must check  that  their 
first argument is a valid address and that  the result of 
adding the displacement or doing the indexing yields a 
resulting address  that is within the bounds of the  area. 
The final requirement is to  make  sure  that ordinary data 
in storage  cannot be  misinterpreted as  an  address.  Thus 
addresses must  be  distinguished  from all other  data, Le., 
they  must  be tagged. The  concept of a tagged architec- 
ture and of protected  addresses  have been advocated by 
several  authors, e g ,  [ 12, 13, 141. 

The detailed  mechanism presented below  and  shown 
in Fig. 1 depends  on  the  fact  that  addresses  are  protect- 
ed.  In particular,  this  makes it possible to perform ad- 
dress bounds  checking using only the end-of-area  bound. 
The starting offset of an  area within a  segment need not 
be explicitly maintained. (As we will see, however, it 
can be useful to maintain it.) The end offset of an  area is 
kept  with the  tombstone in the  area  table, reflecting the 
hypothesis that keeping addresses small is more  impor- 
tant  than keeping the  area  table  entry small. It should  be 
noted, however, that the ability to  subset  areas is re- 
stricted by this  decision.  Only the low order  storage of an 
area can  be  removed in forming a subarea. Eliminating 
access  to  the high end of an  area is no longer possible. 

An  address  (which is protected by some form of tag, 
here assumed to be in a part of the memory  inaccessible 
to  the  area machine user)  consists of the following com- 
ponents: 

1. A segment identijier (SID) , which names  a  page table 
and an area  table  to be used in interpreting this ad- 
dress. 

2. A n  area identijier ( A I D ) ,  which  names the  area  table 
entry in the  area table of the  above named segment; it 
describes  the  area  to which  this address refers. 

3.  A starting offset (s. OFF) ,  which  indicates the starting 
location of the  area  or  subarea  addressed, relative to 
the  start of the segment. It  consists of two  parts: 
a. A page identiJier (PID) , which names the page ta- 

ble entry used to  locate  the  storage  for  the  ad- 
dressed  area  or  subarea. 

b. A displacement ( D ) ,  which is the  quantity  to be 
added to  the  contents of the page table  entry 
named by the PID in order  to identify the precise 
starting  location for  the  area  or  subarea. 

4. Control  information, which indicates the capabilities 
associated with the  address and otherwise  describes 
it. One  component of it must  be  a destroy capability 
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indicator. This  determines  whether, by means of this 
address,  the  area  can be freed.  Of course, additional 
capabilities might also be included in order  to  support 
protection  mechanisms. 

The segment  table consists of entries  that contain the 
addresses of the page table (P.TAB) and the  area table 
(A.TAB) . Each of these  tables begins with descriptor in- 
formation  concerning the table itself. The page table 
descriptor  consists of a field P.NO that indicates the 
number of pages in the segment. The  area  table descrip- 
tor  consists of two fields. Field A.NO contains an index 
to  the last entry in the  area table, whereas A.ALOC con- 
tains the number of currently allocated areas, i.e., those 
that  have been  allocated  but not yet freed.  A page table 
entry  contains  the real storage  address of the page or  the 
location of the page on  secondary storage. An  area  table 
entry contains: 

1 .  A tombstone (TS) ,  which has two possible  values, 
allocated, indicating that  the  area still exists, and 
freed, indicating that it does  not and  hence that all 
outstanding references  to  the  area  are invalid 
(dangling). 

2. A n  end offset (E.OFF) ,  which indicates the end loca- 
tion of the  area relative to  the  start of the segment. It 
consists of a PID and  a D, just  as  does  the %OFF in 
each address. 

Figure 1 illustrates how these  components fit together 
and how an  address is decoded.  The  actions involving 
the page table  are  omitted, since  they are unchanged 
from the usual virtual memory  mechanisms. 

Each  access  to  storage  requires  that  the segment table 
entry be examined to validate the SID. Given a valid 
segment table  entry,  the  area table for it must be ac- 
cessed  (via  the A.TAB) and  the  appropriate entry  located 
by means of the AID.  The  tombstone field TS of that en- 
try is checked  to be sure  that  the  area is allocated. An 
access  to  storage also  must  contain an indication of the 
length of the  data involved. The  data must all fall within 
the  area.  For this to be true,  the following condition 
must  hold: 

%OFF + length of data - 1 5 E.OFF. 

If these conditions are  met,  either  the  contents  are deliv- 
ered  to the accessor  or  data  are written  into the  area. 

To specify a subarea of an  area,  the  operation 

SELECT (address,  displacement) 

must  be executed. A SELECT operation, is checked in a 
fashion similar to  an  access.  In this case,  the  bounds 
check  requires the following: 

S.OFF +displacement 5 E.OFF. 

Segment table 

L 

SID AID S.OFF 
Address 

Area table 

Figure 1 Addressing an area within a segment.  The area is 
determined via the %OFF of the address and the E.OFF of the 
area table entry. 

The result of a valid selection operation is formed by 
adding the displacement to  the S.OFF of the argument 
address.  The  destroy capability is removed  from the 
resulting address. 

To create a new area of a specified size in an existing 
segment requires  that  an  area  table entry be permanently 
dedicated  to  the new area.  The  address returned as a 
result of allocation consists of 

1 .  SID +- the SID of the segment of which the  area is a 
part. 

2. AID +- A.NO i- I (the  next  unused  area table entry). 
3 .  Destroy capability is granted. 
4. %OFF is set according to  where  free storage  for the 

area is found. 

The  area  table entry A.NO + 1 consists of: 

I .  TS + allocated 
2 .  E.OFF + S.OFF + size of area - 1. 

Finally, in the  area table descriptor, A.NO +" A.NO + 1, 
and  the number of allocated areas is increased by 1, i.e., 
A.ALOC +- A.ALOC + 1 .  29 
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The freeing of an  area requires the execution of a 
FREE operation, which consists of performing the follow- 
ing actions: 

1. The  address designating the  area is checked  to  assure 
that it has  destroy capability. 

2. The storage between  the address’s S.OFF and  the  area 
table entry’s E.OFF is returned  to the free list. 

3 .  The  tombstone TS of the  area  table  entry is set  to 
free. 

4. In the  area table descriptor,  the  number of allocated 
areas is reduced by one, i.e., A.ALOC + A.ALOC - 1 .  

If A.ALOC = 0, then it becomes  possible to invalidate 
the  entire segment by nulling the  area  and page table 
addresses of the segment table  entry.  This would permit 
reclamation of the area  and page table  storage. Dangling 
references would be  trapped by means of the nulled 
segment  table entry.  This might be done if a significant 
number of area  table  entries  have been consumed, i.e., 
A.NO 1 some threshold. 

Procedure  activation  storage 
One of the  unfortunate  consequences of the  area ma- 
chine as  described is that  to securely manage procedure 
activations  requires  that a new area  table entry  be pro- 
vided for  every activation. These  area  table  entries must 
persist  even  after the procedure activation  has  been 
freed,  whether  or not  a dangling reference  to  the  activa- 
tion exists. This, of course, is true of all separately allo- 
cated  (major)  areas.  However,  procedure activations 
follow a stack discipline, and  hence  the lifetime of an 
activation,  relative to  other  activations, is known. Fur- 
ther, it is comparatively  unusual for  references  to  an  ac- 
tivation to persist after the  activation has been  freed. 
The conjunction of these  two conditions  plus the  great 
frequency of procedure  activation creation  and  destruc- 
tion are compelling reasons  for providing a  special 
mechanism for  procedure  activations. 

One would like to assign an  area table entry  to a pro- 
cedure activation only when  a reference  to  that  activa- 
tion can  persist  longer than  thezactivation,  and  hence 
become dangling. An  approach  to doing  this is to pro- 
vide  two classes of addresses  to  procedure  activations, 
one called temporary and the  other permanent. Tempo- 
rary addresses  do  not require an  area  table entry to be 
permanently consumed,  and  these  addresses  are utilized 
as much as possible. Permanent  addresses  for  procedure 
activations, which do  require a  permanently  assigned 
area  table  entry,  are only generated when the  storage 
management system  cannot  guarantee  that a dangling 
reference will not arise, Le., when the ALGOL 68 type of 
scope rules are violated [ 11. 

In order  to  support temporary addresses, a  second 
area table is associated with each  segment that provides 

storage for  procedure activations. This is called the tem- 
porary  area  table. Entries in this table, like the  activa- 
tions themselves, follow a stack discipline and  hence  are 
not  permanently consumed  on  the creation of each new 
activation.  The  entries in this  table differ from  those in 
the regular area  table  and  consist of 

1. An offset (E.OFF) ,  which indicates the  end of the 
storage for the activation within the segment 

2. An index ( P I ) ,  possibly null or  zero, which  indicates 
which, if any,  permanent  (regular)  area table entry 
identifies the  same  activation. 

In order  to  access  the temporary area  table, its  ad- 
dress is included in the segment  table entry.  The  de- 
scriptor  at the start of the temporary area  table  consists 
of a single field, T.NO, which indicates the last active en- 
try in the table. 

Finally,  a temporary  address must be distinguished 
from  a  permanent address.  This is done by means of a 
component in the  control  information of an  address. 
This  component, called the T / P  indicator, is set  to T if 
the  address is a temporary  one  and  to P if it is perma- 
nent. 

When  a procedure is called,  activation storage for it 
must  be  allocated. The  storage management system 
needs only the size of the  activation  storage. This  stor- 
age is allocated from the  activation stack, necessitating 
the  use of temporary area  table entry T.NO + 1 ,  which is 
specified as follows: 

1. E.OFF + E.OFF T,NO + size 
2. PI + 0, Le., there is no permanent  area table entry 

Further,  the  temporary  area table descriptor is updated, 
Le., T.NO +- T.NO + 1 .  

Since  activation  storage  utilizes  a stack discipline, 
there is no free list to be searched.  The only other action 
might be  to  assure  that  the newly allocated  storage is set 
to  some undefined value so that  attempts  to  use it before 
it  is initialized can  be detected.  (This  same considera- 
tion applies to  ordinary allocation as well.) The  address 
returned consists of the following: 

1. SID + the segment I D  of the segment  providing acti- 

2 .  AID + T.NO (the new value  after  the  temporary  area 
vation  storage. 

table  descriptor  has been updated). 

4. Control information in which T/ P + T. 

How  the  above  tables  are organized is illustrated in Fig. 
2 .  Again, the page table  has been  omitted. 

The requirement to  convert temporary addresses  to 
permanent  ones  arises only in certain  cases involving the 
moving of data containing addresses.  In  these  cases, a 
temporary  address in the  source  area must have  an 

3. S.OFF + E.OFF T , N O - I  + 1 .  
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equivalent permanent  address substituted for it in the 
target area.  The derivation of this  equivalent  permanent 
address is accomplished  thusly. If there is not currently 
a permanent area  table  entry associated with the  activa- 
tion storage, Le., if the  temporary area table  entry asso- 
ciated with the address  has a PI component equal to 0, 
then the equivalent permanent  address is formed as fol- 
lows: 

1. The SID,  S.OFF, and  control  information, except  for 
the T I P  component,  are the same  as  those of the 
temporary address. 

2. T I P + -  P. 

3. A I D  +- A.NO + I (the index to  the next unused  regular 
area table  entry j .  

The  area  tables  are updated as follows: 

1. A.NO +- A.NO + I (the number of area table entries is 
increased by one). 

2. A.ALOC +- A.ALOC + 1 (the number of currently allo- 
cated permanent area table entries is increased by 
one j .  

3 .  The temporary area table entry indexed by the A I D  of 
the temporary address is updated so that 

(A.NO is the index for  the new permanent area table 
entry. A I D  is the  area identifier of the  temporary  ad- 
dress.) 

PI,,, +- A.NO. 

4. For permanent area table  entry A.NO 

TS +- allocuted 
E.OFF +- E.OFF,,, 

(the end offset of the corresponding  temporary area 
table entry). 

If   PI,^,^) # 0 ,  then a permanent area  table  entry for the 
activation  already exists. No new one is created.  Rather, 
this  regular area table entry is used, i.e., the A I D  for the 
equivalent  permanent address is set  to  the  contents of 
PI*/D. 

The  circumstances  that govern  whether address  con- 
version  must be performed during a  data move are  as 
follows: 

I .  N o  conversion is required  for  any addresses if: 
a. The size of the data being moved is smaller  than 

the size of  an address, since an address  cannot be 
moved if this is true.  Movement of a partial ad- 
dress may indicate an exception. 

b. The  source  address refers to  an  area in a segment 
that  does not contain  activation  storage,  since no 
temporary  addresses can  exist in such a segment. 

c. Both source and  target addresses refer to areas in 
the  same segment  and that segment contains acti- 
vation  storage  and the  source persists at  least as 
long as the target.  Clearly, any  addresses in the 
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Figure 2 Addressing  activation storage by means of a tempo- 
rary address and its equivalent  permanent  address. 

source  area then  must be prepared to persist as 
long as the source persists  and  thus as long as the 
target persists.  This is indicated  under the follow- 
ing circumstances: 
i. S.OFF for  the  source is less than or equal to 

S.OFF for the  target. 
ii. Both source and  target addresses  are perma- 

nent or both are temporary  and  their AIDS are 
equal. 

iii. One  address is permanent and one is tempo- 
rary, and the temporary address has a tempo- 
rary area table entry with a permanent area in- 
dex ( P I )  that equals  the A I D  of the  permanent 
address. 

2. Conversion from temporary to permanent addresses 
may be required otherwise.  This  conversion applies 
only to certain addresses contained in the data  to be 
moved from source  to target. There  are two cases  to 
consider. 
a. The target is not in the  same segment as  the 

source.  Here, all temporary  addresses in the 
source  area must be converted. 

b. The target is in the same segment as the source. 
Here, only the temporary addresses  that fail the 
tests described in I C )  above  (where  source ad- 31 
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dress is now interpreted  to mea In address in the 
source  data being moved) need  be converted. 

Activation storage is only  freed  when  a RETURN or 
GOTO out of a block is encountered.  Either implicitly for 
the RETURN or explicitly for the GOTO, the argument for 
the  operation is the  destination address where  execution 
is to  proceed. All activations from the  current activation 
up to but not including the activation  referenced by the 
destination address must  be  freed  when using the dele- 
tion strategy.  This  requires  that  the following search for 
the  destination activation  be executed starting with the 
last  activation, i.e., the activation  indexed by T.NO. 

1 .  If the destination address is temporary  and  its AID 

equals T.NO, then we say that the  destination has 
been reached. Otherwise it  is not  reached. 

2 .  If the  destination  address  is permanent and its A I D  

equals  PI,,,^ (the  permanent  area index  associated 
with the T.NOth activation), then  the  destination has 
been reached. 

3 .  If  the  destination has not been reached, then 
a. If  PI,,,^ # 0 ,  a  permanent tombstone has been as- 

sociated with the activation. This  tombstone must 
be set  to free. 

accomplished by merely setting T.NO +- T.NO - I .  

activation is reached. 

b. The activation  storage  must be reclaimed. This is 

c. Steps 1 ,  2 ,  and 3 are repeated until the  destination 

4. If the  destination has  been reached, then  control is 

5. If T.NO has been reset  to  zero without reaching the 
destination activation,  an exception  must be indicat- 
ed.  This can only occur if the destination address is 
permanent and  its permanent  tombstone equals free. 
This condition can be detected prior to  the  search. 

transferred  to  the destination address. 

Hardware  assistance 
There is, of course, a cost  associated with secure storage 
management. This  cost  can  appear in three  forms, in- 
creased time,  increased space,  or increased logic. The 
area  table  consumes  extra  space and further,  each ad- 
dress must be wider, because it must  also  include an 
AID.  Additional  time may be  required on  every  access in 
order  to  check  the validity of the  address. Finally, in- 
creased logic must  be present in order  to implement the 
address validation and  to keep the  extra  tables  updated. 

Not much can  be  done  about  the increased space  re- 
quired. However,  there is considerable flexibility in 
choosing  a time vs logic trade-off. Given  the  current low 
cost of logic and the continuing decrease in its cost, 
there is very good reason  for doing as much as possible 
in logic (additional hardware) so as  to minimize the time 
penalty. This sort of trade-off has  occurred before and 

32 has  resulted, for instance, in associative  memories being 

used to  increase the  speed of dynamic address transla- 
tion in virtual memory computers. 

The addressing  mechanism of the  area machine needs, 
in fact,  the  same kind of hardware  assistance  as  does vir- 
tual memory.  Like virtual memory,  always  accessing the 
required  tables  results in too many storage accesses. 
Without special assistance,  the following additional stor- 
age accesses would be required every time an address 
were  to be used: 

1 .  To the segment  table entry  to find the  location of area 

2. To the page table  entry. 
3.  To the  area table entry. 

In order  to circumvent  this  process at least  most of the 
time, associative memories  can be used. For virtual 
memory,  and  for  the segment  and page table accesses 
above, this associative memory retains  the real storage 
address of an S I D / P I D  pair. The  area table accesses  can 
be circumvented in most cases via a second associative 
memory that  retains the  tombstone and E.OFF field  of an 
S I D / A I D  pair. The  same locality of reference that  causes 
this  technique to work  reasonably well for virtual memo- 
ries should make it work well for the  area machine. 
Without  this kind of hardware  assistance,  the time  penal- 
ty for  the extra  accesses is simply too large. 

and  page  tables. 

Role of garbage collection 
Clearly one of the primary purposes of using a  deletion 
strategy  is,  hopefully, to  reduce the need for general 
purpose garbage  collection. The stack  discipline of pro- 
cedure activations ensures  that such  garbage  collection 
need never be used for activation storage.  Further, lan- 
guages with explicit FREE commands, e.g., P L / I ,  tradi- 
tionally do not  provide  garbage  collection to  those  struc- 
tures  that can no longer be referenced. It  then  becomes 
the responsibility of the  user  to  ensure  that storage is 
reclaimed by his issuing of FREE commands. 

It should be emphasized, however, that none of the 
mechanisms  introduced thus far  preclude  garbage  collec- 
tion. Further, it is our view that garbage  collection can 
be a  valuable supplementary tool for achieving  a  balance 
between  user  control, performance,  and ease of use. 
Whereas a  user  should  be able  to control  both the alloca- 
tion and  freeing of storage, with assurance  that dangling 
references will be detected, he should not be required to 
always  exercise such  precise  control. To realize this 
flexibility, a  garbage  collection  capability  must be 
present. 

It is beyond the scope of this paper  to  discuss  the 
many ways in which garbage  collection might be imple- 
mented. What is discussed is the way in which most gar- 
bage  collection  techniques  can be reconciled  with, in- 
deed, can  take advantage  of,  the  area machine  organiza- 
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tion. In particular, two  aspects of garbage  collection are 
elaborated.  One is the so-called marking phase in which 
referenced (accessible) storage is distinguished from 
inaccessible  storage. The second is the way in which the 
reclaimed area  table  entries can  be reused. 

The marking phase of garbage  collection requires  an 
initial set of addresses  to immediately accessible areas 
within the domain that is to be collected. For  these ad- 
dresses,  the associated  storage  must  be  examined so as 
to  discover  addresses  to additional areas that are  acces- 
sible, etc. Since addresses  are distinguished  from other 
data in the  area machine, these additional addresses  can 
be identified. Marking these  areas  requires  that a one bit 
MARK field be associated with each area  to indicate 
which areas  are accessible. If area  table  entries of al- 
ready  freed areas  are  to be reclaimed,  the MARK field 
should also be associated with each of these. This is a 
fairly compelling reason for including the MARK field as 
part of the area table entry,  thus marking both the  area 
and  the entry. Finally, if there is a  convenient way of 
invalidating references  without recourse  to their  tomb- 
stones, the area table entries  for all freed areas  can be 
reclaimed during  garbage  collection. One way to  do this 
might be to  set all the  bits of each such  address  to  zero. 

Provision  must be made for determining the starting 
offset of each accessible area so that  accessible storage 
can be distinguished from “garbage.”  Only that  part of 
each  area  that  can be accessed need be saved.  This part 
of each  area is merely the storage  from the lowest S.OFF 

of any  address still referencing the  area  to  the  end E.OFF 

of the  area.  However,  there  are  advantages  to maintain- 
ing the full extents of  all areas.  In particular, it becomes 
possible 

1. For  the  destroy capability to be  associated  with  any 
reference  to  the  area, not simply those that  reference 
the  entire  area.  (When storage is freed,  one must 
know the  extent of the  area if all its  storage is to be 
reclaimed.) 

2. To support  operators  that can  provide,  given an  ad- 
dress,  its displacement within the  area. 

3 .  To use the boundary tag method of storage  reclama- 
tion to handle the maintenance of the  free list. This 
ingenious method,  due  to Knuth [ 151, provides for 
the consolidation of adjacent free storage areas with- 
out  any list  searching. 

Thus we illustrate  a  realization in which,  for each  area, 
an A.STR field  is maintained that  contains its  starting 
offset so as  to indicate  its  entire extent.  Further,  two 
fields, called STAG and E.TAG, are provided to hold the 
tags required by the boundary tag storage  reclamation 
algorithm. 

The  one section of adjacent  storage that is accessible 
via all addresses  to  an  area is that storage  immediately 
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Figure 3 The lay-out of storage for  an allocated area and for a 
freed area, using the  boundary tag storage management scheme 
and  marking  areas  for  garbage collection via  area  table entries. 

following the end of the  area, i.e., at E.OFF + 1 ,  since 
E.OFF is maintained in each  area table entry and  each 
address  contains  an AID that designates  its area  table 
entry.  The range checking of addresses  (to insure that 
addressing past E.OFF does not occur) will protect this 
storage. Putting  control information here is desirable 
since  the information is accessible  without  increasing the 
size of every  address  or  area table entry. Because  this 
control  information is exploited only by a few operators 
and occassionally by the  storage  management system, 
and  hence is not  needed  for  most  storage accesses,  there 
is little incentive for placing it  in the  area table.  Figure 3 
illustrates one way of organizing storage that reflects 
these considerations. This  section of adjacent storage 
can, of course,  also be exploited to hold additional  kinds 
of information, e.g., locks,  authorization  information, 
ownership,  etc. 

Figure 3 also  shows  the  format of a free  (or  available) 
area  adjacent  to  the  addressed  area. Such  a  free area 
must maintain forward and backward links (F .LINK and 
B . L I N K )  to  other  areas  on  the free list. It is the mainte- 
nance of a symmetric list that makes  the  updating of the 
free list possible  without list searching.  Finally, an 
A.END field must be provided at the start of the  free  area 
to indicate the location of the end of the  area.  Storage 33 
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for  these last three fields is obtained  from the storage 
originally provided for  user  data.  For more  details on  the 
boundary  tag  method, the  reader should consult Knuth 

The second aspect  to be  discussed is how to  reuse 
area table entries.  This involves maintaining a free list of 
these  entries.  This can be done by using the E.OFF com- 
ponent as a link field to the next reclaimed area  table 
entry.  The first entry in the  area  table, Le., entry 0, can 
be  used for  the  free list header. 

~ 5 1 .  

Other control mechanisms and retention 
Because the security of the storage management  system 
can be assured using a  deletion  strategy as well as with a 
retention strategy, choosing  between  them requires  an 
assessment of how the  system will be used. One of the 
prime factors in this context, for  favoring  a retention 
strategy, is its ability to readily support more  sophisti- 
cated  (or  at  any  rate, additional)  control  mechanisms. 
Some of these  are  coroutines, multiple tasks, upward 
“fun-args,”  and  back-tracking. All of these mechanisms 
require that  some of the storage for a procedure  activa- 
tion  be  retained after  the activation exits. 

Systems currently exist, of course,  that use  a  deletion 
strategy and  yet  support some of these capabilities. 
What is usually required is that  the programmer  make 
some explicit indication of his intention to use  a  given 
control  mechanism at  the time  a procedure is called and 
its  activation constructed.  This is the case for  multitask- 
ing in, e.g., the  Burroughs  B6700 [ 161 control  program 
and in the P L / I  systems  for IBM 360/370  computers 
[2]. Each task  creation requires  that a separate  stack be 
dedicated to it. A deletion  strategy is used on  each 
stack,  whereas  the relative  persistence of at  least some 
of the  activations on the various stacks is unspecified. 
This kind of strategy we call user-planned retention, 
whereas we call the earlier  retention  strategy  general 
retention. Whether user-planned or general retention 
should  be chosen  depends primarily on: 

1. The relative costs of the  two strategies 
2 .  Whether  user planning for retention is considered to 

be either an unnecessary burden or a  valuable  disci- 
pline and 

3. How frequently  retention will be employed. 

The earlier sections of this  paper provide a  qualitative 
analysis of the  cost of using a deletion strategy, with 
some comments on how it compares  to general reten- 
tion.  User-planned  retention does  not  change this analy- 
sis  very  much. It probably, however,  does require an 
additional  segment for  each  separate  procedure  activa- 
tion stack.  The significance of this requirement  depends 
on the frequency with which  retention is used. 

User planning for  retention does not  seem to be  a 
great burden. In  fact,  for most of the  control  mecha- 
nisms mentioned above,  the  use of the mechanism is 
naturally  indicated at  the initiation of a procedure.  Cor- 
outines,  separate  tasks,  and back-tracking are all natural- 
ly indicated at precisely  the  points in the  program where 
the planning for retention must be done.  Upward fun- 
args, Le., procedures  that  are  returned  as values by other 
procedures  and  that depend on variables local to  these 
returning procedures,  do not fall into  this category. A 
user might substitute  for variables local to  the returning 
procedure  either 

1. STATIC (own) variables, or 
2 .  BASED (heap)  variables. 

Neither of these  classes of variables is deleted when a 
procedure  returns. Both of these  substitutes  do  require 
user planning of a more burdensome  form than  that  as- 
sociated with coroutines,  tasks,  or back-tracking.  Such 
planning does,  however, eliminate the possibility that 
references in the upward  fun-arg mistakenly refer to  the 
local variables of the returning procedure. 

Particularly  critical is how frequently  retention is 
used. Even some advocates of retention [7] not  only 
concede but emphasize  that most  programs are “well- 
stacked,” Le., do not  require  retention. It must be ack- 
nowledged, however,  that  some applications,  particu- 
larly where  back-tracking is naturally used,  require  rath- 
er  extensive use of retention. For  these applications, a 
good scheme  for implementing retention, e.g., the so- 
called spaghetti  stack [6], is probably to be preferred to 
the  separate  stack  approach.  Even  here,  however, dele- 
tion of ordinary activations  does not  seem at all unrea- 
sonable. In this connection, the  combination of the spa- 
ghetti stack with the  tombstone notion does not seem  to 
present any large difficulties. The  use of temporary ad- 
dresses  no longer seems very attractive, however. 

Conclusion 
A new addressing  mechanism has been presented  that 
invalidates dangling references,  rather than  avoiding 
them.  This mechanism  makes  a secure realization of the 
so-called  deletion  strategy of storage management  possi- 
ble. When contrasted with  the  existing alternatives,  such 
a  strategy seems  desirable.  Whereas the  addressing 
mechanism requires  hardware  assistance  to be  feasible, 
such  assistance greatly reduces  the performance  penalty 
without enormous cost. The  same  set of cost/perfor- 
mance  trade-offs that apply to virtual memory seem  to 
apply with equal force  to the addressing mechanism of the 
area machine. The  bonus is that the area machine per- 
mits the extension of the  address validation  mechanism 
to small areas, several of which might appear on a single 
page. 

IBM 1. RES.  DEVELOP. 



Acknowledgments 
In addition to the referenced  papers ,   the   author   express-  
es his   debt   for   ideas   developed  over  a period  of  years  of 
close  association  with M. A. Auslander,  P. H. Oden ,  
R. Goldberg,  M. Hopkins,  W. H. Harrison,  and C. Lewis. 
It can  safely be said  that  this  paper  would  not  have  been 
written  without  this  period  of  association. 

References 
I .  <’. H.  I.ind\ev and S. G. van der  Meulen, Infhrmal Intro- 

duction t o   A L G O L  68,  North Holland Publishing Compa- 
ny, Amsterdam, 197 1 .  

2. P L / I  Language  Specijications, Form  No.  GY33-6003-2, 
IBM Corporation, White  Plains, NY, 1970. 

3. D. M. Berry, “Introduction  to Oregano,” S i C P L A N   N o -  
tices (ACMj 6, 171 (1971). 

4. J .  B. Johnston,  “The  Contour Model of Block Structured 
Processes,” S I G P L A N  Notices (ACM) 6, 55 (1971  j. 

5 .  P. Wegner, “Data  Structure Models for Programming  Lan- 
guages,”SIGPLAN Notices (ACMj 6, 1 (1971  j. 

6. D. G. Bobrow and B. Wegbreit, “A Model and Stack Im- 
plementation of Multiple  Environments,” Commun. A C M  
16,591  (1973). 

7.  D. M. Berry, L. Chirica,  J. B. Johnston,  D.  F.  Martin,  and 
A.  Sorkin, “On the  Time Required for Retention,” SIC- 
P L A N  Notices (ACM j 8, 165 (1973  j. 

8 .  A. Bensoussan, C.  T. Clingen, and R.  C.  Daley,  “The Mul- 

A C M  15,308  (1972). 
tics  Virtual Memory:  Concepts and  Design,” Commrtn. 

9.  M.  A.  Auslander  and  J.  F. Jaffe, “Functional  Structure of 
IBM Virtual Storage  Operating  Systems,  Part I: Influences 
of Dynamic  Address  Translation on Operating  System 
Technology,” / E M  Syst. J .  12,386  (1973). 

10. Burroughs B5500 information  Processing  System  Rejer- 
ence Manual, Burroughs Corporation,  Detroit,  MI, 1964. 

1 I .  B. Randell, “A  Note on Storage Fragmentation  and Pro- 
gram Segmentation,” Commun. A C M  12,365  (1969). 

12. R.  S. Fabry, “Capability-Based  Addressing,” Commun. 
A C M  17,403  (1974). 

13. J .  K. Illiffe, Basic  Machine  Principles, 2nd Edition,  Mac- 
Donald/American Elsevier Inc.,  New  York, 1972. - 

14. E. A. Feustel.  “On the  Advantages of Tagged  Architec- 
ture,” IEEE Trans. Comput. C-22,644  (1973 j .  

15. D .  E. Knuth, The  Art of Computer  Programming, Vol. I :  
Fundamental  Algorithms, Addison-Wesley Publishing Co., 
Inc., Reading, MA, 1968. 

16. E. 1. Organick and J .   G.  Cleary,  “A  Data  Structure Model 
of the  B6700 Computer  System,” S I C P L A N  Notices 
(ACMj  6,83  (1971). 

Received  April 24,  1974; revised  August 29,  I974 

The  author  is  located  ut  the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights,  New  York 10598. 

J A N U A R Y  1975 

nb 

35 

INVALIDATING  REFERENCES 


