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Scheme for Invalidating References to Freed Storage

Abstract: A storage management scheme is described that supports the invalidation of addresses to freed storage and thus, in that
sense, provides a secure system. Unlike previous virtual memory techniques, the allocated areas of our scheme can vary from the very
large, requiring multiple pages of storage, to the very small, in which several can be contained on a single page. Special treatment is
accorded procedure activation storage so as to provide increased effectiveness for this important case. The interaction of this deletion
scheme with garbage collection techniques is also examined. Finally, the relative advantages of retention and deletion strategies of

storage management are considered.

Introduction
In modern high-level languages, e.g., ALGOL 68 [1] and
PL/1[2], in which references (or pointers) are data val-
ues and in which storage can be allocated dynamically
and, more specifically, deleted or freed, the problem
arises of determining the validity of a reference. This is
the so-called dangling reference problem. Consider the
PL/1 program fragment of Table 1. The BASED declaration
x on line (1) is first used to allocate a FIXED point vari-
able at line (2). At line (4) this FIXED point variable is
freed, i.e., destroyed, its storage being returned to a free
list. At line (5) an attempt is made to use this variable,
referenced via p. This reference is dangling because the
variable no longer exists. The dangling reference problem
exists in other variants as well. Labels and procedures,
when treated as data values, can give rise to the same
difficulty. The problem here consists of determining
when a procedure activation exists. Dangling references,
in all their variants, arise when references or values that
include references can persist longer than the storage
objects to which they refer.

The following two approaches to coping with this
problem have evolved, both representing attempts to
avoid the creation of dangling references:

1. Scope rules Scope rules, introduced in ALGOL 68,
prevent the assignment of references (or procedures
and labels that implicitly contain them) to variables
that can persist longer than the objects to which they
refer. Such scope rules have been instituted only for
references to procedure activations and for labels and
procedures that implicitly reference activations, be-
cause the lifetime of activations is specified, i.e., the
activations follow a stack discipline. Assignment of

references from higher in the stack (the stack grow-

ing down) to variables lower in the stack is permit-

ted, but not the reverse. The chief virtue of scope
rules is that a compile time check is frequently suffi-
cient to assure that the rules have not been violated.
This is not always the case, however, and full en-
forcement of the rules requires run time interpreta-
tion. Such thorough enforcement is not really antici-
pated for ALGoL 68, it being considered too expen-
sive [ 1]. Further, of course, scope rules reduce func-
tion, although how seriously is a subject of some de-
bate.

2. Retention Even if scope rules were instituted to con-

trol the persistence of references involving procedure
activations, this would not cope with based or heap
storage where storage objects have no implicit life-
time. The dangling reference problem can be elimina-
ted here by adopting the so-called retention strategy,
i.e., no explicit FREE or destroy operator is provided.
Thus objects exist for as long as any references to
them exist. What happens to an object when there are
no outstanding references is not part of the semantics
of the language being supported. However, the viabil-
ity of the retention strategy depends on some form of
storage reclamation, i.e., “garbage collection.” The
retention strategy can also be applied to procedure
activation storage [ 3, 4, 5]. Activations then no long-
er follow a stack discipline. Several implementation
methods have been described recently to realize the
retention strategy for procedure activations in some
reasonable fashion [6, 7].

Unlike scope rules, there seems to be little that can
be done at compile time to reduce the cost of the reten-
tion. This cost is extra storage consumed by the no-
longer referenced storage objects, extra time for gar-
bage collection of this storage, or some combination
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of the two. The retention strategy, at least for based
or heap storage, also reduces function. It is no longer
possible for a program to specify that a storage object
is to be freed when it no longer serves some sensible
purpose. As a consequence, large amounts of data
(perhaps entire files) continue to exist until their last
accessible references are destroyed.

In contrast to these two solutions there is the ap-
proach that ignores the problem, i.e., dangling references
are created, and no effort is made to detect them. The
advantage of this approach is that there is no perform-
ance loss in run time checking or garbage collection.
Further, there is no loss of function. Retention for heap
storage can be supported by simply never freeing stor-
age. What is lost, however, is error detection capability,
and the integrity of programs and storage may be com-
promised.

This paper presents a method, not for eliminating dan-
gling references, but rather for automatically invalidating
all such references. Thus, an attempt to access storage
using a dangling reference is detected, and an exception is
indicated. This approach requires run time interpreta-
tion. To make this interpretation reasonably efficient
requires hardware assistance, which greatly reduces
time and space penalties. The cost is primarily in terms
of extra logic, which, given current and projected tech-
nologies, seems likely to be quite reasonable.

Tombstones

To invalidate dangling references, an indicator, called a
tombstone, must persist after an object is destroyed. The
tombstone might be located in any of three places.

1. In the references This requires that a list of all refer-
ences to an object be maintained, so that it is possible
to find and invalidate each reference when the storage
is freed. This approach is untenable because of the
enormous overhead.

2. In the storage area The idea here is to reserve part of
each storage area for its tombstone(s). Each refer-
ence to the area must check a tombstone to deter-
mine whether the reference is valid or dangling.
There are two problems with this approach:

a. One cannot reclaim the tombstone part of the stor-
age area when the area is freed. This part must
persist to trap dangling references. This creates a
serious storage fragmentation problem.

b. Selection of a subarea of a major area leads to
difficulties. Each potential subarea could have its
own tombstone, a very costly solution, if it is a
solution at all. Freeing the area would require the
resetting of all the subarea tombstones, and none
of them could be reclaimed. Alternatively, all
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Table 1 A PL/l procedure fragment illustrating dynamic
storage allocation and freeing. The use of P at (3) is valid where-
as its use at (5) is dangling because the storage referenced by P
has just been freed at (4).

Q: PROC:
DCL Y FIXED;
DCL P POINTER;
(1) DCL X BASED FIXED;

(2) ALLOCATE X SET (P):
()Y =P X

X

»

(4) FREE
P

P —
5 Y=P->X

END;

pointers to subareas could retain knowledge of the
location of the tombstone for the major area. If
one were to do this, however, it would seem more
desirable to use alternative three, which avoids the
storage fragmentation problem.

3. In a separate location As indicated above, this re-
quires that each address not only contain the location
of the storage area it references but, in additon, the
location for its tombstone. This approach results in
an increase in the size of an address and requires a
separate access to the tombstone each time the ad-
dress is used. However, it is this approach that holds
the most promise, given the right kind of hardware
assistance. The remainder of the paper elaborates on
this approach and the hardware assistance needed to
realize it.

The area machine

There are more potential difficulties with addresses than
just the dangling reference problem. When implementing
a high-level interface, it is necessary to keep track of the
form of data referenced by each address in order to
check that such data are correctly interpreted. Several
techniques, or combinations of them, can be used for
this purpose. If the language is sufficiently constrained,
most of this checking can be done at compile time. Run
time interpretation is only needed when checking at
compile time is not feasible.

Similarly, a low-level interface, when coupled with a
virtual memory, e.g. {8, 9 10], provides a mechanism
for checking that addresses are used correctly though
this checking is at a more primitive level. More specifi-
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cally, when an address is used or address computation is
performed, the resulting address is checked to assure
that it references a valid segment and is within the
bounds specified by this segment. This checking assures
that derived addresses remain within the boundaries of
the original areas.

Here we describe a method of realizing an area ma-
chine. This machine combines an essentially low-level
interface with a memory very much like a segmented
virtual memory. The difference is a pragmatic one. Gen-
erally one cannot afford to create a new segment every
time a new area of storage is allocated. Segment creation
is usually too expensive to be used every time a pro-
cedure activation is created or BASED storage is allocat-
ed. Further, segments are typically paged, and hence
each is associated with its own page table. This means
that the amount of actual storage consumed by a seg-
ment is some multiple of the page size, thus discouraging
the allocation of small segments. Some Burroughs Ma-
chines [10] do not page segments, but this leads to a
reduction in maximum segment size and to storage frag-
mentation [11].

The principal idea for the area machine, in a segment-
ed, paged, virtual memory framework, is to associate an
area table with each segment, in addition to a page table.
Each address includes both the location of its storage
area (indirectly via a page table) and an index identify-
ing an area table entry. The area table entry, at a mini-
mum, contains the tombstone for the area. This makes it
possible to do multiple area allocations within a segment
in a secure fashion, i.e., all addresses to an area can
be checked to determine if they are dangling by examin-
ing the tombstone in the indexed area table entry. The
segment identifier becomes, in essence, merely the name
of a page table. Another way of viewing this is to con-
sider a segment identifier as consisting of two parts, a
page table identifier and a suffix indicating a segment
within the storage described by the page table. Viewed
in this way, the area machine is an implementation that
permits both multiple pages per segment and multiple
segments per page. The latter has been suggested by
Fabry [ 12] among others.

Bounds information for an area can be maintained ei-
ther in the references or in the area table entry. Two
conflicting pressures must be balanced. On the one
hand, there is generally more than one address to an
area, and thus it is desirable to keep the size of address-
es small. On the other hand, an area table entry is more
or less permanent and must often exist even if its area
has been freed and no dangling references exist. Hence,
keeping the area table entry small is also important.

There is yet another way in which addresses may be
validated. This is to rigorously control how they are
generated. The idea is to make it impossible to manufac-

ture an address using ordinary data processing opera-
tions. This is done as follows: All addresses to major
areas originate as a result of a storage allocation opera-
tion. Addresses to subareas are generated by means of
selection operations, in which one argument is an ad-
dress to an area (or subarea) and the other is a displace-
ment or index. These operations must check that their
first argument is a valid address and that the result of
adding the displacement or doing the indexing yields a
resulting address that is within the bounds of the area.
The final requirement is to make sure that ordinary data
in storage cannot be misinterpreted as an address. Thus
addresses must be distinguished from all other data, i.e.,
they must be tagged. The concept of a tagged architec-
ture and of protected addresses have been advocated by
several authors, e.g., [12, 13, 14].

The detailed mechanism presented below and shown
in Fig. 1 depends on the fact that addresses are protect-
ed. In particular, this makes it possible to perform ad-
dress bounds checking using only the end-of-area bound.
The starting offset of an area within a segment need not
be explicitly maintained. (As we will see, however, it
can be useful to maintain it.) The end offset of an area is
kept with the tombstone in the area table, reflecting the
hypothesis that keeping addresses small is more impor-
tant than keeping the area table entry small. It should be
noted, however, that the ability to subset areas is re-
stricted by this decision. Only the low order storage of an
area can be removed in forming a subarea. Eliminating
access to the high end of an area is no longer possible.

An address (which is protected by some form of tag,
here assumed to be in a part of the memory inaccessible
to the area machine user) consists of the following com-
ponents:

1. A segment identifier (sID), which names a page table
and an area table to be used in interpreting this ad-
dress.

2. An area identifier (AID), which names the area table
entry in the area table of the above named segment; it
describes the area to which this address refers.

3. A starting offset (S. OFF), which indicates the starting
location of the area or subarea addressed, relative to
the start of the segment. It consists of two parts:

a. A page identifier (P1D), which names the page ta-
ble entry used to locate the storage for the ad-
dressed area or subarea.

b. A displacement (D), which is the quantity to be
added to the contents of the page table entry
named by the PID in order to identify the precise
starting location for the area or subarea.

4. Control information, which indicates the capabilities
associated with the address and otherwise describes
it. One component of it must be a destroy capability
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indicator. This determines whether, by means of this
address, the area can be freed. Of course, additional
capabilities might also be included in order to support
protection mechanisms.

The segment table consists of entries that contain the
addresses of the page table (p.TAB) and the area table
(A.TAB). Each of these tables begins with descriptor in-
formation concerning the table itself. The page table
descriptor consists of a field p.No that indicates the
number of pages in the segment. The area table descrip-
tor consists of two fields. Field A.No contains an index
to the last entry in the area table, whereas A.ALOC con-
tains the number of currently allocated areas, i.e., those
that have been allocated but not yet freed. A page table
entry contains the real storage address of the page or the
location of the page on secondary storage. An area table
entry contains:

1. A tombstone (Ts), which has two possible values,
allocated, indicating that the area still exists, and
freed, indicating that it does not and hence that all
outstanding references to the area are invalid
(dangling) .

2. An end offset (E.oFF), which indicates the end loca-
tion of the area relative to the start of the segment. It
consists of a PID and a D, just as does the S.OFF in
each address.

Figure 1 illustrates how these components fit together
and how an address is decoded. The actions involving
the page table are omitted, since they are unchanged
from the usual virtual memory mechanisms.

Each access to storage requires that the segment table
entry be examined to validate the sip. Given a valid
segment table entry, the area table for it must be ac-
cessed (via the A.TAB) and the appropriate entry located
by means of the aID. The tombstone field TS of that en-
try is checked to be sure that the area is allocated. An
access to storage also must contain an indication of the
length of the data involved. The data must all fall within
the area. For this to be true, the following condition
must hold:

S.OFF + length of data — 1 = E.OFF.

If these conditions are met, either the contents are deliv-
ered to the accessor or data are written into the area.
To specify a subarea of an area, the operation

SELECT (address, displacement)

must be executed. A SELECT operation, is checked in a
fashion similar to an access. In this case, the bounds
check requires the following:

S.OFF + displacement = E.OFF.
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Figure 1 Addressing an area within a segment. The area is
determined via the S.OFF of the address and the E.OFF of the
area table entry.

The result of a valid selection operation is formed by
adding the displacement to the s.OFF of the argument
address. The destroy capability is removed from the
resulting address.

To create a new area of a specified size in an existing
segment requires that an area table entry be permanently
dedicated to the new area. The address returned as a
result of allocation consists of:

1. siD « the sID of the segment of which the area is a
part.

2. AID < A.NO + | (the next unused area table entry).

. Destroy capability is granted.

4. S.OFF is set according to where free storage for the
area is found.

(78]

The area table entry A.No + 1 consists of:

1. Ts < allocated
2. E.OFF < S.OFF + size of area— 1.

Finally, in the area table descriptor, A.NO < A.NO + 1,
and the number of allocated areas is increased by 1, i.e.,
A.ALOC < A.ALOC + 1.
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The freeing of an area requires the execution of a
FREE operation, which consists of performing the follow-
ing actions:

1. The address designating the area is checked to assure
that it has destroy capability.

2. The storage between the address’s s.OFF and the area
table entry’s E.OFF is returned to the free list.

3. The tombstone Ts of the area table entry is set to
free.

4. In the area table descriptor, the number of allocated
areas is reduced by one, i.e., A.LALOC <= A.ALOC — 1.

If aA.aLoC = 0, then it becomes possible to invalidate
the entire segment by nulling the area and page table
addresses of the segment table entry. This would permit
reclamation of the area and page table storage. Dangling
references would be trapped by means of the nulled
segment table entry. This might be done if a significant
number of area table entries have been consumed, i.c.,
A.NO = some threshold.

Procedure activation storage

One of the unfortunate consequences of the area ma-
chine as described is that to securely manage procedure
activations requires that a new area table entry be pro-
vided for every activation. These area table entries must
persist even after the procedure activation has been
freed, whether or not a dangling reference to the activa-
tion exists. This, of course, is true of all separately allo-
cated (major) areas. However, procedure activations
follow a stack discipline, and hence the lifetime of an
activation, relative to other activations, is known. Fur-
ther, it is comparatively unusual for references to an ac-
tivation to persist after the activation has been freed.
The conjunction of these two conditions plus the great
frequency of procedure activation creation and destruc-
tion are compelling reasons for providing a special
mechanism for procedure activations.

One would like to assign an area table entry to a pro-
cedure activation only when a reference to that activa-
tion can persist longer than the:activation, and hence
become dangling. An approach to doing this is to pro-
vide two classes of addresses to procedure activations,
one called temporary and the other permanent. Tempo-
rary addresses do not require an area table entry to be
permanently consumed, and these addresses are utilized
as much as possible. Permanent addresses for procedure
activations, which do require a permanently assigned
area table entry, are only generated when the storage
management system cannot guarantee that a dangling
reference will not arise, i.e., when the ALGOL 68 type of
scope rules are violated [1].

In order to support temporary addresses, a second
area table is associated with each segment that provides

storage for procedure activations. This is called the tem-
porary area table. Entries in this table, like the activa-
tions themselves, follow a stack discipline and hence are
not permanently consumed on the creation of each new
activation, The entries in this table differ from those in
the regular area table and consist of:

1. An offset (E.oFF), which indicates the end of the
storage for the activation within the segment

2. An index (P1), possibly null or zero, which indicates
which, if any, permanent (regular) area table entry
identifies the same activation.

In order to access the temporary area table, its ad-
dress is included in the segment table entry. The de-
scriptor at the start of the temporary area table consists
of a single field, T.No, which indicates the last active en-
try in the table.

Finally, a temporary address must be distinguished
from a permanent address. This is done by means of a
component in the control information of an address.
This component, called the T/p indicator, is set to T if
the address is a temporary one and to P if it is perma-
nent.

When a procedure is called, activation storage for it
must be allocated. The storage management system
needs only the size of the activation storage. This stor-
age is allocated from the activation stack, necessitating
the use of temporary area table entry T.No + 1, which is
specified as follows:

1. E.OFF < E.OFF , . -+ size
2. 1< 0, i.e., there is no permanent area table entry

Further, the temporary area table descriptor is updated,
i, T.NO < T.NO + 1.

Since activation storage utilizes a stack discipline,
there is no free list to be searched. The only other action
might be to assure that the newly allocated storage is set
to some undefined value so that attempts to use it before
it is initialized can be detected. (This same considera-
tion applies to ordinary allocation as well.) The address
returned consists of the following:

1. sID < the segment 1D of the segment providing acti-
vation storage.

2. AID < T.NO (the new value after the temporary area
table descriptor has been updated).

3. S.OFF < E.OFF ;. + 1.

4. Control information in which T/p < T.

How the above tables are organized is illustrated in Fig.
2. Again, the page table has been omitted.

The requirement to convert temporary addresses to
permanent ones arises only in certain cases involving the
moving of data containing addresses. In these cases, a
temporary address in the source area must have an
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equivalent permanent address substituted for it in the
target area. The derivation of this equivalent permanent
address is accomplished thusly. If there is not currently
a permanent area table entry associated with the activa-
tion storage, i.e., if the temporary area table entry asso-
ciated with the address has a p1 component equal to 0,
then the equivalent permanent address is formed as fol-
lows:

1. The siD, s.OFF, and control information, except for
the T/p component, are the same as those of the
temporary address.

2. T/p< P,

3. AID < A.NO + 1 (the index to the next unused regular
area table entry).

The area tables are updated as follows:

l. ANNO < A.NO + | (the number of area table entries is
increased by one).

2. A.ALOC < A.ALOC + 1 (the number of currently allo-
cated permanent area table entries is increased by
one).

3. The temporary area table entry indexed by the AID of
the temporary address is updated so that
Pl,,, < A.NO.

(A.No is the index for the new permanent area table
entry. AID is the area identifier of the temporary ad-
dress.)

4. For permanent area table entry A.NO
TS <« allocated
E.OFF <— E.OFF,,,

(the end offset of the corresponding temporary area
table entry ).

Ifpi,,, # 0, then a permanent area table entry for the
activation already exists. No new one is created. Rather,
this regular area table entry is used, i.e., the A1D for the
equivalent permanent address is set to the contents of
l;’IAID'

The circumstances that govern whether address con-
version must be performed during a data move are as

follows:

1. No conversion is required for any addresses if:

a. The size of the data being moved is smaller than
the size of an address, since an address cannot be
moved if this is true. Movement of a partial ad-
dress may indicate an exception.

b. The source address refers to an area in a segment
that does not contain activation storage, since no
temporary addresses can exist in such a segment.

¢. Both source and target addresses refer to areas in
the same segment and that segment contains acti-
vation storage and the source persists at least as
long as the target. Clearly, any addresses in the
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Figure 2 Addressing activation storage by means of a tempo-
rary address and its equivalent permanent address.

source area then must be prepared to persist as

long as the source persists and thus as long as the

target persists. This is indicated under the follow-
ing circumstances:

i. s.oFf for the source is less than or equal to
S.OFF for the target.

ii. Both source and target addresses are perma-
nent or both are temporary and their AIDs are
equal.

iii. One address is permanent and one is tempo-
rary, and the temporary address has a tempo-
rary area table entry with a permanent area in-
dex (p1) that equals the AID of the permanent
address.

2. Conversion from temporary to permanent addresses
may be required otherwise. This conversion applies
only to certain addresses contained in the data to be
moved from source to target. There are two cases to
consider.

a. The target is not in the same segment as the
source. Here, all temporary addresses in the
source area must be converted.

b. The target is in the same segment as the source.
Here, only the temporary addresses that fail the
tests described in 1c) above (where source ad-
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dress is now interpreted to mean address in the
source data being moved) need be converted.
Activation storage is only freed when a RETURN or
GoTO out of a block is encountered. Either implicitly for
the RETURN or explicitly for the GoTo, the argument for
the operation is the destination address where execution
is to proceed. All activations from the current activation
up to but not including the activation referenced by the
destination address must be freed when using the dele-
tion strategy. This requires that the following search for
the destination activation be executed starting with the
last activation, i.e., the activation indexed by T.No.

1. If the destination address is temporary and its AID
equals T.NO, then we say that the destination has
been reached. Otherwise it is not reached.

2. If the destination address is permanent and its AID
equals P1, ., (the permanent area index associated
with the T.Noth activation), then the destination has
been reached.

3. If the destination has not been reached, then
a. If p1, ,, # 0, a permanent tombstone has been as-

sociated with the activation. This tombstone must
be set to free.
b. The activation storage must be reclaimed. This is
accomplished by merely setting T.NO <~ T.NO — |.
c. Steps 1, 2, and 3 are repeated until the destination
activation is reached.

4. If the destination has been reached, then control is
transferred to the destination address.

5. If r.No has been reset to zero without reaching the
destination activation, an exception must be indicat-
ed. This can only occur if the destination address is
permanent and its permanent tombstone equals fiee.
This condition can be detected prior to the search.

Hardware assistance
There is, of course, a cost associated with secure storage
management. This cost can appear in three forms, in-
creased time, increased space, or increased logic. The
area table consumes extra space and further, each ad-
dress must be wider, because it must also include an
AID. Additional time may be required on every access in
order to check the validity of the address. Finally, in-
creased logic must be present in order to implement the
address validation and to keep the extra tables updated.
Not much can be done about the increased space re-
quired. However, there is considerable flexibility in
choosing a time vs logic trade-off. Given the current low
cost of logic and the continuing decrease in its cost,
there is very good reason for doing as much as possible
in logic (additional hardware) so as to minimize the time
penalty. This sort of trade-off has occurred before and
has resulted, for instance, in associative memories being

used to increase the speed of dynamic address transla-
tion in virtual memory computers.

The addressing mechanism of the area machine needs,
in fact, the same kind of hardware assistance as does vir-
tual memory. Like virtual memory, always accessing the
required tables results in too many storage accesses.
Without special assistance, the following additional stor-
age accesses would be required every time an address
were to be used:

1. To the segment table entry to find the location of area
and page tables.

2. To the page table entry.

3. To the area table entry.

In order to circumvent this process at least most of the
time, associative memories can be used. For virtual
memory, and for the segment and page table accesses
above, this associative memory retains the real storage
address of an siD/PID pair. The area table accesses can
be circumvented in most cases via a second associative
memory that retains the tombstone and E.OFF field of an
siD/ AID pair. The same locality of reference that causes
this technique to work reasonably well for virtual memo-
ries should make it work well for the area machine.
Without this kind of hardware assistance, the time penal-
ty for the extra accesses is simply too large.

Role of garbage collection

Clearly one of the primary purposes of using a deletion
strategy is, hopefully, to reduce the need for general
purpose garbage collection. The stack discipline of pro-
cedure activations ensures that such garbage collection
need never be used for activation storage. Further, lan-
guages with explicit FREE commands, e.g., PL/1, tradi-
tionally do not provide garbage collection to those struc-
tures that can no longer be referenced. It then becomes
the responsibility of the user to ensure that storage is
reclaimed by his issuing of FREE commands.

It should be emphasized, however, that none of the
mechanisms introduced thus far preclude garbage collec-
tion. Further, it is our view that garbage collection can
be a valuable supplementary tool for achieving a balance
between user control, performance, and ease of use.
Whereas a user should be able to control both the alloca-
tion and freeing of storage, with assurance that dangling
references will be detected, he should not be required to
always exercise such precise control. To realize this
flexibility, a garbage collection capability must be
present.

It is beyond the scope of this paper to discuss the
many ways in which garbage collection might be imple-
mented. What is discussed is the way in which most gar-
bage collection techniques can be reconciled with, in-
deed, can take advantage of, the area machine organiza-
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tion. In particular, two aspects of garbage collection are
elaborated. One is the so-called marking phase in which
referenced (accessible) storage is distinguished from
inaccessible storage. The second is the way in which the
reclaimed area table entries can be reused.

The marking phase of garbage collection requires an
initial set of addresses to immediately accessible areas
within the domain that is to be collected. For these ad-
dresses, the associated storage must be examined so as
to discover addresses to additional areas that are acces-
sible, etc. Since addresses are distinguished from other
data in the area machine, these additional addresses can
be identified. Marking these areas requires that a one bit
MARK field be associated with each area to indicate
which areas are accessible. If area table entries of al-
ready freed areas are to be reclaimed, the MARK field
should also be associated with each of these. This is a
fairly compelling reason for including the MARK field as
part of the area table entry, thus marking both the area
and the entry. Finally, if there is a convenient way of
invalidating references without recourse to their tomb-
stones, the area table entries for all freed areas can be
reclaimed during garbage collection. One way to do this
might be to set all the bits of each such address to zero.

Provision must be made for determining the starting
offset of each accessible area so that accessible storage
can be distinguished from “‘garbage.” Only that part of
each area that can be accessed need be saved. This part
of each area is merely the storage from the lowest s.OFF
of any address still referencing the area to the end E.OFF
of the area. However, there are advantages to maintain-
ing the full extents of all areas. In particular, it becomes
possible

1. For the destroy capability to be associated with any
reference to the area, not simply those that reference
the entire area. (When storage is freed, one must
know the extent of the area if all its storage is to be
reclaimed.)

2. To support operators that can provide, given an ad-
dress, its displacement within the area.

3. To use the boundary tag method of storage reclama-
tion to handle the maintenance of the free list. This
ingenious method, due to Knuth [15], provides for
the consolidation of adjacent free storage areas with-
out any list searching.

Thus we illustrate a realization in which, for each area,
an A.STR field is maintained that contains its starting
offset so as to indicate its entire extent. Further, two
fields, calied s.TAG and E.TAG, are provided to hold the
tags required by the boundary tag storage reclamation
algorithm.

The one section of adjacent storage that is accessible
via all addresses to an area is that storage immediately
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Figure 3 The lay-out of storage for an allocated area and for a
freed area, using the boundary tag storage management scheme
and marking areas for garbage collection via area table entries.

following the end of the area, i.e., at E.OFF + 1, since
E.OFF is maintained in each area table entry and each
address contains an AID that designates its area table
entry. The range checking of addresses (to insure that
addressing past E.OFF does not occur) will protect this
storage. Putting control information here is desirable
since the information is accessible without increasing the
size of every address or area table entry. Because this
control information is exploited only by a few operators
and occassionally by the storage management system,
and hence is not needed for most storage accesses, there
is little incentive for placing it in the area table. Figure 3
illustrates one way of organizing storage that reflects
these considerations. This section of adjacent storage
can, of course, also be exploited to hold additional kinds
of information, e.g., locks, authorization information,
ownership, etc.

Figure 3 also shows the format of a free (or available)
area adjacent to the addressed area. Such a free area
must maintain forward and backward links (F.LINK and
B.LINK) to other areas on the free list. It is the mainte-
nance of a symmetric list that makes the updating of the
free list possible without list searching. Finally, an
A.END field must be provided at the start of the free area
to indicate the location of the end of the area. Storage
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for these last three fields is obtained from the storage
originally provided for user data. For more details on the
boundary tag method, the reader should consult Knuth
[15].

The second aspect to be discussed is how to reuse
area table entries. This involves maintaining a free list of
these entries. This can be done by using the E.OFF com-
ponent as a link field to the next reclaimed area table
entry. The first entry in the area table, i.e., entry 0, can
be used for the free list header.

Other control mechanisms and retention

Because the security of the storage management system
can be assured using a deletion strategy as well as with a
retention strategy, choosing between them requires an
assessment of how the system will be used. One of the
prime factors in this context, for favoring a retention
strategy, is its ability to readily support more sophisti-
cated (or at any rate, additional) control mechanisms.
Some of these are coroutines, multiple tasks, upward
“fun-args,” and back-tracking. All of these mechanisms
require that some of the storage for a procedure activa-
tion be retained after the activation exits.

Systems currently exist, of course, that use a deletion
strategy and yet support some of these capabilities.
What is usually required is that the programmer make
some explicit indication of his intention to use a given
control mechanism at the time a procedure is called and
its activation constructed. This is the case for multitask-
ing in, e.g., the Burroughs B6700 [16] control program
and in the pL/1 systems for IBM 360/370 computers
[2]. Each task creation requires that a separate stack be
dedicated to it. A deletion strategy is used on each
stack, whereas the relative persistence of at least some
of the activations on the various stacks is unspecified.
This kind of strategy we call user-planned retention,
whereas we call the earlier retention strategy general
retention. Whether user-planned or general retention
should be chosen depends primarily on:

1. The relative costs of the two strategies

2. Whether user planning for retention is considered to
be either an unnecessary burden or a valuable disci-
pline and

3. How frequently retention will be employed.

The earlier sections of this paper provide a qualitative
analysis of the cost of using a deletion strategy, with
some comments on how it compares to general reten-
tion. User-planned retention does not change this analy-
sis very much. It probably, however, does require an
additional segment for each separate procedure activa-
tion stack. The significance of this requirement depends
on the frequency with which retention is used.

User planning for retention does not seem to be a
great burden. In fact, for most of the control mecha-
nisms mentioned above, the use of the mechanism is
naturally indicated at the initiation of a procedure. Cor-
outines, separate tasks, and back-tracking are all natural-
ly indicated at precisely the points in the program where
the planning for retention must be done. Upward fun-
args, i.e., procedures that are returned as values by other
procedures and that depend on variables local to these
returning procedures, do not fall into this category. A
user might substitute for variables local to the returning
procedure either

1. sTATIC (own) variables, or
2. BASED (heap) variables.

Neither of these classes of variables is deleted when a
procedure returns. Both of these substitutes do require
user planning of a more burdensome form than that as-
sociated with coroutines, tasks, or back-tracking. Such
planning does, however, eliminate the possibility that
references in the upward fun-arg mistakenly refer to the
local variables of the returning procedure.

Particularly critical is how frequently retention is
used. Even some advocates of retention [7] not only
concede but emphasize that most programs are “well-
stacked,” i.e., do not require retention. It must be ack-
nowledged, however; that some applications, particu-
larly where back-tracking is naturally used, réquire rath-
er extensive use of retention. For these applications, a
good scheme for implementing retention, e.g., the so-
called spaghetti stack [6], is probably to be preferred to
the separate stack approach. Even here, however, dele-
tion of ordinary activations does not seem at all unrea-
sonable. In this connection, the combination of the spa-
ghetti stack with the tombstone notion does not seem to
present any large difficulties. The use of temporary ad-
dresses no longer seems very attractive, however.

Conclusion

A new addressing mechanism has been presented that
invalidates dangling references, rather than avoiding
them. This mechanism makes a secure realization of the
so-called deletion strategy of storage management possi-
ble. When contrasted with the existing alternatives, such
a strategy seems desirable. Wherecas the addressing
mechanism requires hardware assistance to be feasible,
such assistance greatly reduces the performance penalty
without enormous cost. The same set of cost/perfor-
mance trade-offs that apply to virtual memory seem to
apply with equal force to the addressing mechanism of the
area machine. The bonus is that the area machine per-
mits the extension of the address validation mechanism
to small areas, several of which might appear on a single
page.
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