12

W. H. BURGE

W. H. Burge

Stream Processing Functions

Abstract:

One principle of structured programming is that a program should be separated into meaningful independent subprograms,

which are then combined so that the relation of the parts to the whole can be clearly established. This paper describes several alternative
ways to compose programs. The main method used is to permit the programmer to denote by an expression the sequence of values taken
on by a variable. The sequence is represented by a function called a stream, which is a functional analog of a coroutine. The conven-
tional while and for loops of structured programming may be composed by a technique of stream processing (analogous to list process-
ing), which results in more structured programs than the originals. This technique makes it possible to structure a program in a natural
way into its logically separate parts, which can then be considered independently.

Introduction

One of the underlying principles of structured program-
ming [1] is that the separation of the parts of a program,
and the relation of the parts to the whole, should both be
clearly apparent from its written form. A second princi-
ple is that the meaning of each part should depend in a
simple way only on the meaning of its subparts, and not
on any other properties. Programs written in this way
are easy to understand and write, and the details of their
operation are transparently clear. This principle of struc-
tured programming is epitomized in the expression for-
mat of programming languages. The value of an expres-
sion depends only on the value of its subexpressions, and
it depends on them by the simple notion of the applica-
tion of a function to its argument. A more general type
of expression than that commonly provided in program-
ming languages is found in the notation of the lambda
the arguments and results of a function can be a function.
The programming language used in this paper is ISWIM,
a modified version of the notation of the lambda calculus
due to Landin [2] that is more palatable for programming
purposes.

Another theme that runs through the writing on struc-
tured programming is the notion of abstraction. In its
technical sense abstraction is an operation for producing
an expression describing a function from an expression
by indicating which identifiers are its variables. Thus
Ax.x” + x denotes a function that when presented with a
number adds it to its square.

Another meaning given to abstraction is related to the
levels of detail of a program. The program is first con-
ceived in an abstract way and then elaborated by step-
wise refinement to produce the final version. This idea of
abstraction may also be applied to the data structures

used in a program. An attempt should be made to sepa-
rate the decisions about the logical structure of the in-
formation from decisions about how the structures are to
be physically represented. It is valuable to attempt this
separation because the shape of the structures needed
depends on the problem being solved, whereas the choice
of physical format depends more on the operations and
data structures provided by the computer or program-
ming system being used. In practice the distinction be-
tween logical and physical structure is difficult to make,
and decisions about logical structure are usually made by
default. The physical representation is often chosen at
too early a stage, and wholesale changes of representa-
tion become impossible without rewriting large parts of
the program. The effort of retaining the distinction seems
worthwhile, however, because a clear picture of a set of
information structures implies to some extent the shape
of the programs that operate on, or create members of,
the set. In some cases the underlying data structure may
be hidden and take the form of arithmetical calculations
performed by the instructions in the program. It seems
preferable, especially in the early stages, to make this
structure explicit in order to make the resulting programs
easier to understand.

This paper describes a technique for constructing pro-
grams in which a general-purpose program that is a mere
skeleton is first written and is fleshed out later by supply-
ing arguments that specify the actions to be taken within
the skeleton. The skeletal program can be considered to
specify the whole family of programs obtained in this
way. The general-purpose skeleton embodies the method
of scanning the structure, and the arguments supplied
specify the actions to be taken during the scanning. The

IBM J. RES. DEVELOP.

general-purpose programs can be produced in a mechan-
ical fashion from the description of the set of data struc-
tures (sometimes called the abstract syntax of the set)
being scanned.

Some examples of this method of constructing pro-
grams that operate on lists are given first. The technique
is then applied to streams. A stream is a functional analog
of a coroutine [3, 4] and may be considered to be a par-
ticular method of representing a list in which the creation
of each list element is delayed until it is actually needed.
Many examples of stream-processing programs are given
in which list processing techniques are seen to corre-
spond to the more conventional programming techniques
using while and for loops.

It is often easier to understand and program a sequence
of passes that happen one after the other than to consider
an involved process in which different program elements
are mixed together. This paper presents a method for
getting the best of both worlds in the sense that the pro-
gram is written as if it were a multipass program, but
when it is executed the parts of the separate passes are
interleaved. This principle seems to apply to programs
that would not usually be considered natural for coroutine
treatment. It is often easier to consider the sequence of
values taken on by a variable in a program as an object
that can be manipulated, rather than considering the
mechanisms that use, test, and change the variable. The
coroutine technique has the advantage that the pieces of
program that contain the variable are gathered together
in one place, rather than being scattered throughout the
program. The stream technique makes it possible to struc-
ture a program in a natural way into its logical separate
parts, which can be considered independently.

Describing sets of data structures

A set of structures can be introduced by both naming its
components and by specifying the type of each compo-
nent. If there are alternative formats for the same set,
then a predicate is provided for each set and given a
name. For example, the definition of an expression having
infixed operators can be written:

An expression is
either atomic and is an identifier
or is compound
and has an operator, which is an infixed opera-
tor,
and a right and left, both expressions.

An expression defined in this way depends on the set’s
identifier and infixed operator. It is also assumed that
functions for constructing tree-like data structures are
introduced. In this case an operator is introduced to con-
struct a compound expression from two expressions and
an infixed operator. Given this description of a set, a

JANUARY 1975

general-purpose function can be constructed for pro-
cessing its members by introducing a conditional expres-
sion to distinguish and process the alternative formats,
by introducing a function applicable to each component
of a Cartesian product, and another function to combine
the results. The general shape of a program for operating
on the expression defined above is:

fr=
if atomic x
then f,x
else f,(f,(operator x)) (f,(left x))(f;(right x))
in which f,, f,, --- f, are parameterized functions that

specify the action to be carried out. If the subexpressions
are to be treated in the same way as the whole expression,
then the following function results.

expfehx=
if atomic x
then f x

else g (h(operator x)) (exp f g h(left x))
(exp f g h(right x)).

The value of an expression, for example, could be ob-
tained by applying the function

(expv g v) where g x y z=x(y, 2)

in which v is a function for finding the value of an identi-
fier or operator.

Lists

Lists, in one guise or another, are the most commonly
used data structure in programming. The definition of a
list of elements of type A4 is:

An A-list is
either null
or has a head(h), which is an A, and
a rail(t), which is an A-list.

Associated with an object x there is a function for pre-
fixing it to a list, which is called prefix x. The expression
x:y is used as an abbreviation for prefix x y, () denotes
the null list, @, b, c, d, e is used instead of a:(b:(c:(d:(e-
())))), and u x is used to denote a list with one element.
The types of the list functions introduced are

null £ A-list = truth value
h & nonnull A-list > A

t € nonnull A-list — A-list

13

STRUCTURED PROGRAMMING

14

prefix € (A — (A-list > A-list))
() e A-list
These functions are closely interrelated as follows:
null() = true

null(x:y) = false

hix:y) =x
txy)=y
(h2):(tz)==2

in which x is an 4, y is an A-list, and z is a nonnull A-list.
Each structure description is assumed to create func-
tions that conform to a number of axioms of this type.
Many functions that operate on lists have the same basic
structure. For example

sum x =
if null x
then 0
else (h x) + sum(t x)
eg.,sum(1,2,3,4)=10
product x =
if null x
then /
else (h x) X product(t x)
e.g., product(1,2,3,4) =24
append x y =
if null x
then y
else (k x):(append(t x)y)
e.g., append(1,2)(3,4,5)=1,2,3,4,5
concat x =
if null x
then ()
else append(h x) (concat(t x))
e.g., concat((1,2), (3,4),(0)=1,2,3,4
map fx=
if null x
then ()
else (f(h x)):(map f(t x))
e.g.. map square (1,2,3,4)=1,4,9,16

W. H. BURGE

It can be seen that these functions only differ in the
first arm of the conditional expression and in the function
that combines whatever is produced from the head of the
list (usually the head itself) with whatever is produced
by applying the same function to the tail of the list. The
common parts of these functions may be expressed as a
function called list1, defined below, in which the parts
that are not common have been made variables.

listlagfx=
if nuldl x

then a

else ¢(f(h x))(list] a g f (¢t x))

The result of applying the function (list] a g f) to a list
is a if the list is empty; otherwise it is the result of apply-
ing g to two arguments, 1) the result of applying fto the
head of the list and 2) the result of applying the same
function to the tail of the list. It is now possible to redefine
the five functions in terms of /istI. It can be seen that this
technique both saves writing and is more likely to pro-
duce a correct program because the complex program-
ming (i.e., the conditional expression and looping) has
been written once and for all in the function lisz/. In the
following definitions I is the identity function, K x y = x,
and postfix adds a new item to the end of a list, so that

postfix x y = append vy (u x)
The new definitions are:
sum = listl 0 plus 1
product = list] 1 mult 1
append x y = listl y prefix I x
concat = list 1 () append I
map f= list] () prefix f
Some other examples are:
length = list] 0 plus (K 1)
sumsquages = listl 0 plus square
reverse = listl () postfix I
identity = list] () prefix I

The functions defined in terms of /ist/ all scan the list
(i.e., accumulate the result) from right to left. There is
a second family of functions that scans lists from left to
right, which can be defined by using a function called /isz 2.

list2agfx=
if null x
then a

else list2(g(f(h x))a)g f (t x)

IBM J. RES. DEVELOP.

The function list2 may be implemented by the “iterative”
program below; thus it may be more efficient to use list2
than listl.

L:if null x
then a
else
a :=g(flhx))a
X =1r1Xx
go to L

A function that operates on two equal length lists and
combines corresponding members by using a function
fand then combines the results by using successive ap-
plications of a function g is defined below.

ziplagfxy=
if null x
then «
else g(f(h x)(hy))(zipl a g f(tx)(ty))

Examples of its use are to form the scalar product (zip I
0 plus mult) or to produce a list of pairs from a pair of
lists by

zipm = zipl () prefix pair
where pair x y=1x, y

Several other examples of this technique of matching
the program structure to the data structure may be found
in Burge [5], in which an analogy is shown between con-
structing functions in this way and constructing the enu-
merating generating functions of combinatorial theory.

Sequences, coroutines, and streams

When one function produces a list in its natural order and
another processes the list items in the same order, it is
often unnecessary to produce the whole list before apply-
ing the second function to it. The two functions can be
combined so that at any stage the second function can
issue a demand for the next list item, which is then pro-
vided by the first function. The creation of the next list
item is thereby delayed until it is actually needed. It is
often easier to write programs in two stages in which the
list is an intermediate result of the computation. How-
ever, it is more economical of storage to use the combina-
tion of the two functions, in which only one member of
the list appears as an intermediate result. This section
contains an examination of methods of combining func-
tions in this way. It is possible to have the best of both
worlds by writing the program as if the whole list ap-
peared as an intermediate result but having the actual

JANUARY 1975

implementation only create one member at a time. The
function called upon to produce the next item must both
produce it and reset itself to be prepared to deliver the
remainder, or tail, of the list the next time it is called.

The data structure that is relevant is an A-sequence,
defined as follows:

An A-sequence has a hs, which is an A4,

and a ts which is an A-sequence.

Streams A sequence is therefore an infinite list, and the
problem of conserving storage for its representation in-
side a computer becomes even more pressing. A se-
quence can be represented by a particular type of func-
tion, which is called a stream function or a stream. A
stream is applicable to an empty list of arguments, and
it produces a pair whose first is the next item in the se-
quence and whose second is a stream for the tail of the
sequence. Thus

A-stream C (null list > A X A-stream)

The head, tail, and prefix functions for a stream are
defined as follows:

def hs s = first(s())
def ts s = second(s())
def prefixs x s=A{().x, s

The hs of a stream is the first member of the pair that
results from applying the stream to the null list, and the
ts is the second member. It follows that s is applied each
time that either hs or ¢s is applied. It is often more eco-
nomical to make sure that the stream is only applied once
by using a construction such as

letx’y:s(),nyx

A stream can be constructed from its head x and its tail
s by the function prefixs x s =X ().x, s. When applied to
the null list, this function produces the pair (x, s). The
axioms that relate streams and their components are:

hs(M () x, v)) =x

ts(A(). O, y)) =y

prefixs(hs z) (ts 2) = z

Stream processing functions A number of examples of

stream processing functions that are analogous to list
processing functions are defined below.

Example 1 Given a transformer f and an initial value x,

a stream function for the sequence x, f x,f* x,f* x- - - may
be obtained by using

def rec generate f x () = x, generate f(f x)

15

STRUCTURED PROGRAMMING

16

The first member of the sequence of the stream (generate
f x) is x, and the remainder of the sequence is represented
by the stream (generate f (f x)). Given zero and a suc-
cessor function, the sequence of nonnegative integers
can be represented by the stream integer = (generate
successor 0) =0,1,2, 3,

Example 2 The stream representations of sequences can
be treated as if they were lists. It is possible to transform
streams to other streams, for instance, by using the func-
tion maps defined below

def rec maps fs () =fx, maps fy where x,y=s().
The function maps transforms a sequence

Xpp Xpr Xpr®

into the sequence

fxpfxg,fx;;s"’

The function maps delays the production of the next
member of s until the next member of (maps fs) is re-
quired; it then applies the function f to the first member of
s to produce the first member of (maps f s). The stream
for the sequence of squares of nonnegative integers, for
instance, is (maps square integery=0,1,4,9,- - -

Example 3 The function thefirst, which finds the first
member of a sequence having the property p and pro-
duces it as a result, together with the remaining stream,
is defined below

def rec thefirst p s =
let x, y=s()
if px
then x, y
else thefirst p y

Assuming that the predicate nonspace tests whether a
character is a nonspace character, then the next nonspace
character can be obtained from a character stream by ap-
plying (thefirst nonspace) to it and then selecting the
first of the pair produced. As another example, the first
integer whose square is greater than /000 is the first mem-
ber of the pair

thefirst p integer where p x = ¥ > 1000

Example 4 The function filter, defined below, operates
on a stream and a predicate p and produces a stream for
those members having the property p.

def rec filter ps () =
let x, y==s()

if p x

W. H. BURGE

then x, filter p y
else filter p y

A stream of nonspace characters can then be obtained
from a character stream by applying (filter nonspace)
to it. As another example (filter prime integer) is the
stream of prime numbers.

Example 5 Two streams can be processed to produce a
third by a function that is analogous to zipl.

def rec zips fx y=A().(f(hs x)(hs ¥)),
(zips f (ts x) (1s ¥))
The stream of pairs is produced from two streams by

(zips pair).

Example 6 Streams are most useful for implementing
functions that process character streams from input. The
function while, defined below, produces a list from the
initial segment of a stream just as long as its members all
have the property p.

def rec while p s =
let x, y=s()
if p x
then let u, v= while p y
X:u, v
else (), s

A related function is until p=while (not - p). If the predi-
cate sameline is not - (equal newline), where newline is
the carriage return line feed character, then the function
(while sameline) operates on a character stream and pro-
duces a pair whose first is the next line of input and whose
second is the remaining stream. To be able to reapply the
same function the newline character must be removed
by using remove(x,y) =x,ts y.

Example 7 Any function that produces a pair whose
second member is the same type as its argument can be
made into a stream-producing function by applying a
function called next to it, defined as follows:

defrecnextrs ()=
letx,y=rs
X, nextry
The function next is applicable to any function of the type
red—BXA,
and produces a function of the type

A — B-stream.

IBM J. RES. DEVELOP.

It follows that
nexte ((4— BXA)— (A— B-stream)).

The function filter can be redefined in terms of next as
follows:

def filter p s = next{(thefirst p)s

The function

(next(remove + (while sameline))) where remove(x, y)
=x,1sYy

converts a character stream containing newline charac-
ters into a line stream in which the lines are the character
lists between adjacent newline characters.

Example 8 The inverse operation converts a list stream
into a character stream. Suppose that concats is a func-
tion for “flattening” a line stream into a character stream
or, more generally, transforming an (A-list)-stream into
an A-stream.

def rec concats s =
let x, y=1s()
if null x
then concats y
else A ().(h x, concars X ().t x,)

The inverse operation of putting back the newline char-
acters and flattening the line stream into a character
stream is then (concats - maps (postfix newline)). The
operation of concats is similar to an input buffering pro-
cess in which blocks of records are read from outside,
but the program requires the individual records one at a
time. The function concats therefore converts a block-
reading routine into a next-record routine.

Representing lists by streams In order to be able to repre-
sent a list by a stream it is necessary to choose some ob-
ject that cannot be a list item to serve as an indication in
the stream for the end of the list. This is called end. In
fact, since a stream is a function, it can always be applied,
the stream corresponding to an infinite list of end’s will
serve as the indication. The null stream can be defined
by nullists = (generate I end). The predicate for the null
stream is defined as nulls x = ((hs x) = end). These lists,
which are represented as streams, can be treated as if
they were lists. The correspondence between the list
functions and stream functions is given in Table 1.

It follows that any function that operates on, or pro-
duces. lists can be immediately transformed into a func-
tion that operates on, or produces, streams. General-
purpose stream functions can be defined by analogy with
the listl or list2 functions.

JANUARY 1975

Table 1 List functions and corresponding stream functions.

lists streams

null x nulls x = ((hs x) = end)
h hs

t ts

() nullists

x:y M),y

prefix prefixs

u us x = prefixs x nullists

def rec streaml a g fs =
if nulls s
then a
else g(f(hs s)) (stream] a g
fltss))
def rec stream2 a g f s =
if nulls s
then a
else stream2 (g(f(hs s))a) g
fls s)

The streaml function produces the whole list before
operating on it; the stream2 function produces items one
at a time and operates on them as they are produced. The
functions on lists can be carried over to streams. The
stream versions of the functions map, append, and concat
follow:

def rec mapl f s =
if nudls s
then nullists
else A ().f(hs s), mapl f(ts s)
def rec append! x y =
if nulls x
then y
else A ().hs x, appendl(ts x)y
def rec concatl s =
if nulls s
then nullists

else let x, y=s()

17

STRUCTURED PROGRAMMING

18

if null x
then concatl y
else A ().A x,
concati(X ().t x, y)

Note that in this representation the appendl function is
more efficient than the append function, which has to
scan through the first argument to create its result. An-
other way to represent a stream is by a list x for its initial
segment and a stream y for the remainder. The list is
similar to an input buffer. Such a stream can be con-
structed by another variation of append.

def rec appendls x y () =
if null x
then y()

else i1 x, appendls(t x)y

The concatl function operates on a stream of lists and
produces a stream. There are eight variations of the con-
catenating function produced by changing the top level
list, the second level list, or the resulting list to streams.
The version in which all three are streams is called con-
catss and is defined below:

def rec concatss s =
| if nulls s

then nullists

else let x, y=s()
if nulls x
then concatss y
else A ().hs x,

concatss(h ().1s x, y)

Some care has to be taken when a stream is produced
to make sure that its elements are not really a list in dis-
guise, in other words, to make sure that the stream ele-
ments are not materialized too soon. The method of eval-
uation that has been assumed is that the operator and
operand parts of an expression are evaluated, and then
the value of the operator is applied to the value of the
operand. It is also assumed that the body of a lambda ex-
pression, i.e., the M part of an expression Ax.M, is only
evaluated when the function is applied. If the append]
function had been put in the lambda convertible form

appendl x y =
if null x
then y

else prefixs(hs x) (appendl(ts x}y)

W. H. BURGE

then the inner expression append!(ts x)y would be ap-
plied when the function append! is applied to x and y.
This would cause the elements of the stream x to be ma-
terialized, and prefixed, using prefixs, to the stream v. In
the first version of appendl, on the other hand, the ex-
pression appendl (ts x)y is only evaluated when the
stream append! x y is applied to the null list. The two defi-
nitions of appendi are lambda convertible and therefore
are equivalent. The assumed method of evaluation, how-
ever, causes the two functions to behave in different
ways. In order to produce the most delayed version of a
stream the construction A ().x,y should be used instead
of prefixs x y, and expressions containing prefixs should
not be used.

Loop control Streams can be used to implement the se-
quence of values taken on by a variable in a do, for, or
while loop in a programming language. The loop control
can be separated from the loop by using streams. This
means that the same loop control can be used with two
different foops or that the same loop can be used with two
different loop controls. The list of numbers from 0 to n,
for example, have the stream whiles (= n)integer, where:

def rec whiles ps () =
let x, y=g()
if px
then x, whiles p y

else nullists ()

Again there is a companion function untils p=whiles(not
- p). The stream corresponding to the Algol 60 phrase
a step b until ¢ is

untils (Ax(x — ¢) X sign(b) > 0) (generate(plus b)a).
The stream for / step / until 7 is

def til n = untils (> n) (generate(+ 1)1).

Yet another definition of the factorial function is given
below:

factorial n = stream?2 1 mulr 1 (til n).

This separation of the loop control from the loop permits
nonnumerical streams to control the looping. The double
loop introduced by a piece of program of the form

for i: =1 step ! until n do
for j: =1 step / until m do

could be regarded as a loop controlled by a stream of
pairs. The function map, which replaces each item in a
list by its transform under a function, can be extended to
apply to two lists. The function map2, defined below, pro-

IBM J. RES. DEVELOP.

duces a list of the results of applying f to every pair of
items, one from one list and the second from the other.

def map2 fx y=let g 2= map(fz)y

concat(map g x)

The result of applying (map2 pair) to the two lists (/, 2,
3) and (4, 5) is the cross product

(1,4),(1,5),(2,4),(2.5), (3,4, (3, 5).

There is a stream version of this function, produced by
replacing map by mapl and concat by concatss, i.e.,

def map2l fx y=let g z= mapl(fz)y
concatss(mapl g x)

The double for loop control above can be regarded as the
stream of pairs (map2l pair (til n) (til m)).

“Walking” through trees 1t is often useful to be able to
scan a data structure by using a stream instead of first
listing its elements and then scanning the list. A general
technique for producing a list from a structure is to re-
place all atomic elements by 1-lists, to produce a list of
lists from each nonatomic component, and then concate-
nate these lists. These functions for producing lists can
be systematically changed so that each atomic element
is converted into a 1-stream, each nonatomic component
is converted into a stream of streams, and then this
stream of streams is concatenated to produce a stream
by concatss.

A binary tree, for example, can be defined as being
either empty or having a root and a right and a left, which
are both binary trees. One function for flattening the
binary tree to a list is:

def rec flatn x =
if empty x
then ()
else concat{ flatn(left x), u(root x),
flatn{right x))

This produces a list of nodes of a tree. In order to “‘walk”
through the nodes of the tree one step at a time, one needs
to produce a stream rather than a list. The stream for the
binary tree is produced by applying

def rec flatn x =
if empty x
then nullists

else concatss(flatn(left x), us(root x),

Aatn(right x))

JANUARY 1975

as

ZANIVZN

1.2 2]

11,1

Figure 1 Top levels of infinite binary tree.

to the binary tree. Alternative scanning methods can be
obtained by permuting the arguments of concatss.

Confluent streams It is clear that any tree-like data struc-
ture can be represented by a function such as a stream.

An infinite binary tree,

for example, can be represented

by a function that, when applied to the null list, produces
the root and two functions representing the left and right
subtrees. A function for generating the trees in which the
subtrees depend on the root can be defined by using:

def rec genbtree f g x (

) = x, genbtree f g(f x),

genbtree f g (g x)

The binary tree that contains the compositions of » (i.e.,
all lists of positive integers whose sum is #) on level n

is denoted by

genbtree fg(u 1) wherefx= ({hx)+1):(1x)

and g x=1]:x

This generates the infinite binary tree whose top is given

in Fig. 1.

The empty binary tree can be defined as emptys =
(genbtree 1 [end) and the empry predicate defined as
empty = (first(f())) = end. The functions roots, lefts,
and rights can be defined as the first, second, and third
of the result of applying the binary tree to the null list.
Functions analogous to those on streams can be con-

structed for trees. For

example, the function prune de-

fined below converts an infinite tree into a finite one and
is analogous to untils for streams.

def rec prune p s () =

let x, y,z=s()
if p x
then emptys()

else x, prune p y, prune p z

The binary tree for the compositions down to level » is
obtaiped by applying (prune((greater n) - sum)). 19

STRUCTURED PROGRAMMING

20

(0,0) —(0,1) —(0,2) —(0,3) —. ..
(I, nH—-U2y—U3-u49—. ..

2.2)—-2.3) -2, -2, 5—...
|

Figure 2 Top levels of a tree of pairs.

These infinite tree processing techniques can be used
to solve a problem mentioned by Dijkstra [1] and attrib-
uted to Weizenbaum. Given an integer n, the problem is
to write a program to find the smallest number that can
be decomposed into the sum of two ath powers in at least
two different nontrivial ways. The relevant data structure
is an infinite tree of pairs, which starts as shown in Fig. 2.
The structure is an (integer-pair) tree, where a tree is
defined as follows:

An A-tree
has a root, which is an A,
and a left, which is an A-tree,

and a right, which is an A-sequence.

The required tree is
gen F G(0, 0)

where F(x,y) =x+1,y+ 1

and G(x,y)=x,y+ 1

andrec gen f g x () = x, gen f g(f x), generate

g(g x).
The infinite tree formed by mapping with H(x, y) =x" +
y" has the property that its root is smaller than any root
in its subtrees. The resulting tree can therefore be sorted
by taking the root as the first in the sorted sequence and
then merging the two subtrees. The mapping function is
def rec mapt f x () = let root, left, right = x()
f root, mapt f left, maps f right

The tree can now be sorted using the function sort, which
produces a stream of sorted numbers from the tree.

def rec sort x = let root, left, right = x()
A (). root, sort(merge left right)
where rec

merge Xy =

W. H. BURGE

let a, b, c=x()

letd, e=y()

ifa<d

then A ().a, (merge b c),y

else A\().d. x, e

The first repeated member of this stream has to be found
next, using

def rec repeat s =let x, y = s()
let u, v=y()
ifx=u
then x

else repeat A ().u, v

The whole function is

def nd n =let tree = gen F G (0, 0)

where F (x,y) =x+1,y+ 1
and G(x,y) =x,y+ 1
repeat(sort(mapt H tree)))
where H(x,y) = x" + y"

Destructive streams The stream functions defined above
contain no assignment statements, so the stream s still
exists after it has been applied to the nuli list. It follows
that being able to use a stream more than once, or “back-
tracking,” is the normal mode of operation. Often a
stream is no longer needed after it has been applied and
can be implemented by a ‘‘destructive” routine, which
contains private storage within itself to record the rail
of the sequence. Successive items of the stream occupy
the same storage. When the stream is applied to the null
list, the private storage is reset by an assignment state-
ment. Such a routine therefore destroys the original
stream when it is applied to the null list. An own variable
feature was introduced in Algol 60 to supply this kind of
private storage, although there are some questions about
how it should be implemented. The intention was to have
a variable that was local to a block but that unlike the
regular locals had a value that survived the activation of
the block.

The version of the own variable introduced here is at-
tached to a procedure rather than a block, and like a
stream it depends on using a particular expression con-
struction that can be used in any context. It does not rely
on the addition of any special mechanical devices for its
specification or implementation. The only rule used is
that the body of a lambda expression is evaluated only

IBM J. RES. DEVELOP.

when the function is applied. The expression construc-
tion that introduces an own variable is a function that is
written as an expression whose operator part is a lambda
expression and whose operator lambda expression has a
body that is a lambda expression. In other words, it is an
expression of the form

(AxAy.M)N

The own variable in the expression above is x, and when
the expression is evaluated, x takes as initial value the
value of N. In order to guard against assignments to this
variable from outside, the initial value should be copied,
so (Ax.Ay.M) (copy N) is better. This ensures that the
only way of assigning to x is by an assignment statement
of the form x: = E within M.

Cascading streams Streams, like coroutines, are most
useful in specifying a cascade of editing processes. An
example of the method of constructing a program using
streams is given next. The problem is taken from Dijkstra
[1]. The input is made up of a sequence of words com-
posed of letters, separated by any number of spaces, and
terminated by spaces and a point. The input is assumed to
be a character stream called rnc. The required sequence
of characters replaces the separating spaces by just one
space and reverses every other word, and it is then ter-
minated with a point.

The function (while letter) takes a word from the head
of the input, and (while space) takes spaces until it finds
a nonspace. The function absorbword defined below has
to be repeatedly applied to produce a word sequence.

def absorbword s = let w, sI = (while letter s)
let sps, s2 = (while space si)

w, 52

To produce a word stream this function has to be applied
repeatedly by applying (next absorbword) to the char-
acter stream. The point at the end (in fact any nonletter)
gives rise to a tail made up of an infinite sequence of
empty lists. Now every other word has to be reversed.
The sequence (generate not false) can be generated to
record whether to reverse a word or not. The two streams
can then be merged to form a resulting stream using the
function

(zips g) where g x y = if y then reverse x else x,

which when applied to the word stream (next absorbword
rnc) and (generate not false) produces a word stream
with alternate words reversed. The next step is to pro-
duce a character stream from a word stream. The spaces
and point have also to be inserted. The spaces can be in-
serted by prefixing a space to every word except the first.
This can be done by applying (maps (prefix space)).

JANUARY 1975

Finally the whole character stream is obtained by ap-
plying concatl and postfixing a point. The whole program
becomes:

let s/ = zips g (next absorbword rnc) (generate not false)
where g x y = if y then reverse x else x

let s2 = concatl(untils(null - 1) (maps(prefix space)sl))
postfixs point (ts s2)
where postfixs x y = append! y (us x)

As in all programming systems, there is some choice
in the strategy that can be adopted. One of the important
decisions seems to be the stage at which one changes
from dealing with infinite streams to dealing with streams
that represent lists. If a stream is denoted by an expres-
sion and is not named, or if it is named and the name is
only used once, then it is valid to use a destructive repre-
sentation of the stream. All the streams in the example
above can be replaced by destructive streams.

1t should be clear from these examples that any func-

tion that operates on, or produces, tree-like data struc-
tures can be adapted to operate on, or produce, stream
functions.
Parsing relations 1t is possible to represent sets by lists,
in a nonunique way, and to represent lists by streams.
It is also possible to regard a relation as a function from
an object to the set (or stream) of objects related to it.
Using this notion it is possible to re-express the familiar
top down syntactic analysis program in terms of “‘parsing
relations.” Suppose that for each symbol, whether ter-
minal or nonterminal, there is a relation from a stringto a
set of strings. The relation that corresponds to a particu-
lar phrase is between a string and a string from which an
initial segment that is an instance of a phrase has been
removed. The relation can be considered a function from
a string to a set of strings. If the function does not find
its phrase at the head of the string, the result is the empty
set. The relation that corresponds to each terminal sym-
bol tests whether that symbol is at the head of the string.
If so, then the result is a set containing one member, the
tail of the string. If not, then the result is the empty set.
If sets are represented by stream functions, then the func-
tion Q, defined below, operates on a terminal symbol to
produce its corresponding relation.

def Q x s =
it null s
then nullists
elseif x=hs
then us(t s)

else nullists

21

STRUCTURED PROGRAMMING

22

W. H. BURGE

If the string starts with the character x, then the result is
the stream us(¢ s) ; otherwise it is nullists, the stream that
represents the empty set. There are two special relations
that correspond to 1) the empty set whose value is always
the empty set and 2) the relation corresponding to the
nullist set whose value is the set containing one member,
the original argument string. These parsers are defined
below.

def nullstring s = us s

def empty s = nullists

From these relations new relations can be constructed
by replacing each union by the union of two relations:

def union f g s = appendI(f s) (g)

and by replacing each Cartesian concatenation operator
by the concatenation of two relations.

def followedby f g s = concatss(mapl f(g s))

The relation (followedby f g) therefore finds the set of
strings related to s by fand for each member finds the set
related by g and forms the union of this set of sets. The
context-free productions of a language without left-recur-
sive symbols can now be reinterpreted as a set of mutual-
ly recursive functions defining the parsing relation for
the language. A string belongs to the language provided
that the null list is a member of the set produced by apply-
ing the parsing relation for the language to the string. In
other words if L is the relation for the language, then the
string is recognized if (exists null (L s)) is true, where
exists is defined below.

def rec exists p s =
if nulls s
then false
else let x, y=s()
if p x
then frue
else exists p y
In order to produce a parser from this recognizer it is
necessary to elaborate a relation so that it produces a
set of pairs. The first of the pair is the object produced
from the phrase recognized at the head of the string. The
second of the pair is the remaining string. The followedby

function has now to be elaborated by providing another
function as argument. The function (cc h f g) defined be-

low produces the set of pairs found by applying f and g
and combining the results of f and g by applying the func-
tion 4.

defcchfgs=
concatss (mapl q(fs))
where g(u, v) = mapl r(g v)
where 7(y, z)
=(huy, 2

The union operator is unchanged.

Merging Occasionally two programs are found to be very
similar in operation, and sometimes the difference can be
accounted for by considering that one program is operat-
ing on lists and the other is carrying out the same opera-
tion on streams. One example of such a pair is a pair of
programs that both merge a list of sorted strings. To
merge two lists the smallest head of the two lists is se-
lected and removed, leaving two sorted lists that then
have to be merged in the same way.

def rec merge x y=
if null x
then y
else if null y
then x
elseif hx<hy
then /1 x:merge(t x)y
else h y:merge x(t y)

A nonempty list of items can be sorted by merging if
one changes each item into a 1-list and repeatedly merges
until one sorted list remains

def rec mergepairs y =
if null y
then ()
else if null (t y)
then y
else (merge(h y) (h(1y):
mergepairs(1(t y)))
def rec mmerge x =
if null (¢t x)
then 7 x

else mmerge(mergepairs x)

IBM J. RES. DEVELOP.

The merge function can now be changed to operate on
streams and produce a stream as follows:

def rec merge x y =

if nulls x
then y
else if nulls y
then x
else if fis x < hs y
then prefixs(hs x)
(merge(ts x)y)
else prefixs(hs y)

(merge x (tsy))

It is therefore possible to combine a list of streams by
merging to produce a stream for the sorted list. It is more
efficient to represent the streams using a buffer of size |
because the head of the stream is to be referred to more
than once. In this new representation of a stream, each
stream is represented by a pair whase first is the head of
the sequence and whose second is the old stream repre-
sentation of the tail. The new way of representing streams

can be summarized as follows

nulls s (hs) =end

nullists (end, generate I end)
hs h

ts(x, 8) s()

prefixs x s x, A).s

With this change of representation the merge function

becomes

def rec merge x y =

The function mmerge produces a stream pair whose first
is the smallest item and whose second is a stream that
takes the form of a tree or tournament, called a “loser”
tree. The application of mmerge requires n — I compari-
sons. The production of the remaining stream elements
require at most log,n comparisons each. The same pairs
of elements are compared in both programs, but the com-
parisons are carried out in a different order.

Efficiency One of the outstanding problems is to devise
general rules for creating efficient programs from the
notation used. Some of the possible program manipula-
tions that might be carried out to produce a factorial pro-

gram from

stream?2 1 mult I (untils (>n) (generate(+1)1))

will be given next.
Two lambda convertible expressions that denote a

function are equivalent, although they may operate in
different ways under the assumed method of evaluation.
1t should be possible to choose the most efficient convert-
ible form. It is possible to extract common subexpres-

sions in the definition of s¢ream?2 that follows

def rec stream?2 a g f s =

if nulls s
then a
else stream2(g(f(hs s))a)g f

(s s)

in order to make sure that the stream is only applied once
when (stream?2 « g f) is applied. This lambda conversion

produces the definition

def rec stream2 a g fs =

let x, y=s()
if x = end
then «

else stream2(g(fx)a)g 'y

let u, f=x
letv, g=y
if u=end
then y

else if v = end
then x
else if « < v
then u, A().merge(f(})y

else v, A().merge x(g())

JANUARY 197§

A second main method of producing efficient programs
is to detect when a piece of storage is no longer needed
and reuse it. The recursive call of stream?2 can be re-
placed by a go te instruction because the subroutine link-
age information is unchanged by the inner application.
The piece of storage that holds the arguments can also
be reused if the arguments of one application of stream?
are not required after the next. This recursion removal

produces the program:

STRUCTURED PROGRAMMING

(

stream2 a g f s =
let b=a
let r=y5
Lietx,y=r()
if x = end
then b
else b :==g(fx)b
r=y

gto L
Now the arguments can be substituted, producing

stream2 I mult I s =
let b=1
let r=y
Lilet x, v=r()

if x=end

then b

else b . =x X b
r:=y
go to L

The next stage is to notice that the stream is only used
once within the program, so there is no question of back-
tracking in the stream. The stream can therefore be rep-
resented as a destructive stream that uses the same
piece of storage for its elements. A destructive stream
for (generate f x) can use just one variable r to represent
both the head of the stream and the whole stream. The ts
of the stream is (fr). The application of (untils p) to a
destructive stream causes the expression (x = end) to be
replaced by (p x). With these changes the program be-

comes:
let h=1
let r =1/
Liletx=r

and y=r+]/
ifx >n
then b
else b :=x X b

r=y

24 goto L

W. H. BURGE

Since let x = r is merely a renaming and y only occurs
once in the program qualified by its definition, they can
both be substituted to give: '

factorial n =
et b=1]
let r=1
L.'ilf r>n
then &
else b :=rXb
ri=r+1

goto L

Summary

The examples of structured programs in this paper are,
for the most part, familiar programs that have been recast
in an unfamiliar way. We hope they demonstrate that
using expressions that denote objects of computation as
opposed to using instructions that denote machine be-
havior can often result in a clearer structuring of pro-
grams. The use of stream processing methods often leads
to the rapid development of a program having complexi-
ties that might be troublesome to master by using other
methods.

The main problem is to be able to produce efficient but
perhaps less structured programs automatically from the
notation used. The compiler has to be able to detect those
constructions that correspond to more conventional pro-
gramming techniques, and to rearrange the program ac-
cordingly. The tentative suggestions made in this paper
only touch the surface of this problem of producing effi-
cient programs.

This paper contains some of the material from a chap-
ter of a forthcoming book entitled “Recursive Program-
ming Techniques” to be published by the Addison-
Wesley Publishing Co. as one volume in the IBM Sys-
tems Programming Series of books.

Cited and general references

The notion of a stream is due to Landin (private com-
munication 1962) and is briefly described in [6]. The
construction is possible in several programming lan-
guages that are either based on the lambda calculus or
permit coroutine constructions [7,8,9.10,11].

1. O.J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, London and New York,
1972.

2. P. J. Landin, “The Next 700 Programming Languages,”
Commun. ACM 9,157 (1966).

3. M. E. Conway, “Design of a Separable Transition-diagram
Compiler,” Commun. ACM 6,396 (1963).

iBM J. RES. DEVELOP.

. A. Evans, “PAL—A Language Designed for Teaching
Programming Linguistics,” Proc. 23rd ACM Conf., 395
(1968).

. W. H. Burge, “Combinatory Programming and Combina-
torial Analysis,” IBM J. Res. Develop. 16,450 (1972).

. P. J. Landin, “A Correspondence Between Algol 60 and
Church’s Lambda-notation,” Commun. ACM 8, Part 1, 89,
Part 2, 158 (1965).

. R. M. Burstall, J. S. Collins, and R. J. Popplestone, Pro-
gramming in POP-2, Edinburgh Unijversity Press, Edin-
burgh, Scotland, 1971.

. O. J. Dahl and K. Nygaars, “Simula— An Algol-based Simu-
lation Language.” Commun. ACM 9,671 (1966).

. T. 1. Fenner, M. A. Jenkins, and R. D. Tennent, “QUEST:
The Design of a Very High Level, Pedagogic Programming
Language,” SIGPLAN Notices (ACM) 8,3 (1973).

. J. C. Reynolds, “GEDANKEN — A Simple Typeless Lan-
guage Based on the Principle of Completeness and the
Reference Concept.” Commun. ACM 13,308 (1970).

JANUARY 1975

11. J. E. Stoy and C. Strachey, “OS6 — An Experimental Oper-
ating System for a Small Computer,” ComputerJ.15,No. 2,
[17 and No. 3,195 (1972).

12, S. W. Golomb and L. D. Baumert, “Backtrack Program-
ming,” J. Assoc. Comput. Mach. 12,516 (1965).

13. D. E. Knuth, “Structured Programming With Go to State-
ments,” to be published.

14. P. Naur. “Programming By Action Clusters,” BIT 9, 250
(1969).

Received April 19. 1974; revised June 25, 1974

The author is located at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York 10598.

25

STRUCTURED PROGRAMMING

