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Abstract: One  principle  of structured programming  is  that a program  should  be  separated  into  meaningful  independent  subprograms, 
which are then  combined so that the  relation of the parts to the whole can be  clearly  established.  This  paper describes  several  alternative 
ways  to  compose  programs. The main  method  used  is  to  permit  the  programmer  to denote by an  expression  the  sequence of values  taken 
on by a variable.  The  sequence is represented by a function  called a stream, which  is a functional  analog of a coroutine. The conven- 
tional while and for loops of structured programming may be  composed by a technique of stream  processing  (analogous  to  list  process- 
ing), which  results in more  structured  programs than the  originals. This technique  makes it possible  to structure a program in a natural 
way into its  logically separate parts, which can then be considered  independently. 

Introduction 
One of the underlying  principles of structured program- 
ming [ 11 is that  the  separation of the  parts of a  program, 
and the relation of the  parts  to  the whole, should both  be 
clearly apparent from its written  form. A second princi- 
ple is that  the meaning of each part  should depend in a 
simple way only on the meaning of its subparts, and not 
on any other properties.  Programs  written in this way 
are  easy  to  understand  and write, and the  details of their 
operation  are  transparently clear. This principle of struc- 
tured programming is epitomized in the expression  for- 
mat of programming languages. The value of an  expres- 
sion depends only on  the value of its subexpressions,  and 
it depends  on them by the simple  notion of the applica- 
tion of a function to  its argument. A more general type 
of expression  than that commonly  provided in program- 
ming languages is found in the notation of the lambda 
the  arguments and results of a  function can be a function. 
The programming language used in this  paper is ISWIM, 

a modified version of the notation of the lambda  calculus 
due  to Landin [ 21 that is more palatable  for programming 
purposes. 

Another theme that  runs through the writing on struc- 
tured programming is the notion of abstraction. In its 
technical sense abstraction is an  operation  for producing 
an  expression describing  a  function  from an  expression 
by indicating which identifiers are its  variables. Thus 
hx.x2 + x denotes a function that when presented with a 
number adds it to its  square. 

Another meaning given to abstraction is related to  the 
levels of detail of a  program. The program is first con- 
ceived in an  abstract way and  then elaborated  by  step- 
wise refinement to  produce  the final version. This idea of 

12 abstraction may also be applied to  the  data  structures 

used in a  program. An  attempt should be made  to sepa- 
rate  the decisions about  the logical structure of the in- 
formation  from  decisions about  how the structures  are  to 
be physically represented.  It is valuable to  attempt this 
separation  because  the  shape of the  structures needed 
depends  on  the problem being solved, whereas  the choice 
of physical format  depends more on  the  operations and 
data  structures provided by the computer  or program- 
ming system being used. In practice the distinction be- 
tween logical and physical structure  is difficult to make, 
and decisions about logical structure  are usually made by 
default. The physical representation is often chosen  at 
too early  a stage,  and wholesale changes of representa- 
tion become impossible without rewriting  large parts of 
the program. The effort of retaining the distinction seems 
worthwhile, however,  because a clear  picture of a set of 
information structures implies to some extent  the  shape 
of the programs that  operate  on,  or  create members of, 
the set. In some cases  the underlying data  structure may 
be hidden and take  the form of arithmetical  calculations 
performed by the  instructions in the  program. It  seems 
preferable,  especially in the  early  stages,  to make  this 
structure explicit in order  to  make  the resulting  programs 
easier  to understand. 

This  paper  describes a technique for constructing pro- 
grams in which a general-purpose program that is a mere 
skeleton is first written  and is fleshed out  later by supply- 
ing arguments that specify the  actions  to be taken within 
the skeleton. The skeletal program can be  considered to 
specify the  whole family of programs  obtained in this 
way. The general-purpose skeleton  embodies  the method 
of scanning the  structure,  and  the arguments supplied 
specify the  actions  to be taken during the scanning. The 
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general-purpose  programs can be  produced in a rnechan- 
ical fashion  from the description of the  set of data struc- 
tures  (sometimes called the  abstract syntax of the  set) 
being scanned. 

Some examples of this  method of constructing pro- 
grams that  operate  on  lists  are given first. The technique 
is then applied to streams.  A stream is a  functional analog 
of a coroutine [ 3, 41 and may be  considered to be  a par- 
ticular method of representing a list in which the creation 
of each list element is delayed until it is actually  needed. 
Many examples of stream-processing  programs are given 
in which list processing  techniques are  seen  to  corre- 
spond to  the  more conventional programming techniques 
using while and for loops. 

It is often easier  to  understand and program  a sequence 
of passes  that happen one  after the other than to  consider 
an involved process in which different program elements 
are mixed together. This paper presents a  method  for 
getting the best of both  worlds in the  sense  that  the pro- 
gram is written as if it were a  multipass  program,  but 
when it is executed  the  parts of the separate  passes  are 
interleaved. This principle seems  to apply to programs 
that would not usually be  considered  natural  for coroutine 
treatment.  It is often easier  to  consider  the  sequence of 
values  taken on by a  variable in a  program as  an  object 
that can be manipulated, rather than  considering the 
mechanisms that use, test, and change  the variable. The 
coroutine technique has  the  advantage  that  the pieces of 
program that contain the variable are gathered together 
in one place, rather than being scattered throughout the 
program. The  stream technique  makes it possible to  struc- 
ture a  program in a  natural way into  its logical separate 
parts, which can be considered  independently. 

Describing sets of data structures 
A set of structures can be introduced by both naming its 
components  and by specifying the type of each compo- 
nent. If there  are alternative formats  for  the  same  set, 
then  a  predicate is provided  for each  set and  given  a 
name. For example, the definition of an expression having 
infixed operators can  be  written: 

An expression is 
either atomic and is an identifier 
or is compound 

and  has  an operator, which is an infixed opera- 
tor, 

and  a right and left, both  expressions. 

An expression defined in this way depends on the set's 
identifier and infixed operator.  It is also assumed that 
functions for constructing  tree-like data  structures  are 
introduced. In this case  an  operator is introduced to  con- 
struct a compomd  expression from two  expressions and 
an infixed operator.  Given this  description of a set, a 
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general-purpose function  can  be constructed  for pro- 
cessing  its  members by introducing a conditional expres- 
sion to distinguish  and process the alternative  formats, 
by introducing  a  function  applicable to  each  component 
of a Cartesian  product, and another function to combine 
the  results.  The general shape of a  program  for  operating 
on  the  expression defined above is: 

.fx = 

i f  atomic x 

then &x 

else.fi(f ,(operator x ) ) ( & ( l e f t  x ) ) ( . f ; ( r ight  x)) 

in which ti, .&, . . . J; are parameterized functions that 
specify the action to be  carried out. If the  subexpressions 
are  to be  treated in the same way as  the whole expression, 
then the following function  results. 

e x p f g h x =  

i f  atomic x 

then f x 

else g ( h  (operator x) ) (exp f g h (left x) ) 

(exp f g h(right x)). 

The value of an  expression, for  example, could be ob- 
tained by applying the function 

(exp u g u )  where g x y z = x(y,  z )  
in which u is a  function for finding the value of an identi- 
fier or  operator. 

Lists 
Lists, in one guise or  another,  are  the most  commonly 
used data  structure in programming. The definition of a 
list of elements of type A is: 

An A-list is 

either null 

or  has a h e a d ( h ) ,  which is an A ,  and 

a t a i l ( ? ) ,  which is  an A-list. 

Associated with an  object x there  is a  function for pre- 
fixing it to a list,  which is called prefix  x. The  expression 
x:y is used as an abbreviation for prefix x y ,  ( )  denotes 
the null list, a ,  6, c ,  d, e is used  instead of a : ( b : ( c : ( d : ( e : -  
( )  ) ) ) ) , and u x is used to  denote a list with one element. 
The  types of the list functions  introduced are 

null e A-list + truth  value 

h e nonnull A-list + A 

t e nonnull A-list + A-list 13 
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prejix E ( A  + (A-list + A-list))  

( ) E A-list 

These  functions  are closely  interrelated as follows: 

null( ) = true 

null(x:y)  =false 

h(x:y)  = x 

t (x :y)  = y 

( h   z ) : ( t  z )  = z 

in which x is  an A ,  y is an A-list, and z is a nonnull A-list. 
Each  structure description is assumed  to  create func- 
tions  that conform to a number of axioms of this type. 
Many functions  that  operate  on  lists  have  the  same basic 
structure.  For  example 

sum x = 

if null x 

then 0 

else ( h  x )  + sum ( t   x )  

e.g., s u m ( l , 2 , 3 , 4 )  = 10 

product x = 

if null x 

then I 

else ( h  x )  X product ( t   x )  

e.g., product(1,   2,   3,  4) = 24 

append x y = 

if null x 

then y 

else (h   x ) : (append( t   x ) y )  

e.g., a p p e n d ( l , 2 ) ( 3 , 4 , 5 )  = 1 , 2 , 3 , 4 , 5  

concat x = 

if null x 

then ( ) 

else append(h x )  iconcat ( t   x )  ) 

e.g., c o n c a t ( ( l , 2 ) ,  (3,4), ( ) )  = I ,  2 , 3 , 4  

map f x =  

if null x 

then ( ) 

else ( f ( h   X ) ) : ( m a p f ( t   x ) )  

14 e.g.. map square ( 1 , 2 , 3 ,  4) = 1 ,  4, 9,  16 .  
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It can  be  seen that  these functions  only differ in the 
first arm of the conditional expression  and in the function 
that combines whatever is produced from the head of the 
list (usually the head itself) with whatever is produced 
by applying the  same function to  the tail of the list. The 
common parts of these functions may be expressed  as a 
function called listl, defined below, in which the  parts 
that  are not common  have  been made  variables. 

listl a g f  x = 

if null x 

then a 

else g ( f ( h   x ) )  (listl u g f  ( t   x ) )  

The result of applying the function (listl u g f )  to a list 
is a if the list is empty;  otherwise it is the result of apply- 
ing g to  two arguments, 1 )  the result of applying f to  the 
head of the list and 2 )  the result of applying the  same 
function to  the tail of the list. It is now possible to redefine 
the five functions in terms of listl. It  can  be seen that this 
technique both  saves writing and is more likely to pro- 
duce a correct program because  the complex  program- 
ming (Le., the conditional expression and  looping) has 
been  written once and for all  in the function listl. In the 
following definitions I is the identity  function, K x y = x, 
and postjx adds a new item to  the end of a  list, so that 

posffix  x y = append y ( u  x )  

The new definitions are: 

sum = listl 0 plus I 

product = listl I mult I 

append x y = listl y prejix I x 

concat = list I ( ) append 1 

mup f = listl ( ) prejix f 

Some  other examples are: 

length = listl 0 plus ( K  1 )  

sumsquqres = listl 0 plus square 

reverse = listl ( ) posffix I 

identity = listl ( ) prejix I 

The functions defined in terms of list1 all scan  the list 
(i.e., accumulate the result) from right to left. There is 
a  second family of functions that  scans lists  from left to 
right, which can  be defined by using a  function called list 2. 

list2 a g f x = 

if null x 

then a 

else l i s t 2 ( g ( f ( h   x ) ) a ) g f   ( t   x )  
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The function list2 may be implemented by the "iterative" 
program  below; thus it may be  more efficient to use list2 
than l is t l .  

L: if null x 

then a 

else 

a := g(J ' (h  x ) ) a  

x := t x 

go to L 

A function that  operates  on two equal length lists  and 
combines  corresponding  members by using a  function 
f and  then  combines the  results by using successive ap- 
plications of a  function g is defined below. 

zip1 a g f x  y = 

if null x 

then a 

else g(. f (h x )  ( h  Y )  1 (zip1 N g f ( t  x )  ( t  y ) )  

Examples of its  use are  to form  the scalar product (zip 1 
0 plus mult) or  to  produce a list of pairs from a  pair of 
lists by 

zipm = zip1 ( ) prefix  pair 

where puir x y = x ,  y 

Several other examples of this  technique of matching 
the program structure  to  the  data  structure may be found 
in Burge [ 5 ] ,  in which an analogy is shown between  con- 
structing  functions in this way and constructing the enu- 
merating generating  functions of combinatorial  theory. 

Sequences, coroutines, and streams 
When one function produces a list in its  natural order and 
another  processes  the list items in the  same  order, it is 
often unnecessary  to  produce  the whole  list  before  apply- 
ing the second  function to it. The  two  functions can  be 
combined so that at any stage the second  function  can 
issue a  demand for  the next list item, which is then pro- 
vided by the first function. The creation of the  next list 
item is thereby delayed until it is actually  needed. It is 
often easier  to write  programs in two  stages in which the 
list is an intermediate  result of the  computation.  How- 
ever, it is more economical of storage to  use the  combina- 
tion of the  two  functions, in which only one member of 
the list appears  as  an intermediate  result. This section 
contains  an examination of methods of combining  func- 
tions in this  way. It is possible to  have  the best of both 
worlds by writing the program as if the whole list ap- 
peared as  an intermediate  result  but having the  actual 

implementation  only create  one  member  at a time. The 
function called upon  to  produce  the  next item  must both 
produce it and reset itself to  be prepared to deliver the 
remainder,  or tail, of the list the  next time it is called. 

The  data  structure  that is relevant is an A-sequence, 
defined as follows: 

An A-sequence has a hs, which is an A ,  

and  a t s  which is an A-sequence. 

Streams A sequence is therefore  an infinite list, and  the 
problem of conserving  storage for  its representation in- 
side  a computer becomes even  more pressing.  A se- 
quence can  be represented by a particular type of func- 
tion, which is called a stream  function or a stream. A 
stream is applicable to  an  empty list of arguments, and 
it produces a  pair whose first is the next  item in the se- 
quence  and  whose second is a stream  for  the tail of the 
sequence.  Thus 

A-stream  (null list -+ A X A-stream) 

The  head, tail,  and prefix functions  for a stream  are 
defined as follows: 

def hs s =firs t  (s ( ) 

def ts s = s e c m n d ( s ( ) )  

def prefixs x s = A ( ) . x ,  s 

The hs of a stream is the first member of the pair that 
results from  applying the  stream  to  the null list,  and  the 
ts is the second  member. It follows that s is applied each 
time that  either hs or t s  is applied. I t  is often  more eco- 
nomical to make sure  that  the  stream is only applied once 
by using a construction  such  as 

letx,  y = s( ) . . . . x . .  . y . .  ' X . .  ' X . .  . 

A stream  can be constructed from  its  head x and its tail 
s by the function prejixs x s = A ( ).x, s. When  applied to 
the null list,  this  function produces  the pair ( x ,  s). The 
axioms that  relate  streams  and  their  components  are: 

hs(A ( ) . ( x ,  y ) )  = x  

t s ( A  ( ) . ( x ,  Y)) = Y  

prefixs (hs z )  ( t s  z )  = z 

Stream  processing  functions A  number of examples of 
stream processing  functions that  are analogous to list 
processing functions  are defined below. 

Example 1 Given a  transformer f and an initial value x ,  
a stream function for  the  sequence x , , f x , f "  x,f ' : '  x '  . .may 
be  obtained by using 

def rec generute f x ( ) = x ,  generutef ( f  x) 

S T R U C T U R E D  F 
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The first member of the  sequence of the  stream (generute 
f x )  is x ,  and the remainder of the  sequence is represented 
by the  stream (generutef  ( f  x )  ). Given  zero  and a  suc- 
cessor function, the  sequence of nonnegative  integers 
can be represented by the stream integer = (generate 
successor 0 )  = 0 ,  I ,  2, 3; . .. 

Exumple 2 The  stream  representations of sequences can 
be treated  as if they were lists. I t  is possible to transform 
streams  to  other  streams,  for  instance, by using the func- 
tion maps defined below 

def  rec m a p s f s  ( ) = f x ,  maps f y where x, y = s( ). 

The function maps transforms a sequence 

x,, X', x3,. . ' 
into the  sequence 

f X , > f X ' , f X ,  ;... 
The function mnps delays  the production of the  next 
member of s until the  next  member of (maps  f s) is re- 
quired; it then  applies the  functionfto the first member of 
s to  produce  the first  member of (maps  f s )  . The  stream 
for  the  sequence of squares of nonnegative  integers, for 
instance, is (maps  square  integer) = 0 ,  I ,  4,9;  ' .. 

Example 3 The function thefirst, which finds the first 
member of a sequence having the property p and pro- 
duces it as a result,  together with the remaining stream, 
is defined below 

def rec  thejirst p s = 

let x ,  y = s( ) 

i f p x  

then x ,  y 

else thejirst p y 

Assuming that the predicate nonspace tests whether a 
character is a nonspace  character, then the next nonspace 
character can  be  obtained from a character stream by ap- 
plying (thefirst  nonspace) to it and then  selecting  the 
first of the pair  produced. As another example, the first 
integer  whose square is greater  than 1000 is the first mem- 
ber of the pair 

thejirst p integer  where p x = x' > 1000 

Example 4 The function filter, defined below, operates 
on a stream  and a predicate p and produces a stream  for 
those  members having the  property p .  

def  recfilter p s ( ) = 

let x ,  y = s( ) 

16 i f p x  

then x, jilter p y 

else  filter p y 

A stream of nonspace  characters  can then  be  obtained 
from  a character  stream by applying (j i l ter  nonspace) 
to it. As another  example (filter  prime  integer) is the 
stream of prime  numbers. 

Example 5 Two  streams  can be  processed to  produce a 
third by a function that is analogous to z i p l .  

d e f r e c z i p s f x y = h (  ) . ( f ( h s x ) ( h s y ) ) ,  

( z i p s f  ( t s  x) ( t s  y )  ) 

The  stream of pairs is produced from two  streams by 
( z ips   pa ir ) .  

Example 6 Streams  are  most useful for implementing 
functions that  process  character  streams from  input. The 
function while, defined below, produces a list  from the 
initial segment of a stream  just  as long as  its  members all 
have  the  property p. 

def  rec  while p s = 

let x ,  y = s ( ) 

i f p x  

then let u,  u = while p y 

x:u, u 

else ( ), s 

A related  functioh is until p = while (not . p ) .  If the predi- 
cate sumeline is not . (equal  newline),  where newline is 
the carriage return line feed character, then the function 
(while  sameline) operates  on a character  stream and pro- 
duces a  pair whosejirst is the  next line of input  and  whose 
second is the remaining stream. To be able  to reapply the 
same function the newline character must  be  removed 
by using remove  (x ,  y )  = x ,   t s  y.  

Example 7 Any  function that produces  a pair whose 
second  member is the  same  type  as its  argument can be 
made into a stream-producing  function by applying a 
function called next to it, defined as follows: 

def  rec next r s ( ) = 

let x, y = r s 

x, next r y 

The function next is applicable to  any function of the  type 

r e A + B X A .  

and  produces a  function of the  type 

A + B-stream. 
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I t  follows that 

next E ( ( A  ”-3. B X A ) -+ ( A  -+ B-stream) ). 

The function jilter can  be redefined in terms of next as 
follows: 

d e f j l t e r  p s = next(thejirst p ) s  

The function 

(next  (remove . (while  sameline) ) ) where  remove ( x ,  y ) 

= x, ts y 

converts a character  stream containing newline charac- 
ters into  a line stream in which the lines are  the  character 
lists between adjacent newline characters. 

Example 8 The inverse operation  converts a  list stream 
into a character  stream.  Suppose  that concats is a func- 
tion for “flattening” a line stream into a character  stream 
or, more  generally,  transforming an  (A-list)-stream into 
an A-stream. 

def  rec concats s = 

let x, y = s( ) 

i f  null x 

then concats y 

else A ( ) . ( h  x, concuts A ( ) . t  x, y )  

The inverse operation of putting back the newline char- 
acters and flattening the line stream into  a character 
stream is then (concats . maps  (postjx  newline)).  The 
operation of concuts is similar to  an input buffering pro- 
cess in which blocks of records  are read  from outside, 
but the program requires the individual records  one  at a 
time. The function concuts therefore  converts a block- 
reading  routine  into  a  next-record  routine. 

Representing  lists by streams In  order  to  be  able  to repre- 
sent a list by a stream it is necessary  to  choose  some ob- 
ject  that  cannot be a list item to  serve  as  an indication in 
the  stream  for the end of the list. This is called end. In 
fact, since  a stream is a  function, it can always  be  applied, 
the  stream corresponding to  an infinite list of end‘s will 
serve  as  the indication. The null stream can be defined 
by nullists = (generate I e n d ) .  The  predicate  for  the null 
stream is defined as nulls x = ( ( h s  x)  = end) .  These  lists, 
which are  represented  as  streams,  can  be  treated  as if 
they  were  lists. The  correspondence  between  the list 
functions and  stream  functions is given in Table 1. 

I t  follows that any  function that  operates on, or pro- 
duces. lists can be immediately transformed into a lunc- 
tion that  operates  on,  or  produces,  streams.  General- 
purpose  stream functions  can  be defined by analogy with 
the list1 or list2 functions. 

Table 1 Liz it functio Ins and  corresponding stream function IS. 

lists  streams 

def  rec  stream1 a g f s = 

def  rec  stream2 a g f s = 

i f  nulls s 

then  a 

else s t r e u m 2 ( g ( f ( h s   s ) ) a )  g 

f ( I S  SI 

The stream1 function produces  the whole  list  before 
operating on it; the stream2 function produces items one 
at a  time  and operates  on them as they are produced. The 
functions  on lists can be carried  over  to  streams.  The 
stream versions of the functions map,  append, and c‘oncaf 
follow: 

def rec mapl f s = 

i f  nulls s 

then nullists 

else A ( ) . f ( h s  s ) ,  mapl f ( t s  s) 

del  rec  append1 x y = 

i f  nulls x 

then y 

else A ( ).hs x, appendl(ts x ) y  

def  rec concatl s = 

i f  nulls s 

then nuliists 

else  let x ,  y = s (  17 
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duces a list of the  results of applying f to  every pair of 
items, one  from  one list and the  second from the  other. 

def m a p 2 f x  y = let g z = m a p ( f z ) y  

concat(  map g x) 

The result of applying (map2  pair) to the  two lists ( I ,  2, 
3 )  and ( 4 , 5 )  is the  cross product 

( 1 , 4  3 ( I ,  51, ( 2 , 4  3 ( 2 ,  5 )  7 ( 3 , 4  9 (3,5). 

There is a stream version of this function, produced  by 
replacing map by map1 and concut by concatss, Le., 

def map21 f x y = let g z = m a p / ( f z )  y 

concatss ( m a p /  g x) 

The  double for loop control  above  can be  regarded as  the 
stream of pairs (map21 pair (til n)  (til m)  ) . 

“Walking” through  trees It is often useful to be able  to 
scan a data  structure by using a stream instead of first 
listing its elements and  then  scanning the list. A  general 
technique for producing a list from  a structure is to re- 
place all atomic  elements by 1-lists, to  produce a list of 
lists from  each nonatomic component, and then  concate- 
nate these lists. These functions for producing  lists  can 
be systematically  changed so that each atomic  element 
is converted  into a 1-stream,  each nonatomic component 
is converted  into a stream of streams, and then this 
stream of streams  is  concatenated  to produce a stream 
by concatss. 

A binary tree,  for  example, can be defined as being 
either  empty  or having a root and  a right and  a  left,  which 
are  both binary trees.  One function for flattening the 
binary tree  to a list is: 

def recflutn x = 

if empty x 

then ( 

else concat(  Jlatn( left x), u(root X ) ,  

,&tn (right x) ) 

This  produces a list of nodes of a tree.  In  order  to “walk” 
through the  nodes of the  tree one step  at a  time, one  needs 
to produce  a stream  rather  than a  list. The  stream  for  the 
binary tree is produced  by applying 

def recgatn x = 

if empty x 

then nullists 

else concatss  (Jlutn  (left x) , us (root x) , 

Jlatn( right x) ) 

Figure 1 Top levels of infinite binary tree. 

to  the binary tree. Alternative  scanning methods  can be 
obtained by permuting the arguments of concatss. 

Confluent streams It is clear that any  tree-like data  struc- 
ture can  be represented by a function  such as a stream. 
An infinite binary tree,  for  example, can be represented 
by a function that, when applied to  the null list,  produces 
the  root and two  functions representing the left and right 
subtrees. A  function for generating the  trees in which the 
subtrees depend on  the  root  can be defined by using: 

def rec genbtree f g x ( ) = x, genbtree f g(f x) , 

genhtree f g ( g  x) 

The binary tree  that contains the compositions of n (i.e., 
all lists of positive integers  whose  sum is n)  on level n 
is denoted by 

genbtreefg(uI)wherefx=((hx)+I):(tx) 

and g x= I :x 

This  generates  the infinite binary tree whose top is given 
in Fig. I .  

The empty  binary tree can  be defined as ernptys = 

(genhtree I I end) and  the empty predicate defined as 
empty f= ( j r s t ( f (  ) ) )  = end. The functions roots,  lefts, 
and rights can  be defined as   the j r s t ,  second, and third 
of the result of applying the binary tree  to  the null list. 
Functions analogous to  those on streams  can be con- 
structed for trees.  For  example,  the function prune de- 
fined below converts  an infinite tree into  a finite one and 
is analogous to untils for  streams. 

def rec prune p s ( = 

let x, y ,  z = s( 

i f p x  

then emptys( 

else x, prune p y. Prune p z 

The binary tree  for  the compositions  down to level n is 
obtaiped by applying (prune(  (greater n)  . sum) 1. 
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Figure 2 Top levels of a tree of pairs. 

These infinite tree processing techniques  can  be used 
to solve a problem  mentioned by Dijkstra [ 11 and  attrib- 
uted to Weizenbaum. Given  an integer n, the problem is 
to write a program to find the smallest number  that can 
be  decomposed  into  the  sum of two nth  powers  in at least 
two  different nontrivial ways. The relevant data  structure 
is an infinite tree of pairs,  which starts as shown in Fig. 2 .  
The  structure is an (integer-pair) tree,  where a tree is 
defined as follows: 

An  A-tree 

has a root, which is an  A, 

and a left, which is an  A-tree, 

and  a right, which is an  A-sequence. 

The required tree is 

gen F G ( 0 ,  0 )  

w h e r e F ( x , y )   = x + l , y + l  

a n d G ( x , y ) = x , y + l  

a n d r e c g e n f g x (   ) = x , g e n f g ( f x ) , g e n e r a t e  

x ) .  

The infinite tree formed  by mapping with H ( x ,  y )  = xn + 
yn has the  property  that its  root is smaller  than  any root 
in its  subtrees.  The resulting tree  can  therefore  be  sorted 
by  taking the  root  as  the first in the  sorted  sequence  and 
then merging the  two  subtrees.  The mapping function is 

def  rec  mapt  f  x ( ) = let root,  left, right = x (  ) 

f root,  mapt  f  left,  maps f right 

The  tree can now be  sorted using the function sort, which 
produces a stream of sorted  numbers  from  the  tree. 

def  rec  sort x = let root,  left, right = x (  ) 

A ( ) . root,  sort(merge  left  right) 

where  rec 

merge x y = 

let a ,  6, c = x (  ) 

let d, e = y (  ) 

i f a < d  

then A ( ) .a, (merge 6 c )  , y 

else A (  ) .d, x,  e 

The first  repeated member of this  stream has  to be  found 
next, using 

def  rec  repeat s = let x ,  y = s( ) 

let u, u = y (  ) 

i f  x =  u 

then x 

else repeat A ( ) .u, u 

The whole function is 

def nd n = let tree = gen F G (0 ,  0)  

w h e r e F ( x , y )   = x + l , y + l  

and G ( x ,  y )  = x ,  y + 1 

repeat(sort(  mapt H tree) ) ) 

where H ( x ,  y )  = xn + yn 

Destructive  streams The  stream functions defined above 
contain no assignment statements, so the  stream s still 
exists  after it has been  applied to  the null list. I t  follows 
that being able to use a stream  more  than  once,  or  “back- 
tracking,” is the normal  mode of operation. Often a 
stream  is  no longer  needed after  it  has  been applied and 
can  be  implemented by a “destructive” routine, which 
contains private storage within itself to record  the tail 
of the sequence. Successive items of the  stream occupy 
the  same  storage.  When  the  stream is applied to the null 
list, the private  storage is reset by an assignment state- 
ment. Such a routine  therefore  destroys  the original 
stream when it  is applied to  the null list. An own variable 
feature  was  introduced in Algol 60 to supply this kind of 
private storage, although there  are some questions  about 
how it should  be  implemented. The intention was to have 
a  variable that was local to a  block  but that unlike the 
regular locals  had  a  value that survived the activation of 
the block. 

The  version of the own variable introduced  here is at- 
tached  to a procedure  rather than  a block,  and like a 
stream it depends  on using a particular expression con- 
struction  that can  be  used in any  context. It  does not rely 
on  the addition of any  special  mechanical devices  for  its 
specification or implementation. The only  rule  used is 
that  the body of a lambda  expression is evaluated only 
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when the function is applied. The  expression  construc- 
tion that  introduces  an own variable is a  function that is 
written as  an  expression  whose  operator part is a  lambda 
expression  and whose operator lambda expression  has a 
body that is a  lambda expression.  In  other  words,  it  is  an 
expression of the form 

( h x . h y .  M )  N 
The own variable in the  expression  above is x, and when 
the  expression is evaluated, x takes  as initial value the 
value of N. In  order  to guard  against  assignments to this 
variable from  outside,  the initial value  should  be  copied, 
so ( h x . h y . M )  (copy N) is better.  This  ensures  that  the 
only way of assigning to x is by an assignment statement 
of the  form x: = E within M. 

Cascading  streams Streams, like coroutines,  are most 
useful in specifying a cascade of editing  processes. An 
example of the method of constructing a program using 
streams is given  next. The problem is taken from Dijkstra 
[ 11. The  input is made up of a sequence of words com- 
posed of letters,  separated by  any  number of spaces,  and 
terminated by spaces  and a  point. The  input is assumed to 
be a character  stream called rnc. The required sequence 
of characters replaces the separating spaces by just  one 
space and reverses  every  other  word, and it is then  ter- 
minated with a point. 

The function (while  letter) takes a word  from the head 
of the  input, and (while space) takes  spaces until it finds 
a  nonspace. The function absorbword defined below has 
to be  repeatedly applied to produce a word  sequenck. 

def absorbword s = let w ,  S I  = (while  letter s) 

let sps,  s2 = (while  space s l )  

w, s2 

To produce  a word stream this  function has  to be  applied 
repeatedly by applying (next  absorbword) to  the  char- 
acter  stream.  The point at  the end (in fact  any nonletter) 
gives rise to a tail made up of an infinite sequence of 
empty lists. Now  every  other word has  to be reversed. 
The  sequence (generate  not fa l se )  can  be  generated to 
record whether  to  reverse a word or not. The two streams 
can  then  be merged to form a resulting stream using the 
function 

(zips g )  where g x y = if y then reverse x else x, 

which when applied to  the word stream (next  absorbword 
rnc) and (generate  not  false) produces a word stream 
with alternate words reversed.  The  next  step is to pro- 
duce a character  stream  from a  word stream.  The  spaces 
and point have also to  be  inserted.  The  spaces  can be in- 
serted by prefixing a space to every word except  the first. 
This  can be done by  applying (maps  (prejix  space) ) . 
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Finally the whole character  stream is obtained by ap- 
plying concatl and postfixing a point. The whole  program 
becomes: 

let S I  = zips g (next  absorbword  rnc)  (generate  not false)  

where g x y = if y then reverse x else x 

let s2 = concatl(untils(nu1l. t )  (rnaps(prejix s p a c e ) s l ) )  

pos@xs point ( t s  s2) 

where postJixs x y = uppendl y ( u s  x) 

As in all programming systems,  there is some  choice 
in the strategy that can be  adopted.  One of the  important 
decisions seems  to  be  the stage at which one changes 
from dealing with infinite streams  to dealing with streams 
that  represent lists. If  a stream is denoted by an expres- 
sion and is not named,  or if it is named  and the name is 
only  used once,  then it is valid to use  a destructive  repre- 
sentation of the  stream. All the  streams in the example 
above can  be  replaced by destructive  streams. 

I t  should  be  clear  from these examples that  any func- 
tion that  operates  on,  or  produces, tree-like data struc- 
tures can  be adapted  to  operate  on,  or  produce,  stream 
functions. 
Parsing relations It is possible to  represent  sets by  lists, 
in a nonunique  way,  and to  represent lists by streams. 
It is also possible to regard  a  relation  as a function  from 
an  object  to  the  set  (or  stream) of objects  related to it. 
Using  this  notion it is possible to  re-express  the familiar 
top  down  syntactic analysis  program in terms of “parsing 
relations.” Suppose  that  for  each symbol, whether  ter- 
minal or nonterminal, there  is a relation  from a string to a 
set of strings. The relation that  corresponds  to a  particu- 
lar phrase is between a  string and a  string from which an 
initial segment that is an  instance of a phrase  has been 
removed. The relation  can  be  considered a function from 
a string to a set of strings.  If the function does not find 
its  phrase  at  the head of the string, the result is the empty 
set.  The relation that  corresponds  to  each terminal sym- 
bol tests  whether  that symbol is at  the head of the string. 
If so, then the result is a set containing one  member,  the 
tail of the string. If not, then the result is  the  empty  set. 
I f  sets  are represented by stream  functions, then the func- 
tion Q ,  defined below, operates  on a terminal symbol to 
produce its  corresponding  relation. 

def Q x s = 

if null s 

then nullists 

e l s e i f x = h s  

then us( t s) 

else nullists 
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If the string starts with the  character x ,  then  the result is 
the  stream us(  t s) ; otherwise  it  is nullists, the  stream  that 
represents  the  empty  set.  There  are  two special  relations 
that  correspond  to 1 )  the  empty  set  whose value is always 
the  empty  set and 2) the relation  corresponding to the 
nullist set  whose value is the  set containing one member, 
the original argument 
below. 

string. These  parsers  are defined 

def nullstring s = us s 

def empty s = nullists 

From  these relations  new  relations can be constructed 
by  replacing each union by the union of two relations: 

def union f g  s = a p p e n d l ( f s )  ( g  s) 

and  by replacing each  Cartesian  concatenation  operator 
by the  concatenation of two relations. 

def followedby f g s = concatus( map1 f ( g  s)) 

The relation ( f o l l o w e d b y f g )  therefore finds the  set of 
strings  related to s by fand  for  each member finds the  set 
related  by g and  forms  the union of this set of sets.  The 
context-free productions of a language without  left-recur- 
sive  symbols  can now be reinterpreted  as a set of mutual- 
ly recursive functions defining the parsing  relation for 
the language. A string  belongs to  the language  provided 
that  the null list is a  member of the  set produced  by  apply- 
ing the parsing  relation for  the language to  the string. In 
other words if L is the relation for  the language, then  the 
string is recognized if (exists null ( L  s))  is true, where 
exists is defined below. 

def rec exists p s = 

if nulls s 

then false 

else let x ,  y = s( ) 

i f p x  

then true 

else exists p y 
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In  order  to produce  a  parser from this  recognizer it is 
necessary  to  elaborate a relation so that it produces a 
set of pairs. The first of the pair is the object  produced 
from the phrase  recognized at  the head of the string. The 
second of the pair is the remaining string. The followedby 
function has now to be elaborated by providing another 
function as argument. The function ( cc  h f g )  defined be- 

low produces the  set of pairs  found by applying f and g 
and combining the  results  off  and g by applying the func- 
tion h. 

def cc h f g  s = 

concatss ( m a p 1  q ( f s ) )  

where q ( u ,  u )  = map1 r ( g  u )  

where r( y ,  z)  

= ( h  /A y ,  2) 

The union operator is unchanged. 
Merging Occasionally  two  programs are found to be  very 
similar in operation, and  sometimes the difference  can be 
accounted  for by  considering that  one program is operat- 
ing on lists and  the  other is carrying out  the  same  opera- 
tion on  streams.  One  example of such a  pair is a pair of 
programs that  both merge a list of sorted strings. To  
merge two lists the smallest  head of the  two lists is se- 
lected  and  removed, leaving two  sorted  lists that then 
have  to be merged in the same way. 

def rec merge x y = 

if null x 

then y 

else if null y 

then x 

else if h x < h y 

then h x:merge(  t   x) y 

else h y:merge x (  t y )  

A nonempty list of items can  be sorted by merging if 
one changes each item into a 1-list and  repeatedly  merges 
until one  sorted list remains 

def rec mergepairs y = 

if null y 

then ( ) 

else if null ( t  y )  

then y 

else (merge(h  y )  ( h ( t  Y ) ) :  

mergepairs ( t (  t y) 1 

def rec mmerge  x = 

if null ( t  x )  

then h x 

else mmerge ( mergepairs x )  
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The merge function can now be  changed to  operate on 
streams and  produce a stream as follows: 

def rec merge x y = 

if nulls x 

then y 

else if nulls y 

then x 

else if hs x < hs 4’ 

then prejxs  (hs  x) 

(merge ( t s  x) y) 

else prqfixs(hs y) 

(merge x ( t s  y )  1 

It is therefore possible to combine  a list of streams by 
merging to produce a stream  for  the  sorted list. It is more 
efficient to  represent  the  streams using a buffer of size 1 
because  the head of the  stream is to be  referred to  more 
than  once. In this new representation of a stream,  each 
stream is represented by a pair whose first is the head of 
the  sequence  and whose second is the old stream  repre- 
sentation of the tail. The new way of representing streams 
can  be  summarized as follows 

nulls s ( h  s )  = end 

nullists (end, generate I end) 

hs h 

tS(X, s )  s( ) 

prejxs x s x, h(  ) .s 

With this change of representation  the merge function 
becomes 

def rec merge x y = 

let u , f =  x 

let u ,  I: = y 

if u = end 

then y 

else if u = end 

then x 

else if u < u 

then u, A (  ) . m e r g e ( f (  ) )  $’ 

else u, A (  ).merge x(g0  1 
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The function mmerge produces  a stream pair whose first 
is the smallest  item and whose second is a stream  that 
takes the  form of a tree  or  tournament, called a “loser” 
tree. The application of mrnerge requires n - I compari- 
sons.  The production of the remaining stream  elements 
require at most log,n comparisons each.  The  same pairs 
of elements  are compared in both  programs, but  the com- 
parisons are carried  out  in  a different order. 
Eficiency One of the outstanding  problems is to devise 
general rules for creating efficient programs from the 
notation  used. Some of the possible program manipula- 
tions that might be carried out to produce  a  factorial pro- 
gram from 

streurn2 I ntult I (untils ( > n )  (generute(+ l )  I ) )  

will be  given  next. 
Two lambda  convertible expressions  that  denote a 

function are  equivalent, although  they may operate in 
different ways under  the  assumed method of evaluation. 
It  should be possible to  choose  the most efficient convert- 
ible form. It is possible to extract common subexpres- 
sions in the definition of stream2 that follows 

def rec stream2 a g f s = 

if nulls s 

then a 

else stvearn2(g(j(lzs s ) ) a ) g f  

( t s  s) 

in order  to  make  sure  that  the  stream is only applied once 
when (stream2  a g f )  is applied. This lambda conversion 
produces the definition 

def rec stream2 a g j s  = 

let x, y = s( ) 

if x = erzd 

then u 

else stream2 (g ( f x) a)  g J’ y 

A second main method of producing efficient programs 
is to  detect when a piece of storage is no longer  needed 
and  reuse it. The  recursive call of stream2 can be re- 
placed by a go to instruction because  the  subroutine link- 
age information is unchanged  by  the inner application. 
The piece of storage  that holds the arguments  can  also 
be reused if the arguments of one application of stream2 
are not  required after  the  next.  This recursion  removal 
produces the program: 4 
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stream2 u g f s = 

let b = u 

let r = s 

L:let x. y = r( ) 

if x = end 

then b 

else b := g ( f x ) b  

r := y 

g to L 

Now the arguments can be substituted, producing 

stream2 I mult I s = 

let b = I 

let r = s 

L:let x .  y = r (  ) 

if x = end 

then b 

else b := x X b 

r := y 

go to L 

The  next  stage  is  to notice that  the  stream is only used 
once within the program, so there is no question of back- 
tracking in the  stream.  The  stream can therefore be  rep- 
resented as a destructive stream that  uses  the  same 
piece of storage  for its  elements. A destructive stream 
for (generutefx)  can use just  one variable r to  represent 
both the head of the stream and the whole  stream. The ts 
of the  stream is (f r )  . The application of (untils p )  to a 
destructive  stream  causes  the  expression ( x  = end) to be 
replaced  by ( p  x ) .  With these changes the program be- 
comes: 

let b = I 

let r = I 

L:let x = r 

a n d y = r + I  
i fx  > n 
then b 
else b := x X b 

r := y 

go to L 

Since let x = r is merely a renaming and y only occurs 
once in the program qualified by its definition,  they can 
both be  substituted  to give: 

fuctoriul n = 

let b = I 

let r = 1 

L:if r > n 

then b 

else b := r X h 

r : = r + l  

go  to L 

Summary 
The  examples of structured programs in this paper are, 
for  the most part, familiar programs that  have been recast 
in an unfamiliar way.  We  hope  they demonstrate that 
using expressions  that  denote  objects of computation as 
opposed  to using instructions that  denote machine  be- 
havior can often  result in a clearer structuring of pro- 
grams. The use of stream processing methods often  leads 
to  the rapid development of a  program having complexi- 
ties that might be troublesome  to  master by using other 
methods. 

The main problem is to be  able to produce efficient but 
perhaps less structured programs  automatically from  the 
notation used. The compiler has  to be  able to  detect  those 
constructions  that  correspond  to  more conventional pro- 
gramming techniques,  and  to rearrange the program ac- 
cordingly. The  tentative suggestions made in this paper 
only  touch  the  surface of this problem of producing effi- 
cient programs. 

This  paper  contains some of the material from a chap- 
ter of a  forthcoming  book  entitled “Recursive Program- 
ming Techniques” to be  published by the Addison- 
Wesley Publishing Co. as  one volume in the IBM Sys- 
t e m  Programming Series of books. 
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