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Approximating  Complex  Surfaces 
by Triangulation of Contour Lines 

Abstract: An algorithm is described for obtaining an optimal  approximation,  using  triangulation,  of a three-dimensional  surface  de- 
fined  by  randomly  distributed  points  along  contour  lines. The combinatorial  problem of finding the  best  arrangement of triangles i s  
treated by assuming an adequate  objective  function.  The  optimal  triangulation is found  using  classical  methods of graph theory. An il- 
lustrative example  gives  the  procedure  for  triangulation of contour  lines of a human  head  for  use in radiation  therapy  planning. 

Introduction 
In many  branches of applied science, an important  prob- 
lem concerns  the mathematical  description  provided by 
a set of points on a  three-dimensional  surface. The 
choice  between accurate but time-consuming surface- 
fitting procedures and the simpler  but  more flexible 
numerical approximation  methods depends essentially 
on the practical needs and requirements in the field of 
application. 

A specific area of biomedicine  requiring surface ap- 
proximation is computer-assisted  three-dimensional  ra- 
diation  therapy planning [ I ] .  Briefly, the aim of surface 
approximation in radiation treatment is as follows. The 
radiation  energy absorbed by the body  strongly depends 
on the thickness  and the density of the tissue penetrated 
by the beam ray. The  therapeutic irradiation of cancer- 
ous cells  requires  careful individual planning to  ensure 
that  despite  the variations of the human anatomy  the 
adequate  dose of radiation covers  the  tumor volume to 
be treated, whereas the surrounding  healthy  tissue is 
properly spared  excessive  exposure.  The planning ne- 
cessitates  the availability of a reliable individual geo- 
metrical model of the patient’s  body for a computer sim- 
ulation of the  treatment  dosimetry. 

In the routine  practice of radiation  therapy the  accu- 
racy of dosage  calculations depends in large measure  on 

2 the  adequacy of the description of body  irregularities 
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and of relevant  heterogeneous zones,  such  as  the lungs, 
bones or air  gaps. The usual form under which anatomi- 
cal measurements of a  patient can be rapidly made  avail- 
able consists of body  contour lines in several parallel 
planar cross sections drawn in life size on paper. The 
boundaries of important  heterogeneities  inside  the  body 
can be  added  from anatomical atlases  and fitted to  the 
proper scale with the help of x-ray photographs. For  the 
digital handling of these  curves a sequence of coordinates 
is carefully selected along the  contour lines. 

The major problem consists in the numerical represen- 
tation of the anatomical  boundaries in the computer. A 
compromise must be established  between accuracy of ap- 
proximation  and simplicity of mathematical handling. A 
suitable  approach for constructing  a numerical model from 
the  contour line measurements  consists in the approxima- 
tion of the  anatomical  boundaries by triangulation. This 
method, as shown in Fig. 1 ,  consists in joining  points 
of neighboring contour lines to triangles in such a man- 
ner that  one  obtains triangular  planar elements which 
delimit a  polyhedron  approximating the surface of 
interest. 

Although the  advantages of this model for medical 
computing purposes were  recognized  some  time ago [ 21, 
attempts  at realization for three-dimensional therapy 
planning computafions were abandoned because no reli- 
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able algorithm existed for triangulating complex surfaces 
satisfactorily in  all cases. 

The triangulation  problem  resides in the  fact  that  con- 
tour lines do  not contain sufficient information regarding 
the system of gradients  associated with the  surface they 
describe. Moreover,  the combinatorial aspect of the 
problem  becomes apparent when one  considers how 
many different triangle arrangements T can be con- 
structed  for a fixed number of contour points. It can  be 
shown that  between  two  contour lines consisting of n 
and rn points, 

T ( r n , n ) =  [ ( m -  1 )  + ( n +  l ) ] ! / [ ( m -  l ) ! ( n -  I ) ! ] .  
( 1 )  

The  expression ( 1 )  demonstrates  that  for relatively few 
contour points, the number of possible  triangle  permuta- 
tions is very  large:  According to ( 1 )  , n = rn = 12 points, 
for example,  provides about lo7 triangle  combinations 
and thus different surface  shapes.  This example  obvi- 
ously  precludes an exhaustive  search  for  the optimal  tri- 
angulation. 

This  paper  describes a computer algorithm for finding 
an optimal approximation, using triangles, of a surface 
defined by a set of contour lines. Instead of giving a 
formal  mathematical treatment of the problem, we pre- 
sent a  simple  and  reliable computer method for triangu- 
lating arbitrary surfaces defined by randomly  distributed 
points along the  contours.  This method is applicable 
without  restriction to  any  contour lines twisted into  con- 
vex  and concave portions. 

This new approach is described in the sections follow- 
ing. It  consists in assuming an adequately simple objec- 
tive  function for  the handling of the optimization  prob- 
lem. This combinatorial scheme of triangulation  then 
permits  resolution of the problem  with known graph- 
theoretical  techniques. In  the last  section an example of 
triangulating an anatomical  surface  illustrates the 
method. 

Iteration  scheme of the algorithm 
We  consider an unknown  three-dimensional surface of 
interest  for which a map of contour lines is given in a 
Cartesian  coordinate system as shown in Fig. 1. A con- 
tour line represents a cross section of constant z value 
and is numerically provided by the x-y coordinates of an 
ordered, randomly  distributed sequence of points on  the 
contour line. The total  number of contour points  given 
depends in practice on  the desired accuracy.  The  spac- 
ing between cross  sections is assumed to be  variable. 

The main strategy for finding the optimal  arrangement 
of triangles approximating the unknown  surface is to 
decompose  the given set of contour points  into subsets 
such  that a proper objective  function may be stated  sep- 
arately for  each  subset. 
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Figure 1 Method of approximating, by means of triangles, the 
surface of a volume defined by contour lines. 

The first decomposition step  consists in handling each 
pair of adjacent  contour lines independently.  When an 
object is defined by more  than two  cross  sections, each 
lateral surface band delimited by two neighboring con- 
tour lines is triangulated separately, and the  entire sur- 
face is obtained by handling subsequently all pairs of 
adjacent  contour lines. 

The decisive  decomposition process finds application 
when  arbitrarily flexed contour lines,  i.e., with alternat- 
ing sign of curvature,  are handled. For simplicity of pre- 
sentation, we first assume  the  contour lines to be  closed 
and  the  contour points ordered in a  positive, e.g., an an- 
ticlockwise, sequence.  The sign of curvature is then 
conventionally  fixed; a sequence of three  consecutive 
contour points is convex if the  curvature of the circle 
going through the  three points  has  a  positive sign and is 
concave  otherwise.  The triangulation of a pair of arbi- 
trary  contour lines is achieved by an iterative  decompo- 
sition of the  contour points into point subsets of exclu- 
sively convex or concave  sequences,  alternately.  The 
example in Fig. 2 illustrates such a stepwise decomposi- 
tion of a closed set S of contour points  into  purely  con- 
vex  and concave  subsets Si, i = 1 ,  2, 3 , .  . .. The  convex 
subset SI for  the first iteration step is obtained by re- 
moving from S any  point A ,  for which the circle going 
through A , - , ,   A ,  and A,,, has  negative sign of curvature. 
Remaining point sequences  are then tested  for  opposite 
sign of curvature in the  same way,  and the  process is 
repeated until the  contour points are  separated  into con- 
vex or concave  sequences. 3 
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Figure 2 Example of iterative  decomposition of a set of con- 
tour points S = { A , ,  A , ;  . .A,,} into  alternately concave  and con- 
vex subsets. 

1. convex  subset S, = { A , ,  A, ,   A, ,  A,,   A,,  A , ,  A, , ,  A,, ,   A,, ,  

2. concave  subsets S,' = {A, ,   A , ,   A , ,  A , ,   A 7 } ,  
A m  '219 'zz}. 

s,: = {A, , ,   A , , ,  A , , ,  A, , ,  A,&. 

A  triangulation  criterion for purely convex  contour 
lines is now formulated. Let  two  convex  sets of contour 
points S" = {A , ,   A , ,   A , ,  . . ., A , }  and Sb = {B l ,   B , ,   B , ,  . . ., 
B,}, and a trial triangulation between them  be  given, as 
shown in Fig. 3. Let us consider  the polyhedron A , A d , ,  
. . ., A,BlB,B3, . . ., B ,  originated by this  triangle arrange- 
ment.  We assume  the following objective  function for 
optimal  triangulation of the  two  convex  contour lines S" 
and Sb. 

The triangulation which maximizes  the volume of the 
polyhedron A1A,A3; ., A,B,B,B,; ' ., Bn gives the opti- 
mal  approximation of the surface  provided by a pair of 
closed convex contour  lines. 

This objective  function also  extends obviously to con- 
cave  contour point  subsets.  We  consider  Fig. 2 as  an ex- 
ample of an arbitrarily flexed contour line,  containing con- 
cave  sequences of contour points.  We suppose  the vol- 
ume of any polyhedron A , A d 3 ;  . ., A,B,B,B,; . ., B,  to 
be algebraically oriented such  that  the volume is positive 
for  an anticlockwise sequence of the  vertex  points, and 
otherwise negative. (Let B,, B,, . . ., B ,  be a contour 
point set similar to A , ,   A , ,  . . ., A ,  of Fig. 2 . )  One  can 
then see  that  concave  contour  sections,  as  for example 
the point sequence A,,   A, ,   A, ,   A, ,   A, ,  become convex by 
reversing their  sequence. According to  the  above criteri- 

4 on,  the optimal  approximation by triangles of this sec- 

tion is that  which  maximizes the volume of the subpoly- 
hedron formed by the reversed  point sequence A,,   A, ,  
A , ,   A , ,   A , ,   A ,  or, equivalently, that which minimizes the 
volume of the polyhedron  formed by the  sequence A,, 
A, ,   A , ,   A , ,   A , ,  0,. This last  decomposition  indicates the 
general objective function for  any  contour line subsec- 
tion-also valid for nonclosed contour lines; the poly- 
hedron,  the volume of which is to  be maximized (or 
minimized), is that formed with the origin 0, and 0, of 
the x-y coordinate  system in the  contour planes and  the 
contour point subsections of interest. 0, and 0, may be 
arbitrarily located,  since  the volumes are algebraically 
oriented. Figure 2 describes  the decomposition of the 
total  polyhedron  volume into additive subvolumes  and 
justifies the  iterative  scheme presented  here. 

We now show  for  later  use  that  an elementary expres- 
sion  can  be  derived for  the volume of the polyhedron 
originated by a fixed triangulation of any  contour line. 
We consider  the example  shown in Fig. 3 .  A  decomposi- 
tion of the polyhedron A , A J , ;  . ., A,B,B,B,; . ., B,  into 
pentahedrons P" = A ~ i + l B j O A O ,  and Pb=AiBjBj+lOAO,,  
with i = 1 to m and j = 1 to n, for  the total  volume may be 
written as 

v,,, = Vol (P" )  + Vol (P". ( 2 )  
(I b 

The superscript a represents  the  pentahedrons having a 
triangular face A P , + , B j  with two vertices from  the con- 
tour point set s", and the superscript b similarly repre- 

ron P" or pb into 

p"(APi+,BjO,O,  

Pb (AiBjBj+iO,O, 

sents  the  pentahedrons with two  vertices Bj and Bj+l 
from the  set Sb. A further partitioning of each  pentahed- 

tetrahedrons is 

Equation ( 2 )  then  becomes a  summation over four  kinds 
of tetrahedrons: 

v,,, = Vol ( T l a )  + x Vol ( Tlh)  + C" + Cb' 
" b 

where  the  two  last  terms 
m - l  

c, = VOl T2(1(A4i+10AOB)1,  
i=l  
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represent  the volume of the two pyramids A , A , ,  . . ., 
A,O, and BIB, ,  . . ., B,O,, which are independent of the 
particular  triangulation  assumed  a priori and  are  thus 
constant. 

The volume of the  tetrahedrons T,“ and Tl* is given by 

Vol (T l ‘ l (A iAi+ lBjO, ) )  = $(O,A, X O,Ai+l)O,Bj 
- + -  

a = u . .  
ZI ’ ( 3 4  

VOI ( T ~ ” ( A ~ B ~ B ~ + ~  0,)) =3(opj x o,Bj+,jo,Ai 
”- 

- - vi;. (3b) 

When the  contour points are given by their  Cartesian 
coordinates A i  = {X:,  Y:, Z ‘ }  , i = 1 to rn, and Bj = 

{X:,  Y:, Z ” } ,  j = 1 to n ,  we obtain for  (3a)  and  (3b) 
the formulas 

u. Z J  .u = $(Z” - Z ” )  (X,”Yi,,” - Xi+lAY; ,  ( 4 4  

U i j b  = +(Z”  - Z , )  (xj”Yj+l” - Xj+l”Yj” 

+ Xi“Yj” - XjSYtj. ( 4b) 

The total  volume of the polyhedron, expressed by 
( 2 ) ,  can  be  rewritten  explicitly, using the  formulas  (4aj 
and (4b),  as 

vTOT = uij(( + uijb + const. 
i, j i, j 

Expression ( 5 )  is the  objective  function to maximize for 
obtaining the optimal  triangulation. This formula shows 
that each  triangular face of the polyhedron P contributes 
additively to  the total volume. 

Enumeration of all triangulations 
We consider the two convex  sets of contour points S“ = 

{ A i } , i = 1 i n r n , a n d S b = { B j } , j = 1 t o n , g i v e n i n F i g . 3 .  
To find an  appropriate formulation of the permutational 
structure of the triangulation, we describe  the  junctions 
of points of opposite  contour lines to triangles with the 
help of a  binary n X m matrix M = { u i j } .  M is associated 
with the  sets S“ and Sb such that  the matrix  element u i j  
is equal to unity if the ith contour point A i  of the set S“ 
and  the jth  contour point Bj  of the set S’ are  joined, and 
0 if they are not. A triangle consists of two  junctions AiBj 
and A i B ,  and is represented in this  matrix M by two 
1-elements. The  requirements of the triangulation are 
described by the following three  properties of the matrix 
elements: 

Figure 3 The polyhedron arising through  a trial triangulation 
between two  sets of contour points S“ = { A , , A , , A , , .  ‘ .,A,) and 
S* = { B , ,  R,, B,; . ., Bt,} describing  closed convex  contour lines. 

I .  A triangle  necessarily shares two consecutive  contour 
points,  either in set S“ or in set S b .  This  means  that 

if u i j  = 1, then  either u ~ + ~ ,  = 1 or ai, j+l = 1. (6) 

2. Each  contour point is joined  at  least  once with a point 
of the  opposite  contour.  This  means  that 

I,) n x u i j  1 1 and u i j  1 1. 
i = l  j = 1  

3. Junctions between the  two  contour lines cannot  cross 
over. If 

ai j  = 1 and ai+l, = 1, then it  must hold that 

ai, j+l = 0, and 

if ai j  = 1 and ai, j+l = 1 ,  then it must hold that 

ui+l’ = 0. (8)  

The binary  matrix M corresponding  to  the triangulation 
of Fig.  3 is explicitly represented to allow for the recogni- 
tion of these three constraints: 

i =  1, 2, 3 , 4 ,  S ; . . m - 2 , r n -  l , m  
‘ 1 0  0 0 o . . .  j =  1 

1 1  0 0  o . . .  

4 0 1 1  0 o . . .  
3 0 1 0  0 o . . .  0 
2 

M = .  0 0 1 1 1 . ”  ’ 5 (9) 
. . .  

. . .  1 0 0 
0 

n - 2  
. . .  1 

n . . . o  0 1 ,  
n - 1  1 1 

5 
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P" 

1 , '  

c = 3 ,  4, 5 ,  6, .. %'% 
c= . . ( r n + f I j  

Figure 4 Graph C = { P i  ., N }  associated with the two contour 
point sets S" = { A i }  and &' = { B j }  of Fig. 3. The triangulation 
presented in Fig. 3 and the matrix M of formula (9) is indicated 
in C by the path marked with large arrows from vertex P , ,  to 
vertex Pmn 

We see  that  the partitioning of the side surface of the 
polyhedron into a fixed triangle arrangement  corresponds 
in the matrix M to a fixed chain of adjacent 1-elements 
joining a,, to umn and obeying the rules (6) to (8) .  

The  enumeration of all possible  triangle  permutations 
is best  described by introducing  a  graph G = { P ,  N }  of 
vertices P and arcs N associated with the matrix M in 
such a way that  each element u i j  of the matrix (9) repre- 
sents a vertex P i j  of the  graph (see Fig. 4).  The  double 
subscript i and j of the vertices  should  indicate  clearly 
that P i j  represents  the  same item as  does  the matrix ele- 
ment u i j ,  namely the segment AiBj. It is then evident  that 
an  arc N = ( P i j ,   P i k )  of G,  joining  any  two vertices P i j  
and P, ,  represents  the triangle AiBjB,: The  constraints 
(6) and ( 7 )  restrict the graph G to  the  arcs ( P i j ,  
and ( P i j ,   P i ,  j+ l )  shown in Fig. 4. Condition (8) is ex- 
pressed by assigning a  direction to  the  arcs of the graph. 

The interpretation of the graph G of Fig. 4 is extremely 
simple: A sequence of adjacent  arcs  is called a path in 
graph  theory [3].  (Two  arcs  are said to be adjacent if 
they have a vertex in common.) Each path  joining the 
vertices P , ,  and P,, represents in G a fixed triangulation. 
The total number of distinct paths from P , ,  to P,, is 
the total number of different  triangle arrangements.  It 
can  be shown that it is given by Eq. ( 1 ) .  

Finding the optimal triangulation 
Let us consider  further the  two convex  sets Sa and ,Sb of 
contour points in Fig. 3, and the graph G associated with 
them  and  shown in Fig. 4. G will be  interpreted as a 
"maximum cost graph" [ 31 by assigning to  each  arc N i j  
= (P i j ,  Pi+,,  j )  or ( P i j ,  Pi, j+l)  a constant value represent- 
ing the volume uij of the  tetrahedron A,A,,BjO, or 
AiBjBj+,OA, with i and j running  from 1 to m - 1 and 
n - I ,  respectively. The value of u i j  is given either by 
(4a)  or  (4b) by 

u i j  = u ( N i j )  = u ( P i j ,  Pi+,, j )  = ui ja,  or 

= U ( P i j ,  Pi, j+l)  = uip.  (10) 

As already shown,  the total  volume of the polyhedron 
originated by a triangle arrangement is the objective 
function to be maximized and can be  decomposed ad- 
ditively  into the partial tetrahedron volumes  associated 
with each triangular face of the polyhedron.  Finding the 
triangulation which maximizes  this  polyhedron consists, 
then, in finding in graph G the path n- going from the 
vertex P , ,  to  the  vertex P,, such  that  the  expression 

V(n-1 = c. U ( N i j )  ( 1   1 )  
'V . .en 

is maximum. This classical  problem of graph  theory may 
be solved in various  ways [ 31. For  the specific simple 
structure of graph G the following algorithm is easy  to 
realize in a computer. 

Each  vertex P i j  of graph G in Fig. 4 is associated with 
an index wij and a pointer p i j .  We  handle in turn all 
vertices along  a  vertical  column labeled by a value c = 

i + j ,  i.e., a  column  consisting of the  vertices P i j  satisfy- 
ing i + j = e. We progress  from left to  the right,  starting at 
the  vertex column c = 3 and ending at c = rn + n .  

1 .  TO begin, we set in column c = 3 the indices t+'12 and 
w2, according to ( 1  0) 

w12 = U V , ,  1' P, ,  J = UIZQ> 

w2,= u(P , ,  1' p2,  1 )  = u,:. 

2. For any subsequent column c = 4, 5, 6; . . of vertices, 
we calculate at  each  vertex Pij 

V ,  = wi-,, + u(P,-,, j ,  P i j ) ,  and 

V ,  = wi, j - ,  + l o , ,  j-1, P i j ) .  

The index wij associated with the  vertex P i j  is set 

wij = max (V, ,  V,) ,  (12)  

? 
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and the pointer pi j  connects the current  vertex Pi, 
to  either  vertex P i - l ,  or  to vertex Pi, j+l of the pre- 
vious  column c - I by setting 

I J  

1 if V,l 1 V,  

0 if V,L < V,. 
p . .  = (13) 

This pointer pij acts  as  an indicator to keep a record 
in graph G of the path n from vertex P I ,  to  vertex P i j  
giving maximum value for quantity ( 1  1 ) .  Index 
contains V ( n )  for this path n. 

3 .  The procedure ends  as soon as Pmn is reached. The 
path n,,, from P,, to Pmn with the maximum V(T,,,) 
value is then  backtracked by following the  pointers 
p i j  from the  vertex Prnn to  the vertex P,,,. 

The general triangulation algorithm 
The computation procedure  for optimal triangulation 
described thus far  holds exclusively for  pairs of convex 
contour lines. This  procedure, however, is also valid for 
pairs of concave contour-point subsets, on the premise 
that  the  max-operator in Eq.  (12) of the algorithm is 
replaced by a min-operator,  since  expression ( I I )  is 
then to be minimized. 

The application of this  optimization algorithm to  con- 
tour lines with alternating sign of curvature,  as illustrat- 
ed by Fig. 2 ,  requires a careful  adaptation into the itera- 
tion Ycheme previously indicated. The realization of a 
decomposition procedure  that allows the alternating 
II*iotiling of convex and concave  contour  subsets sepa- 
rately is not  obvious. We explain the main lines of the 
strategy by means of an example. We assume two given 
sets S," and S,; of contour points, but now mixed into 
convex and concave  contour  sections. Figure 5(a) will 
serve us as example for  the iterative  decomposition of 
the triangulation process. 

1. The first step has  already been exhaustively  treated 
above:  The point subset SI" = { A ] ,   A , ,  A i ,  A,,  A,,, 
A, , }  of the  upper  contour SI," and the  subset S," = 

{ B , ,  B,, B,, B,, Bi, B,, B,,,} of the lower contour S,," 
provide  two convex  contour lines for which the algo- 
rithm holds literally. The  subsets SI" and SI" are  de- 
termined by repeated  application of the circle test  for 
curvature sign. The graph G associated with the  set 
SI" and S I h  is presented in Fig. 5 (b ) .  We  assume  that 
the path n, traced in G has  been  obtained by maxi- 
mizing expression ( 1 I ) .  The  corresponding triangula- 
tion is then entered into Fig. 5 (a) .  

2. The second phase of the general algorithm handles 
the triangulation at  the omitted sections of the con- 
tour lines. Figure 5(a) illustrates the two principal 
cases  to be  distinguished by the selection procedure 
for  the next  iteration steps. 
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Figure 5 ( a ) ,  Example of triangulation for  the  general case of 
two  arbitrarily flexed contour lines defined by So"= { A l .  A,; .., 
A , 2 }  and S , , "  = {Bi, B2; . ., B,,}. (b)  Graph associated with the 
contour-point subsets S, = {Ai ,  A,, A,,  A,, A,,, A , 2 }  and SI6 = 

{ B , ,  B,, B,, B,. B,, B,, B,,} of Fig. 5 (a )  and  taken for  the first 
iteration step of the  triangulation  algorithm. The path T ,  maxi- 
mizing the  polyhedron volume is indicated by large arrows.  The 
subgraphs G,  and G, handled in the  next  iteration step  are 
shaded. 

In the first case,  the points A,, A,, B,,  and B, which 
delimit the boundaries of the omitted contour  sec- 
tions are mutually joined by the segments A, B, and 
A,  B,. Thus,  the point subsets S," = {A, ,  A,, A,,   A,} 
and S," = { B,, B,, B,, B,} are clearly to be triangulat- 
ed next. The  interpretation by graph G in Fig. 5(b) 
indicates the computational  method. If the vertices 
P2, , and P,, , are contained in the path n,, they delim- 7 
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Triangulation of the contours of a human head 
The triangulation method presented in this  paper has 
been  implemented, in conjunction with the radiological 
clinic at  the University of Heidelberg, in a  research 
experimental computer program for three-dimensional 
planning of radiation therapy [4]. The major feature of 
this approach  consists in creating  a  triangulated model of 
all relevant  anatomical surfaces involved in the  treatment. 
The triangulation is done by a FORTRAN subroutine  that 
accepts patient contour  measurements in form of a set of 
Cartesian x-y coordinates  at  cross sections of constant z 
value. 

To  illustrate the practical  details of calculation by 
example, we describe  the main phases of the triangula- 
tion of a  human  head.  Figure 6 shows, projected on the 
screen of an IBM 2250 display  unit, the initial contour 
points  input to  the  computer. To  enhance  the  presenta- 
tion, consecutive points have been  joined by closed con- 
tour lines, and the  coordinate system  into which the  con- 
tour points  were  measured has been rotated laterally in 
order  to present the  contour lines in a convenient  over- 
view. 

To  realize the triangulated  model, the program  han- 
dles in turn  each  pair of adjacent  contour lines. We then 
restrict  our discussion of the algorithm to only one pair 
of contour lines. We concentrate  our  attention on the 
triangulation of the fifth and sixth cross  sections from the 
bottom of Fig. 6. These  two  contour lines are shown in 
Fig. 7. The  choice of this pair  has been made to illus- 
trate the way a correct triangulation is realized in a  com- 
plicated region such as that of the  ears. 

The program starts  the triangulation procedure by ini- 
tializing a binary matrix for  Eq. (9) with the  entries in 
the rows  and the columns  denoting the  contour points of 
the  upper and the lower cross section,  respectively. This 
matrix is permanently  reserved in storage until the trian- 
gulation of the  contour pair is achieved. 

Accordingly, in the iteration procedure of the algo- 
rithm,  the  program  has to select for  the first iteration step 
that  subset of contour points which yields a  purely con- 
cave  contour polygon for  both  sides. The repeated appli- 
cation of the circle test  to  convex  contour sections  per- 
mits only the points  shown in Fig. 8 to be  retained. The 
triangulation of the removed  points is resumed  during 
later iteration steps. 

To describe, according to the equations (6)  to (9 ) ,  
all possible  triangle junctions between contour points of 
the two contour lines,  a  binary  matrix is associated with 
them. This 14 X 18 matrix is shown in Fig. 9. Columns 
and  rows are labeled according the  subscripts of the 
points of Fig. 8. The matrix shows  the result of the mini- 
mum-path algorithm that maximizes the volume of the 
polyhedron delimited by the pair of cross sections. The 
binary values of the matrix elements are conventionally 

Figure 6 Lateral view on the screen of an IBM 2250 display 
unit of the  contour lines of a  head. The  contour points in each 
parallel cross section  have  been  joined to closed  polygons. 

it a  subgraph G 1 of G into which a  path from the ver- 
tex P,, , to  the  vertex PA,, has  to be found next such 
that  the polyhedron A ~ , ~ , @ A , B , B , B , B , O A O ,  has 
minimum volume. This  subgraph, labeled G I ,  has 
been  shaded in Fig. 5 (b) . 

The second and more  confusing case  arises when 
the boundaries A ,  and A , ,  of the omitted upper  contour 
section are not connected with the  respective limits 
B ,  and B,,,  of the  lower contour.  The  junctions 
A,B,, ,  (instead of A,B, )  and A, ,B , ,  delimit here  the 
contour portion to be handled in the second  iteration 
step. The  further  concave  subsets  are S," = {A,+ A,, , ,  
A , , ,   A , , }  and SZb' = {B8 ,   B , ,   B , , , } .  The second  sub- 
graph, G,, to be handled is delimited by the vertices 
P ,  x - not P ,  x as in the previous case - and PI,,  ,". G, 
has  also been  shaded in Fig. 5 (b) . The recognition by 
the  computer program of the  vertex P8, , instead of 
PSI, x as a limit  of the subgraph G, requires  careful 
programming, the details of which we do not present 
here. 

3 .  The last  iteration step finally resolves the triangula- 
tion of the remaining convex  contour portion S," = 
{A3 ,  A,,  A,, A 6 } .  Since  no corresponding convex con- 
tour section exists in S,,b, the triangulation  assignment 

8 becomes  obvious in this case. 
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Figure 7 Two adjacent contour lines from the head in Fig. 6 

fixed such that pi j  = 1 means a pointer  "backwards" in 
the matrix, Le.,  it specifies the triangle u i  ui- lbj;  the val- 
ue pi j  = 0 on the  other  hand, indicates a pointer "up- 
wards",  i.e., it specifies the triangle ui bj bj-l. Tracking 
back in the matrix from the lower-right to  the upper-left 
element yields the optimal triangle  partitioning of Fig. 8. 

The only significant permanent  storage  requirement 
for  the algorithm is the binary matrix of Fig. 9. In prac- 
tice that matrix is realized in computer memory as the 
initially defined large matrix  shown in Fig. 10: Col- 

Figure 9 The binary matrix of Eq. (9) describing  for Fig. 8 
the  junctions of contour points to triangles. The matrix  element 
values  result  from  the shortest path algorithm. The value pii = 1 
specifies the triangle oiui-,bj, the value p i j  = 0 specifies the tri- 
angle a,bjbj-,. The chain of pointers which tracks back in the ma- 
trix from the  lower right element to the upper left indicates the 
optimal triangulation. 

Figure 8 Contour points  selected  from Fig. 7 for  the first iter- 
ation of the  triangulation. The points uI and b, are assumed to 
correspond a priori. 

Figure 10 The binary matrix of Eq. (9) set up in computer 
memory to perform the triangulation of Fig. 7. The figure shows 
the state of the  matrix at the end of  the first iteration step. Rows 
and  columns of deferred contour points are filled up with the 
character '+'. The 1 and 0 values correspond  to the matrix of 
Fig. 9. The pointer  chains specify the optimal triangulation  and 
delimit six shaded  submatrices which are  to be processed in the 
next  iteration. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
, + + + t i -  ~ 1 l l l : + + + + + l l + + + + ~ l l l l + + + + l l  

. . . . . . . . . . . . . . . . . . . . .  
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Figure 12 Result of the triangulation of Fig. 6 as displayed  on 
the video  terminal. 

Figure 11 Convex  contour sections  handled during the  second 
iteration of the  triangulation. Each section corresponds to  a 
shaded  submatrix in Fig. 10. Definitively fixed triangles  result- 
ing from the previous  iteration are indicated in the drawing. 

umns and  rows corresponding  to deferred contour points 
are  crossed  out  to  show  the  state of the matrix  during 
the first iteration step.  The  backtrack chain of pointers 
in Fig. 10 permits  determination of the remaining con- 
tour  sections  that  are  candidates  for  the next  iteration 
steps.  The program determines all occurrences of point- 
er “jumps” over  deferred  rows  and columns. Two con- 
secutive  jumps delimit a  submatrix that  corresponds  to a 
nontriangulated contour section  pair. In Fig. 10, six 
submatrices  have been  recognized by the program. They 
correspond  to six separate  convex  contour  sections  to 
be handled next;  these  are  shown in Fig. 11.  The  pro- 
gram processes this second iteration step in nearly com- 
plete  analogy to  the first one and can loop over  the  same 
program  section. 

The triangulation is completed at  the end of the third it- 
eration step.  This last step handles only the remaining 
short  concave sections visible on Fig. 1 1. The  backtrack 
chain of binary  pointers is then  complete in the matrix of 
Fig. 10. The program finally generates  the corresponding 
list of contour point  triples, which indicates the final 
triangulation  obtained for  the considered  pair of cross 

10 sections. 

Figure 12 shows  the three-dimensional  representation 
of the totally  triangulated contour lines of Fig. 6. One 
may note  the removing of the hidden triangles from the 
display screen.  The most useful property of the triangu- 
lated model is to provide a description of surfaces par- 
ticularly well adapted  for  graphical  visualization on a 
display  terminal. The possibility of manipulating three- 
dimensional  anatomical figures under visual control moti- 
vated the  development of the planning system in a highly 
interactive way. The  accuracy of any  particular represen- 
tation depends  on how many contour lines are used to 
describe  the three-dimensional object, how many contour 
points are  selected  for  each line,  and how they are dis- 
tributed. 
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