E. KEPPEL

E. Keppel

Approximating Complex Surfaces
by Triangulation of Contour Lines

Abstract: An algorithm is described for obtaining an optimal approximation, using triangulation, of a three-dimensional surface de-
fined by randomly distributed points along contour lines. The combinatorial problem of finding the best arrangement of triangles is
treated by assuming an adequate objective function. The optimal triangulation is found using classical methods of graph theory. An il-
lustrative example gives the procedure for triangulation of contour lines of a human head for use in radiation therapy planning.

Introduction

In many branches of applied science, an important prob-
lem concerns the mathematical description provided by
a set of points on a three-dimensional surface. The
choice between accurate but time-consuming surface-
fitting procedures and the simpler but more flexible
numerical approximation methods depends essentially
on the practical needs and requirements in the field of
application.

A specific area of biomedicine requiring surface ap-
proximation is computer-assisted three-dimensional ra-
diation therapy planning [ 1]. Briefly, the aim of surface
approximation in radiation treatment is as follows. The
radiation energy absorbed by the body strongly depends
on the thickness and the density of the tissue penetrated
by the beam ray. The therapeutic irradiation of cancer-
ous cells requires careful individual planning to ensure
that despite the variations of the human anatomy the
adequate dose of radiation covers the tumor volume to
be treated, whereas the surrounding healthy tissue is
properly spared excessive exposure. The planning ne-
cessitates the availability of a reliable individual geo-
metrical model of the patient’s body for a computer sim-
ulation of the treatment dosimetry.

In the routine practice of radiation therapy the accu-
racy of dosage calculations depends in large measure on
the adequacy of the description of body irregularities

and of relevant heterogeneous zones, such as the lungs,
bones or air gaps. The usual form under which anatomi-
cal measurements of a patient can be rapidly made avail-
able consists of body contour lines in several parallel
planar cross sections drawn in life size on paper. The
boundaries of important heterogeneities inside the body
can be added from anatomical atlases and fitted to the
proper scale with the help of x-ray photographs. For the
digital handling of these curves a sequence of coordinates
is carefully selected along the contour lines.

The major problem consists in the numerical represen-
tation of the anatomical boundaries in the computer. A
compromise must be established between accuracy of ap-
proximation and simplicity of mathematical handling. A
suitable approach for constructing a numerical model from
the contour line measurements consists in the approxima-
tion of the anatomical boundaries by triangulation. This
method, as shown in Fig. 1, consists in joining points
of neighboring contour lines to triangles in such a man-
ner that one obtains triangular planar elements which
delimit a polyhedron approximating the surface of
interest.

Although the advantages of this model for medical
computing purposes were recognized some time ago [2],
attempts at realization for three-dimensional therapy
planning computations were abandoned because no reli-
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able algorithm existed for triangulating complex surfaces
satisfactorily in all cases.

The triangulation problem resides in the fact that con-
tour lines do not contain sufficient information regarding
the system of gradients associated with the surface they
describe. Moreover, the combinatorial aspect of the
problem becomes apparent when one considers how
many different triangle arrangements 7 can be con-
structed for a fixed number of contour points. It can be
shown that between two contour lines consisting of n
and m points,

Tmny=[m—1)+ 0w+ D]/ [(m—1)(n— 1]
(N

The expression (1) demonstrates that for relatively few
contour points, the number of possible triangle permuta-
tions is very large: According to (1), n= m= 12 points,
for example, provides about 107 triangle combinations
and thus different surface shapes. This example obvi-
ously precludes an exhaustive search for the optimal tri-
angulation.

This paper describes a computer algorithm for finding
an optimal approximation, using triangles, of a surface
defined by a set of contour lines. Instead of giving a
formal mathematical treatment of the problem, we pre-
sent a simple and reliable computer method for triangu-
lating arbitrary surfaces defined by randomly distributed
points along the contours. This method is applicable
without restriction to any contour lines twisted into con-
vex and concave portions.

This new approach is described in the sections follow-
ing. It consists in assuming an adequately simple objec-
tive function for the handling of the optimization prob-
lem. This combinatorial scheme of triangulation then
permits resolution of the problem with known graph-
theoretical techniques. In the last section an example of
triangulating an anatomical surface illustrates the
method.

Iteration scheme of the algorithm
We consider an unknown three-dimensional surface of
interest for which a map of contour lines is given in a
Cartesian coordinate system as shown in Fig. 1. A con-
tour line represents a cross section of constant z value
and is numerically provided by the x-y coordinates of an
ordered, randomly distributed sequence of points on the
contour line. The total number of contour points given
depends in practice on the desired accuracy. The spac-
ing between cross sections is assumed to be variable.
The main strategy for finding the optimal arrangement
of triangles approximating the unknown surface is to
decompose the given set of contour points into subsets
such that a proper objective function may be stated sep-
arately for each subset.
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Figure 1 Method of approximating, by means of triangles, the
surface of a volume defined by contour lines.

The first decomposition step consists in handling each
pair of adjacent contour lines independently. When an
object is defined by more than two cross sections, each
lateral surface band delimited by two neighboring con-
tour lines is triangulated separately, and the entire sur-
face is obtained by handling subsequently all pairs of
adjacent contour lines.

The decisive decomposition process finds application
when arbitrarily flexed contour lines, i.e., with alternat-
ing sign of curvature, are handled. For simplicity of pre-
sentation, we first assume the contour lines to be closed
and the contour points ordered in a positive, e.g., an an-
ticlockwise, sequence. The sign of curvature is then
conventionally fixed; a sequence of three consecutive
contour points is convex if the curvature of the circle
going through the three points has a positive sign and is
concave otherwise. The triangulation of a pair of arbi-
trary contour lines is achieved by an iterative decompo-
sition of the contour points into point subsets of exclu-
sively convex or concave sequences, alternately. The
example in Fig. 2 illustrates such a stepwise decomposi-
tion of a closed set S of contour points into purely con-
vex and concave subsets S, /=1, 2, 3,---. The convex
subset S, for the first iteration step is obtained by re-
moving from § any point 4, for which the circle going
through 4, |, A, and A, has negative sign of curvature.
Remaining point sequences are then tested for opposite
sign of curvature in the same way, and the process is
repeated until the contour points are separated into con-
veX Or concave sequences.
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Figure 2 Example of iterative decomposition of a set of con-

tour points § = {4,, 4,,
vex subsets.

:A,,} into alternately concave and con-

1. convex subset §, = {4, A4,,
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2. concave subsets Sz‘1 ={4,A4,A4, A, A},

2 _—

Szl - {AIZ’ Aw An’ 18° Azo}
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and S {4, 4, 4,,}.

A triangulation criterion for purely convex contour
lines is now formulated. Let two convex sets of contour
points $ = {4,, A,, 4, -+, 4,} and $°={B, B,, B, - ",
Bn}, and a trial triangulation between them be given, as
shown in Fig. 3. Let us consider the polyhedron 4, 4,4,
-+ A,B,B,B,, -, B, originated by this triangle arrange-
ment. We assume the following objective function for
optimal triangulation of the two convex contour lines §*
and S°.

The triangulation which maximizes the volume of the
polyhedron A A,A,, -, A,B,B,B,, -, B, gives the opti-
mal approximation of the surface provided by a pair of
closed convex contour lines.

This objective function also extends obviously to con-
cave contour point subsets. We consider Fig. 2 as an ex-
ample of an arbitrarily flexed contour line, containing con-
cave sequences of contour points. We suppose the vol-
ume of any polyhedron 4,4,4,," -+, A,B B,B;, ', B, to
be algebraically oriented such that the volume is positive
for an anticlockwise sequence of the vertex points, and
otherwise negative. (Let B,, B,, -, B, be a contour
point set similar to 4,, 4,, -+, A4,, of Fig. 2.) One can
then see that concave contour sections, as for example
the point sequence A4,, 4,, A;, A, A,, become convex by
reversing their sequence. According to the above criteri-
on, the optimal approximation by triangles of this sec-

tion is that which maximizes the volume of the subpoly-
hedron formed by the reversed point sequence A4,, 4,
A, A, Ay, A, or, equivalently, that which minimizes the
volume of the polyhedron formed by the sequence 4,,
A, A, A, A, O,. This last decomposition indicates the
general objective function for any contour line subsec-
tion —also valid for nonclosed contour lines; the poly-
hedron, the volume of which is to be maximized (or
minimized), is that formed with the origin O, and O, of
the x-y coordinate system in the contour planes and the
contour point subsections of interest. O, and O, may be
arbitrarily located, since the volumes are algebraically
oriented. Figure 2 describes the decomposition of the
total polyhedron volume into additive subvolumes and
justifies the iterative scheme presented here.

We now show for later use that an elementary expres-
sion can be derived for the volume of the polyhedron
originated by a fixed triangulation of any contour line.
We consider the example shown in Fig. 3. A decomposi-
tion of the polyhedron A4,4.4,, -+, 4, B,B,B,, -, B, into
pentahedrons P*=A4,, B,0,0, and P’=A4,B B, 0,0,
with i= 1 to m and j =1 to n, for the total volume may be
written as

Vior= 3 Vol (P) +3 Vol (P). (2)
a b

The superscript a represents the pentahedrons having a
triangular face 4. A4, +1Bj with two vertices from the con-
tour point set $°, and the superscript » similarly repre-
sents the pentahedrons with two vertices B; and B,,,
from the set S°. A further partitioning of each pentahed-
ron P* or P into tetrahedrons is

Pa(AzAiHBjOAOB) = Tla(AiAHlBjOB)
+ TZa(AiAi-FIOAOB)’

P’(4,B;B,,,0,0,) = T,"(4,B,B,,,0)
+1,'(8;B,,,0,0,).

Equation (2) then becomes a summation over four kinds
of tetrahedrons:

Vier= 3 Vol (T,") + 3 Vol (T,") + ¢, + c,,
a b

where the two last terms

m—1
€= 2 Vol [Tza(AiAiﬂoAOB)]’

i=1

0,0,)]

JT i+

n-1 .
¢,=3 Vol [T,(B;B
j=1
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represent the volume of the two pyramids 4,A4,, -,
A,0, and B B,, - -, B,0O,, which are independent of the
particular triangulation assumed a priori and are thus
constant.

The volume of the tetrahedrons T,“ and T’ is given by

« = — —
Vol (T, (AiAi-HBjOB)) =3(0,4, X OBAi+1)OBBj
b — 1
Vol (T, (Al.B].Bj+1 o,) —g(OABj X OAB].H)OAAi
=u " (3b)

When the contour points are given by their Cartesian
coordinates 4, = {X;", Y', Z'},i=1to m, and B; =
{x/, v, Z",j=1to n, we obtain for (3a) and (3b)
the formulas

v =32 =2 (XY, — X

i

1y, (4a)

it i

Jj+1 7

Uijbzg(ZB—ZA)(XjBYjHB—X- By B
+xv =Xy, (4b)
The total volume of the polyhedron, expressed by

(2), can be rewritten explicitly, using the formulas (4a)
and (4b), as

=N, +3 vl.jb + const. (5)

i J i

VT()T

Expression (5) is the objective function to maximize for
obtaining the optimal triangulation. This formula shows
that each triangular face of the polyhedron P contributes
additively to the total volume.

Enumeration of all triangulations

We consider the two convex sets of contour points §° =
{4}, i=1inm,and S = {Bj},j= 1 to n, given in Fig. 3.
To find an appropriate formulation of the permutational
structure of the triangulation, we describe the junctions
of points of opposite contour lines to triangles with the
help of a binary n X m matrix M = {a,;}. M is associated
with the sets $“ and S” such that the matrix element a; ’
is equal to unity if the ith contour point A4, of the set S
and the jth contour point B; of the set S are joined, and
0 if they are not. A triangle consists of two junctions 4B,
and 4,B, and is represented in this matrix M by two
l1-elements. The requirements of the triangulation are
described by the following three properties of the matrix
elements:
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Figure 3 The polyhedron arising through a trial triangulation
between two sets of contour points §° = {4,A4,,4,,-A4,}and
S*=1{B,. B,, B,, -~ B,} describing closed convex contour lines.

1. A triangle necessarily shares two consecutive contour
points, either in set $* or in set $°. This means that

=1ora, 1. (6)

if a;; =1, then either q;,, ; i1

2. Each contour point is joined at least once with a point
of the opposite contour. This means that
" n

N a;=1andy a; =1 (7)
i=1 j=1

3. Junctions between the two contour lines cannot cross
over. If

a;=1and a = 1, then it must hold that

i1, j
a; 5, =0, and

if a; = 1 and a; ;,, = 1, then it must hold that
a;,,-=0. (8)

The binary matrix M corresponding to the triangulation
of Fig. 3 is explicitly represented to allow for the recogni-
tion of these three constraints:

i=1,2,3,4,5,-- - m—2, m— 1, m
[ 10000 =1
11000 2
01000 (o) 3
01100 4
M:T 00111 5 9)
1 0 0 n—2
(o) 1 1 1 n—1
L 0 0 1 n
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c= —fmtn)

Figure 4 Graph G = {P,,, N} associated with the two contour
point sets §“={4,} and 3= {B;} of Fig. 3. The triangulation
presented in Fig. 3 and the matrix M of formula (9) is indicated
in G by the path marked with large arrows from vertex P, to
vertex P,

We see that the partitioning of the side surface of the
polyhedron into a fixed triangle arrangement corresponds
in the matrix M to a fixed chain of adjacent 1-elements
joining a,, to a,,, and obeying the rules (6) to (8).

The enumeration of all possible triangle permutations
is best described by introducing a graph G = {P, N} of
vertices P and arcs N associated with the matrix M in
such a way that each element g, ; of the matrix (9) repre-
sents a vertex P of the graph (see Fig. 4). The double
subscript { and j of the vertices should indicate clearly
that Pu represents the same item as does the matrix ele-
ment a,;, namely the segment 4 iBj. It is then evident that
an arc N = (Pij, P,) of G, joining any two vertices Pij
and P, represents the triangle Al.BjBk-. The constraints
(6) and (7) restrict the graph G to the arcs (PU, Py )
and (P, P, ; ;) shown in Fig. 4. Condition (8) is ex-
pressed by assigning a direction to the arcs of the graph.

The interpretation of the graph G of Fig. 4 is extremely
simple: A sequence of adjacent arcs is called a path in
graph theory [3]. (Two arcs are said to be adjacent if
they have a vertex in common.) Each path joining the
vertices P, and P, represents in G a fixed triangulation.
The total number of distinct paths from P, to P, is
the total number of different triangle arrangements. It
can be shown that it is given by Eq. (1).

Finding the optimal triangulation

Let us consider further the two convex sets S” and $° of
contour points in Fig. 3, and the graph G associated with
them and shown in Fig. 4. G will be interpreted as a
“maximum cost graph” [3] by assigning to each arc N
=P, Py ].) or (Pl.j, P, ;,,) aconstant value represent-
ing the volume v;; of the tetrahedron 44, B0, or
A;B;B; ,O,, with i and j running from 1 to m — 1 and
n — 1, respectively. The value of v;; is given either by
(4a) or (4b) by

v;=v(N,;) =v(P,, P =", or

vl (10)

i j+l) = ij

"

=uv(Py P

As already shown, the total volume of the polyhedron
originated by a triangle arrangement is the objective
function to be maximized and can be decomposed ad-
ditively into the partial tetrahedron volumes associated
with each triangular face of the polyhedron. Finding the
triangulation which maximizes this polyhedron consists,
then, in finding in graph G the path 7 going from the
vertex P, to the vertex P, such that the expression

Vim) =S o(N,) (11)

Nijefr
is maximum. This classical problem of graph theory may
be solved in various ways [3]. For the specific simple
structure of graph G the following algorithm is easy to
realize in a computer.

Each vertex P, ; of graph G in Fig. 4 is associated with
an index w;; and a pointer p;;; We handle in turn all
vertices along a vertical column labeled by a value ¢ =
i+ j, i.e., a column consisting of the vertices P, i satisfy-
ing i 4+ j = ¢. We progress from left to the right, starting at
the vertex column ¢ =3 and ending at c=m + n.

1. To begin, we set in column ¢ = 3 the indices w,, and
w,, according to (10)
)=v

w12 = U(Pl, 1? Pl, 12 °

_ _ b
W21_U(P1, 1 Pz, 1)—012.

2. For any subsequent column ¢ =4, 5, 6, - - of vertices,
we calculate at each vertex P;

V,=w_, ;+v(P

a

Pij) , and

i-1, j?

Vy=w, ;,+ v(P; ;. Py

The index w;; associated with the vertex P, is set

w;; = max VeV (12)

’
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and the pointer p;; connects the current vertex Pi].

to either vertex P, , ; or to vertex P, , , of the pre-
vious column ¢ — | by setting
1ifvV,zV,
Py=1_ (13)
oif ¥V, <V,

This pointer p;; acts as an indicator to keep a record
in graph G of the path 7 from vertex P, to vertex Py
giving maximum value for quantity (11). Index w;;
contains V (7r) for this path 7.

3. The procedure ends as soon as P, is reached. The
path =, from P to P, with the maximum V(7 __ )
value is then backtracked by following the pointers
p;; from the vertex P, to the vertex P,.

The general triangulation algorithm

The computation procedure for optimal triangulation
described thus far holds exclusively for pairs of convex
contour lines. This procedure, however, is also valid for
pairs of concave contour-point subsets, on the premise
that the max-operator in Eq. (12) of the algorithm is
replaced by a min-operator, since expression (11) is
then to be minimized.

The application of this optimization algorithm to con-
tour lines with alternating sign of curvature, as illustrat-
ed by Fig. 2. requires a careful adaptation into the itera-
tion scheme previously indicated. The realization of a
decomposition procedure that allows the alternating
handling of convex and concave contour subsets sepa-
rately is not obvious. We explain the main lines of the
strategy by means of an example. We assume two given
sets S," and S,” of contour points, but now mixed into
convex and concave contour sections. Figure 5(a) will
serve us as example for the iterative decomposition of
the triangulation process.

1. The first step has already been exhaustively treated
above: The point subset $“ = {4, 4,, 4., A, A,
A,,} of the upper contour S," and the subset §," =
{B,, B,, B., B, B,. B,, B,,} of the lower contour SOD
provide two convex contour lines for which the algo-
rithm holds literally. The subsets S,” and §,” are de-
termined by repeated application of the circle test for
curvature sign. The graph G associated with the set
§,“and $, is presented in Fig. 5(b). We assume that
the path 7, traced in G has been obtained by maxi-
mizing expression (11). The corresponding triangula-
tion is then entered into Fig. 5(a).

2. The second phase of the general algorithm handies
the triangulation at the omitted sections of the con-
tour lines. Figure 5(a) illustrates the two principal
cases to be distinguished by the selection procedure
for the next iteration steps.
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Figure § (a), Example of triangulation for the general case of
two arbitrarily flexed contour lines defined by S," = {4,. 4,." -,
A,}and S ={B,, B, -~ B,,}. (b) Graph associated with the
contour-point subsets S, = {4, A,, 4., A, A. A,,} and Slb =
{B,, B,, B, B.. B, B,, B,} of Fig. 5(a) and taken for the first
iteration step of the triangulation algorithm. The path 7, maxi-
mizing the polyhedron volume is indicated by large arrows. The
subgraphs G, and G, handled in the next iteration step are
shaded.

In the first case, the points A,, 4., B,, and B, which
delimit the boundaries of the omitted contour sec-
tions are mutually joined by the segments 4, B, and
A, B,. Thus, the point subsets S," = {4,, 4,, A, 4.}
and Szb = {B,, B,, B,, B,} are clearly to be triangulat-
ed next. The interpretation by graph G in Fig. 5(b)
indicates the computational method. If the vertices
P, ,and P, , are contained in the path 77, they delim-
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Figure 6 Lateral view on the screen of an IBM 2250 display
unit of the contour lines of a head. The contour points in each
parallel cross section have been joined to closed polygons.

it a subgraph G'1 of G into which a path from the ver-
tex P, , to the vertex P,  has to be found next such
that the polyhedron A4,4.4.A4 B,B.B,B.0,0, has
minimum volume. This subgraph, labeled G1, has
been shaded in Fig. 5(b).

The second and more confusing case arises when
the boundaries 4, and A4,, of the omitted upper contour
section are not connected with the respective limits
B, and B,, of the lower contour. The junctions
AB,, (instead of A,B,) and 4B, delimit here the
contour portion to be handled in the second iteration
step. The further concave subsets are S," = {4,, 4,,,
A, A} and S,” = {B,, B, B,,}. The second sub-
graph, G,, to be handled is delimited by the vertices
P, ,—not P, . as in the previous case—and P, . G,
has also been shaded in Fig. 5(b). The recognition by
the computer program of the vertex P, , instead of
Py , as a limit of the subgraph G, requires careful
programming, the details of which we do not present
here.

3. The last iteration step finally resolves the triangula-
tion of the remaining convex contour portion §," =
{A4,.4,, A, A,;}. Since no corresponding convex con-
tour section exists in Sob, the triangulation assignment
becomes obvious in this case.

Triangulation of the contours of a human head

The triangulation method presented in this paper has
been implemented, in conjunction with the radiological
clinic at the University of Heidelberg, in a research
experimental computer program for three-dimensional
planning of radiation therapy [4]. The major feature of
this approach consists in creating a triangulated model of
all relevant anatomical surfaces involved in the treatment.
The triangulation is done by a FORTRAN subroutine that
accepts patient contour measurements in form of a set of
Cartesian x-y coordinates at cross sections of constant z
value.

To illustrate the practical details of calculation by
example, we describe the main phases of the triangula-
tion of a human head. Figure 6 shows, projected on the
screen of an IBM 2250 display unit, the initial contour
points input to the computer. To enhance the presenta-
tion, consecutive points have been joined by closed con-
tour lines, and the coordinate system into which the con-
tour points were measured has been rotated laterally in
order to present the contour lines in a convenient over-
view.

To realize the triangulated model, the program han-
dles in turn each pair of adjacent contour lines. We then
restrict our discussion of the algorithm to only one pair
of contour lines. We concentrate our attention on the
triangulation of the fifth and sixth cross sections from the
bottom of Fig. 6. These two contour lines are shown in
Fig. 7. The choice of this pair has been made to illus-
trate the way a correct triangulation is realized in a com-
plicated region such as that of the ears.

The program starts the triangulation procedure by ini-
tializing a binary matrix for Eq. (9) with the entries in
the rows and the columns denoting the contour points of
the upper and the lower cross section, respectively. This
matrix is permanently reserved in storage until the trian-
gulation of the contour pair is achieved.

Accordingly, in the iteration procedure of the algo-
rithm, the program has to select for the first iteration step
that subset of contour points which yields a purely con-
cave contour polygon for both sides. The repeated appli-
cation of the circle test to convex contour sections per-
mits only the points shown in Fig. 8 to be retained. The
triangulation of the removed points is resumed during
later iteration steps.

To describe, according to the equations (6) to (9),
all possible triangle junctions between contour points of
the two contour lines, a binary matrix is associated with
them. This 14 x 18 matrix is shown in Fig. 9. Columns
and rows are labeled according the subscripts of the
points of Fig. 8. The matrix shows the result of the mini-
mum-path algorithm that maximizes the volume of the
polyhedron delimited by the pair of cross sections. The
binary values of the matrix elements are conventionally
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Figure 7 Two adjacent contour lines from the head in Fig. 6.

fixed such that p; = | means a pointer “backwards” in
the matrix, i.e., it specifies the triangle a; a;_,b;; the val-
ue p; = 0 on the other hand, indicates a pointer ‘“‘up-
wards”, i.e., it specifies the triangle a; b; b;_,. Tracking
back in the matrix from the lower-right to the upper-left
element yields the optimal triangle partitioning of Fig. 8.

The only significant permanent storage requirement
for the algorithm is the binary matrix of Fig. 9. In prac-
tice that matrix is realized in computer memory as the
initially defined large matrix shown in Fig. 10: Col-

Figure 9 The binary matrix of Eq. (9) describing for Fig. 8
the junctions of contour points to triangles. The matrix element
values result from the shortest path algorithm. The value p;= 1
specifies the triangle a4, b, the value p,; = 0 specifies the tri-
angle abb, .. The chain of pointers which tracks back in the ma-
trix from the lower right element to the upper left indicates the
optimal triangulation.

Contour «

1 7 8 91011 12 13 14 20 21 26 27 28 25 30 3% 1
1031111 r1 11111111111
309111111111 11111111
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100 0 Be—le—le=le—le—Te1 1 1 1 1 1 1 1 1 1
14 f0 0 9 0 0 0 0 0 De=1 1 1 1 1 1 1 1 1

2200 0 c 00 ¢ 0 0 0 B8l I 1 1 1 1 1
25 /0 0 00 0 00 00 0 0 0] 1 1 1 1 1
€260 0 00 0 0000000 % 11 111
S27 |0 0 0 0 0 6 0 0 0 3 0 0 fe1 1 1 1 1
Y2810 0 0 0 0 0 0 0 0 3 0 0 0 03 1 1 1
29 /0 0 0 0 0 0 0 0 0 9 0 0 0 0 § 11 1
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35 /0o 0 00 0 0 0 O 0 0 0 0 0 0 0 6¢—1<—%
110 0 00000009 000 GO0 0 O
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Figure 8 Contour points selected from Fig. 7 for the first iter-
ation of the triangulation. The points ¢, and b, are assumed to
correspond a priori.

Figure 10 The binary matrix of Eq. (9) set up in computer
memory to perform the triangulation of Fig. 7. The figure shows
the state of the matrix at the end of the first iteration step. Rows
and columns of deferred contour points are filled up with the
character ‘+’. The 1 and O values correspond to the matrix of
Fig. 9. The pointer chains specify the optimal triangulation and
delimit six shaded submatrices which are to be processed in the
next iteration.
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Figure 11 Convex contour sections handled during the second
iteration of the triangulation. Each section corresponds to a
shaded submatrix in Fig. 10. Definitively fixed triangles result-
ing from the previous iteration are indicated in the drawing.

umns and rows corresponding to deferred contour points
are crossed out to show the state of the matrix during
the first iteration step. The backtrack chain of pointers
in Fig. 10 permits determination of the remaining con-
tour sections that are candidates for the next iteration
steps. The program determines all occurrences of point-
er “jumps” over deferred rows and columns. Two con-
secutive jumps delimit a submatrix that corresponds to a
nontriangulated contour section pair. In Fig. 10, six
submatrices have been recognized by the program. They
correspond to six separate convex contour sections to
be handled next; these are shown in Fig. 11. The pro-
gram processes this second iteration step in nearly com-
plete analogy to the first one and can loop over the same
program section. '

The triangulation is completed at the end of the third it-
eration step. This last step handles only the remaining
short concave sections visible on Fig. 11. The backtrack
chain of binary pointers is then complete in the matrix of
Fig. 10. The program finally generates the corresponding
list of contour point triples, which indicates the final
triangulation obtained for the considered pair of cross
sections.

Figure 12 Result of the triangulation of Fig. 6 as displayed on
the video terminal.

Figure 12 shows the three-dimensional representation
of the totally triangulated contour lines of Fig. 6. One
may note the removing of the hidden triangles from the
display screen. The most useful property of the triangu-
lated model is to provide a description of surfaces par-
ticularly well adapted for graphical visualization on a
display terminal. The possibility of manipulating three-
dimensional anatomical figures under visual control moti-
vated the development of the planning system in a highly
interactive way. The accuracy of any particular represen-
tation depends on how many contour lines are used to
describe the three-dimensional object, how many contour
points are selected for each line, and how they are dis-
tributed.
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