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Abstract: 1BM’s 6250 bpi 3420 series tape units require a powerful error-correcting code for the standard 9-track format. The opti-
mal rectangular code (ORC), presented here, is designed to correct any single-track error or, given erasure pointers, any double-track
error in the tape. The code achieves this by conforming to a rectangular codeword of which two orthogonal sides are check bits. The
code is specially tailored from a general class of b-adjacent codes. The ORC can be implemented without a buffer for encoding and
offers a simple error-correction mechanism. The code can be generalized to multiple-channel applications.

Introduction

Models 4, 6 and 8 of the IBM 3420 series tape units
record 6250 bits per inch (bpi), one of the highest densi-
ties commercially available on standard 3-inch 9 track
tapes. To achieve this density, a number of stringent
engineering requirements had to be met. Included was a
fast and powerful error-correcting scheme.

The standard 3-inch 9-track tape system evolved
through the extensive use of tapes over many years. The
most frequently used 8-bit byte of information and a par-
ity check bit are accommodated vertically in these 9
tracks. The ninth parity track is usually called the VRC
(vertical redundancy check) track. In low density re-
cording such as IBM 729 series tapes, this VRC and a
longitudinal parity byte (LRC) at the end of a record
were sufficient. As the bit density increased, another
check byte called CRC (cyclic redundancy check) was
added at the end of the record to provide track error
correction such as in IBM’s 800 bpi tape units [1].

In designing new tape products, compatibility with the
existing 9-track standard data format is one of the prime
considerations if tapes are to be recorded in different
machines and interchanged freely. The new products,
moreover, require a superior error-correction code be-
cause of increased bit densities and/or tape speeds and
other similar reasons. The new coding scheme presented
in this paper is designed to satisfy these requirements.

Bit density along the direction of tape motion is con-
ventionally much higher than that across the tape. The
ratio has steadily increased from about 40 in 800 bpi
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tapes to two to three orders of magnitude in the current
high density tape machines. As a result, most common
errors are track erasures. The erroneous tracks are often
identified by the loss of signal in the read amplifiers,
and/or excessive phase shift in clock and detection cir-
cuits or other similar electronic indicators. The coding
scheme of this paper is designed to correct this type of
track error or erasure. The same scheme, moreover, cor-
rects many random errors which may be spread over
many tracks in a record. The codewords are in the form
of a rectangle with two orthogonal sides as check bits,
and they resemble the diagonal check scheme [2]. The
encoding and decoding, however, are carried out in an
algebraic manner and the redundancy is minimal. The
erroneous bits along a track form a cluster-error that can
be corrected as a unit in each rectangular codeword.
Each rectangular codeword is processed on the fly, in-
dependent of whether cluster errors are from the same
track or different tracks.

It is well known that the error-correcting codes for
symbols from GF(2"), the galois field of 2° elements,
can be used for correction of clusters of b-adjacent bina-
ry symbols. The generalized Hamming codes [3-5],
Reed-Solomon codes [6], and BCH codes [4] with
symbols from GF(2°) are some of the examples. These
codes can be described in a binary check matrix as pro-
posed by Cocke [7]. Bossen [3] shows a high-speed
implementation using the binary matrix description.
Other methods of implementing the GF(2") codes for
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Figure 1 The rectangular format of check bits and information
bits on the tape.

b-adjacent errors are proposed by Patel [8,9] In all
these b-adjacent codes, each check symbol and each in-
formation symbol in GF(2°) is replaced by b-binary in-
formation digits. All encoding and decoding operations
are performed on these clusters of b-binary digits, thus
obtaining b-adjacent correction corresponding to the
correction of a symbol in GF (2%.

Hong and Patel [ 10] obtained a general class of maxi-
mal binary codes for correcting a single cluster of b-ad-
jacent errors (or double erasure groups). These codes
are constructed directly for binary symbols and, hence,
the codewords are not described in terms of the symbols
of GF(2"). One advantage of avoiding symbols from
GF(2") is that now the binary check bits are no longer
required to be clustered for representation of the check
symbols in GF(2"). Instead, each binary parity check
acts independently.

Given a parity check matrix of r check bits and the
cluster size b, one may choose any linearly independent
set of r columns to be the check-bit positions, without
affecting the b-adjacent error-correcting capability of the
code. Use is made of this property here to mix the bina-
ry check digits and the information digits in forming the
correctable clusters. This was designed to fit the format
of the standard tape recording application. It will be
shown that the resultant code, called the optimal rectan-
gular code (ORC), not only meets all the constraints of
the tape application but is also easier to implement. It is
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Figure 2 The data format for ORC showing the information
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Figure 3 The horizontal track-bytes in ORC ~these bytes are
subjected to errors and corrections.

also optimally yefﬁcient in this data format in providing
two-track correction capability.

In practice ORC resembles the CRC single-track cor-
recting scheme of Brown and Sellers [1] except that the
ORC is also capable of correcting two-track erasures.
Moreover, ORC corrects many combinations of cluster
or random errors that may be spread over more than two
tracks in a record.

Code format and parity check matrix

Codewords of the ORC have a rectangular format of
dimensions n, and n, (n, > n,, Fig. 1). Check bits are
located on two orthogonal sides of the rectangle. The
check bits along the shorter dimension are the overall
vertical parity bits, known as VRC in tape applications.
Remaining check bits along the vertical column are pari-
ty bits over selected positions of information bits. Re-
dundancy is minimum when n, is the largest for given n,,
i.e., n,=n, — 1. The special case of n, = 9 will be de-
scribed for the standard 9-track }-inch tape. The code
foriany other value of n, can be constructed in a similar
mahner.

The data format [11] for the ORC of 9-track tapes is
illustrated in Fig. 2. B, through B, denote the seven
bytes of information in standard 8-bit bytes. C denotes
thei check byte computed from the information bytes.
This format shows how the information bytes are writ-
ten as B;. The code corrects track errors as errors in
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clusters of b-bits along tracks. For a natural description
of the code, the track vectors of the codeword will be
used as track bytes, denoted by Z’s in Fig. 3. First, the
error-correcting capability of the code is established in
this Z -notation of Fig. 3. Later, a novel conversion of
these coding rules is given in terms of the information
bytes in B -notation of Fig. 2.

Some well-known but pertinent mathematical back-
ground is given here. Let g(x) denote an irreducible
polynominal [12] of degree 8 with binary coefficients
g, i, g(x) = B_ x', where B denotes the summation
modulo 2. The companion matrix T of the polynomial
g(x) is defined as the following nonsingular binary matrix:

&
&
8
8
8y
&5
86
&; (1

SO0 OO O~ O
SO oo —~,O0
OO~ OO
SO O — OO0 OO
OO~ OO0 O OO0
O OO O OC OO
ol === R o e e i e r]

Let o be the element of GF(2%) representing the residue
class x modulo g(x). The sum and multiplication of the
elements in GF(2%) is defined by the polynomial sum
and multiplication of the corresponding residue classes
modulo g(x). Thus, an element g_i for any i, represents
the residue class x' modulo g(x) which can be ex-
pressed as an 8-digit column vector o of the binary co-
efficients of the polynomial x' modulo g(x). For example,
&’ is represented by the 8-digit column vector

& =[0 001 0 0 0 O

where superscript 7 signifies transposition of a matrix.
Similarly, any 8-digit binary column vector 8,

B=1[8(0), B(1), B(2), B(3), B(4), B(5), B(6), B(T) T,
(2)

represents the residue class {Q;O B(i) x'} modulo g(x)
which is an element 8 of GF(2°). This 8-digit vector
representation will be used for computations involving
the elements of GF(2%). The sum of elements of GF (2*)
is, then, the modulo 2 matrix sum of the column vectors.
The products of the elements of GF(2°%) can be com-
puted [4] as a matrix product with help of the companion
matrix T of Eq. (1). In particular, multiplication of & with
any element ¢ in GF (2%) can be computed by the matrix
multiplication T¢. Since 8 of Eq. (2) can be considered
as the matrix sum,

B= B() d, 3)
i=0
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the product of any two elements 8 and ¢ in GF(2°) can
be computed as the sum of matrix products B 8(i) T'¢,
which is equal to [ B4 (i) T']¢. The matrix M, given by
My~ |E 86 7] 4
corresponding to each element 8 in GF(2°) is, then, the
matrix operator for computing the product of 8 with any
element of GF(2*). It can be shown that the matrix
operator for the element 8, the inverse of 3, is the ma-
trix M,™', the inverse of matrix M. In particular, M,
=TandM, , =T

The companion matrix T of Eq. (1) can be written
using the notation of field elements as

T=[ad o' e’ a’a d’]. (5)
Since Ta = &, by interative computation it follows that
Ti — [ai’ O(i_H, ai+2’ ai+3’ ai+4, ai+5, ai+6, ai+7]' (6)

The elements &' form a cyclic subgroup contained in the
group of all elements of GF(2*) under multiplication. If
n (8 < n < 2% is the exponent of the polynomial g(x),
then " = o’ and

T"=T=1, (7)

where I is the identity matrix.

At this point, the mathematical description of the code
can be given. Using the matrices of Eq. (6), the parity
checking rules of the ORC can be written as the follow-
ing matrix equations:

7
(B2)-r (8)
i=0

and

@ 7))~ 2 9)

where vector P represents the conventional VRC and
< is the null vector with all zero elements.

Alternatively, the parity checking rules can be written
in a concise form HW™ = J, where H is the parity check
matrix and W is a code word. This parity checking matrix
H is, then,

11 1 1 1 I 1 1
T T rTo

for the codeword W =(Z,, Z,, Z,, Z,, Z,, Z,, Zo, Z,, P],
where I is an identity matrix and 0 is a matrix with all
zero elements. :

Recall that the first bit of every track-byte Z, is the
" bit of the vertical check byte C(i). Notice also that
the above parity check matrix is a shortened version of
the maximal code, ,, , where b = 8, given by Hong and
Patel. [10]. H,,, was given in terms of the companion

H= (10)
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Figure 4 The parity check matrix H for syndrome decoding. Z and P are track-bytes.

matrix of a primitive polynomial to be of maximal length.
In ORC a companion matrix of any degree-8 irreducible
polynomial is used. A column-by-column representation
of the above parity check matrix appears in Fig. 4. The
parity check matrix in this format does not suggest an
immediate and simple method for computing the check
byte from the information bytes. Later an alternate de-
scription will be given for the parity check matrix H to
facilitate this computation of the check byte. Figure 5
represents the parity check matrix in this alternate
format.

Code capability
The ORC given by the parity check matrix of Eq. (10)
is a shortened form of a maximal code reported pre-
viously, [10] with the same error-correction capaibility,
namely, correction of one track-byte error or two track-
byte erasure errors in a rectangular codeblock. In the
parity check matrix for the ORC, the companion matrix
of any irreducible polynomial will be used instead of a
primitive polynomial as in Ref. 10. Furthermore, the
track bytes Z, in ORC consists of a mixture of informa-
tion bits and check bits unlike those in [10]. This, how-
ever, does not affect the proof of the theorems on code
capability. Here, an independent proof of the ORC ca-
pability is provided.

Any correct codeword W =1[Z,Z,Z,---Z_ P] should
satisfy the parity check equations given by

(é2i>@P=®,and (11)
(é T Zi)=®. (12)

When the codeword is corrupted by either single or
double track error, the corrupted word is denoted by
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W=1[2,Z, - 2, Z, P]. From the corrupted received
codeword W, the syndromes S, and S, of errors are
computed as

si=(Bz)op (13)
i=0

and

5,=3 (I'Z). (14)
i=0

Obviously, if there is no error, S, = S, = . However,
if §, or S, is not found equal to &, this fact is an indica-
tion of errors in the received codeword.

Theorem I. Any error pattern in any single track byte,
either on one of the Z; or in P, in an ORC codeblock is
detectable and correctable.

Proof: Suppose that only the ith track (0 = i =8) has
erroneous track bytes and the corrupting error pattern
is denoted by an 8-digit vector e. That is, the received
bytes are error free except in the ith track where

2,=Z,®e if 0=i=7,
or (15)
P=P®e if i=8.

In 3(view of Egs. (11), (12) and (15), the computed syn-
dromes §, and S, of Eqgs. (13) and (14) represent

= (16)
and

. ={T"e if 0Si<7, (17)
o it i=8

Thl‘*s, S, directly provides the error-pattern vector e.
Now, if S, = &, the error is in the VRC byte P. If S,
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Figure 5 The parity check matrix H' for encoding and syndrome generation. B’s are vertical bytes.

# &, then the track position i is uniquely determined

from the fact that T~ S, = §, = ¢, where T™" is the op-
erator for the unique element & ' of GF(2%).

Theorem 2: Any two track bytes in error in an ORC code
block are correctable, provided the erroneous tracks i
and j are identified by some external pointers [13].

Proof: Let e, and e, denote the two error-pattern vectors
representing errors in the tracks i and j, respectively
(i < j). That is, the received bytes are error free except
if] tracks i and j, where Zi =Z,®e,,and Zj =Z, De,, or
P=P ®e,if j= 8. (The special case of single erasure
can be included by allowing i = j in which case e, will
be assumed to be &.) Then, in view of Egs. (11) and
(12), the computed syndromes .5, and S, of Egs. (13)
and (14) represent

S, =e, De,, (18)
T'e, ® Tle, if i+#j+8,

Sz - i . . . .

Te, if j=8o0rj=1i (19)
Equations (18) and (19) represent two independent
equations involving elements of GF(2°) in the matrix
operator notation. 7' and T’ are matrix operators repre-
senting multiplication by the elements o' and o, respec-
tively. These equations uniquely determine the error
patterns e, and e, as

e,=S @De, and (20)
TS, ®TS,) if i#j+8,

2_{[SI@T"'Si] if j=8orj=i (21)

where the operators [I + 7717 and T~ represent mul-

tiplication by the unique elements (o° ® o/ )" and o,

respectively. This completes the proof.
The above two theorems show the error-correcting
capability of ORC. Now, if the code is used purely for
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error detection, an estimate can be made of how many of
the all possible error patterns in the 72-bit code word
map to the zero syndrome. Assuming that the inverses
of all 2'® possible sydromes have roughly the same size
domain, i.e., roughly an equal number of 72-bit error
patterns map to the same syndrome, '® of all possible
errors produce zero syndrome. This means 99.998% of
all possible error patterns can be detected. In single-
track correction mode, exactly 9 X 2° syndromes are
used for error correction. The remaining nonzero syn-
dromes indicate an uncorrectable error. Thus, (1 + 9
x 2%) /2" of all error patterns in multiple tracks 3.52%
gets interpreted as single-track-errors and results in mis-
correction. Others, an estimated 96.48% of all multiple-
track-errors, will be detected without miscorrection.

Orthogonal symmetry

In the previous sections, the ORC was shown in the
track-byte format and its capability was established.
Now, an interesting conversion of the parity check ma-
trix into the information-byte format is presented. This
alternate form enables direct computation of the check
byte and syndromes. In addition, the new format allows
a fast implementation of ORC, requiring no buffer for
encoding. This is done by observing the orthogonal
symmetry of the code with respect to the track bytes
and the information bytes, the Z’s and B/’s.

First, consider the column of the parity check matrix
H of Fig. 4 corresponding to the bit Z,(j) of the track-
byte Z, forall iandjsuch that 0=i=7and 0 =j=7.
The lower half of this column is o, where k =i + j,
which is same for the column corresponding to Zj(i).
This property is called the orthogonal symmetry of the
code. More graphically, Fig, 6 shows the powers of &
that appear in the lower half columns of the H-matrix,
corresponding to every bit position in the format.
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Figure 6 The orthogonal symmetry and powers of o in H-ma-
trix.

To complete the symmetry, let B, denote the check
byte C. Then Z,(i) = B,(j) for alli and j such that 0 =i
=< 7 and 0 < j = 7. Now, proceed to rearrange the col-
umns of the H-matrix of Fig. 4 to obtain another parity
check matrix H’ in Fig. 5, corresponding to a code word
W’ in terms of the information bytes written as W' =
[B,, B,, B,, B,, B,, B,, B;, B,, P]. Note that this rear-
rangement does not alter the parity checking rules.
Table 1 shows the lower-half of the matrix H' corre-
sponding to the information byte B,. Since B,(j) = Z,(i)
and the lower half of the columns of the H matrix are
same for Z,(i) and Z,(j), this parity checking multiplier
for the information byte B, and the track byte Z, remains
invariant. Thus, the orthogonal symmetry of the code
has produced 7' in the reordered lower half of the matrix
H', corresponding to the information byte B; which is
the same as that corresponding to the track byte Z,! The
upper-half of H’ is the conventional VRC and can be
represented by a matrix G,, where G, is an 8 X 8 all-zero
matrix, except the row i which is all ones. Thus, the new
parity check matrix A’ appears in a compact form as
follows:

for the codeword W’ = [B, B, B, B, B, B,B, B, P]. A
bit-by-bit version of H' appears in Fig. 5. The parity
checking equation is

HW? =0,

Alternatively, the parity check can be computed from the
information bytes as

C=B,=) T'B, (23)
and
7
P(i) =B B,()). (24)
j=0

In polynomial notation, Eq. (23) can be written as

7

C(x) =B x'B,(x) Modulo g(x), (25)

i=1

where C(x) and B,(x) are degree 8 polynomials with
binary coefficients given by C and B,, respectively. These
equations form the basis for a fast and simple implemen-
tation of ORC. Equation (24) represents the conven-
tional parity computation. Equation (23) or (25) can
be implemented by means of a linear feedback shift reg-
ister connected for Modulo g(x) operation. The imple-
mentation is presented in the next section.

Implementation of ORC

The code can be generated using any irreducible poly-
nominal g(x). Table 2 lists all irreducible polynomials of
degree 8 with their exponents. This table is taken from
Peterson [4]. Choice of g(x) from this set could be ar-
bitrary; however, there are some specific advantages in
choosing (i) low exponent polynomial [8] and (ii) self
reciprocal polynomial for the read backward facility { 1]
The polynomials, 8 and 16, in the table are self recip-
rocal (i.e., g(x) =x*g(1/x)) and have the lowest value of
exponent. Polynomial no. 8 from Table 2 is used for
computation of CRC [1] which is retained in the newer
tape units for error detection purpose. Therefore, the
polynomial no. 16 g(x) = 1 +x* + x* + x* + x° is chosen

G G, I . . .
H = G, G, : O G, G5 Gy 7 (22) for: ORC application. The corresponding companion
" T rTTr T T T o0 matrix T is, then,
Table 1 Lower-half of H' corresponding to B,
Bits of Info-byte B, : B;(0), Bi(1), Bi(2), B,(3), Bi(4), Bi(5), B;(6), Bi(7)
Corresponding Track-byte bits: Z.(i), Z,(i), Z,(), Z,(1), Z,(1, Z.(1), Z(i), Z,(1)
Lower-half column in H' : o ot a™? ot a'*s ot o™’
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Encoding. The check byte C is computed from the in-
formation bytes according to Eq. (23). This is accom-
plished by means of a feedback shift register (SR1) as
given in Fig. 7. The feedback connections are deter-
mined by the binary coefficients g,'s of g(x). g,=1 im-
plies connection and g; = 0 means no connection at the
ith cell. Each stage of the shift register corresponds to the
digit position of the check byte C as marked. The shifting
operation corresponds to multiplying the content poly-
nomial by x modulo g(x) which is equivalent to multi-
plying the content vector by the companion matrix 7.
Input connections are such that the entering information
bytes are premultiplied by 7. Initially, SR1 contains all
zeros. The information bytes B, B,, ---, B,, B, are suc-
cessively shifted in parallel into SR1 in that order. Thus,
at the end of seven shifts, SR1 contains the vector

TB,®T'B,®TB,®—-@TB,
which is the check byte C gated out onto the tape. The

byte parity of B,, B, ---, B,, B, and C is computed by a
usual 8-way EXCLUSIVE OR network embodying Eq. (24).

Syndrome Generation. Let Zi’s and P stand for the re-
ceived vectors; likewise, éi and € now denote the re-
ceived vectors which may be corrupted by error. Based
on Eqgs. (23) and (24), the syndrome equations can be
written in terms of the information bytes and P, rather
than in terms of the track bytes as in Eqs. (10) and (11).

5,(0) = P(0) O CG);

71=0 (26)
S,(i)) =P(i) @B B,(j) forall i # 0

j=0

>

5,=C®B T (27)

i

hef ~

i=1

il

The computation of S, (i) is done by a 9-way EXCLUSIVE
OR gate iteratively as each byte is received. S, can be
generated using a forward shifting register similar to
the one used in encoding, but without premultiplication
by T and with an added cycle of shift to accommodate the
C byte. However, it will be seen later that multiplication
by T is required in the decoding process and hence, a
backward shifting register saves time. Also a backward
shifting register is convenient in the read backward mode
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Input Output (gated)
BByB3ByBsB¢B, ¢
= >

EXCLUSIVE OR
g(x)=1+x3+x4+x5+x3

Figure 7 Feedback shift register SR1 for encoding. Informa-

tion bytes arrive from B, to B, in parallel into the shift regis-
ter.

Table 2 Irreducible polynomials of degree 8

No. Coefficients: g,g,---8, Exponent: n
1 1 0001 1101 255
2 1 01 11 0 1 11 85
3 1 111100 11 51
4 1 01 1010 01 255
S I 10111101 85
6 1 11100 1 11 255
7 1001 01 011 255
8 1 1101 0 1 11 17
9 101t 1001 01 255
10 1 16 00 1 0 11 85
11 101100011 255
12 1 00 0110 11 51
13 10 01 1 1 1 11 85
14 1 01011 111 255
15 1110 000 1 1 255

16 1 001 1 1001 17 chosen
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Figure 8 Backward shifting register SR2 with 7" premulti-
plier.

and a forward shifting register is convenient in the read
forward mode of the tape operations.

Here, the generation of S, is presented using the back-
ward shifting register SR2 shown in Fig. 8. For this pur-
pose the syndrome Eq. (27) can be rewritten as

7
§,=T(I'C) ®B T"(I'B)) (28)
i=1
The feedback connections are according to the coeffi-
cients of g(x); however, the shifting operation is back-
wards and corresponds to multiplying the content vector
by T7', the inverse of matrix T. Entering bytes are pre-
multiplied by the matrix 7", using a network of EXCLUSIVE
OR gates. The matrix T° appears in Table 3. The received
bytes C, B,, B,, -, B, B, are successively shifted into
SR2 in that order. At the end of 8 shifts, SR2 contains
the syndrome S,.

Correction of Single-Track Error. When S, and S, thus
computed are all J, the received word is assumed error

A. M. PATEL AND S. J. HONG

Table 3 Erasure decoding matrices M, through M,

01111117 01011101 [10011100]
00111111 10101110 01001110
00011111 01010111 10100111
M, = |11110000 M,= 01110110 M,= [11001111
00000111 01100110 11111011
11111100 11101110 11100001
11111110 01110111 01110000
lt1111111] l10111011] 100111000
[00101010] [10001000] [00000007T]
00010101 11000100 10000000
00001010 01100010 01000000
M, = 10101111 M, = [00111001 T= (00100001
11111101 10010100 00010001
01010100 01000010 00001001
10101010 00100001 00000100
101010101 100010000/ 100000010/
11001001 00111110 mdoolllq
01100100 10011111 00100111
10110010 11001111 00010011
M, = 10010000 M, = [01011001 7" = 01000110
00000001 10010010 01101100
01001001 11110111 01111001
00100100 11111011 00111100
110010010/ lot111101 110011110

free. In single-track correction mode, then, assume that
S, or§, # & indicates a single track error and proceed to
correct the error pattern e =§,. S, is the content of SR2.
If S, = J, the erroneous track is the P-track. If S, # ,
then §, = T'e is assumed according to Eq. (17). Shifting
SR2 multiples S, by 7~ each time. Hence, if the error
occurred at the i track Z,, the contents of SR2 after i
shifts should match S, = e. Thus, when a match occurs,
the number of shifts determines the track position. If
S, # J and the contents of SR2 do not match §, after a
maximum of 7 shifts, there are two or more tracks in
error. This is the additional detection power of ORC.
Alternately, a forward shifting register can be used,
such as SR1 for determination of error track position i.
Because T~ = T"7, this requires a maximum of n shifts
to determine the index i. The polynomial g(x) with the
lowest exponent #, in this case, saves correction time.

Correction of Double Erasure Tracks. Given the erasure-
track pointers as indices { and j, the code can determine
the error patterns e, and ¢, (e, =& if i =, which is actu-
ally a single erasure error as a special case of double
erasure error). With no loss of generality, assume 0 < {
=Jj = 8. The track number 8 denotes the VRC track with
P. Rewriting Eqs. (20) and (21),

e,=S,®e,, and (29)
U@T (S, DTS, if i=j+*8,

e, = ,

s, ors, if j=8ori. (30
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In case of i =j, the single erasure error, the error pattern
e, is given by § ; however, the computation for ¢, should
return e, = . Otherwise, either the erasure pointer is in
error or some uncorrectable error is detected. Equation
(30) for e, can be rewritten as

e,=M_[S, DTS, (31)
where

[O®T™", if i#j#8,
N 1 if j=ior8. (32)

-

The matrix M; ; can be computed from T for j — i
=1,2,3,--,6,7. Table 3 gives these M matrices for all
j — i values using the specific companion matrix T of the
ORC tape application.

Equation (30) can be realized in the following man-
ner: SR2 with S, shifted / times yields 77'S,. Figure 9
gives the block diagram of the circuit which computes e,
and e, from inputs S, T7'S, and the number j — i. The
blocks M, in Fig. 9 forj—i=1,2,---, 6, 7 are exclu-
sive-or networks realizing multiplication by the respec-
tive matrix M,_; of Eq. (32) as given in Table 3. Each of
the eight outputs of an M;_; block is the modulo-2 sum
of selected inputs indicated by 1’s positions in the corre-
sponding row in matrix M.

Summary

The optimali rectangular code satisfied the constraints of
the standard 9-track format of }-inch magnetic tapes. It
also meets the error-correction requirements for the
6250-bpi density tape application with high-speed imple-
mentation. Data is recorded in the conventional manner
with one VRC track. A check byte is introduced for
every code word. The orthogonal symmetry in the parity
check matrix allows the check byte be generated as the
information bytes and their parities (VRC) are being
recorded. Hence, the encoding process does not require
a buffer.

Error correction is performed on each code word
while the next code word is being received. The code
corrects any error pattern in any single track. It also
corrects any error patterns confined in two known erro-
neous tracks indicated by the erasure pointers. In addi-
tion, the code detects an estimated 96.5% of all possible
errors while providing single-track error correction; cor-
rects wrong erasure pointer in case of a single erasure
error; and can detect 99.998% of all errors if operated
for detection only. The amount of encoding and decod-
ing hardware needed is modest.

The general results of this paper are applicable to any
set of parallel channeis. For n, parallel channels, the
code requires one check character for n, (n, < n,) infor-
mation characters, One of the n, channels is used for
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Figure 9 Double erasure decoding circuit.

transmitting the VRC. The check character is-.computed
using a shift register connected according to an irreduci-
ble polynomial of degree n, — 1 in the same manner as it
is illustrated here for the case n, = 9. The proofs of theo-
rems | and 2 apply in the general case using the opera-
tions involving elements of GF (2™ ).
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