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Abstract: IBM’s 6250 bpi 3420 series tape units require a powerful error-correcting code for the standard  9-track  format.  The  opti- 
mal rectangular code (ORC), presented here, is designed to correct any single-track error or, given erasure  pointers, any double-track 
error in the  tape.  The code achieves  this by conforming to a rectangular  codeword of which two  orthogonal  sides are  check  bits.  The 
code is specially  tailored  from a general  class  of  b-adjacent codes.  The ORC can be implemented without a buffer  for encoding and 
offers a simple error-correction mechanism.  The code can be generalized to multiple-channel applications. 

Introduction 
Models 4, 6 and 8 of the  IBM  3420 series tape units 
record 6250 bits per inch (bpi),  one of the highest  densi- 
ties  commercially  available on standard ;-inch 9 track 
tapes. To  achieve this density, a number of stringent 
engineering requirements had to be  met. Included  was a 
fast  and powerful error-correcting  scheme. 

The  standard +-inch 9-track tape system  evolved 
through the  extensive  use of tapes  over many years.  The 
most  frequently  used 8-bit byte of information and a par- 
ity check  bit are  accommodated vertically in these 9 
tracks.  The ninth  parity  track is usually called the VRC 
(vertical  redundancy  check)  track.  In low density  re- 
cording such  as  IBM  729 series tapes, this VRC and a 
longitudinal parity byte (LRC)  at  the  end of a record 
were sufficient. As the bit density increased,  another 
check  byte called CRC (cyclic  redundancy check)  was 
added  at  the end of the record to  provide track error 
correction  such  as in IBM’s 800 bpi tape units [ 11. 

In designing new tape  products, compatibility  with the 
existing  9-track standard  data format is one of the prime 
considerations if tapes  are to be recorded in different 
machines and interchanged  freely. The new products, 
moreover, require  a  superior error-correction  code be- 
cause of increased bit densities  and/or  tape  speeds  and 
other similar reasons.  The new coding scheme  presented 
in this paper is designed to satisfy these  requirements. 

Bit density along the direction of tape motion is con- 
ventionally much higher  than that  across  the  tape.  The 
ratio has steadily  increased from  about 40 in 800 bpi 

tapes  to two to  three  orders of magnitude in the  current 
high density tape machines. As a result, most  common 
errors  are  track  erasures.  The  erroneous  tracks  are often 
identified by the loss of signal in the  read amplifiers, 
and/or  excessive  phase shift in clock and  detection cir- 
cuits  or  other similar  electronic  indicators. The coding 
scheme of this paper is designed to  correct this  type of 
track  error  or  erasure.  The  same  scheme,  moreover,  cor- 
rects many random errors which may be spread  over 
many  tracks in a record.  The  codewords  are in the  form 
of a rectangle with two orthogonal  sides as  check  bits, 
and they  resemble the diagonal check  scheme [2]. The 
encoding and  decodipg,  however,  are  carried  out in an 
algebraic manner  and  the  redundancy is minimal. The 
erroneous bits along  a  track form a cluster-error  that  can 
be  corrected  as a  unit in each rectangular codeword. 
Each rectangular codeword is processed on  the fly, in- 
dependent of whether  cluster  errors  are from the  same 
track  or different tracks. 

It is well known that  the error-correcting codes  for 
symbols  from GF(2b),   the galois field  of 2b elements, 
can  be  used for  correction of clusters of 6-adjacent bina- 
ry symbols. The generalized  Hamming codes [3-51, 
Reed-Solomon codes [6], and BCH codes [4] with 
symbols  from GF(2b) are  some of the  examples.  These 
codes  can  be  described in a binary check matrix as pro- 
posed by Cocke  [7].  Bossen [3] shows a  high-speed 
implementation using the binary  matrix  description. 
Other  methods of implementing the GF(2’) codes  for 
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Figure 1 The  rectangular  format of check bits and information 
bits on the  tape. 

b-adjacent errors  are  proposed by Patel [8,9] In all 
these b-adjacent codes,  each check iymbol  and  each in- 
formation  symbol in GF(2') is replaced by b-binary in- 
formation digits. All encoding  and  decoding operations 
are performed on  these  clusters of b-binary digits, thus 
obtaining  b-adjacent correction  corresponding  to  the 
correction of a  symbol  in GF(2'). 

Hong and Patel [ 101 obtained  a general  class of maxi- 
mal binary codes for correcting a single cluster  ofb-ad- 
jacent  errors (or double  erasure  groups).  These  codes 
are  constructed directly for binary symbols  and,  hence, 
the  codewords  are not described in terms of the symbols 
of GF(2'). One  advantage of avoiding  symbols  from 
GF(2b)  is that now the binary check bits are  no longer 
required to be clustered for representation of the  check 
symbols in G F (  2b). Instead,  each binary  parity check 
acts independently. 

Given a  parity check matrix of r check bits and  the 
cluster size b,  one may choose any  linearly independent 
set of r columns  to be  the  check-bit  positions, without 
affecting the b-adjacent  error-correcting  capability of the 
code.  Use  is  made of this property  here  to mix the bina- 
ry check digits and  the information digits in forming the 
correctable  clusters.  This  was designed to fit the  format 
of the  standard  tape recording  application. It will be 
shown that  the  resultant  code, called the optimal rectan- 
gular code (ORC), not  only meets all the  constraints of 
the  tape application but  is  also  easier  to implement. I t  is 
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Figure 2 The data format  for ORC showing the information 
bytes as vertical  columns. 
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Figure 3 The  horizontal  track-bytes in ORC - these bytes are 
subjected  to  errors and corrections. 

also optimally efficient in this data format in providing 
two-track  correction capability. 

In practice ORC resembles the  CRC single-track cor- 
recting scheme of Brown and Sellers [ 11 except  that  the 
ORC is also  capable of correcting  two-track erasures. 
Moreover,  ORC  corrects many combinations of cluster 
or random errors  that may be spread  over  more than two 
tracks in a record. 

Code format and parity check matrix 
Codewords of the  ORC  have a rectangular format of 
dimensions n, and n2 (n ,  > n2, Fig. 1 ) .  Check bits are 
located on two  orthogonal  sides of the  rectangle. The 
check bits  along the  shorter dimension are  the overall 
vertical  parity  bits,  known as  VRC in tape applications. 
Remaining check bits along the vertical  column are pari- 
ty bits  over  selected positions of information  bits. Re- 
dundancy is minimum when n2 is the largest for given n,, 
Le., n2 = n,  - 1 .  The special case of n,  = 9 will be  de- 
scribed  for  the  standard  9-track +-inch tape.  The  code 
foriany  other value of n,  can be constructed in a similar 
mabner. 

The  data  format [ 111 for  the  ORC of 9-track  tapes  is 
illuprated in Fig. 2. B ,  through B ,  denote  the seven 
bytles of information in standard 8-bit bytes. C denotes 
the!  check  byte  computed  from  the information bytes. 
This format shows how the information bytes  are writ- 
ten as B,. The  code  corrects  track  errors  as  errors in 
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clusters of b-bits  along tracks.  For a natural  description 
of the  code,  the  track  vectors of the  codeword will be 
used as  track  bytes,  denoted by  Z;s  in Fig. 3. First,  the 
error-correcting capability of the  code  is established in 
this  Z,-notation of Fig. 3. Later, a  novel conversion of 
these coding  rules is given in terms of the information 
bytes in B,-notation of Fig. 2. 

Some well-known but  pertinent mathematical back- 
ground is given here.  Let g(x )  denote  an irreducible 
polynominal [ 121 of degree 8 with  binary coefficients 
g,, Le., g(x) = Ei=, x', where E denotes  the summation 
modulo 2. The companion  matrix T of the polynomial 
g (x) is defined as the following nonsingular  binary  matrix: 

X '  

the  product of any two  elements /3 and 5 in GF(2*)  can 
be  computed  as  the sum of mat& products E p ( i )  T i ( ,  
which is equal to [ Bp (i) Ti][ .  The matrix M ,  given by 

corresponding  to  each  element /3 in GF(2') is, then,  the 
matrix operator  for computing the product of /3 with any 
element of GF(28) .   I t  can be shown  that  the matrix 
operator  for  the element p-', the  inverse of /3, is the ma- 
trix M,-', the  inverse of matrix M,. In  particular, Mat 
= Ti and Ma-l = T-*.  

The companion  matrix T of Eq. ( I  ) can be written 
using the notation of field elements  as 

T =  

o o o o o o o g ,  
1 o o o o o o g ,  
0 1 0 0 0 0 0 g ,  
o o 1 0 0 0 0 g 3  
o o o 1 0 0 0 g 4  
o o o o 1 0 0 g 5  
0 0 0 0 0 1 0 g ,  
0 0 0 0 0 0 1 g ~  

Let y be the element of GF(28) representing the residue 
class .Y modulo g(x).  The sum and multiplication of the 
elements in GF(2')  is defined by the polynomial  sum 
and multiplication of the corresponding  residue classes 
modulo g(x).  Thus,  an element & for  any i, represents 
the  residue  class xi modulo g(x) which can  be  ex- 
pressed  as  an 8-digit column vector ai of the binary co- 
efficients of the polynomial xi modulo g(x). For  example, 
- a3 is represented by the 8-digit column vector 

a3= [O 0 0 1 0 0 0 01' 

where  superscript 7 signifies transposition of a  matrix. 
Similarly,  any 8-digit binary  column vector p, 

represents  the  residue  class {E:=, p(i) x i }  modulo g(x) 
which is an element /3 of GF(2'). This 8-digit vector 
representation will be used for computations involving 
the  elements of G F  ( 2*). The  sum of elements of G F  (2 ' )  
is,  then,  the modulo  2  matrix sum of the column vectors. 
The  products of the  elements of GF(2') can  be  com- 
puted [ 41 as a  matrix  product  with  help of the companion 
matrix T of Eq. ( 1 ). In particular,  multiplication of gwith 
any  element [ in GF(2*)  can be  computed by the matrix 
multiplicatio~ T t .  - Since /3 of Eq.  (2) can be considered 
as  the matrix sum, 

- 

Since Ta = a', by interative  computation it follows that 

The  elements ai form  a  cyclic subgroup contained in the 
group of all elements of GF ( 2 * )  under multiplication. If 
n (8 5 n < 2M) is the  exponent of the polynomial g(x), 
then 4 = 4 and 

T" = To = I ,  (7)  

where I is the identity  matrix. 
At this  point, the mathematical  description of the  code 

can be  given.  Using the  matrices of Eq. (6 ) ,  the parity 
checking rules of the  ORC  can  be written as  the follow- 
ing matrix equations: 

, 7  I 

and 

(i T'Z,) = 0 
' i=o ' 

where  vector P represents  the conventional VRC and 
0 is the null vector with all zero elements. 

Alternatively, the parity  checking  rules can  be written 
in a concise  form H W' = 0, where H is the parity check 
matrix and W is a code word. This parity  checking  matrix 
H is, then, 

for  the  codeword W = [Z,, Z,, Z,, Z,, z4, Z,, z,, ZV 
where I is an identity  matrix and 0 is a  matrix  with all 
zero elements. 

Recall that  the first  bit of every  track-byte zi is the 
th bit of the vertical check  byte C ( i ) .  Notice also that 
the  above parity check matrix is a shortened Version  of 
the maximal code, HPb,b where b = 8, given by Hang and 
pate]. [ I O ] .  Hzb,b was given in terms of the companion 5E 
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Figure 4 The parity check matrix H for syndrome decoding. Z and P are track-bytes. 

matrix of a  primitive polynomial to be of maximal  length. 
In ORC a companion  matrix of any degree-8 irreducible 
polynomial is used.  A  column-by-column representation 
of the  above parity check matrix appears in Fig. 4. The 
parity  check  matrix  in  this format  does not  suggest an 
immediate and simple method for computing  the  check 
byte from the information  bytes. Later  an  alternate  de- 
scription will be given for  the parity  check  matrix H to 
facilitate  this  computation of the  check  byte.  Figure 5 
represents  the parity  check  matrix  in  this alternate 
format. 

Code capability 
The ORC given  by the parity check matrix of Eq. (10) 
is a shortened  form of a maximal code  reported pre- 
viously, [ 101 with the  same  error-correction capaibility, 
namely, correction of one  track-byte  error  or  two  track- 
byte  erasure  errors in a rectangular  codeblock.  In  the 
parity  check  matrix for  the ORC, the companion  matrix 
of any  irreducible polynomial will be  used instead of a 
primitive polynomial as in Ref. 10. Furthermore,  the 
track  bytes Zi in ORC consists of a mixture of informa- 
tion bits and  check bits unlike those in [lo]. This,  how- 
ever,  does not affect the proof of the  theorems  on  code 
capability. Here,  an  independent proof of the ORC ca- 
pability is provided. 

Any correct  codeword W = [ Z ,  Z ,  Z , .  . . Z ,  P]  should 
satisfy the parity check  equations given by 

(i Zi) 0 P =  0, and 
i = O  

When  the  codeword  is  corrupted by either single or 
double  track  error,  the  corrupted  word  is  denoted by 582 
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@' = [ Z o  Z, --- Z, --- 2, @I. From  the  corrupted received 
codeword W, the  syndromes S ,  and S, of errors  are 
computed  as 

and 

S, = E (Ti  Z i )  

7 

i = O  

Obviously, if there  is no error, S, = S, = 0. However, 
if S, or S, is not found equal  to 0, this fact  is  an indica- 
tion of errors in the received codeword. 

Theorem I .  Any  error  pattern in any single track  byte, 
either  on  one of the Zi  or in P ,  in an ORC codeblock  is 
detectable and correctable. 

Proof: Suppose  that only the ith  track (0 5 i 5 8 )  has 
erroneous  track  bytes  and  the  corrupting  error  pattern 
is denoted by an 8-digit vector e. That  is,  the received 
bytes  are  error  free  except in the ith track  where 

Inp iewofEqs .  ( 1 1 1 ,  (12) and  (15),thecomputedsyn- 
drames S, and S, of Eqs. ( 13) and (14) represent 

SI = e (16) 

and 

T'e if 0 5  i 5  7, 

0 if i =  8. 

Thds, S, directly  provides the  error-pattern  vector e. 
Now, if S, = 0, the  error  is in the VRC byte P. If S, 
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Figure 5 The parity check matrix H' for encoding and  syndrome generation. B's are vertical bytes. 

# 0, then  the track position i is uniquely determined 
from  the  fact  that T" S, = S ,  = e ,  where T" is the  op- 
erator  for  the unique  element cy-( of GF (2'). 

Theorem 2 :  Any two  track  bytes in error in an ORC code 
block are  correctable, provided the  erroneous  tracks i 
and j are identified by  some external pointers [ 131. 
Proof: Let e ,  and e, denote  the  two  error-pattern  vectors 
representing errors in the  tracks i and j ,  respectively 
( i  < j ) .  That  is,  the received bytes  are  error  free  except 
in tracks i and j, where Z i  = Zi 0 e , ,  and Z j  = Zj 0 e2, or 
P = P 0 e2 i f j  = 8. (The special case of single erasure 
can  be  included  by allowing i = j in which case e2 will 
be assumed  to be 0.) Then, in view of Eqs. ( 1  1)  and 
( 121, the  computed  syndromes SI and S ,  of Eqs. ( 13) 
and ( 14)  represent 

S ,  = e ,  0 e2, 

Tie l  @ T'e, if i # j f 8, 
s 2 = {  T'el 

if j = 8  o r j = i .  

Equations ( 18) and ( 19) represent  two  independent 
equations involving elements of GF ( 2 8 )  in the matrix 
operator notation. Ti and Tj are matrix operators  repre- 
senting multiplication by the  elements cyi and d ,  respec- 
tively. These  equations uniquely determine  the  error 
patterns e ,  and e ,  as 

e,  = S ,  0 e2, and (20) 

[ I  @ Tj - ' ] I ; ' (S ,  @ T i s S , )  if i # j # 8, 
e.={ [SI @ T-iSS,] 

if j = 8 o r j = i .  (21) 

where  the  operators [ I  + T'-']-' and T" represent mul- 
tiplication by the unique elements (01' @ d-i)- l  and cy-i, 

respectively. This  completes  the proof. 
The  above two  theorems show  the error-correcting 

capability of ORC. Now, if the  code is used  purely for 

error  detection,  an  estimate  can be  made of how many of 
the all possible error  patterns in the 72-bit code word 
map to  the  zero  syndrome. Assuming that  the  inverses 
of  all 216 possible sydromes  have roughly the  same size 
domain, i.e., roughly an  equal  number of 72-bit error 
patterns map to  the  same  syndrome, of all possible 
errors  produce  zero  syndrome.  This  means  99.998% of 
all possible error  patterns  can be detected. In single- 
track  correction  mode, exactly 9 X 2' syndromes  are 
used for  error  correction.  The remaining nonzero syn- 
dromes indicate an  uncorrectable  error.  Thus, (1 + 9 
X 28) /216 of all error  patterns in multiple tracks  3.52% 
gets  interpreted  as single-track-errors  and results in mis- 
correction.  Others,  an  estimated  96.48% of all multiple- 
track-errors, will be detected without  miscorrection. 

Orthogonal  symmetry 
In  the previous sections,  the  ORC was  shown in the 
track-byte  format and  its capability  was  established. 
Now,  an interesting  conversion of the parity check ma- 
trix  into the information-byte  format is presented.  This 
alternate form enables  direct computation of the  check 
byte  and  syndromes. In addition, the new format  allows 
a fast implementation of ORC, requiring no buffer  for 
encoding. This is done by observing the orthogonal 
symmetry of the  code with respect  to  the  track  bytes 
and the information bytes,  the Z,'s and B i s .  

First,  consider  the column of the parity check matrix 
H of Fig. 4 corresponding  to  the bit Z,( j )  of the track- 
byte Zi for all i and j such  that 0 5 i 5 7 and 0 5 j 5 7 .  
The lower half of this column is a', where k = i + j ,  
which is same for the column corresponding  to Zj(i). 
This  property is called the orthogonal  symmetry of the 
code.  More graphically, Fig. 6  shows the powers of Q 

that  appear in the lower half columns of the  H-matrix, 
corresponding  to  every bit position in the  format. 5v- 
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Figure 6 The orthogonal symmetry and powers of a in H-ma- 
trix. 

To complete  the  symmetry, let Bo denote the check 
byte C .  Then Z,(i) E B,G) for all i and j such  that 0 5 i 
f 7 and 0 5 j 5 7. Now, proceed to rearrange  the col- 
umns of the  H-matrix of Fig. 4 to obtain another parity 
check matrix H' in Fig. 5, corresponding to a code word 
W' in terms of the information bytes written as  W' = 
[Bo,   B, ,  B,, B,, B,, B,, B , ,  B7, P I .  Note  that this rear- 
rangement does  not  alter  the  panty checking rules. 
Table 1  shows  the lower-half of the matrix H' corre- 
sponding to  the information byte Bi. Since B i ( j )  E Zj(i) 
and  the  lower half  of the  columns of the H matrix are 
same  for Zj ( i )  and Z , ( j ) ,  this parity checking multiplier 
for the information byte Bi and  the track  byte Zi remains 
invariant. Thus, the orthogonal  symmetry of the  code 
has produced T i  in the  reordered  lower half of the matrix 
H ' ,  corresponding to  the information byte B ,  which is 
the  same as that corresponding to  the track byte Zi!  The 
upper-half of H' is the conventional VRC and can  be 
represented by a matrix G i ,  where Gi is an 8 X 8 all-zero 
matrix, except  the row i which  is all ones. Thus, the  new 
parity  check  matrix H' appears in a compact form as 
follows: 

for  the codeword W' = [Bo B ,   B ,   B ,   B ,   B ,   B ,  B ,  PI. A 
bit-by-bit version of H' appears in Fig. 5. The parity 
checking  equation  is 

H' W" = 0. 

Alternatively,  the  parity check can be computed  from the 
information bytes  as 

7 

c = B ,  = T ~ B ~ ,  (23) 
i = l  

and 

7 

P ( i )  = E B i ( j ) .  (24) 
j = O  

In polynomial notation,  Eq. (23) can be written as 

C ( x )  = E  x iBi (x )  Modulo g(x), ( 2 5 )  
7 

i=l  

where C(x) and B i ( x )  are  degree 8 polynomials with 
binary coefficients given by C and B,,  respectively. These 
equations form  the  basis for a fast  and simple implemen- 
tation of ORC. Equation (24)  represents  the conven- 
tional parity computation.  Equation (23) or (25) can 
be implemented by means of a linear  feedback shift reg- 
ister connected for Modulo g(x) operation. The imple- 
mentation is presented in the  next  section. 

Implementation of ORC 
The  code  can  be generated using any irreducible poly- 
nominal g ( x ) .  Table 2  lists all irreducible polynomials of 
degree 8 with  their  exponents. This table is taken from 
Peterson [ 41. Choice of g(x) from this set could be ar- 
bitrary;  however, there are  some specific advantages in 
choosing ( i )  low exponent polynomial [8] and (ii) self 
reciprocal polynomial for the  read  backward facility [ 11 
The polynomials, 8 and 16, in the  table are self recip- 
rocal (i.e., g(x) =x"( 1 /x ) )  and  have  the lowest  value of 
exponent. Polynomial no. 8 from Table 2  is  used for 
computation of CRC [ 11 which  is  retained in the newer 
tape units  for error  detection purpose. Therefore, the 
polynomial no. 16 g ( x )  = 1 + x3 + x4 + x5 +x8  is  chosen 
for  ORC application. The corresponding  companion 
matrix T is, then, 

Table 1 Lower-half of H' corresponding to Bi 



I - - 
0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 1  
0 0 0 1 0 0 0 1 '  
0 0 0 0 1 0 0 1  
0 0 0 0 0 1 0 0  
_ 0 0 0 0 0 0 1 0 _  

T =  

Encoding. The  check  byte C is  computed  from  the in- 
formation bytes  according  to  Eq. (23). This  is accom- 
plished by means of a feedback shift register (SRl) as 
given in Fig. 7. The  feedback  connections  are  deter- 
mined by the binary coefficients gi's of g(x). gi = 1 im- 
plies connection  and gi = 0 means  no  connection  at  the 
ith cell. Each  stage of the shift register  corresponds to the 
digit  position of the  check  byte C as marked. The shifting 
operation  corresponds  to multiplying the  content poly- 
nomial by x modulo g(x) which is equivalent to multi- 
plying the  content  vector by the companion  matrix T. 
Input  connections  are  such  that  the entering  information 
bytes  are premultiplied  by T. Initially, SRl  contains all 
zeros.  The information bytes E, ,  E, ,  ---, E, ,  E ,  are suc- 
cessively  shifted in parallel into SR1 in that  order.  Thus, 
at the end of seven shifts, SR1 contains  the  vector 

T B ,  @ T2B, @ T3B, 0 ---- 0 T7B, 

which is the  check  byte C gated out  onto  the tape. The 
byte parity of B,, E, ,  ---, E , ,   E ,  and C is computed by a 
usual %way EXCLUSIVE OR network embodying Eq. (24).  

Syndrome  Generation. Let Z i f s  and stand for  the re- 
ceived vectors; likewise, B i  and & now  denote  the re- 
ceived vectors which  may be corrupted by error. Based 
on Eqs. (23) and (24),  the  syndrome  equations  can be 
written in terms of the information bytes  and P ,  rather 
than in terms of the  track  bytes  as in Eqs. ( 10) and ( 11). 

7 

S,(O) = B(0)  0 .J$ eci,; 
i = o  

7 1 (26) 
~ , ( i )  = B ( i )  0 B i ( j )  for all i # 0 

j=O 

7 

S, = & 0 .J$ TtBi (27) 
i=l 

The computation of S, (i) is done by a  9-way EXCLUSIVE 

OR gate iteratively as  each  byte is received. S ,  can be 
generated using a forward shifting register  similar to 
the  one used in encoding, but  without premultiplication 
by T and with an  added  cycle of shift to  accommodate  the 
C byte.  However,  it will be  seen  later  that multiplication 
by T-i is required in the decoding process  and  hence, a 
backward shifting register saves time. Also a backward 
shifting register is  convenient in the  read backward  mode 

' EXCLUSIVE OR 

g ( x ) = 1 + x 3 + x 4 + x 5 + x 8  

Figure 7 Feedback shift register SRI for encoding. Informa- 
tion bytes arrive from B ,  to B ,  in  parallel into the shift regis- 
ter. 

Table 2 Irreducible polynomials of degree 8 

No.  Coeficients: g,g,----g, Exponent: n 

1 1 0 0 0 1 1 1 0 1  255 
2 1 0 1 1 1 0 1 1 1  85 
3 1 1 1 1 1 0 0 1 1  51 
4 1 0 1 1 0 1 0 0 1  255 
5 1 l O l l l l O 1  85 
6 1 1 1 1 0 0 1 1 1  255 
7 1 0 0 1 0 1 0 1 1  255 
8 1 1 1 0 1 0 1 1 1  17 
9 1 0 1 1 0 0 1 0 1  255 

10 1 1 0 0 0 1 0 1 1  85 
I 1  1 0 1 1 0 0 0 1 1  25 5 
12 1 0 0 0 1 1 0 1 1  51 
13 1 0 0 1 1 1 1 1 1  85 
14 1 0 1 0 1 1 1 1 1  255 
15 1 1 1 0 0 0 0 1 1  255 
16 1 0 0 1 1 1 0 0 1  17 chosen 
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A. M. 

B 7 B 6 B S B 4 B 3 B 2 B L C  

Input 

$ f 

T 7  multiplier g ( x )  = 1 + x3 + x4 + x5 + x8 

Figure 8 Backward shifting register SR2 with T' premulti- 
plier. 

and a forward shifting register is convenient in the read 
forward mode of the tape operations. 

Here,  the generation of S, is  presented using the back- 
ward shifting register SR2  shown in Fig. 8. For this pur- 
pose the  syndrome Eq.  (27)  can be rewritten as 

S, = T-7(   T7C) @ E Ti-,(  T7Bi) ( 2 8 )  

The feedback  connections are according to  the coeffi- 
cients of g(x) ; however,  the shifting operation  is  back- 
wards  and corresponds  to multiplying the  content vector 
by T-',  the  inverse of matrix T .  Entering bytes  are pre- 
multiplied by the matrix T7, using a  network of EXCLUSIVE 

OR gates. The matrix T' appears in Table 3. The received 
bytes C ,  B , ,  B,, ---, B,, B ,  are successively shifted into 
SR2 in that  order. At the  end of 8 shifts, SR2  contains 
the syndrome S,. 

Correction of Single-Track  Error. When S ,  and S, thus 
computed are all 0, the received word is assumed error 

7 

i = l  

PATEL AND S. J .  HONG 

Table 3 Erasure  decoding  matrices M ,  through M,. 

01111111  0101 1101 1001 1100 
00111111 10101 110 

M ,  = liiiii{ M ,  = [:!i:iij M , =  01001110 

11111100 11101110 
11111110 01110111 01 I10000 
11111111 10111011 001 1 l O O Q  

free. In single-track correction  mode,  then, assume that 
S, or S, # 0 indicates a single track error and proceed to 
correct the error  pattern e = S,. S, is the  content of SR2. 
If S, = 0, the erroneous track is the P-track. If S, # 0, 
then S ,  = T'e is  assumed  according to  Eq.  (17). Shifting 
SR2 multiples S, by T" each time. Hence, if the  error 
occurred  at  the ?' track Z i ,  the contents of SR2  after i 
shifts should match S, = e .  Thus, when  a match  occurs, 
the number of shifts determines the track position. If 
S, # 0 and the  contents of SR2 do  not match S, after a 
maximum of 7  shifts, there  are  two  or more tracks in 
error.  This is the additional detection  power of ORC. 

Alternately, a forward shifting register can  be  used, 
such  as  SR1  for determination of error track position i .  
Because T" =F T"", this requires a maximum of n shifts 
to  determine  the index i. The polynomial g(x) with the 
lowest  exponent n ,  in this case,  saves  correction time. 

Correction of Double Erasure Tracks. Given  the erasure- 
track  pointers  as indices i and j ,  the  code  can  determine 
the  error  patterns e,  and e,   (e,  = 0 if i =j ,  which is actu- 
ally a single erasure  error  as a special case of double 
erasure  error). With no loss of generality, assume 0 5 i 
5 j 5 8. The track  number 8 denotes the VRC track with 
P .  Rewriting Eqs. (20) and (21), 

e ,  = S, @ e,, and (29) 

[ I  T " i ] - ' ( ~ ,  0 T-~s , )  if i # j  # 8, 

S, @ T"S, if j = 8  ori .  (30) 
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In  case of i = j ,  the single erasure  error,  the  error  pattern 
e, is given by S,; however,  the computation for e2 should 
return e, = 0. Otherwise,  either  the  erasure  pointer is in 
error  or  some  uncorrectable  error is detected.  Equation 
(30) for e, can be rewritten  as 

e2 = M ~ J S ,  0 T - ~ s , ] ,  

where 

The matrix Mj-, can be computed from Tj“ for j - d 
= 1 ,  2, 3, ---, 6, 7. Table 3 gives these M matrices for all 
j - i values using the specific companion  matrix T of the 
ORC tape application. 

Equation (30) can be realized in the following man- 
ner: SR2 with S, shifted i times  yields T”S,. Figure 9 
gives the block  diagram of the circuit which computes e, 
and e, from inputs S,, and  the  number j - i. The 
blocks Mj-, in Fig.  9 for j - i = 1 ,  2 , .  . ., 6, 7 are exclu- 
sive-or networks realizing multiplication by the  respec- 
tive  matrix Mj-i of Eq. (32) as given in Table 3. Each of 
the eight outputs of an Mj-, block is the modulo-2 sum 
of selected  inputs indicated  by 1’s positions in the  corre- 
sponding  row in matrix Mj-i .  

Summary 
The optimal  rectangular code satisfied the  constraints of 
the  standard 9-track  format of +-inch magnetic tapes.  It 
also meets  the  error-correction  requirements  for  the 
6250-bpi  density tape application with high-speed imple- 
mentation. Data is recorded in the conventional manner 
with one VRC track. A check  byte is introduced for 
every  code word. The orthogonal  symmetry in the parity 
check matrix  allows the  check  byte be generated  as  the 
information bytes  and their  parities (VRC) are being 
recorded.  Hence,  the encoding process  does not require 
a buffer. 

Error  correction is performed on  each  code word 
while the next code word is being received. The  code 
corrects any error  pattern in any single track.  It  also 
corrects  any  error  patterns confined in two known erro- 
neous  tracks indicated by the  erasure  pointers. In addi- 
tion, the  code  detects  an estimated 96.5% of all possible 
errors while providing  single-track error  correction;  cor- 
rects wrong erasure pointer in case of a single erasure 
error;  and can detect  99.998% of all errors if operated 
for  detection only. The  amount of encoding and decod- 
ing hardware needed is modest. 

The general results of this paper  are applicable to any 
set of parallel channels.  For n, parallel channels,  the 
code  requires  one check character  for n2 (n, < nl) infor- 
mation characters.  One of the n, channels is used for 

I O R  

\ X 2-way & gates 

Figure 9 Double  erasure decoding  circuit. 

transmitting  the VRC.  The  check  character is computed 
using a shift register connected according to  an irreduci- 
ble polynomial of degree n, - 1 in the  same  manner  as it 
is illustrated here  for  the  case n, = 9.  The proofs of theo- 
rems I and 2 apply in the general case using the opera- 
tions involving elements of GF(2”’”). 
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