Dynamic Response of Self-acting Foil Bearings

Abstract: A new approach to the analysis of wide foil bearings is investigated. The equation of motion for a finite length of tape is
coupled to the transient lubrication equation for the air film between the tape and the recording head. Compressibility and slip flow are
retained in the fluid mechanics equation; flexural rigidity and high-speed dynamic effects are retained in the tape equation. The steady-
state solution to the coupled equations is obtained as the limiting case of the transient initial value problem. Describing the system
equations relative to the undeflected tape (as opposed to conventional foil-bearing theory, which uses the head as the reference
surface) permits investigation of noncircular head geometries. In addition, wave propagation effects in the tape and the interaction of

waves in the tape with the air-bearing region may be studied.

Introduction

Development of digital magnetic recording devices using
flexible media as the recording surface is dependent on
accurate positioning of the recording element relative to
the medium. The demands of high-density recording
with a high data transfer rate require that the separation
between head and medium be very small (<1.25 pum)
while the head-to-medium velocity must be large (>2.5
m/s, in some cases). To achieve these goals with
reasonable longevity of the recording medium, a hydro-
dynamic air bearing can be used to provide a controlla-
ble separation of the head and medium with, in the ideal
case, no contact between the two.

Although the configurations of flexible-media record-
ing devices may be quite complicated, it is usually possi-
ble to formulate a system of equations that can be ex-
pected to adequately describe the elastohydrodynamic
interaction of the device. Often the elasticity equations
describing the motion of the medium, or the fluid me-
chanics equations describing the behavior of the air
bearing, can be solved independently to obtain informa-
tion about the system behavior. To predict the spacing
between a head and a flexible medium requires the si-
multaneous solution of the coupled system of equations,
however, and it is in this area that significant difficulties
occur, because of the strong interaction of the system
equations.

In recent years, a relatively large amount of literature
[1-12] has been devoted to the solution of foil-bearing
problems in which the flexible medium is wrapped
around a circular cylinder. The elasticity equations de-
scribing the motion of the medium and the lubrication
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equation for the air film are written in a coordinate sys-
tem attached to the surface of the cylinder, following the
derivation given by Barlow [1]. Thus, a tractable mathe-
matical problem is obtained if the cross section of the
cylinder be either circular or composed of circular arcs
[5]. Otherwise, the mathematical difficulties inherent in
the problem formulation prohibit convenient analysis.

Figure 1 illustrates the geometry of an interface be-
tween head and tape typical of 4-inch (1.27 cm) tape
drives in computer systems. It is generally assumed that
the width of the head and tape is sufficiently large to in-
hibit side flow in the air-bearing region; thus, the un-
knowns are defined as functions of a single spatial coor-
dinate. The quantity that is generally of most interest in
such problems is the steady-state separation between the
head and the tape, dependent on the head shape and on
a host of parameters describing the medium and the air
film. To obtain the solution of this problem, previous
investigators have derived the steady-state equations for
the tape shape and for the air film in a coordinate system
relative to the circular head, and have then solved the
steady-state equations numerically to obtain the separa-
tion between head and tape.

The problem formulation and solution procedure pre-
sented in this paper differ from conventional foil-bearing
theory in four respects. First, the equations of motion
for the tape are not written relative to the head; instead,
the undeflected tape (in the absence of the head) is used
as a reference surface. Second, the inertial terms in the
tape equation arising from the axial motion of the tape
are retained in the analysis. Third, a finite segment of the
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Figure 1 Geometrical aspects of the interface between head
and tape in typical #-inch (1.27 cm) tape drive.

tape with appropriate boundary conditions is considered,
rather than the usual asymptotic foil boundary condi-
tions. Finally, all time-dependent terms are retained in
both the tape and lubrication equations. The solution
then consists in prescribing some arbitrary initial condi-
tions and numerically tracking the complete dynamic
transient problem to the final steady-state solution.

For large penetrations of the head into the tape, the
tape model, linearized on the assumption of small deflec-
tions, might be expected to predict the tape shape less
accurately than does the usual foil-bearing theory. How-
ever, for tape deflections typical of tape-drive configura-
tions, the model is expected to be adequate, and, more-
over, offers the ability to analyze noncircular head ge-
ometries. In addition, we gain the ability to analyze
wave-propagation effects in the axially moving tape and
to analyze the interaction of waves in the tape with the
air-bearing region.

Problem formulation

We consider a finite-length foil moving at constant ve-
locity between two supports, as shown in Fig. 1. The
deflection of the foil away from its equilibrium position
is denoted by u(x, ). Swope and Ames [13] have de-
rived the equations of motion for such a foil (disregard-
ing flexural rigidity) and have presented numerous ana-
lytical results depicting wave-propagation effects, which
will be referred to subsequently. An alternate derivation,
including the effects of flexural rigidity, has been given
by Mote [14]. We wish to retain flexural rigidity in the
analysis and, hence, use that equation to describe the
dynamics of the moving foil:

m(u, + 2Vu,, + Vu,,) + du, + Elu Tu

XXX - xx

=p—p, (1
where m is the mass density of the foil per unit length, V'
the foil velocity, E the modulus of elasticity, / the mo-
ment of inertia of the cross section, T the tape tension, d
a damping coefficient, p the force per unit length, and p,
the ambient pressure.

The force acting on the tape p(x, t) is the pressure
developed in the air-bearing region L, = x = L,. Outside
of this region the pressure is taken to be ambient. The
geometry of the head is described by &(x), representing
the penetration of the head past the equilibrium tape
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position. The separation between the head and the tape
is the region L, = x = L, is then

hix,t) =u(x,t) —8(x), L=x=1L, 2)

This separation is then used in the one-dimensional tran-
sient Reynolds equation to compute the pressure p(x, t)
in the air-bearing region,

(K’pp,), + 6\apa(K'p,), = 6uV (ph), + 12 u(ph),, (3)

where \, is the mean free path length at ambient pres-
sure p,, and u is the air viscosity. Thus, we retain terms
corresponding to compressibility and slip flow in the
transient Reynolds equation.

Boundary conditions for the problem are taken to be

0,t) =0, 0,t)=0,

u(0,¢) u,, (0,1) @)
u(L,t) =0, U, (L, 1) =0,

and

p(x,t) =p, forO0<x=L,andL,=x=0L, (5)

that is, we assume simply supported boundary condi-
tions for the tape and assume that the pressure is am-
bient at the edges of the head.

Initial conditions are taken as

u(x,0) =a(x), p(x,0) = p,, (6)

where i (x) is chosen so that & (x, 0) is positive valued in
the range L, = x = L,, and p, is a constant pressure, gen-
erally assumed to be above ambient pressure.

Numerical solution of equations

The system of equations (1)-(6) is solved by substitut-
ing difference operators for the derivative operators and
then solving the resultant difference equations. To ac-
complish this, a uniform grid of mesh Ax is imposed on
the spatial domain 0 = x < L. The time domain is also
made discrete by choosing a time step Atz. The coupling of
Egs. (1) and (3) through Eq. (2} is accomplished by
solving the difference equation corresponding to Eq. (3)
at a given time step, using the existing solution for Eq.
(1), and then solving the difference equation correspond-
ing to Eq. (1), using the new solution for Eq. (3). This
process is repeated for successive time steps.

Consider Eq. (1) first. Let the space mesh points be
indexed by i, where i =0, 1, 2, -+, n and L = nAx. Then,
u} = u(iAx, jAt) is the value of u at the ith space point
and jth time step. The difference approximations used are

_ J+1 J+1 J+1 2
Upe = (ui+1 2“1’ + ui—l) /Ax,

u,= (" —2ul + u )/ AP,

— J+1 . =1 — J+1 j-1
uy, = (u, —uwy,, —w;, +ui_,)/4AxAt,
— ¥l J+1 J+r Jj+ j+1 4
Upprw = (Ui, — 4uy, + OU; 4ul’ +ul,)/Ax. (7)
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When these are substituted into Eq. (1) and like terms
are collected, the following linear implicit difference
equation results:

duff; + auffll + buf+1 + cuij:l1 + dul.j:; = epl.]url +F. (8)

Here a, b, ¢, d, and e are constants independent of j de-
rived from the mesh size (Ax, At) and coefficients of Eq.
(1), and F contains values of u for time steps j and j — 1.

The pressure values pij *! are obtained from the solution
of the difference equation corresponding to Eq. (3), ex-
cept for the space points that lie outside the range L, =
iAx = L,. The value of pl.j+1 outside this range is taken to
be the ambient pressure p,. The values of u’"', ul*", 1™
and “i:ll are known and depend on the type of boundary
condition imposed at the ends of the tape. Thus, the dif-
ference equations (8) form a qui-diagonal system of
linear equations, in which the only nonzero terms of the
coefficient matrix are located on the five main diagonals.
This system can be solved very efficiently by a recursive
technique. The solution at each time step is derived from
the solution at the preceding two time steps. For j= 1 the
solutions for the preceding steps j=0 and j=—1 are both
set equal to the assumed initial displacement f(x) of the
tape. This is equivalent to the initial conditions

u(x, 0) = u(x) and u,(x, 0) = 0.

Equation (3) is treated in a similar way. The difference
approximations used are

p.= (Pl —pi*})/ 2Ax,

p,= (p7" —pl) /A,

Pee= (P — 207" + Pl /00,

h,= (W, —h_)/2Ax,

ko= (k) — K" /At

B = ul — 8(iAx). (9)

If the above Eqs. (9) are substituted into Eq. (3), the
resulting difference equation is not linear and thus is in-
convenient to solve. The equation can be linearized by
using an approximation at the old time step j instead of
the new time step j+ 1 in those terms involving products
of p and its derivatives. To see how this is done, consider
the term (h3ppx)r in Eq. (3). The result after carrying
out the differentiation is 34°h pp, + K'p,p, + K'pp,,. If
p’l: is used for p instead of pﬁ“ and a difference approxima-
tion involving j instead of j + 1 used for p,, then the re-
sult is linear in those values of p at time step j+ 1. The
difference approximations for # and its derivatives are
known quantities because they involve « at time steps j
and j — 1. The difference equation that results after the
above linearization has the form

Apltl+Bpl +Cplll=¢G. (10)

i-1 i+1
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Here 4, B, C and G involve values of p at step j and
values of k at steps j and j — 1. With suitable boundary
values, the difference equation (10) can be solved by
solving a tri-diagonal system of linear equations by a re-
cursive technique.

The accuracy with which the solution of the difference
equations (8) and (10) represent the solution of (1) —
(3) is difficult to determine. One indication of the accu-
racy is the discretization errors of the difference opera-
tors used. The difference formulas (7) give order Ax®
and A7 discretization errors for the space and time de-
rivatives, respectively, while formulas (9) give order Ax®
in the space derivatives but only order ¢ in the time de-
rivative. Another source of error is the “coupling error”
which comes about because Eqs. (8) and (1) are solved
independently at each time step. These equations were
chosen because of their simplicity and ease of program-
ming, although a penalty in computation efficiency is
paid because of the requirement of a small Az, It should
be possible to achieve a higher order of accuracy in (10)
by using the averaging technique of the Crank-Nicolson
method.

In the results that follow, the appropriate space and
time steps, Ax and At, were determined by numerical
experiment. The most critical is the value of Af. We
found that the solution of the difference equations (8)
and (10) was stable for values of At substantially larger
than that required for accuracy. To determine a suitable
value of At for a given choice of Ax, a “‘steady state”
solution was calculated using a relatively large value for
At. Next, the solution was continued for smaller As. If
the steady state achieved in the first run changed sub-
stantially, the solution was continued for smaller Az. In
all cases only one or two refinements of Az were neces-
sary to find one which caused no further change in the
steady state. Finally, the problem was rerun from the
initial state using the value Ar as found above. In all
cases the steady state obtained in the final run agreed
with that obtained by At refinement.

The dependence of the steady-state solution on the
time step for large values of Ar is evidently due to the
technique used to couple the two equations numerically.
This would not be anticipated if the equations are com-
bined into a single partial differential equation before
numerical solution, or if a more accurate coupling tech-
nique is utilized in place of the simple scheme used here.

Simulation results

To establish the validity of the finite-difference formula-
tions and the solution procedure, the tape-motion equa-
tion (1) and the lubrication equation (3) were first
solved separately without interaction and compared with
known analytic solutions. A good correlation with exact
solutions led to increased confidence that the interactive
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Figure 2 Numerical solutions for two cases of the wave pro-
pagation in a moving tape showing the motion of an initial dis-
turbance. (a) Both tape and reference frame stationary. (b)
Tape in axial motion relative to the reference frame.

system could be solved. Results are first presented for
the separate solutions, followed by examples of the in-
teractive problem.

% Moving tape transient analysis

Because the tape is in axial motion relative to the refer-
ence frame, the observed transient vibration of the tape
is somewhat different from that observed in a reference
frame fixed relative to the tape. As an illustration of this,
consider the motion of an initial disturbance in the tape
shape as depicted in Fig. 2. Flexural rigidity is neglected
to compare with the results of Swope and Ames [13].
At time = 0, the tape is deformed into a “bump” shape
in the center. The tape is then released, and the resulting
transient motion is allowed to propagate through the
medium. If both the tape and the reference frame are
stationary, the bump separates into two similar bumps of
equal amplitude (3 the amplitude of the original bump)
moving in opposite directions at the same velocity, ¢ =
V' T/m. If the tape is moving relative to a fixed frame,
however, the wave-propagation velocities in opposite
directions are different (¢ + v and ¢ — v in the positive
and negative x directions, respectively). Further, the
amplitudes of the disturbances are no longer equal. The
high-speed disturbance has a lower amplitude than the
low-speed disturbance, as the numerical solution shown
in Fig. 2 indicates. Reference [13] contains a more de-
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tailed discussion of this type of transient behavior. If
flexural rigidity is included in the analysis, the propaga-
tion velocities become wavelength dependent, and the
resulting dispersion causes a change in the shape of the
bumps as they move away from the initial state.

% Lubrication equation transient analysis

A special case of Eq. (3) must be considered to derive
analytic results for comparison with the numerical solu-
tion. (We are not aware of any analytic solutions of the
transient Reynolds equation that retain both compressi-
bility and slip flow.) The problem solved here is that of
parallel plane surfaces in relative motion. At time zero,
the pressure is assumed to be uniformly higher than the
ambient pressure along the entire bearing surface; the
transient pressure decay to ambient is then calculated.

———]

I |
|
|

1
|
ko {
]
| |
1 I v
x=0 x=1L
Initial condition: t =0, p = p;
Boundary condition: x=0 -
=1L f P =Pa

Even with /1 (x) assigned to be a constant k,, the differ-
ential equation (3) is still nonlinear in p(x). We can ob-
tain an analytic solution only by linearizing the equation;
the slip-flow term is also neglected for further simplifica-
tion. Thus, the differential equation (3) becomes

(Hpp,) = 6V (ph), + 12u(ph),. (11)
The solution to the linearized equation is

plx, ) —p, @ & nll+(=1)"" exp(=A/2)]
TP 2

A a
372

e

S-S

X exp(—Ar) exp( ) sin(nmx/ L),

X
L
where

N=(V/D(A/8) + (n’7"/2M)],
A=6uVL/ph. (12)

These approximations imply that compressibility effects
are small and that slip flow is negligible. Thus, it is ex-
pected that the analytic solution given above will be a
very close approximation to the numerical solution of
Eq. (3), providing the initial pressure differs only slight-
ly from ambient, and that 4, is sufficiently large so that
slip flow is negligible. Numerical results from Eq. (3)
are shown in Fig. 3. It was found that the analytic solu-
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Figure 3 Numerical results from Eq. (3), showing transient
pressure response between moving surfaces for cases (a) and
(b) of Fig. 2.

tion and numerical solution are in nearly exact agree-
ment, adding increased confidence in the transient finite
difference solution of Eq. (3). As Fig. 3 indicates, when
there is no relative motion between the two surfaces (V
= (), the pressure symmetrically approaches the am-
bient value as ¢ increases. With relative motion, the
moving wall draws in the effect of the entrance boundary
condition so as to reduce the pressure to the ambient
value rapidly and asymmetrically.

s Coupled system equations

The initial concerns in attempting to solve the coupled
system of transient equations were 1) whether the solu-
tion would converge to a steady-state solution, and 2)
how well the steady-state solution would agree with
conventional foil-bearing theory. Figure 4 illustrates the
transient approach to steady state for a typical case,
with a circular head of radius r in which the initial condi-
tions are chosen from simple theory. (Table 1 lists the
various parameters used for this figure; subsequent fig-
ures use the same parameters except as noted in the
text.) The spacing between head and tape at time t = 0
was taken to be a constant, equal to, in S. I. metric units,

hy=0.0161r(6uV/ T)*

or
0.643 r(6uV/ T)7 in conventional units. (13)

The pressure at time ¢ = 0 was also assumed to be con-
stant:

po=p,+T/r (14)
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Figure 4 Development of steady-state solution based on cou-
pled system of transient equations. (a) Solution for pressure
over a circular head. (b) Solution for tape spacing over circular
head.

Table 1 Simulation parameters, Figures 4-8.

Tape parameters:
m {density)

I

5.27 x 107" kg/m (2.95
x 107 Ib/in)
EI (flexural rigidity) 1.52 X 107> N-m (1.35 % 10™* Ib-in.)
T (tension) 1
V (velocity) 2

.78 X 107" N/m (1.58 Ib/in)
.54 m/s (100 in./s)

i

Lubrication parameters:
u {viscosity) =1.81 X 10™* poise (2.62
x 107 Ib-s /in.?)

P, (ambient pressure) = 8.41 x 10" Pa (12.2 Ib/in.?)
a

Head and tape geometry:
L =843 cm (3.320 in.)
L, =3.47 cm (1.365 in.)
L,=4.97 cm (1.955 in.)
8(x) is a circular arc, radius r = 2.04 cm (0.804 in.)
8ax = 0.635 cm (0.250 in.)

Finite difference parameters:
Ar=5x10"s
Ax = 0.127 mm (0.005 in.)

With these initial conditions, a relatively mild transient
response results because the steady-state solution is not
far removed from the starting condition. The final spac-
ing and pressure agree quite well with expected results
from foil-bearing theory, even though the penetration of
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Figure 6 Dynamic response of the system due to a sudden
reduction of tension. Data are for tape spacing over head.

the head into the tape is relatively large [0.635 cm (0.25
in.) or 6000 times the final uniform spacing of &~ 1.07
um (42 uin.)] The final spacing in the uniform region is
smaller than the initial condition given by Eq. (13) be-
cause of flexural rigidity and slip flow. Each of these
effects serves to reduce the spacing by approximately
0.125 um (5 win.) for this case. If they are neglected
[I=0inEq. (1) and N=0in Eq. (3}], the steady-state
spacing is calculated as 1.26 um (50.4 win.), approxi-
mately 0.025 um (1 pin.) less than the classical spacing
given by Eq. (13). This difference of approximately two
percent from classical theory in the steady-state uniform
spacing region is typical of cases that we have investi-
gated to date. From a practical viewpoint, the difference
is insignificant, because experimental results generally
involve substantially greater errors. Recent data using
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white-light interferometry indicate that the measured
spacing for the case shown in Fig. 4 is approximately 10
percent less than the calculated value; however, this is
probably within the range of experimental error. Further
comparisons of steady-state results are presented in a
separate paper in this issue [15].

The transient response shown in Fig. 4 also provides a
comparison with existing dynamic foil-bearing theories.
The wavefront that propagates through the bearing re-
gions is seen to have a velocity of approximately 1.25
m/s (50in./s), or 3V, for this case. This is the same prop-
agation velocity obtained from theoretical models that
neglect the inertia of the foil. The initial conditions
chosen for Fig. 4 were sufficiently close to the actual
steady-state solution that tape inertia effects were not an
important factor in the transient response in this case.

Choice of initial conditions that depart markedly from
the expected steady-state conditions can lead to very
different transient response. For example, if we consider
the previous case with the initial pressure set equal to
ambient pressure, the transient response shown in Fig. 5
results. In this case, the tape moves rapidly toward the
head because there are no pressure forces acting on the
tape. This movement gives rise to a squeeze film that
quickly builds up pressure to prevent the tape from con-
tacting the head. The resulting pressure is more than
sufficient to prevent contact, and a symmetric oscillatory
squeeze film develops, having a period of approximately
four us. After about 100 us the tape axial motion intro-
duces some asymmetry into the spacing profile, and the
resulting transient approach to steady state becomes
quite complicated. After 10 ms the solution reaches the
same steady-state condition as the previous case. The
period of oscillation of this squeeze film and the nature
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Figure 7 Computation at 0.2-ms intervals for wave reflection at the head when a wave is introduced in the tape. (a) Tape displace-

ment. (b) Spacing over head.

of the subsequent transient response to steady state are
dependent on the foil density and cannot be predicted by
massless foil theories.

It is apparent from these results that the choice of a
suitable time-step to model the transient behavior de-
pends significantly on the nature of the response. If
squeeze film effects are important, then a small time-step
is required to simulate this behavior; otherwise, a larger
time-step will adequately describe the system response.
In the case of Fig. 4, a time-step of 0.5 us was used, and
no significant changes in spacing were noticeable in the
computed values after 10 ms. Thus, 20 000 iterations
were required to reach steady-state conditions. The
number of iterations and the total computer time (about
five minutes on an IBM 370/195) to reach the steady-
state solution are significantly smaller than we have been
able to achieve by other methods, such as relaxation of
the steady-state versions of Eqs. (1) and (3). Thus, it
has been our experience that tracking the dynamic solu-
tion to steady state is more efficient computationally
than attempting to solve the steady-state equations di-
rectly.

In addition to achieving the greater efficiency in deriv-
ing steady-state spacing and pressure profiles, the tran-
sient finite-difference approach is immediately usable for
the investigation of many interesting problems involving
coupled dynamics of the tape and air bearing. Having
reached a steady-state condition, any of the system pa-
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rameters can be perturbed to study dynamic interac-
tions. For example, Fig. 6 illustrates the dynamic re-
sponse of the system due to a sudden reduction of the
tension; the steady-state solution from Fig. 4 was used
as the starting condition.

Other transient conditions of interest involve the dy-
namics of the tape away from the head, and the interac-
tion of waves in the tape with the air bearing. For exam-
ple, the relative stability of various head configurations
can be investigated by introducing a wave in the tape
and observing the details of the wave reflection at the
head. In Fig. 7, the steady-state solution from Fig. 4 is
again used as an initial condition for such a case. At
t = 0, the steady-state tape shape is perturbed by add-
ing a sine wave of amplitude o and wavelength X at the
tape leading edge. For this particular choice of parame-
ters, the propagation velocity of the disturbance in the
tape is approximately VT /m = 116 m/s (4550 in./s).
Thus, the disturbance reaches the head and completes
its first reflection in about 350 us. The wave in the tape
reflects with opposite sign, as is typical of waves in a
string reflecting off a pinned boundary. As the wave ar-
rives at the head leading edge, the tape lifts abruptly,
creating a sharp disturbance, which then begins to pro-
pagate through the air-bearing region. The propagation
velocity in the air-bearing region is approximately V' /2 =
1.25 m/s (50 in./s), much lower than the tape wave
speed. Before the disturbance has progressed }through
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Figure 8 Solution for the case of a half-cycle, sine-wave head
geometry. (a) Pressure over head. (b) Tape spacing over head.

the bearing, the wave in the tape thus has sufficient time
to traverse back down the tape, reflect off the leading
boundary, and traverse back to disturb the bearing region
once again. Figure 7 shows that the initial disturbance
has still not been transmitted by the air-bearing region
by the time the fifth incident wave disturbs the iniet re-
gion. Parameters of interest in such a simulation include
minimum and maximum spacing between head and tape
during the interaction, and the transmissibility of air-
bearing design (e.g., the propagation of the incident dis-
turbance transmitted through the bearing region).

Noncircular head surfaces may be easily investigated.
As a final example, a half-cycle, sine-wave head shape
is chosen to closely resemble that of the circular head in
Fig. 4, such that 8(L,), 8(L,), and the maximum pene-
tration 8., are identical. Initial conditions are identical
to Fig. 4 as well. Figure 8 illustrates the solution of this
initial value problem. The locally smaller radius of curv-
ature results in a lower, and shorter, region of uniform
spacing than the circular head, and the pressure rise is
somewhat greater.

Conclusions

The techniques utilized here appear to offer greater flex-
ibility than conventional foil-bearing theory in the analy-
sis of head-to-tape interfaces of the type shown in Fig. 1.
First, the choice of reference frame simplifies the equa-
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tions of motion, permitting an analysis of complex head
shapes and allowing the incorporation of tape inertial
properties generally neglected in foil-bearing theory.
Second, obtaining the steady-state solution as the limit-
ing case of an initial value problem is advantageous,
even if the steady-state solution is all that is desired.
Uniqueness of steady-state solutions to noulinear equa-
tions, and the stability of these solutions, is of particular
concern if the equilibrium state is found from the steady-
state equations alone. Incorporating the time-dependent
terms and solving the transient problem alleviates this
concern. Finally, the ability to investigate dynamic inter-
actions of wave propagation in the tape with the air-
bearing region is expected to provide many new insights
into the transient behavior of foil bearings. Comprehen-
sive results in this area have not yet been generated but
will be explored in future work.
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