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Dynamic  Response of Self-acting Foil Bearings 

Abstract: A new approach to the analysis of wide foil bearings is investigated. The equation of motion  for a finite  length  of  tape  is 
coupled to the transient  lubrication  equation for the  air film between the tape  and the recording  head.  Compressibility and slip  flow are 
retained in the fluid mechanics equation; flexural  rigidity and high-speed  dynamic  effects are  retained in the  tape  equation.  The  steady- 
state solution to the coupled equations is obtained as the limiting case of the transient initial value problem.  Describing  the system 
equations  relative to the undeflected  tape (as opposed  to  conventional  foil-bearing  theory,  which  uses  the head as the reference 
surface) permits  investigation of noncircular head geometries. In addition, wave  propagation  effects in the  tape and the  interaction of 
waves in the tape with  the  air-bearing  region may be studied. 

Introduction 
Development of digital magnetic  recording devices using 
flexible media as  the recording surface  is  dependent  on 
accurate positioning of the recording  element  relative to 
the medium. The  demands of high-density recording 
with a high data  transfer  rate  require  that  the  separation 
between  head and medium be very small (< 1.25 pm)  
while the head-to-medium velocity must be  large (B2.5 
m/s,  in some  cases). To achieve these goals with 
reasonable longevity of the recording  medium, a hydro- 
dynamic  air  bearing can be  used to provide a controlla- 
ble separation of the head and medium  with, in the ideal 
case,  no  contact  between  the  two. 

Although the configurations of flexible-media record- 
ing devices may be quite complicated, it is usually possi- 
ble to formulate  a system of equations  that  can  be  ex- 
pected  to adequately describe  the  elastohydrodynamic 
interaction of the  device.  Often  the elasticity equations 
describing the motion of the medium, or the fluid me- 
chanics equations describing the  behavior of the air 
bearing, can be  solved  independently to obtain  informa- 
tion about  the  system behavior. To  predict the spacing 
between a head and a flexible medium requires  the si- 
multaneous  solution of the coupled system of equations, 
however,  and  it is in this area  that significant difficulties 
occur,  because of the  strong  interaction of the  system 
equations. 

In  recent  years, a relatively  large amount of literature 
[ 1-12] has been devoted  to the  solution of foil-bearing 
problems in which the flexible medium is wrapped 
around a circular  cylinder.  The elasticity equations  de- 
scribing the motion of the medium and  the lubrication 

I 

equation  for  the  air film are  written in a coordinate  sys- 
tem attached  to  the  surface of the cylinder, following the 
derivation given by Barlow [ 11. Thus, a tractable mathe- 
matical problem is obtained if the  cross section of the 
cylinder  be either  circular or composed of circular  arcs 
[SI. Otherwise,  the mathematical difficulties inherent in 
the problem  formulation  prohibit convenient analysis. 

Figure 1 illustrates the geometry of an interface  be- 
tween head and  tape typical of )-inch ( 1.27 cm)  tape 
drives in computer  systems.  It is generally assumed  that 
the width of the head and  tape is sufficiently large to in- 
hibit side flow in the air-bearing  region; thus,  the  un- 
knowns  are defined as functions of a single spatial coor- 
dinate.  The  quantity  that  is generally of most  interest in 
such problems is  the  steady-state  separation  between  the 
head and  the  tape,  dependent  on  the head shape  and  on 
a host of parameters describing the medium and  the  air 
film. To obtain  the solution of this problem, previous 
investigators have  derived  the  steady-state  equations for 
the  tape  shape  and ;or the air film in a coordinate  system 
relative to  the  circular  head,  and  have then  solved the 
steady-state  equations numerically to  obtain  the  separa- 
tion between head and tape. 

The problem  formulation and solution procedure pre- 
sented in this paper differ from  conventional foil-bearing 
theory in four  respects.  First,  the  equations of motion 
for  the  tape  are  not  written relative to  the  head;  instead, 
the undeflected tape (in the  absence of the  head) is used 
as a reference surface. Second,  the inertial terms in the 
tape equation  arising from  the axial motion of the  tape 
are retained in the analysis. Third, a finite segment of the 51 3 
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Figure 1 Geometrical  aspects of the  interface between head 
and tape in typical +inch ( 1.27 cm) tape  drive. 
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tape with appropriate boundary  conditions is  considered, 
rather  than  the usual asymptotic foil boundary  condi- 
tions.  Finally, all time-dependent terms are retained in 
both  the  tape  and lubrication equations.  The solution 
then  consists in prescribing  some arbitrary initial condi- 
tions  and numerically  tracking the  complete  dynamic 
transient problem to  the final steady-state solution. 

For large penetrations of the head into  the  tape,  the 
tape model,  linearized on  the  assumption of small deflec- 
tions, might be  expected  to predict the  tape  shape  less 
accurately  than  does  the usual foil-bearing theory.  How- 
ever,  for  tape deflections  typical of tape-drive configura- 
tions,  the model is expected  to be adequate,  and, more- 
over, offers the ability to  analyze  noncircular head  ge- 
ometries. In addition, we gain the ability to  analyze 
wave-propagation  effects in the axially moving tape  and 
to  analyze  the  interaction of waves in the  tape with the 
air-bearing region. 

Problem formulation 
We consider a finite-length foil moving at  constant ve- 
locity between  two  supports,  as  shown in Fig. l .  The 
deflection of the foil away  from  its equilibrium  position 
is  denoted by u ( x ,  t ) .  Swope  and  Ames [ 131 have de- 
rived the  equations of motion for  such a foil (disregard- 
ing flexural rigidity) and  have  presented  numerous  ana- 
lytical results depicting  wave-propagation  effects, which 
will be  referred to  subsequently.  An  alternate  derivation, 
including the effects of flexural rigidity, has been  given 
by Mote [ 141. We wish to retain flexural rigidity in the 
analysis  and,  hence,  use  that  equation  to  describe  the 
dynamics of the moving foil: 

m ( u ,  +  VU,, + V'u,J + du, + EZU,~,,  - Tu,, 
- - p - p a ,  ( 1 )  
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where m is the mass  density of the foil per unit  length, V 
the foil velocity, E the modulus of elasticity, I the mo- 
ment of inertia of the  cross  section, T the  tape  tension, d 
a damping coefficient, p the  force  per unit  length, and p a  
the ambient pressure. 

The  force  acting  on  the  tape p ( x ,  t )  is  the  pressure 
developed in the air-bearing region L, i x i L,. Outside 
of this region the  pressure  is  taken  to be ambient.  The 
geometry of the head is  described by 6 ( x ) ,  representing 
the  penetration of the head past  the equilibrium tape 

position. The  separation  between  the head and  the  tape 
is the region L, i x 5 L, is then 

h ( x ,  t )  = U ( X ,  t )  - 6 ( x ) ,  L, 5 x 5 L,. (2) 

This  separation is then used  in the one-dimensional  tran- 
sient  Reynolds equation  to  compute  the  pressure p ( x ,  t )  
in the air-bearing  region, 

(h3pp,),  + 6 & ~ ~ ( h ' p , ) ,  = ~ c L V ( P ~ ) ,  + 12 C L L P ~ ) ~ ,  (3) 

where ha is the mean free  path length at  ambient pres- 
sure pa ,  and p is the  air viscosity. Thus,  we retain terms 
corresponding to compressibility and slip flow in the 
transient  Reynolds  equation. 

Boundary  conditions for  the problem are  taken  to be 

( 4 )  

and 

P ( X ,  t )  =Pa  f o r O i x 5  L 1 a n d L , 5 x i   L ,  ( 5 )  

that  is, we assume simply supported boundary  condi- 
tions  for  the  tape  and  assume  that  the  pressure  is  am- 
bient at  the  edges of the head. 

Initial  conditions are  taken  as 

u ( x ,  0) = a ( x ) ,  P ( X ,  0)  = Po,  (6  1 
where a ( x )  is chosen so that h ( x ,  0)  is positive valued in 
the range L, 5 x 5 L,, and p o  is a constant  pressure, gen- 
erally assumed  to be above  ambient  pressure. 

Numerical solution of equations 
The  system of equations ( 1 ) - ( 6 )  is solved by substitut- 
ing difference operators  for  the  derivative  operators  and 
then solving the  resultant difference equations. To ac- 
complish  this,  a uniform grid of mesh Ax is imposed on 
the spatial  domain 0 5 x 5 L. The time domain is also 
made  discrete by choosing  a  time step At. The coupling of 
Eqs. . ( 1 )  and ( 3 )  through Eq. (2) is accomplished by 
solving the difference equation  corresponding  to  Eq. (3 ) 
at a given  time step, using the existing  solution for Eq. 
( 1 )  , and  then  solving the difference equation  correspond- 
ing to  Eq. ( l ) ,  using the new  solution for  Eq. ( 3 ) .  This 
process is repeated  for  successive time steps. 

Consider  Eq. ( 1 )  first. Let  the  space mesh points be 
indexed  by i, where i = 0, 1 ,  2, ' . ', n and L = nAx. Then, 
u: = u( iAx,   jAt )  is the value of u at  the ith space point 
and j th time step.  The difference approximations used are 
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When these  are  substituted  into  Eq. ( 1  ) and like terms 
are  collected,  the following linear implicit difference 
equation results: 

Here a, b, c ,  d, and e are  constants independent of j de- 
rived from  the mesh  size ( A x ,   A t )  and coefficients of Eq. 
( l ) ,  and F contains values of u for time s teps j   andj -  1. 

The  pressure values p:" are obtained  from the solution 
of the difference equation corresponding to  Eq. ( 3 ) ,  ex- 
cept  for  the  space points that lie outside  the range L, 5 
iAx 5 L,. The value of p:" outside this  range is taken  to 
be  the ambient pressure pa.  The values of u z ' ,  u?', uj," 
and u z i  are known  and depend  on  the  type of boundary 
condition  imposed at  the  ends of the tape. Thus,  the dif- 
ference equations (8) form a qui-diagonal system of 
linear equations, in which the only nonzero  terms of the 
coefficient matrix are located on  the five main diagonals. 
This  system can  be  solved  very efficiently by a recursive 
technique. The solution at each  time step is derived  from 
the solution at  the preceding  two  time steps.  For j =  1 the 
solutions for  the preceding steps j =  0 and j=-1 are  both 
set equal to  the  assumed initial displacementf(x) of the 
tape. This is equivalent to  the initial conditions 

u(x ,  0) = G(x) and u,(x, 0) = 0. 

Equation ( 3 )  is treated in a similar way. The difference 
approximations  used are 

If  the  above Eqs. (9)  are  substituted  into Eq. (3) ,  the 
resulting  difference equation is not  linear  and thus is in- 
convenient to solve. The equation can  be linearized  by 
using an approximation  at the old time step j instead of 
the new time step j + 1 in those  terms involving products 
of p and its  derivatives. To  see how  this is done,  consider 
the  term ( h3pp,), in Eq. (3) .  The result after carrying 
out  the differentiation is 3h2h,pp, + h3p,p, + h3pp,,. If 
p:  is used for p instead of p?' and a difference  approxima- 
tion involving j instead of j + 1 used for p,, then  the re- 
sult is linear in those  values of p at time step j + 1. The 
difference  approximations for h and its derivatives are 
known  quantities because they  involve u at time steps j 
and j - 1 .  The difference equation  that  results  after  the 
above linearization has  the  form 

Here A ,  B ,  C and G involve  values of p at  step j and 
values of h at  steps j and j - 1. With suitable  boundary 
values,  the difference equation ( 10) can  be solved  by 
solving a tri-diagonal system of linear equations by  a re- 
cursive technique. 

The  accuracy with which the solution of the difference 
equations (8) and (10) represent  the solution of (1)  - 
( 3 )  is difficult to determine. One indication of the  accu- 
racy is the discretization errors of the difference opera- 
tors used. The difference formulas ( 7 )  give order Ax2 
and At2 discretization errors  for  the  space  and time de- 
rivatives,  respectfvely, while formulas (9) give order Ax2 
in the  space  derivatives but only order t in the time de- 
rivative. Another  source of error is the "coupling error" 
which comes  about  because  Eqs. ( 8 )  and ( 1 )  are solved 
independently at  each time step.  These  equations  were 
chosen  because of their simplicity and ease of program- 
ming, although a penalty in computation efficiency is 
paid because of the requirement of a small At ,  It  should 
be  possible to  achieve a higher order of accuracy in (10) 
by using the averaging technique of the  Crank-Nicolson 
method. 

In  the  results  that follow, the  appropriate  space  and 
time steps, Ax and At ,  were determined by numerical 
experiment.  The most  critical is the value of At .  We 
found that  the solution of the difference equations (8) 
and (10) was stable  for values of At substantially  larger 
than  that required for  accuracy. To determine a suitable 
value of At for a  given choice of Ax, a "steady  state" 
solution was calculated using a  relatively large value for 
At .  Next,  the solution  was continued  for smaller At .  If 
the  steady  state achieved in the first run  changed  sub- 
stantially, the solution was continued for smaller At. In 
all cases only one  or  two refinements of At were neces- 
sary to find one which caused  no  further  change in the 
steady  state.  Finally,  the problem was rerun from the 
initial state using the value At as found above.  In all 
cases  the  steady  state obtained in the final run  agreed 
with that obtained by At refinement. 

The  dependence of the  steady-state solution on the 
time step  for large values of At is evidently due  to  the 
technique used to couple the  two  equations numerically. 
This would not  be  anticipated if the  equations  are  com- 
bined into  a single partial differential equation before 
numerical  solution, or if a  more accurate coupling  tech- 
nique is utilized in place of the simple scheme used  here. 

Simulation  results 
To establish  the validity of the finite-difference formula- 
tions and  the solution procedure,  the tape-motion equa- 
tion ( l ) and  the lubrication  equation ( 3 )  were first 
solved  separately  without  interaction  and compared with 
known  analytic  solutions.  A good correlation with exact 
solutions led to  increased confidence that  the  interactive 51 5 
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Figure 2 Numerical  solutions for  two  cases of the  wave pro- 
pagation in a moving tape showing the motion of an initial dis- 
turbance. (a) Both tape  and reference frame  stationary. (b)  
Tape in axial motion relative to  the reference frame. 

system  could be solved.  Results  are first presented  for 
the  separate solutions, followed by examples of the in- 
teractive problem. 

Moving tape  transient  analysis 
Because the  tape is in axial motion  relative to  the refer- 
ence  frame,  the  observed  transient vibration of the  tape 
is somewhat different from that  observed in a reference 
frame fixed relative to  the  tape.  As  an illustration of this, 
consider  the motion of an initial disturbance in the  tape 
shape  as  depicted in Fig. 2. Flexural rigidity is neglected 
to  compare with the  results of Swope  and  Ames [ 131. 
At time t = 0, the  tape is deformed into a “bump”  shape 
in the  center.  The  tape is then released,  and  the resulting 
transient motion is allowed to propagate  through the 
medium. If both  the  tape  and  the  reference  frame  are 
stationary,  the bump separates into two similar  bumps of 
equal  amplitude (i the amplitude of the original bump) 
moving in opposite directions at  the  same velocity, c = 
m. If the  tape is moving relative to a fixed frame, 
however,  the wave-propagation  velocities in opposite 
directions  are different ( c  + v and c - v in the positive 
and negative x directions,  respectively).  Further,  the 
amplitudes of the  disturbances  are  no longer  equal. The 
high-speed disturbance has a lower  amplitude  than the 
low-speed disturbance,  as  the numerical  solution  shown 
in Fig.  2  indicates. Reference [ 131 contains a more  de- 

tailed discussion of this type of transient behavior. If 
flexural rigidity is included in the analysis, the propaga- 
tion  velocities  become wavelength dependent,  and  the 
resulting  dispersion causes a change in the  shape of the 
bumps as they  move  away  from the initial state. 

Lubrication equation  transient unalysis 
A  special case of Eq.  (3) must  be considered  to  derive 
analytic results  for  comparison with the numerical solu- 
tion. (We  are not aware of any  analytic  solutions of the 
transient  Reynolds  equation  that retain both compressi- 
bility and slip flow.) The problem  solved  here is that of 
parallel plane surfaces in relative  motion. At time zero, 
the  pressure is assumed  to be uniformly higher than the 
ambient pressure along the  entire bearing surface;  the 
transient  pressure  decay  to ambient is then calculated. 

I”--- I ho 

I 
I 
I 

I I -V 
x = o  x =  L 

Initial condition: t = 0, p = pi  
Boundary condition: x = 0 1 

x = L  i P = P a  

Even with h (x) assigned to be  a constant h,, the differ- 
ential equation ( 3 )  is still nonlinear in p(x) .  We can ob- 
tain an analytic  solution  only by linearizing the  equation; 
the slip-flow term is also neglected for  further simplifica- 
tion. Thus,  the differential equation ( 3 )  becomes 

The solution to  the linearized equation is 

n [ l  + ( - l )n+l  exp(-A/2)] 
Pi - Pa 

- +” A n2 r r 2  

8 2 A  

x exp(-At) exp - - s in (nm/L) ,  c 3 
where 

A = (V/L) [ ( h / 8 )  + ( n 2 ~ * / 2 A ) ] ,  

These  approximations imply that compressibility  effects 
are small and that slip flow is negligible. Thus, it is ex- 
pected that  the  analytic solution  given above will be a 
very  close  approximation to  the numerical  solution of 
Eq. ( 3 ) ,  providing the initial pressure differs only slight- 
ly from  ambient,  and  that h, is sufficiently large so that 
slip flow is negligible. Numerical results  from  Eq. ( 3 )  
are shown in Fig. 3 .  It was  found that  the  analytic solu- 
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Figure 3 Numerical  results  from Eq. (3 ) ,  showing  transient 
pressure  response  between moving surfaces for cases (a) and 
(b)  of Fig.  2. 

tion and numerical  solution are in nearly exact agree- 
ment, adding  increased  confidence in the  transient finite 
difference  solution of Eq. ( 3 ) .  As Fig. 3 indicates, when 
there is no relative motion between the  two  surfaces ( V  
= 0) ,  the  pressure symmetrically approaches  the  am- 
bient  value as t increases. With relative  motion, the 
moving wall draws in the effect of the  entrance boundary 
condition so as to  reduce  the  pressure  to  the ambient 
value  rapidly  and  asymmetrically. 

Coupled  system  equations 
The initial concerns in attempting to solve the coupled 
system of transient  equations  were 1 )  whether the solu- 
tion would converge to a steady-state solution,  and 2 )  
how well the  steady-state solution would agree with 
conventional foil-bearing theory. Figure 4 illustrates the 
transient  approach  to  steady  state  for a  typical case, 
with a circular head of radius r in which the initial condi- 
tions are  chosen  from simple theory.  (Table 1 lists the 
various parameters used for this figure; subsequent fig- 
ures  use  the  same  parameters  except  as noted in the 
text.)  'The spacing between head and  tape  at time t = 0 
was taken  to be  a constant, equal to, in S. I. metric units, 

h, = 0.0161r(6pV/  T ) +  

or 

0.643  r (   6pV/  T )  f in conventional  units. (13) 

The  pressure at time t = 0 was also assumed to be con- 
stant: 

P,, = pa -k T l r .   ( 1 4 )  

(a )  - 20,000 

n ." 2 -  
B 10,000 - 

.e 0 
2 
2 

a - 2  

v 

61 
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2 -10,000 g - 
I I I I I a 

) 
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nils 

2 

1 

0 % 

Figure 4 Development of steady-state  solution  based  on  cou- 
pled system of transient  equations. (a) Solution for pressure 
over a circular  head. (b )  Solution  for  tape  spacing over  circular 
head. 

Table 1 Simulation  parameters,  Figures  4-8. 

Tape  parameters: 
m (density) = 5.27 x kg/m (2.95 

Et (flexural  rigidity) = 1.52 X N-m  (1.35 X Ib-in.) 
X Ib/in) 

T (tension) = 1.78 X 10" N / m  (1.58  Ib/in) 
V (velocity) = 2.54 m / s  (100 in./s) 

Lubrication  parameters: 
(viscosity) = 1.81 X poise (2.62 

Pa (ambient  pressure) = 8.41 X lo4  Pa  (12.2  Ib/in.*) 
X IO-' Ib-s/in.') 

Head  and  tape  geometry: 
L = 8.43  cm  (3.320  in.) 

L, = 3.47  cm  (1.365 in.) 
L, = 4.97  cm  (1.955  in.) 
6 ( x )  is a circular  arc,  radius  r = 2.04  cm  (0.804  in.) 
Smax = 0.635  cm (0.250 in.) 

Finite  difference  parameters: 
A r = 5 x  10"s 
Ax = 0.127 mm (0.005  in.) 

With these initial conditions, a relatively mild transient 
response  results  because  the  steady-state solution is not 
far removed  from the starting  condition. The final spac- 
ing and  pressure  agree quite well with expected  results 
from foil-bearing theory,  even though the  penetration of 51 7 
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Figure 6 Dynamic  response of the system  due  to a sudden 
reduction of tension. Data  are for tape spacing over head. 

the head  into the  tape is relatively large [0.635 cm  (0.25 
in.)  or 6000 times the final uniform  spacing of M 1.07 
pm (42 pin.)]  The final spacing in the uniform region is 
smaller than  the initial condition  given by Eq.  (13) be- 
cause of flexural rigidity and slip flow. Each of these 
effects serves  to  reduce  the spacing by approximately 
0.125 pm ( 5  pin.)  for this case. If they  are neglected 
[ I  = 0 in Eq. (1 ) and N = 0 in Eq.  (3 ) 1, the  steady-state 
spacing is calculated as  1.26 pm (50.4 pin.), approxi- 
mately  0.025 pm  (1  pin.) less than  the classical  spacing 
given by Eq.  (13).  This difference of approximately  two 
percent from  classical theory in the  steady-state uniform 
spacing region is typical of cases  that we have investi- 
gated to  date.  From a  practical  viewpoint, the difference 
is insignificant, because  experimental results generally 
involve  substantially greater  errors.  Recent  data using 51 8 
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white-light interferometry  indicate that  the  measured 
spacing for  the  case shown in Fig.  4 is approximately 10 
percent less than  the calculated value;  however, this is 
probably within the range of experimental error.  Further 
comparisons of steady-state  results  are  presented in a 
separate  paper in this issue [ 151. 

The  transient  response shown in Fig.  4 also provides a 
comparison with existing dynamic foil-bearing theories. 
The wavefront that propagates  through the bearing re- 
gions is seen to  have a  velocity of approximately 1.25 
m / s  (50 in./s), or$V,  for  this case.  This  is  the  same prop 
agation  velocity  obtained from theoretical  models that 
neglect the inertia of the foil. The initial conditions 
chosen  for Fig. 4 were sufficiently close to the actual 
steady-state solution that  tape inertia  effects were  not  an 
important  factor in the  transient  response in this case. 

Choice of initial conditions that  depart markedly  from 
the  expected  steady-state conditions  can  lead to very 
different transient response. For  example, if we consider 
the  previous  case with the initial pressure  set  equal  to 
ambient pressure,  the  transient  response  shown in Fig. 5 
results. In this case, the  tape  moves rapidly toward  the 
head because  there  are  no  pressure  forces acting on  the 
tape.  This  movement gives  rise to a squeeze film that 
quickly builds up  pressure  to  prevent  the  tape from con- 
tacting  the head. The resulting pressure is more  than 
sufficient to  prevent  contact,  and a symmetric  oscillatory 
squeeze film develops, having a period of approximately 
four ps. After  about 100 ps the  tape axial motion  intro- 
duces  some asymmetry into  the spacing profile, and  the 
resulting transient  approach  to steady state becomes 
quite complicated. After 10  ms the solution reaches  the 
same  steady-state condition as  the previous case.  The 
period of oscillation of this squeeze film and  the  nature 
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Figure 7 Computation  at  0.2-111s intervals  for  wave  reflection at  the  head  when a wave is introduced  in  the tape. (a) Tape  displace- 
ment. (b)  Spacing over head. 

of the  subsequent  transient  response  to  steady  state  are 
dependent  on  the foil density and  cannot be predicted by 
massless foil theories. 

I t  is  apparent  from  these  results  that  the  choice of a 
suitable  time-step to model the  transient behavior  de- 
pends significantly on  the  nature of the  response. If 
squeeze film effects are  important,  then a small time-step 
is required to simulate  this behavior;  otherwise, a  larger 
time-step will adequately  describe  the  system  response. 
In  the  case of Fig. 4, a time-step of 0.5 ps was  used,  and 
no significant changes in spacing were noticeable in the 
computed values after 10 ms. Thus, 20 000 iterations 
were required to  reach  steady-state conditions. The 
number of iterations and the  total computer time (about 
five minutes on  an  IBM 370/ 195) to reach  the  steady- 
state solution are significantly smaller  than we  have been 
able  to  achieve by other  methods,  such  as relaxation of 
the  steady-state  versions of Eqs. (1) and ( 3 ) .  Thus, it 
has been our  experience that  tracking  the dynamic solu- 
tion to  steady  state is more efficient computationally 
than  attempting  to  solve  the  steady-state  equations di- 
rectly. 

In addition to achieving the  greater efficiency in deriv- 
ing steady-state spacing and  pressure profiles, the tran- 
sient finite-difference approach is immediately  usable for 
the investigation of many  interesting  problems involving 
coupled  dynamics of the  tape  and  air bearing. Having 
reached a steady-state  condition, any of the  system pa- 

rameters  can  be  perturbed  to study dynamic interac- 
tions. For  example, Fig. 6 illustrates the dynamic re- 
sponse of the  system  due  to a sudden reduction of the 
tension;  the  steady-state solution from Fig. 4 was used 
as  the starting  condition. 

Other  transient conditions of interest involve the  dy- 
namics of the  tape  away from the  head,  and  the interac- 
tion of waves in the  tape with the air  bearing. For  exam- 
ple,  the relative  stability of various  head  configurations 
can  be investigated by introducing a wave in the  tape 
and observing the details of the  wave reflection at the 
head.  In Fig. 7, the  steady-state solution from Fig. 4 is 
again used as  an initial condition for such a case. At 
I = 0, the  steady-state  tape  shape is perturbed by add- 
ing a sine  wave of amplitude a! and  wavelength A at the 
tape leading edge. For this  particular choice of parame- 
ters,  the propagation  velocity of the  disturbance in the 
tape is approximately f l / m  = 116 m / s  (4550 in./s). 
Thus,  the  disturbance  reaches  the head and  completes 
its first reflection in about 350 ps. The  wave in the  tape 
reflects  with opposite sign, as is typical of waves in a 
string reflecting off a pinned boundary. As the  wave  ar- 
rives  at  the  head leading edge,  the  tape lifts abruptly, 
creating a sharp  disturbance, which then begins to  pro- 
pagate  through the air-bearing  region. The propagation 
velocity in the air-bearing region is approximately V / 2 = 
1.25 m / s  (50 in./s),  much  lower  than  the  tape  wave 
speed. Before the  disturbance  has progressed through 5 
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Figure 8 Solution for  the case of a half-cycle, sine-wave head 
geometry. (a) Pressure over head. (b) Tape spacing over head. 

the bearing, the wave in the  tape  thus  has sufficient time 
to  traverse back down  the  tape, reflect off the leading 
boundary, and traverse  back  to  disturb  the bearing region 
once again. Figure 7 shows  that  the initial disturbance 
has still not  been  transmitted by the air-bearing  region 
by the time the fifth incident wave  disturbs  the inlet  re- 
gion. Parameters of interest in such a simulation  include 
minimum and maximum  spacing between  head  and  tape 
during the  interaction,  and  the transmissibility of air- 
bearing design (e.g.,  the propagation of the incident  dis- 
turbance  transmitted through the bearing region). 

Noncircular head surfaces may be easily  investigated. 
As a final example, a half-cycle,  sine-wave  head shape 
is chosen to closely resemble  that of the  circular head in 
Fig. 4, such  that S ( L , ) ,   S ( L , ) ,  and  the maximum  pene- 
tration a,, are identical.  Initial conditions  are identical 
to Fig. 4 as well. Figure 8 illustrates the solution of this 
initial value  problem. The locally  smaller  radius of curv- 
ature  results in a lower, and shorter, region of uniform 
spacing  than the  circular  head,  and  the  pressure  rise is 
somewhat  greater. 

Conclusions 
The  techniques utilized here  appear  to offer greater flex- 
ibility than  conventional foil-bearing theory in the analy- 
sis of head-to-tape  interfaces of the  type  shown in Fig. 1. 
First,  the  choice of reference  frame simplifies the  equa- 

tions of motion, permitting an analysis of complex head 
shapes  and allowing the incorporation of tape inertial 
properties generally  neglected in foil-bearing theory. 
Second, obtaining the  steady-state solution as the limit- 
ing case of an initial value  problem is advantageous, 
even if the  steady-state solution is all that is desired. 
Uniqueness of steady-state  solutions to nonlinear equa- 
tions,  and  the stability of these solutions, is of particular 
concern if the equilibrium state is found  from the  steady- 
state  equations alone. Incorporating  the time-dependent 
terms  and solving the  transient problem  alleviates  this 
concern. Finally, the ability to investigate dynamic inter- 
actions of wave propagation in the  tape with the air- 
bearing region is expected  to provide  many  new  insights 
into the  transient behavior of foil bearings. Comprehen- 
sive results in this area  have not yet been generated but 
will be  explored in future work. 
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