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MINI: A Heuristic  Approach  for  Logic  Minimization 

Abstract: MINI is a heuristic logic minimization technique for many-variable problems. It accepts  as input a Boolean logic specification 
expressed as an  input-output table, thus avoiding a long list of minterms.  It seeks a minimal  implicant solution, without generating  all 
prime implicants, which can be converted to prime implicants if desired. New and effective subprocesses, such as expanding, reshaping, 
and removing redundancy  from cubes, are iterated  until  there is no further reduction in the solution. The  process is general in that  it can 
minimize  both conventional logic and logic functions of multi-valued variables. 

Introduction 

8 Minimization problem 
The classical approach  to two-level Boolean logic mini- 
mization uses a two-step process which first generates 
all prime  implicants and then obtains a minimal cover- 
ing. This  approach, developed by Quine [ l ,  21 and 
McCluskey [3], is a considerable improvement  over con- 
structing and comparing all possible  solutions. The gener- 
ation of prime  implicants has evolved to a relatively 
simple process  as a result of the efforts of Roth [4], 
Morreale [5], Slagle et al. [6] and many others.  How- 
ever,  the number of prime  implicants of one  class of n- 
variable  functions is proportional to 3n/n [7]. Thus,  for 
many  functions, the  number of prime  implicants can be 
very  large. In addition, the covering step  poses  an  even 
greater problem because of its well known computational 
complexity.  Because of the required  storage  and  compu- 
tations,  machine  processing to  obtain  the minimum solu- 
tion by the classical approach  becomes impractical for 
many-variable  problems. 

Many attempts  have been made  to  increase  the size 
of problems  that  can  be minimized by sacrificing absolute 
minimality or modifying the  cost function  used in cover- 
ing [6, 8 - 1 1 1 .  Su and Dietmeyer [ 121 and  Michalski 
[ 13, 141 have  reported  other serious departures from the 
classical approach.  One recently  developed computer 
program,  which  essentially represents  the  state of the  art, 
is said to be able  to  handle functions of as many as 16 
variables [ 151. Successful minimization of selected larg- 
er  functions  has  also  been  reported [4, 141. However, 
many practical  problems of 20 to 30 input  variables  can- 
not be handled by the  approaches  described  above  and 

it  does not appear  that  the classical approach  can  be easi- 
ly extended  to  encompass  functions of that size. 

Heuristic approach 
The  approach  presented  here differs from the classical 
one in two  aspects.  First,  the  cost function is simplified 
by assigning an  equal weight to every implicant. Second, 
the final solution is obtained  from an initial solution by 
iterative  improvement rather  than by  generating and cov- 
ering prime  implicants. 

Limiting the  cost function to  the number of implicants 
in the solution has  the  advantage of eliminating many of 
the problems associated with  local minima. Since only 
the number of implicants is important,  their  shapes  can 
be altered  as long as the  coverage of the  minterms re- 
mains  proper. The  methods of modifying the implicants 
are similar to  those  that  one might use in minimizing a 
function using a  Karnaugh  map. The MINI process  starts 
with an initial solution and iteratively improves it. There 
are  three basic modifications that  are performed on  the 
implicants of the function. First,  each implicant is re- 
duced  to  the smallest  possible  size while still maintaining 
the  proper  coverage of minterms. Second,  the implicants 
are examined in pairs to  see if they  can be reshaped by 
reducing one  and enlarging the  other by the  same  set of 
minterms. Third,  each implicant is enlarged to  its maxi- 
mal size  and any  other implicants that  are  covered  are 
removed. Thus,  both  the first process, which may reduce 
an implicant to nothing,  and the third process, which  re- 
moves covered implicants, may reduce  the  number of 
implicants in the solution. The second process facilitates 443 
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the reduction of the solution  size that  occurs in the  other 
two processes.  The  order in which the implicants are 
reduced,  reshaped,  and enlarged is crucial to  the  success 
of the procedure. The  details of these  processes  and  the 
order in which they are applied to  the implicants is dis- 
cussed in later sections. However,  the general approach 
is to  iterate through the  three main procedures until no 
further reduction is obtained in the size of the solution. 

Our algorithm is designed for minimizing “shallow 
functions,” those  functions  whose minimal solution  con- 
tains at  most a few hundred  implicants  regardless of the 
number of variables. Most practical  problems are of this 
nature  because  designers usually work  with logic speci- 
fications that contain no  more than a few hundred  con- 
ditions. The designer is able  to  express  the function as a 
few hundred  implicants because  the  statement of the 
problem leads  to  obvious groupings of minterms. The 
purpose of the algorithm is to  further minimize the repre- 
sentation by considering alternative groupings that may 
or may not be obvious  from  the  statement of the problem. 

To facilitate the manipulation of the implicants in the 
function, a good representation of the minterms is neces- 
sary.  The  next section describes  the cubical  notation that 
is used. 

Generalized cube format 
The universe of n Boolean  variables can  be  thought of as 
an n-dimensional space in which each  coordinate repre- 
sents a variable of two  values, 0 or 1. A  Karnaugh map 
is an  attempt  to project  this  n-dimensional space  onto a 
two-dimensional  map,  which is usually effective for up 
to five or six variables. Each  lattice point (vertex) in this 
n-dimensional space  represents a  minterm, and a special 
collection of these  minterms  forms  an implicant,  which is 
seen  as a cube of vertices. Following Roth [4], the usual 
definition of a cube is an n-tuple vector of 0, 1 and X ,  
where 0 means  the complement  value of the variable, 1 
the  true value,  and X denotes  either 0 or 1 or both  values 
of the variable. The following example depicts  the mean- 
ing of the usual cube notation. 

Example I a 
Consider a four-variable (A, B ,  C  and D )  universe. 

Cube 
lmplicant  notation  Meaning 

A B C  D 0 0 1 0 Minterm  with 

A C  1 X 0 X Minterms  withA = 1, 
A = B = D = O C = l  

B = Oor 1, C = 0, 
D = O o r l  

U = universe X X X X Minterms  withA = 0 or I ,  
B = O o r l ,  C = O o r I ,  
D = O o r I  

0 = null 0 No minterms 444 
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A  more convenient machine representation of 0, 1 and 
X in the  cube is to  denote them as binary  pairs, i.e., to 
code 0 as 10, 1 as 01, and X as 1 1. This  representation 
has  the  further meaning that 10 is the first of the  two 
values (0) of the variable, 01  is  the second  value ( l ) ,  
and 1 1 is  the first or  the second or both values. Naturally, 
the  code 00 represents  no value of the variable and, 
hence, any cube containing  a 00 for any  variable posi- 
tion depicts a null cube. 

Example I b  
Consider  the  encoded  cube notation of Example  la. 

Cubes  Encoded  cubes 
0 0 1 0  10 10 01 10 
I X O X  01 11 10 11 
x x x x  11 11 11  11 
0 1 0 ~ 1 1  01 

(The 00 entry  can be in any variable  position. The  other 
values  are  immaterial.) 

We call this encoded  cube notation  a positional  cube 
notation since  the positions of the 1’s in each binary  pair 
denote  the occupied coordinate values of the  correspond- 
ing variables. With this notation,  any non-Boolean vari- 
able, which has multiple  values, can be accommodated 
in a  straightforward  manner. If a  variable has t values, 
the portion  corresponding to  that variable in the position- 
al cube notation is a  binary  t-tuple. The positions of each 
1 in this  t-tuple denote  the values of the t-valued  variables 
occupied by the minterms in the  cube. Su and Cheung 
[ 161 use this  positional cube notation  for the multiple- 
value logic. A Boolean variable is a special case of the 
multiple-value  variable. 

Consider P variables; let pi denote  the  number of val- 
ues  the variable  i takes on.  We call the  pi-tuple in the po- 
sitional cube notation  the  ith part of the  cube  (there  are 
P parts) ; pi is called the  part size, which is the total num- 
ber of values there  are in the ith coordinate of the P-di- 
mensional  multiple-value logic space.  Notice  that in a 
cube,  the values specified by the 1’s in a part  are  to be 
oRed, and this constrained  part is to be ANDed with other 
parts  to form an implicant. 

Any Boolean (binary)  output function F with P mul- 
tiple-value inputs  can be  mapped  into  a  P-dimensional 
space by inserting 1’s in all points where F must  be true 
and 0’s in  all points where F must  be false. The unspeci- 
fied points can  be filled with d’s ,  meaning the DON’T CARE 

output conditions. (Often,  the 1’s and d‘s are specified 
and  the 0’s are filled later.) A  list of cubes  represents  the 
union of the  vertices  covered by each  cube and is called 
a cubical cover of the  vertices,  or simply a  cover. The 
goal of the MINI procedure is to  cover all of the 1’s and 
none of the 0’s with a cover containing  a minimum num- 
ber of cubes.  The  covers exclusively  covering the I’s, 
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O’s, and unspecified points are called,  respectively, the 
ON cover,  the OFF cover, and the DON’T CARE cover. 
When there is no confusion, these  covers will be denoted 
by F ,  E a n d  DC, respectively. 

For multiple-Boolean-output functions (fl, f , ,  . . ., f , ) ,  
a tag field [ 181 has been catenated  to  the input  portion 
of a cube  to  denote  the multiple-output  implicant.  We 
can  add  an additional m valued dimension for  the out- 
puts. This new  dimension can be interpreted  as  represent- 
ing a multiple-value  variable called the output. The tradi- 
tional tag field of an m-tuple  binary vector  corresponds  to 
our  output  part in a cube. If the ith bit of the  output  part 
is a 1 ,  the ith output is occupied by the  cube. We call the 
whole  multiple-output space  the generalized  universe. 
Any cube in this universe  automatically denotes a multi- 
ple-output cube. We denote by F the whole of the multi- 
ple-output  functions f ,  through f,. The MINI procedure 
aims to  cover F with a minimal number of cubes in the 
generalized space. 

For generality, we  also group  input  variables into a set 
multiple-value  variables such  that  the new variables X, 
comprising ni of Boolean  input  variables have 2ni values 
and are called parts. The  part  sizes  are defined as pi for 
inputs and m for  the  output. When groups of inputs  are 
processed  through small decoders,  the values of decoder 
output  correspond  to  the multiple values of parts. Each 
part constitutes a coordinate in the generalized space. 
The specification of the function is assumed  to  be a list 
of regular Boolean cubes with the  output tags. The  output 
tag is composed of 0,  1 ,  and d, where 0 means  no infor- 
mation, 1 means the  cube belongs to  the  output,  and d 
means  the  cube is a DON’T CARE for  the  output.  The out- 
put  side of this specification is the  same used by Su and 
Dietmeyer [ 121, sometimes  known as  the  output con- 
nection  matrix. 

Example 2a 
A Boolean specification and  its Karnaugh  map. 

Inputs  outputs 
A B C D  fl f, f 3  

0 1 X X  0 1 0  
1 o x x  0 1 1  
x 0 0 0  1 0 d  
x 0 1  1 I d 1  

The circled d ’s  in the Karnaugh map show  the conflict 
between 1’s and d’s. We allow the specification to  have 
conflicts for  the  sake of enabling the designer to write a 
concise specification. Any  such conflict will be overrid- 
den by the d’s in our MINI process.  Suppose now the in- 
puts  are partitioned as X ,  = {A, B} and X, = {C, D}. 
The specification of Example 2a is preprocessed  to  the 
generalized  positional cube notation as shown below. 
We call this preprocess a decoding  step. 

Example 2b 
Decoding Boolean specification into the  cube format: 
There  are  three  parts; X, and X,, which take  on  the  four 
values 00,01, 10 and 1 1 ,  and  the  output, with part size 3. 
The DON’T CARE cover  ovemdes  the ON cover. 

X1 x, output 
0100 1 1 1 1  010 
00 10 1 1 1 1  01 1 

1010 000 1 101 
1010  1000  100 I F  

1010  1000 Ool k c  
1010 000 1 101 

The first four cubes  for F (ON cover)  are  the  decoded 
cubes in Example 2a  with the  output d ’ s  replaced  with 
0’s. The  last  two DC cubes  are obtained by decoding 
only those  cubes with d’s and replacing the d’s with 1’s 
and  any non-d output with 0’s. 

Classical  concepts in cubical notation 
Several  classical concepts  have immediate  generaliza- 
tions  to  the  cube  structure  described in the previous  sec- 
tion. The  correspondences  between a  minterm and a  point 
and  between  an implicant and a cube  have already  been 
described.  In addition, a prime  implicant corresponds  to a 
cube in which no  part  can  admit  any  more 1’s without 
including some of the  Fspace.  Such a cube is called a 
prime cube. 

A useful concept in minimization is the size of a cube, 
which is the  number of minterms that  the  cube  contains. 
I t  follows  from  this definition that  the size of a cube  is 
independent of the partition of the  space  into which it is 
mapped or  decoded.  Thus,  the size of a cube is given by 

P 
A cube  size = r]: (number of 1’s in part p i ) .  ( 1 )  

i=l 

Since a cube with one variable per  part  represents  the 
usual Boolean implicant, each implicant can  be mapped 
into  any partitioned  cube.  Because the resulting cubes 
can in some  cases  be merged when the Boolean imuli- ” 

f l  12 f3  cants could not,  we  have  the following theorem. 445 

SEPTEMBER 1974 HEURISTIC MINIMIZATION 



446 

HONG, C 

Theorem I The minimum number of cubes that can repre- 
sent a  function in a partitioned space is less than or equal 
to the minimum number of cubes in the regular Boolean 
minimization. 

To manipulate the  cube  representation of a  function, 
it is necessary  to define the OR, AND, and NOT operations. 

1. The OR of two cubes C ,  and C,  is a list containing C ,  
and C,. The OR of two  covers A and B is thus  the 
catenation of the  two lists. 

2. The AND of two  cubes C ,  and C ,  is a cube formed by 
the bit-by-bit AND of the  two  cubes.  The AND of two 
covers A and B follows from  the  above by distributing 
the AND operation over  the OR operation. 

3. The NOT of a cube  or  cover  is a list containing the 
minterms of the universe that  are  not  contained in the 
cube  or  cover.  The algorithm for constructing  this 
list is discussed in a later  section. 

The simplest way to  decrease  the number of cubes  of 
a  given  problem is to merge  some of the  cubes in the list. 
Although  this is not a very  powerful process, it is well 
worth  applying to  the initial specification,  especially if 
there  are many entries (a minterm-by-minterm  specifica- 
tion is a good example).  The following shows  the merg- 
ing of two cubes, which is similar to  the merging of two 
unit-distance  Boolean  implicants, e.g., A B c  V ABC  =AB. 

Dejinition The distance between two  cubes C ,  and C,  is 
defined as  the number of parts in which C, and C, differ. 

Lemma 1 If C ,  and C,  are  distance  one  apart,  then C ,  
V C,  = C,, where C, is a  bit-by-bit OR of C ,  and C,. 

Proof Let us assume  that  the difference is  in the first part. 
Let 

C , = a , a , ~ ~ ~ a p l ~ b , b , ~ ~ ~ b , ~ ~ ~ ~ ~ ~ n , n , ~ ~ ~ n  PP 

and 

C , = ~ , ~ , ~ ~ ~ ( ~ ~ ~ ~ b ~ b , ~ ~ ~ b ~ ~ ) ~ ~ ~ ~ n , n , ~ ~ ~ n  PP’ 

where ai, bi; ., are 0 or 1. Q.E.D. 
The cubes C ,  and C ,  are identical in all but one dimen- 

sion or  part.  Therefore,  the  vertices  covered by C, V C,  
can  be  covered by a single cube with the union of all co- 
ordinate values of C ,  and C, in that differing coordinate, 

The  concept of subsumption m cubes is similar to  sub- 
i.e., (a,  V a,),  (a, V a,); . ., (aP1 V ap2) .  

sumption in the Boolean case ( A B c  V B c  = B C ) .  

Dejinition A cube C ,  is said to cover another  cube C ,  if 
for  every 1 in C ,  there is a  corresponding 1 in C,. In  other 
words, C ,  AND NOT C,  (bit-by-bit) is all 0’s. Since the 
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cube C ,  is completely contained in C,, it can  be removed 
from the list, thus reducing the number of cubes of the 
solution in progress. 

Example 3 
Consider a three-part  example  as follows. 

1 0 1 0  0 1  1 0  cube1  
1 0 1 0  1 0  1 0  cube2  
0 0 1 0  1 1  1 0  cube3  

Cube 1 and cube 2 are  distance  one  apart  since they  differ 
only in the  second  part.  The  result of merging these  two 
cubes is 1010 1 1 10, which covers  cube 3. Hence, F re- 
duces  to  one  cube, 10  10 1 1 IO.  

Description of MINI and some theoretical  considera- 
tions 

M I N I  philosophy 
The minimization process  starts from the given initial 
F cover and DC cover (lists of cubes  where  each  cube 
has P parts).  Each part of a cube can be viewed as desig- 
nating all allowed values of the multiple-valued logic var- 
iable,  corresponding to  that part. The  output  part can  be 
interpreted as merely another multiple-value  variable 
which may be called the output.  When each part’s allowed 
values  are ANDed,  the resulting cube  describes some of 
the conditions to be satisfied for  the given  multiple-output 
logic function  corresponding to F and DC specifications. 
The objective, then, is to minimize the  number of cubes 
for F regardless of the size and  shape of the  constituent 
cubes.  This  corresponds  to minimizing only the number 
of AND gates without fan-in limit, in the  regular Boolean 
two-level AND-OR minimization. We discuss  later a sim- 
ple way of modifying the solution to suite  the  classical 
cost criterion. 

The basic  idea is to merge the  cubes in some way to- 
ward the minimum number. To  do this, MINI first “ex- 
plodes” the given F cover  into a disjoint F cover  where 
the  constituent  cubes  are mutually disjoint. The  reasons 
are 

1 .  To avoid the initial specification dependency.  The 
given cubes may be in an  awkward  shape  to be merged. 

2. To introduce  a reasonable freedom in clever merging 
by starting  with small, but not prohibitively numerous, 
fragments such  as a  minterm  list. 

The disjoint F is an initial point of the  ever decreasing 
solution. At  any point of the  process from there  on, a 
guaranteed  cover  exists  as a solution.  A subprocess 
called disjoint sharp is used for obtaining the disjoint F .  

Given a  list of cubes  as a solution in progress,  a merg- 
ing  of two  or  more  cubes can be accomplished if a  larger 
cube containing these  cubes  can be  found in F V DC 
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space  to replace  them. The more merging is done,  the 
smaller the solution  size  becomes.  We call this the  cube 
expansion process.  The expansion first orders  the given 
cubes and proceeds  down  the list until no more merging is 
possible. This  subprocess is not unlike a human circling 
the “choice”  prime  implicants in a  Karnaugh  map. Ob- 
viously, one  pass through  this process  is not sufficient. 

The  next  step is to  reduce the  size of each  cube  to  the 
smallest  possible one.  The result of the  cube  expansion 
leaves  the  cubes in near prime  sizes. Consequently, some 
vertices may be covered by many cubes unnecessarily. 
The  cube reduction process trims all the  cubes in the 
solution to increase the probability of further merging 
through another expansion  step. Any  redundant  cube is 
removed by the reduction and,  hence, it also  ensures a 
nonredundant  cover. 

The trimmed cubes then go through the  process called 
the  cube reshaping. This  process finds all pairs of cubes 
that  can  be  reshaped into other pairs of disjoint cubes 
covering the  same  vertices  as before. This  step  ends  the 
preparation of the solution for  another application of 
cube  expansion. 

The  three  subprocesses,  expansion, reduction, and 
reshaping, are iteratively applied until there is no  more 
decrease in the solution  size. This is analogous to  the 
trial and  error  approach used in the Karnaugh  map  meth- 
od. We next  describe  each of these subprocesses  and dis- 
cuss  the heuristics  used. Brief theoretical considerations 
are given to formulate new concepts and to justify  some 
of the heuristics. 

Disjoint  sharp process  (complementation) 
The  sharp  operation A # B ,  defined as A A B ,  is well 
known. It  also yields the complement of A since A= U 
# A ,  where U denotes  the universe. Roth  [4] first de- 
fined the  process  to yield the prime  implicants of AB and 
used it to  generate all prime  implicants of F by computing 
U # ( U  # ( F  V D C )  ). He later  reported [ 171 that 
Junker modified the  process  to yield AB in mutually dis- 
joint implicants. The  operation is easily adapted  to our 
general  cubical  complex as described in this section. 

The disjoint sharp  operation,@, is defined as follows: 
A @ B is the  same  cover  as AB, and  the  resultant  cubes 
of A @ B are mutually disjoint. To obtain  this, we give 
a  procedural definition of @ by which A @ B can  be 
generated.  Consider  two  cubes A = rlrz. . . r, and B 
= PIP2 ’ ’ . Pp.  

c, (TIP1) (.rr,&) (r3CL3) . . . (rppcLp), (2)  

and AND and NOT operations  are performed in a  bit-by- 
bit manner.  Whenever  any Ci becomes a null cube, i.e., 
ripi  = 0, Ci  is removed  from the A @ B list. 

Proof It is obvious  that  the Ci are mutually disjoint; 
C = A B  has  to be  shown. Since for all i ,  Ci A and 
Ci E,  we have C AB. We  must  show  now that  every 
vertex W E AB also  belongs to C. Let W = wlwZ ’ . * wp; 
then each wi is covered by ri and  there  exists  at  least  one 
wi which is  not covered by pi .  Let  the first part  where wi 
is not  covered by pi be i. From Eq. ( 2 ) ,  we  see  that 
W E Ci and,  therefore, w E C.  Q.E.D. 

Example 4a 
A Karnaugh map example for A = universe = XXXX 
(r1r,r3r4 = 1 1   1 1   1 1   1 1  in our notation)  and B = 11x0 
(p1p,p3p4 = 01  01 1  1 lo) ,  the shaded area of the map. 
Then 

n 
X I  

x4 

.‘2 { 
v 

x3 

C1=OXXX (10 1 1  1 1  1 1 1 ,  
c,= l0XX (01 10 1 1   1 1 ) ,  

c,= 11x1 (01 01 1 1  01).  
C3 = null (01 01 00 1 1 )  - (delete), 

Equation (2) can be expressed  more concisely as 

Cj = (r, A p, )  (r, A p,) . . . (rjnj_] A pj-, )  (rj A Fj) 
x rj+lrj+z ’ . . rP, (3  1 

which  shows that  the pj are complemented in order from 
part 1 through part P .  The  parts  can be  complemented in 
an  arbitrary  order and still produce a valid A @ B .  Let 
u denote  an  arbitrary permutation on  the index set 1 
through P. Then  Eq. (3) can be  rewritten as 

e.= 3 ( T d I )  A Pu(l)) ( r m  A P d d  . . . 

(rg(j-1) A pu(j-1)) ( r v ( j )  A F u ( j , )  

=u(j+l)’  ‘ ‘  = u ( p ~  (4) 
It’is easily shown  that  the proof of Lemma 2 is still val- 

id  if the index set is replaced by the permuted  index  set. In 
addition, A @ B may  be  performed for  any given per- 
mutation and  the result will always yield the  same num- 
ber of cubes.  However,  the  shapes of the  resultant  cubes 
can vary  depending on  the  part permutation u, as shown 
in Example 4b. 447 
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Example 4b 
Let A = 1101 10 11 and B = 0101 11 01. We calculate 
A @ B with two  distinct  part-permutations, using 
Eq. (4).  

The  extension of the @ operation  to include the cov- 
ers  as  the left- and  the right-side arguments  is similar to 
the regular # case. One difference is that  the left-side ar- 
gument  cover F of F @ G must already  be  disjoint to 
produce  the desired  disjoint FC cover.  Thus,  when F = 
V& with the& disjoint and g is another  cube, F @ g is 
defined as 

F @ g = V  (&@ g ) .  (5) 

If G = Vj=ln gj, where  the gj are  not necessarily  disjoint, 

F @ G = ( ( . * . ( ( F  @ g , )  @ g , ) . . )  @ gn-l) @ g,. 
( 6 )  

If F is not in disjoint cubes,  the  above calculations still 
produce a cover of FG, but  the  resultant  cubes may not 
be  disjoint. The proof of the  above  extensions of @ is 
simple and  we omit it  here. 

The definition of F @ G given in Eq. (6) can be gen- 
eralized to include the permutation on  the  cubes of G. 
One  can  replace  each g, in  Eq. (6) with a permuted in- 
dexed gr(iy This  cube ordering u for  the right-side  argu- 
ment G influences the  shape  and  the  number of resultant 
cubes in F @ G. Example 5 illustrates the different  out- 
come of F @ G depending on  the  order of the  cubes 
of G. 

Example 5 
Let F be the universe and G be given as follows. 

Produce c disjoint = F @ G. 
F =  11 1111  11 

G = {  10 1101 l l - g g ,  
11 0010 01 - g, 

F B y , = {  
01 1111 11 
10 0010 11 
01 1101 11 

10 0010 10 
( F  @ 8,) @ g ,  = 

F @ & = [  11  1101 11 
11 0010 10 

( F  @ g , )  @ g , =  [ 01 1101 11 
11 0010 10 

The  part ordering u = ( 1, 2 ,  3)  is used for  both  cases  to 
show the effect of just gl,g, ordering. 

As shown  by examples  4b  and 5, there  are  two  places 
where permutation of the  order  of-carrying  out  the @ 
process affects the  number of cubes in the result. One is 
the part ordering in cube-to-cube @, and  the  other is 
the right-argument cube ordering. The  choice of these 
two  permutations  makes a considerable  difference in the 
number of cubes of F @ G. Since  we  obtain F as U @ 
( F V DC) and F as U @ ( F V D C )  initially, we  choose 
these  permutations  such  that a near minimal number of 
disjoint cubes will result. The detailed  algorithm on how 
these  permutations are selected is presented in a later  sec- 
tion. We mention here  that  these  permutations  do not af- 
fect  the  outcome in the  case of the regular sharp  process, 
because  the regular sharp  produces all prime cubes of 
the  cover.  The disjoint  obtained in the  process of ob- 
taining the disjoint F as  above is put  through one  pass of 
the  cube  expansion  process  (see  next  section)  to quickly 
reduce  the size and  thus facilitate the  subsequent compu- 
tations. The  Fused  thereafter need not  be disjoint. 

When the left  argument of @is  the universe, the re- 
sult is the  complement of the right  argument. Since  we 
treat  the multiple Boolean outputsf,,f,; . .,f, as  one  part 
of a single generalized  function F ,  we now explain the 
meaning of F. 
Theorem 2 The  output  part of F represents x, . . ., fm. 
Proof The complementation theorem in [ 181 states  that 
if F = V E,&, V E, = 1 and E,& =&, then F= V E,&. Let 
Ei in our  case be the whole  plane of& in the  universe; i.e., 
E ,  is a cube  denoted  by all 1’s in every  input  part  and a 
single 1 in the ith  position of the  output  part. Obviously, 
V E ,  = 1, E,  F = E,& =&, and F = V &  = V E,&. Hence, 
F= V E& = V 6. Q.E.D. 

Cube expansion process 
The  cube  expansion  procedure  is  the  crux of the MINI 

process.  It is principally in  this step  that  the  number of 
cubes in the solution decreases.  The  process  examines 
the  cubes  one  at a time in some  order  and,  from a given 
cube, finds a prime cube covering it and  many of the  other 
cubes in the solution. All the  covered  cubes  are then 
replaced by this prime cube  before a next remaining cube 
is expanded. 

The  order of the  cubes  we  process is decided by a 
simple  heuristic  algorithm (described  later).  This  order- 
ing tends  to  put  those  cubes  that  are hard to merge  with 
others  on  the  top of the list. Therefore,  those  cubes  that 
contain  any  essential vertex  are generally put  on  top of 
the  other cubes. This ordering approximates  the idea of 
taking care of the  extremals first in the classical  covering 
step.  Thus, a  “chew-away-from-the-edges” type of merg- 
ing pattern  evolves from  this  ordering. 

Let S denote  the solution in progress; S is a list of cubes 
which covers all F-care  vertices  and  none of the  F-care 
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vertices, possibly covering  some of the DC vertices. 
Now, from a given cube f of S, we find another  cube in 
F V DC,  if any,  that will cover f and hopefully many of 
the  other  cubes in S, to replace  them. This is accom- 
plished by first expanding the  cube f into one prime cube 
that  “looks” the best in a heuristic  sense. The local ex- 
traction  method (see,  for instance, [7]),  also builds 
prime cubes around the periphery of a given cube.  The 
purpose there is to find an extrema1 prime cube in the 
minimization process. Even though the local extraction 
approach does  not  generate all prime cubes of the func- 
tion, it does  generate all prime cubes in the peripheries, 
which can still be too costly  for many-variable problems. 
To approximate  the  power of local extraction, the expan- 
sion process relies on the  cube ordering  and other sub- 
processes to follow. Since only one prime cube is grown 
and  no branching is necessary,  the  cube expansion pro- 
cess requires  considerably  less  computation  than the 
local extraction  process. 

The expansion of a cube is done  one  part  at a time. We 
denote by SPE(f; k )  the single-part expansion  off along 
part k; SPE can be viewed as a  generalized implementa- 
tion of Roth’s coface  operation  on  variable k. 

Definition Two disjoint cubes A and B are called k-con- 
jugates if and only if A and B have only one part k where 
the  intersection is null; i.e., when part k of both A and B 
is replaced with all l’s, the  resultant cubes  are  no longer 
disjoint. 

Example 6 
Let f be lOlX in regular Boolean cube notation. The 
cubes OX 1 1, X 1 XX and  1000 are examples of 1 -, 2- and 
3-conjugates off, respectively. There is no 4-conjugate 
off in this  case. 

Let H (f; k )  be the  set of all cubes in F that  are k-con- 
jugates of the given cube f in S. 

H = { g i l f  and gi are k-conjugates}, (7 )  

where  we assume  that  the F is available as F = V g,, 
which is obtained as a by-product of the disjoint F calcu- 
lation. (Since the cube expansion process makes use of F ,  
we say that S is expanded  against F . )  Further  denote  as 
Z(f; k )  the bit-by-bit OR of the  part k of all cubes in 
H ( f ;  k) .  When H ( f ;  k )  is a null set, Z(f; k )  is all 0’s .  The 
single-part expansion off = v,r, * . . v,. * . vp along part 
k is defined as 

SPE(f; k )  =v1r2*”vk-1  Z ( f ;  k )  rk+]...vP, (8)  

where Zdenotes bit-by-bit complementation. 

Example 7a 
Let f and F be as follows. The SPE along parts 1 ,2  and 3 
is obtained. 

f = 10 10 01 10 

I 11 11 lOOO=g,, 
P =  11 01 0011 = g 2 ,  

01 10 0001 = g,. 

Then, 

H ( f ;  1)  = 0 and Z ( f ;  1)  = 00 

SPE(f; 1 )  = 10 0110, 

H ( f ;  2)  = (8,) and Z ( f ;  2) = 01 

SPE(f; 2) = 10 01 10 = f, 

H ( f ;  3)  = {g,} and Z ( f ;  3) = 1000 

SPE(f;  3) = 10 100111. 

Example 7b 
In the regular Boolean case,  let f = lOlX and let F = g, 
V g, V g, = (00x0, OXXI, 1 lox}  as  shown in the Kar- 
naugh map below. 

J I 

x3 

K H ( f ;  k )  rn SPE (f; k 1 
1 g1, g2 1 l O l X = f  

3 null X 10gx 
4 null X 10 l X = f  

2 null X 1x1  x 
- 

Notice  that the Boolean case is a  degenerate case where 
1 or 0 in any variable can stay the same or become  an  X 
when the coface  operation  succeeds. 

Lemma 3 Let C be any cube in F V DC which contains 
the  cube f of S. Then part k of C is covered by part k of 
SPE(f; k ) .  That is, if C = p1p2. * .  p, . .  . pp ,  the 1’s  in pr 
areasubsetofthe  l’sinZ(f;k). 

Proof Suppose pr contains a 1 that is not in Z ( f ;  k ) .  This 
implies pr Z ( f ;  k )  # 0, which in turn implies that there 
exists a cube g in F which is a k-conjugate off and part k 
of g has a non-null intersection  with p,. Since C covers 
f, and f and g have non-null intersection in every  part but 
k, C and g have non-null intersection. This  contradicts 
the  hypothesis  that C is in F V DC. Q.E.D. 

It follows from the  above  that  part k of SPE(f; k )  is 
prime in the sense  that no other  cube in F V DC contain- 
ing f can  have  any more 1’s in part k than SPE (f; k )  has. 
We define part k, Z ( f ;  k ) ,  or SPE(f; k )  as a  prime part, 
which leads to the following observation. 449 
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Theorem 3 A cube is prime if and  only if every  part of the 
cube  is a prime  part. 

A cube  can be expanded in every  part by repeatedly 
applying the SPE as follows: 

expand(f )  = 

SPE(..BPE(SPE(SPE(f; 1 ) ;  2 ) ;  3 ) . . . ;p)  . (9)  

To be  more general, let u be  an  arbitrary permutation 
on  the index set 1 through p ;  then 

e x p a n d ( f )   = S P E ( . * . S P E ( S P E ( S P E ( f ;  ~ ( 1 ) ) ;  ~ ( 2 ) ) ;  

a ( 3 ) ) . . . ;  d p ) ) .  (10) 

The result of expand(f )  may not  be distinct  for  distinct 
part permutations. However,  the  part permutation does 
influence the  shape of the  expanded  cube, and each ex- 
pansion  defines  a  prime cube containing f by  Theorem 3.  

Example 8 
Letf, F a n d  the  part  permutations be as follows. 

f =  01  1000 10 ( p a r t  permutation : expand(f )  

{ I  1 1  0100 1 1  ul= ( 1 , 2 , 3 )  : 1 1  1011  10 : A  
P =  10 0011  01 uz= ( 1 , 3 , 2 )  : 1 1  1000 1 1  : B 

01 0110 01 I T 3 =  (3 ,2 ,  1 )  : 01  1001 1 1  : c 
The  part  permutations (2, 1 ,  3)  and (2, 3, 1 ) both pro- 
duceA  and (3 ,  1,2) producesB. 

There  is  no  guarantee of generating all prime cubes 
containing f even if all possible part  permutations  are 
used  unless, of course, f happens to belong to an  essen- 
tial prime cube.  The goal is not to  generate prime cubes 
but rather  to  generate  an efficient cover of the function. 
Therefore, a heuristic procedure is used to  choose a per- 
mutation for which expand(f )  covers  as many cubes of 
S as possible. Consider a cube C(f) defined by 

______ ~ 

C(f) = Z ( f ;  1 )  Z ( f ;  2 ) . . . Z ( f ;  P I .  ( 1 1 )  

For  Example 8, C(f) is 1 1  101 1 11. Obviously, C ( f )  is 
not always contained in F V D C .  However,  any expan- 
sion off  can  at  best eliminate those  cubes of S that  are 
covered by C (f) which is called the over-expanded cube 
off .   The permutation we  choose is derived  from ex- 
amining the set of cubes of S that  are  covered by C (f). 

Let  the super cube C of a set of cubes T = { C J i  E I }  
be the smallest cube which contains all of the Ci of T .  We 
state  the following lemma  omitting the proof. 

Lemma 4 The  super  cube C of T is the bit-by-bit OR of all 
the C,  of T .  

One  can readily observe  that C(f) is a super  cube of 
all prime cubes  that  cover f and  is  also  the  super  cube 
of the  set of cubes { S P E ( f ;  k )  Ik = 1,2; . e, P } .  

For a givenf E S, letf’ = e x p a n d ( f )  obtained  with  a 
450 chosen  part permutation. I f f ’  covers a subset of cubes 
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S’ of S, f E S’, the whole set S‘ can be  replaced by f’, 
which decreases  the solution  size.  If, instead off’ ,  one 
uses a super  cubef” of S‘ in the  replacement,  the reduc- 
tion of the solution is not  affected, The  reason  for using 
f” is  that f” C f’, which implies that f” has a higher 
probability of being contained  in another  expanded  cube 
of S thanf’  does. Of course,f” may not  be  a  prime cube. 
In  the  next section we show how thisf” is further reduced 
to  the smallest necessary size cube  that  can replace the S’. 

The  cube  expansion  process  terminates  when all re- 
maining cubes of S are  expanded.  The  expansion  process 
described  above  also provides an  alternate definition of 
an essential prime  cube. 

Theorem 4 The  cube expand(f )  of a vertexf is an  es- 
sential  prime cube  (EPC) if and only if expand(f )  equals 
the over-expanded super  cube C(f). It follows that  when 
expand(f )  is an essential  prime cube,  the  order of part 
expansion is immaterial. (Proof follows  from the remark 
after  Lemma 4.) 

Cube  reduction  process 
The smaller the size of a cube,  the  more likely that it will 
be covered by another  expanded  cube.  The  expansion 
process  leaves  the solution in near-prime cubes.  There- 
fore, it is important  to  examine  ways of reducing the size 
of cubes in S without affecting the coverage.  Define the 
essential vertices of a cube as those vertices that  are in 
F and  are  not  covered by any  other  cube in S. Let f’ be 
the  supercube of all the essential vertices of a cubef E S; 
then f’ is  the smallest cube  contained in f which can re- 
placefin S without affecting the solution  size.  Of course, 
iff  does  not  contain any essential  vertices,  then  the  re- 
duced  cube is a null cube  and f may be  removed  from the 
S list,  decreasing the solution  size by one.  Let S = f 
V {Sili E I } ;  then  the reduced cube f’ can be  obtained as 

f’ =the  super  cube off @ ( ( V  Si) V D C ) .  (12) 

In Eq. ( 12) a  regular R operation can  be  used in place 
of @. In  fact,  the  irredundant  cover method [5, 7, 121 
uses  the regular # operation between a given cube  and 
the  rest of the  cubes of a solution. The  purpose of this # 
operation in the  irredundant  cover method is to  remove 
a redundant  cube.  In  our  case  the reduction of the size 
of the given cube is the primary purpose. Regardless of 
the  purpose,  we claim that  the  use of @ facilitates  this 
type of computation in general. The  number of disjoint 
cubes of a cover is usually much smaller than  the num- 
ber of all prime cubes of the  same  cover, which is the 
product of regular # operations. 

In our programs the  reduced  cube f’ is not  obtained in 
the  manner suggested by Eq. (12) .  Since the  super  cube 
is  the desired result, a simpler tree  type algorithm  can  be 
used to  determine  the  appropriate reduction of each  part 
of the given f. 

i€ I 
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The  cube reduction process  goes through the list of 
cubes in the solution S in a  selected order  and  reduces 
each of them.  The  cube ordering algorithm for  the reduc- 
tion step is a  heuristic way to maximize the total cube 
size reductions;  the  process  removes  the  redundant  cubes 
and  trims the remaining ones. 

In  the previous section,  we mentioned how the replace- 
ment  cube ( f " )  was found by the  expansion  process.  The 
size of this cube  can be further reduced along with the 
sizes of the remaining cubes in the solution.  We do this 
within the  cube  expansion  process by first reducing all 
the remaining cubes in the solution one  at a  time  against 
the replacement cubef",  and then  reducing thef"  to  the 
smallest  necessary  size. This is illustrated in the following 
example. 

Example 9 
Let  the  replacement  cubef"  (the shaded area)  and some 
of the remaining cubes of S in the periphery off" be as 
shown on  the left below. The right side shows  the de- 
sired cube  shapes before the expansion process  proceeds 
to  the  next  cube in the solution. 

u Trimmed 

The reduction of one  cube A against another  cube B as- 
sumes that B does not cover A and that the two differ in 
at  least  two parts. Cube A can be  reduced if and only if 
all parts of B cover A except in one  part;  let  that be partj. 
Given A = m 1 r 2 .  . . n-.. . . rp and B = p l p z .  . . pj. . . pP, 
the trimmed A becomes A ' = n-ln-2.  . . (vj$ . . . rP. 

Cube reshaping process 
After  the expansion and reduction steps  are performed, 
the solution in progress contains minimal vertex sharing 
cubes.  The  nature of the  cubes in S is that  there is no cube 
in F V DC that  covers more  than one  cube of S .  Now we 
attempt  to  change  the  shapes of the  cubes without  chang- 
ing their  coverage  or  number.  What we adopted is a  very 
limited way of reorganizing the  cube  shapes, called the 
cube reshaping process. Considering that  the  reshapable 
cubes must be severely constrained, it was  our  surprise 
to  see significant reshaping taking place in the  course of 
minimization runs  on large,  practical  functions. 

The reshaping transforms a  pair of cubes  into  another 
disjoint  pair such  that  the  vertex  coverage is not affected. 
Let us assume  that S is the solution in progress in which 
no cube  covers  another and the  distance  between any 
two  cubes is greater than or equal to two. Let A and B be 

two cubes in S. Then  the  cubes A = n-,n2. . . rP and 
B = plp2.  . . p p  in that  order  are said to satisfy the re- 
shaping condition if and  only if 

1. The  distance  between A and B is exactly  two. 
2. One  part of A covers  the corresponding part of B .  

Let  i and j be the two parts in which A and B differ and 
let j be the  part in which A covers B ,  i.e., wj covers pj;  
vi cannot  cover pi for, if it did, then A would cover B .  The 
two  cubes 

A ' = n - l n - 2 ~ ~ ~ n - i ~ ~ ~ ( n - j A ~ j ) ~ ~ ~ n - p  (13) 

and 

B ' = r l  n-z"' (ri V pi)...pj...rP (14) 

are called the  reshaped  cubes of A and B .  The  process 
is called reshape ( A  ; B )  . 

Lemma 5 The reshaped cubes A' and B' are disjoint and 
A V B = A ' V B ' .  

Proof The  jth  part of A ' is rj A 6 (bit-by-bit) and the 
j th  part of B' is pj; hence, A ' and B' are disjoint. In re- 
shaping, A is split  into  two cubes A ' and A" = r1n2 
. . . (rj A p j )  . . . rP. But (n-. A pj) = y because nj covers 
pj; thus  the  distance between A" and B is one. So A" and 
B merge  into the single cube B ' .  Q.E.D. 

The  reshape  operation between A and B is  order  de- 
pendent.  If  the  cubes in S are not  trimmed, it may be pos- 
sible to perform reshape in either of two ways (e.g., if A 
and B are  distance  two  apart, wi 3 pi and rj C pj) .  Since 
A is split and one part is merged with another  cube B ,  the 
natural order would be the larger cube first and  the small- 
er  cube second  when  checking the conditions for reshap- 
ing. After reshaping, A ' ,  the remaining part of A ,  has a 
greater probability of merging since it has been  reduced 
in size. 

Example 1 Oa 
Let S consist of three  cubes A ,  B and C as follows. 

i 11011001 : A  
S = 10 1001 01 : B 

01  0110 10 : c 
A and B satisfy the reshaping  condition to yield 

A '  = 01  01 10 01 (can merge  with C in the  next 
expansion step) 

B ' =  10 1111 01 

Or A and C may yield 

A '  = 10 0110  01 (can merge with B )  
C'=Ol0110 1 1  

Example I Ob 
Regular Boolean Karnaugh map example. 45 
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reshape ( A  ; B ) 
P 

A ’ can merge  with C in the  next  expansion step. Or  A 
and C could  be  reshaped to A ’ and C‘ such  that A ’ and 
B can  merge  later. 

The reshaping operation can  be viewed as a special 
case of the  consensus  operation.  Notice  that  the  reshaped 
cube B’ is  the  consensus  term  between A and B.  The re- 
shaping  condition  holds  only if the pair of cubes  can be 
represented by a consensus  cube plus another  cube  for 
the remainder of the  vertices  covered by A and B.  The 
consensus  operation is used in classical minimization 
methods  to  generate prime  implicants  from a given im- 
plicant  list of functions. 

Algorithmic description of MINI 

This section describes  the algorithms  which  implement 
the  procedures outlined in the  previous section. The al- 
gorithms are intended as a level of description of MINI 

which is between  the theoretical  considerations and a 
real  program. They  show  the flow of various subpro- 
cesses  and  the management of many  heuristics. 

Main  procedure 
M 1. Accept  the Boolean specification. 
M2. Accept  the partition description. 
M3. Extract  the  F-care specification and  decode into 

cubes according to  the partition  description.  As- 
sign to F. 

M4. Generate DON’T CARE specification ( D C )  due  to 
any  inputs which appear in more than one part. 

M5. Extract  the original DON’T CARE specification and 
add to  the DC specification generated in M4. 

M6. Decode  the DC specification into  cubes. Assign 
to DC. 

M7. Generate  the partition  description in the  format re- 
quired by subsequent programs. 

M8. Let F be the  distance  one merging of F V DC. 
M9. Let F b e  U @ F. 
M10.  Let  FbeFexpanded against F .  
M 1 1. Generate  the disjoint F by U @ ( F V D C ) .  
M12.  Let F be F expanded against and  compute  the 

M  13. Reduce  each  cube of F against the  other  cubes in 

M 14. Reshape F. 
M15.  Let F be F expanded against F and compute  the 

M16. If the size of the new solution is smaller than  the 
size of the solution  immediately  before the  last exe- 
cution of M13, go  to  M13.  Otherwise F is the so- 
lution. 

solution size. 

F V DC. 

solution  size. 

Remarks 
M3 and M6 give the F and  the DC covers, respectively. 
M8 is performed for computational advantage only. M9 
produces  the disjoint F cover. M 10 is for computational 
advantage.  M11  produces  the disjoint F cover.  M13 - 16 
form the main loop which produces decreasing  size solu- 
tions which contain all of the F vertices  and  perhaps 
some of the DC vertices. M1 through M6  are  for the 
Boolean specified functions.  If the original specification 
is in cube notation for F and DC, the  procedure should 
start  at M7. 

Preparatory  algorithms 
Assume  that  the function is given as a Boolean specifica- 
tion and  that  the partition  information is given as a per- 
muted input  list and a part size  list. The sum of the num- 
bers in the  input  part size list  should  equal the length of 
the permuted input list. For example, the input  variable 
permutation (0 1  3 5 4  2 1)  and  the  decoder sizes (2 2 3). 
imply that  the  inputs  are partitioned as (0, 1 ) , (3 ,5 ) ,  and 
(4, 2 ,  1).  The variable number 1 is assigned to  both the 
first and  the third parts.  The  order of variables within a 
part  does not  influence the minimization,  but it does in- 
fluence the bit pattern in the part. 

Separate F and DC specgcations. 

F specification: 
PF1. Eliminate from the original specification all rows 

PF2.  Replace  each d (DON’T CARE symbol) in the  output 
that  do  not  contain a 1 in the  output portion. 

portion  with  a 0. 

DC specification: 
PDC1.  Select all rows of the original specification that 

contain  at  least  one d in the  output portion. 
PDC2.  In  the  output portion,  replace each 1 with  a 0. 
PDC3.  In  the  output portion, replace  each d with  a 1. 

Decode the given Boolean  specgcation of F (the output 
portion now contains only 1 ’ s  and 0’s) into a cubical 
representation with the given partition. 
PD1.  Construct a matrix G whose kth column is the 

column of the  input specification that  corresponds 
to  the  kth variable in the permuted  input  list. 

PD2.  Perform  steps  PD2-6  for  each input part from 
first to last. 

PD3.  Let N F  be the first p columns of C ,  where p is the 

PD4.  Drop  the first p columns of G. 
PD5.  Decode  each  row of N F  into  the bit string of 

length 2’, which corresponds  to  the  truth table 
entries  for  that row. (For  example, -10 becomes 
00 1000 100.) 

number of variables in the part. 

PD6.  For  the  next  part,  go  to  PD3. 
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PD7.  The  output portion of the specification without 
change becomes  the  output  part of the  decoded 
cubes. 

Generate,  for M 4 ,  the DC specijication due to the as- 
signment of an input to more than one part. The result 
has the form of the matrix G given in P D l .  The output 
part of each of the resultant  cubes  contains all 1 ’ s .  
PMDC 1. Start with a null DC.  
PMDC2.  Repeat  steps  PMDC3-7  for all variables. 
PMDC3. If variable I appears in k parts,  generate  the 

following 2‘ - 2 rows of DC.  The  matrix M 
gives the input parts and the  output  parts  are 
all 1’s. 

PMDC4.  Let M be a matrix of -’s with dimensions 
(2’ - 2)  rows X (length of the permuted in- 
put  list)  columns. 

PMDCS.  Let W be a (2’ - 2) X k matrix of  1’s and 0’s 
where  the  nth  row  represents  the binary  value 
of n. The all-0 and all-1 rows  are  not  present. 

PMDC6.  The  tth column of W replaces  the column of 
M that  corresponds  to  the  tth  occurrence of 
variable I in the permuted input list. 

PMDC7.  For  the  next variable, go  to  PMDC3. 

Distance one merging of cubes 
S1. Consider  the  cubes as binary numbers  and  reorder 

them in ascending (or  descending)  order by their 
binary values. 

S2. The bits in part k (initially k = P ,  the  last  part)  are 
the  least significant ones. Starting  from the  top  cube, 
compare  adjacent  cubes. If they are  the  same  except 
in part k ,  remove  both  cubes  and replace  them  with 
the bit-by-bit OR of the two cubes.  Proceed through 
the  entire list. 

S3. Reorder  the  cubes using only the bits in part k .  In 
case of a tie, preserve  the  previous  order. 

S4. Part k - 1 now contains  the  least significant bits. Let 
k be k - 1  and go  to S2. Terminate when all parts 
have been  processed. 

Remark 
If any  set of cubes  are  distance  one  apart  and  the differ- 
ence is in part k ,  the  set of cubes will appear in a cluster 
when ordered using the bits of part k as  the  least signifi- 
cant positions. 

Disjoint  sharp of a  cover F against a  cover G 
( F  @ GI  
Ordering of right  side argument;  reorder  cubes of G: 
ORDG 1. Sum the  number of 1’s in each  part of the list 

G and  divide by the  part  size  to obtain the 
average density of 1’s in each part. 

ORDG2.  For  each  part, starting  from the  most  dense  to 
the  least  dense, do  steps  ORDG3 - 6. 
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ORDG3. Sum the number of  1’s per bit position for 
every bit in the part. Order  the bits  from most 
1’s to  least 1’s. 

ORDG4.  Do  steps  ORDGS, 6 for all bits  in the  part in 
the  order computed in ORDG3. 

ORDGS.  Reorder  the  cubes of G such that  the  cubes 
with a 1 in the bit  position appear  on top of the 
cubes with a 0 in the bit  position. Within the 
two  sets,  preserve  the previous order. 

ORDG6. Go to  ORDGS  for  the  next bit of the part. If 
all bits in a part  are  done,  go  to  ORDG3  for 
the  next  part. 

ORDG7.  Terminate when the  last bit of the  last part has 
been processed. 

Remarks 
The ordering procedure  has been  obtained from numer- 
ous experiments. The  objective is to  order G such  that 
the  number of cubes  produced by the disjoint sharp will 
be as small as possible. One of the  properties of the  above 
ordering is that it tends  to  put  the larger cubes  on  top of 
the smaller cubes. 

F @ G :  
DSHI.  Order G according to  ORDG. 
DSH2.  Remove  the first cube of G and assign it to  the 

current  cube (C  W )  . 
DSH3.  Let Z be the list of cubes in F which are disjoint 

from C W .  Remove Z from F .  
DSH4.  Compute  the internal part ordering for F @ CW 

as follows: For  each  part  compute  the number of 
cubes in G that  are disjoint from CW in that part. 
Order  the  parts  such  that  the  number of cubes 
that  are disjoint in that  part  are in descending 
order. 

DSHS. Using Eq. (4),  compute F @ CW with the  part 
permutation  given by DSH4; then add  the  result 
to  the Z list. 

DSH6. If G is empty,  the  process  terminates and the Z 
list is the result. If G is not empty,  let F be the Z 
list and go  to  DSH2. 

Remarks 
ORDG and DSH4  are  the  two heuristic  ordering 
schemes used in the  sharp  process.  These  two heuristics 
were  chosen so that  the disjoint sharp  process would pro- 
duce a small number of disjoint cubes. 

Expansion of F against G 
Ordering the  cubes of F :  
ORDF1. Sum the  number of 1’s in every bit  position 

of F .  
ORDF2.  For  every  cube in F ,  obtain the weight of the 

cube  as  the  inner  product of the  cube and the 
column  sums. 453 
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ORDF3.  Order the cubes in F such  that their  weights 
are in ascending order. 

Remarks 
This ordering tends  to place on  top of the list those  cubes 
that  are  hard  to merge with other  cubes. If  a cube can 
expand to  cover many other  cubes,  the  cube must have 
1’s where many other  cubes  have l’s, and hence  its 
weight is large. This heuristic  ordering produces  the effect 
of “chewing-away-from-the-edges.”  When there is a huge 
DON’T CARE space, F V DC can be  used  instead of F in 
ORDF 1, for more  effective expansion of cubes. 

The expansion process: 
EXPl.  Order  the  cubes of F according to  ORDF. 
EXP2.  Process  the unexpanded cubes of F in order. 

Let f be the  current  cube  to  be  expanded. 
EXP3.  For  each  part k ,  compute  the k-conjugate sets 

H ( f ;  k )  given by Eq. ( 5 )  and  theirZ(f; k ) ;  then 
form  the over-expanded cube C( f )  given by 

EXP4.  Let Y be the  set of cubes of F that  are  covered 
Eq. (9).  

by C ( f ) .  
EXPS.  For  each  part,  compute  the weight as the num- 

ber of cubes in Y whose part k is covered by 
part k off. 

EXP6.  Order  the  parts in ascending order of their 
weights. 

EXP7.  Let Z W be the  expanded f using the  above  part 
permutation  and  Eq. (8) .  

EXP8.  Let Y be all of the  cubes of F that  are  covered 
by Z W and  remove Y from F .  

EXP9.  Let S be the  super  cube of Y .  
EXPIO. Find all cubes in F that  are  covered by ZW in 

all parts  but  one.  Let  these  cubes by Y .  
EXP 1 1 .  Reduce  each  cube of Y against Z W .  
EXP12.  Let T be the  super  cube of Y .  Let ZW be 

EXP 13. The modified expanded f is Z W .  Append 2 W 

EXP 14. If there  are  any unexpanded cubes in F ,  go  to 

ZW A (S V T ) .  

to  the  bottom of F .  

EXP2. 

Remarks 
EXP3 - 6  defines the internal  part  permutation. The idea 
is to expand first those  parts  that,  when  expanded, will 
cover  the most cubes  that  were not covered by the origin- 
al cube.  EXPS  removes all covered  cubes.  The S of 
EXP9, which is contained in Z W ,  could replace f now if 
a cube reduction  were not employed. By EXP 10- 1 1, all 
remaining cubes of F are  reduced.  The intersection of 
T and ZW denotes  the bits of the initial expanded prime 
cube ZW which were  necessary in the reduction of any 
cube.  The final replacement  for  the original cube F is 
thus ( Z W  A T )  V S = ZW A (T  V S ) .  The  cube  that re- 

places f is  the smallest subcube of a prime cube  contain- 
ing f that  can contain and  reduce  the  same  cubes of F that 
the prime cube  can. 

9 Reduction of cubes 
The  actual  experimental program for this  algorithm is 
quite different  from  a  straightforward  disjoint sharp pro- 
cess.  For efficient computation a tree  method of deter- 
mining essential  bits of a cube is used. The algorithm 
given  below is only  a  conceptual one.  First  the  cubes  to 
be reduced  (given as F )  are  reordered according to 
ORDF except  that ORDF3 is modified to  order  cubes in 
descending order of their weights. This ordering tends  to 
put  cubes  that  have many bits in common with other 
cubes  on  top of the list. It is assumed  that  the DC list is 
also given. 

RED 1. Order  the  cubes of F with the modified ORDF. 
RED2.  Do steps  RED2-4  for all cubes of F in order. 

Let  the  current  cube  be f. 
RED3.  Replace f with the  super  cube of the disjoint 

sharp off against DC V ( F - f )  ; F - f denotes 
all the  cubes of F except f. If  the super  cube is a 
null cube, f is simply removed from the list. 

RED4.  Go to RED2  for the next  cube. 

Reshape the cubes of F 
RESH 1. 

RESH2. 

RESH3. 

RESH4. 

RESHS. 

RESH6. 

RESH7. 

RESHS. 

RESH9. 

Order  the  cubes of F by the modified ORDG 
used in RED 1. 
Do for all cubes of F in order.  Let  the  current 
cube be C I .  
Proceed through the  cubes below C1 one  at a 
time until a reshape  occurs  or until the  last 
cube is processed. Let  the  current  cube be C2. 
If C1 covers C2,  remove C2 from F and  go  to 
RESH3. 
If C1 and C2 are  distance  one  apart,  remove 
C l  and replace C2 with C1 bit-by-bit OR C2 
and  mark the oRed entry as reshaped. Go  to 
RESH2. 
If C 1  and C2 do  not meet the reshaping  condi- 
tion, go  to  RESH3. 
If CI and C2 meet the reshaping  condition, 
form the  reshaped  cubes C1’ and C2’. Re- 
place C2 with C1’ and CI with C2’. Mark 
these  cubes  as  reshaped. Go  to  RESH2. 
If C1 is  not  the last cube in the list, go  to 
RESH2. 
Let all reshaped cubes  be R and all unchanged 
cubes  be T .  

RESH 10. Let C1 range over all cubes in R and C2 range 
over all cubes in T ;  then repeat  RESH2-8. 

Remarks 
The reordering of RESHl  puts  more “splitable” cubes 
at  the  top of the list. RESH2  and  RESH3 initiate the pair- 
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wise comparison loop. Conditions of RESH4  or  RESHS, 
which result in the removal of a cube, may occur  as a re- 
sult of the  current  reshape  process  or  as a result of a pre- 
vious reduce  process.  RESH 10 gives “stubborn”  cubes 
another  chance  to be reshaped. 

Discussion 

Summary 
A general  two-level logic function minimization tech- 
nique, MINI, has been  described. The MINI process  does 
not  generate all prime  implicants nor perform the  cover- 
ing step required in a classical two-level minimization. 
Rather,  the  process  uses a  heuristic approach  that ob- 
tains  a near minimal solution in a manner which is effi- 
cient in both computing  time  and  storage space. 

MINI is based on  the positional cube notation in which 
groups of inputs  and  the  outputs form separate coordi- 
nates. Regular Boolean minimization problems are han- 
dled as a particular case.  The capability of handling mul- 
tiple output functions is implicit. 

Given  the initial specification and the partition of the 
variables, the  process first maps or  decodes all of the 
implicants into  the  cube notation. These  cubes  are then 
“exploded”  into  disjoint cubes which are merged,  re- 
shaped, and purged of redundancy to yield consecutively 
smaller  solutions. The  process  makes rigorous many of 
the heuristics that  one might use in minimizing with a 
Karnaugh map. 

The main subprocesses  are 

1. Disjoint  sharp. 
2. Cube expansion. 
3. Cube reduction. 
4. Cube reshaping. 

The expansion, reduction, and  reshaping processes ap- 
pear  to be  conceptually  new and effective  tools in prac- 
tical minimization approaches. 

Performance 
The MINI technique is intended for “shallow”  functions, 
even though many “deep” functions can be minimized 
successfully. The  class of functions  which can be mini- 
mized is those whose final solutions can be expressed 
in a few hundred cubes.  Thus,  the ability to minimize a 
function is not dependent  on  the  number of input vari- 
ables or minterms in the function.  We have successfully 
minimized several  30-input, 40-output functions  with 
millions of minterms, but  have failed (due  to  the storage 
limitation of an APL 64-kilobyte work space)  to minimize 
the 16-variable EXCLUSIVE OR function which must  have 
215 cubes in the final solution. 

For an n-input,  k-output  function, define the effective 
number of input  variables as n + log, k. For a  large class 
of problems, our  experience with the APL program in a 
64-kilobyte  work space indicates that  the program can 
handle almost all problems with 20 to 30  effective inputs. 
The number of minterms in the problem is not  the main 
limiting factor. 

The  performance of MINI must be evalutated using two 
criteria. One is the minimality of the solution  and the 
other is the computation  time. Numerous problems  with 
up to  36 effective inputs have been run; MINI obtained 
the  actual minimum solution in most of these  cases.  The 
symmetric  function of nine variables, S3451, contains  420 
minterms and 1680  prime  implicants when each variable 
is in its  own  part (i.e., the regular Boolean case).  The 
minimum two-level solution is 84 cubes. The program 
produced an 85-cube  solution in about 20 minutes of 
360/75 (APL) CPU time. The minimality of the algorithm 
is  thus shown to be  very  good,  considering the difficulty 
of minimizing symmetric functions in the classical ap- 
proach,  due  to many  branchings. A large number of very 
shallow test  cases,  generated by the method shown in 
[ 191, were  successfully minimized, although  a few cases 
resulted in one or two cubes  more than the known mini- 
mum solutions. 

The run  time is largely dependent  on  the number of 
cubes in the final solution. This  dependence  results be- 
cause  the number of basic operations  for  the  expand, 
reduce,  and  reshape  processes is proportional to  the 
square of the  number of cubes in the list. It is difficult to 
compare  the computation  time of MINI with  classical  ap- 
proach programs. The many-variable  problems  run on 
MINI could not  be  handled by the classical approach be- 
cause of memory space and  time  limitations. For just a 
few input  variables (say,  up  to eight variables), both ap- 
proaches  use  comparable run times. However,  the com- 
plexity of computation  grows  more  or  less exponentially 
with the  number of variables in the classical minimiza- 
tion, even though the problem  may  be  a  shallow one.  An 
assembly  language  version of MINI is now almost com- 
plete. The run  time can’be reduced by a factor  as large 
as 50, requiring only a few  minutes for most of the 20- to 
30-effective-input problems. Thus it appears  that MINI 

is a viable alternative  to  the classical approach in mini- 
mizing the practical  problems  with many input  and out- 
put variables. 

Minimal solutions in the classical  sense 
The MINI process  tries  to minimize the number of cubes 
or implicants in the solution. The  cubes in the solution 
may not be  prime, as in the classical minimization where 
the  cost function  includes the price (number of input 
connections  to AND and OR gates) of realizing each  cube. 
But if such consideration becomes beneficial, a prime 4551 
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cube solution can be obtained  from the result of MINI. 

This is done by first  applying the reduction process  to 
the  output  part of each  cube in the solution  and then ex- 
panding all the  input  parts of the  cubes in any  arbitrary 
part  order.  The MINI solution can  also  be reduced to 
smaller cubes by putting  through an additional  reduction 
step. 

Multiple-valued  logic  functions 
It  was mentioned that  each  part of the generalized uni- 
verse may be considered  as a multiple-valued logical in- 
put. By placing n, Boolean variables in part i ,  we pre- 
sented  the MINI procedure with part lengths equal  to 
2‘* except  for  the  output part. MINI can handle a larger 
class of problems if the specification of a function is given 
directly in the  cube format. 

By organizing problems such as medical diagnoses, 
information  retrieval  conditions, criteria  for complex de- 
cisions,  etc. in multiple-value  variable logic functions, 
one can minimize them  with MINI and  obtain aid in anal- 
ysis. This  is  demonstrated with the following example. 

Example:  Nim 
The  game of Nim is played  by two persons. There  is  an 
arbitrary  number of piles of matches and each pile may 
initially contain an  arbitrary  number of matches. Each 
player alternately removes any number  (greater  than 
zero) of matches from one pile of his  choice. The player 
who removes  the  last  match wins the game. The strategy 
of the  game  has been  completely  analyzed and  the player 
who leaves  the so-called “correct position” is assured 
of winning the  game,  for  the  other  player  must  return it 
to  an  incorrect position,  which can  then  be  made  into a 
correct  one by the winning player. 

The problem  considered contains five piles and  each 
pile has  two  places  for  matches.  Thus a pile can  have  no 
match, one  match,  or  two  matches  at  any  phase of the 
game. Taking the  number of matches in a pile as values of 
variables, we  have a five-variable  problem and  each vari- 
able  has  three values (0, 1 or 2) .  Out of 243 (35) possible 
positions, 61 are  correct.  The 182 remaining incorrect 
positions were specified and minimized by the MINI pro- 
gram. For instance, the  incorrect position (0, 1,  1, 0, 2) 
is specified as ( 100 0 10 0 10  100 00 1 ) in the generalized 
coordinate format.  Using this  result  and  the  fact  that all 
variables are  symmetric,  one can deduce  the  incorrect 
positions: 

1 .  Exactly two piles are  empty  (cubes 1 - 10) or  no pile 

2. Only one pile has  two  matches  (cubes 1 1 ,  13, 17- 19). 
3. Only one pile has  one match (cubes 12, 14- 16, 20). 

The MINI result identified the 2 1 cubes shown below. 

is empty (cube 2 1 ). 

1 01 1 
2 100 
3 100 
4 011 
5 01 1 
6 01 1 
7 01 1 
8 100 
9 01 1 

10 100 
I 1  00 1 
12 101 
13 110 
14 010 
15 10 1 
16 101 
17 110 
18 110 
19 110 
20 101 
21 01 1 

Further  comments 

100 
01 1 
01 1 
01 1 
100 
100 
01 1 
01 1 
01 1 
100 
110 
101 
110 
101 
010 
101 
00 1 
110 
110 
101 
01 1 

01 1 
100 
01 1 
100 
01 1 
100 
01 1 
01 1 
100 
01 1 
110 
101 
110 
101 
101 
010 
110 
00 1 
110 
101 
01 1 

100 
01 1 
100 
01 1 
01 1 
01 1 
100 
01 1 
100 
01 1 
110 
010 
00 1 
101 
101 
101 
110 
110 
110 
101 
01 1 

01 1 
01 1 
01 1 
100 
100 
01 1 
100 
100 
01 1 
01 1 
110 
101 
110 
10 1 
101 
101 
110 
110 
00 1 
010 
01 1 

In  the  case of the single output function F ,  the designer 
invariably has  the  option of realizing either F or F. The 
freedom to realize either  is often  a consequence of the 
availability of both  the  true  and  the complemented  out- 
puts from the final gate.  However, it may also be  a  con- 
sequence of the acceptability of either form as  input  to 
the  next level. Given  the  choice of the  output  phases  for 
a multiple-output  function, a best  phase assignment 
would be  the  one  that  produces  the smallest minimized 
result.  Since there  are 2k different phase  assignments  for 
k output functions,  a  non-exhaustive  heuristic  method is 
desired. One way to accomplish  this would be to double 
the  outputs of the function by adding the complementary 
phase of each  output before minimization. The  phases 
can be  selected in a judicious way from the combined 
minimized result. This  approach  adds only  a  double-size 
output  part in the MINI process.  The combined  result is 
just  about  double  the given one-phase minimization. 
Hence, using the MINI approach a phase-assigned solu- 
tion can be attained in about  four times the time  required 
to minimize the given  function that  has  every  output in 
true  phase. 

Our successful experience with the MINI process sug- 
gests  both challenging theoretical  problems  and  interest- 
ing practical  programs. A theoretical characterization of 
functions, which either confirms or  refutes  the MINI 
heuristics, would be useful. The  number of times the  cube 
expansion  process need  be iterated is another  matter 
requiring further study. Currently,  we  terminate  the itera- 
tion if there is no improvement  from  the previous  applica- 
tion of the  expansion  step. 
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Appendix 
Here  we give an  example of a four-input,  two-output 
Boolean function to illustrate the major steps of MINI. 

Most functions of this  size get  to  the minimal solution 
by the first expansion alone. This example, however, is 
an  exception and  illustrates all the  subprocesses of MINI. 

.We use  the Karnaugh  map  for the illustrations, rather 
than the  cube notation. The  conventions  for this map are 
as follows: 

output 1 output 2 
x ,  I 

The  ordered  cubes  are  denoted by numbers in the ver- 
tices of the  cubes, as follows. 

Cube 1 Cube 3 

\Cube 2 ’ 
The function to be minimized and  the effects of the sub- 
processes  are shown in Fig. A 1. 

20 17 16 13 14 
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