MINI: A Heuristic Approach for Logic Minimization

Abstract: MiNI is a heuristic logic minimization technique for many-variable problems. It accepts as input a Boolean logic specification
expressed as an input-output table, thus avoiding a long list of minterms. It seeks a minimal implicant solution, without generating all
prime implicants, which can be converted to prime implicants if desired. New and effective subprocesses, such as expanding, reshaping,
and removing redundancy from cubes, are iterated until there is no further reduction in the solution. The process is general in that it can
minimize both conventional logic and logic functions of multi-valued variables.

Introduction

s Minimization problem

The classical approach to two-level Boolean logic mini-
mization uses a two-step process which first generates
all prime implicants and then obtains a minimal cover-
ing. This approach, developed by Quine {1, 2] and
McCluskey [3], is a considerable improvement over con-
structing and comparing all possible solutions. The gener-
ation of prime implicants has evolved to a relatively
simple process as a result of the efforts of Roth [4],
Morreale [5], Slagle et al. [6] and many others. How-
ever, the number of prime implicants of one class of n-
variable functions is proportional to 3" /n [7]. Thus, for
many functions, the number of prime implicants can be
very large. In addition, the covering step poses an even
greater problem because of its well known computational
complexity. Because of the required storage and compu-
tations, machine processing to obtain the minimum solu-
tion by the classical approach becomes impractical for
many-variable problems.

Many attempts have been made to increase the size
of problems that can be minimized by sacrificing absolute
minimality or modifying the cost function used in cover-
ing [6, 8—11]. Su and Dietmeyer [12] and Michalski
[13, 14] have reported other serious departures from the
classical approach. One recently developed computer
program, which essentially represents the state of the art,
is said to be able to handle functions of as many as 16
variables [15]. Successful minimization of selected larg-
er functions has also been reported [4, 14]. However,
many practical problems of 20 to 30 input variables can-
not be handled by the approaches described above and
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it does not appear that the classical approach can be easi-
ly extended to encompass functions of that size.

~ Heuristic approach

The approach presented here differs from the classical
one in two aspects. First, the cost function is simplified
by assigning an equal weight to every implicant. Second,
the final solution is obtained from an initial solution by
iterative improvement rather than by generating and cov-
ering prime implicants.

Limiting the cost function to the number of implicants
in the solution has the advantage of eliminating many of
the problems associated with local minima. Since only
the number of implicants is important, their shapes can
be altered as long as the coverage of the minterms re-
mains proper. The methods of modifying the implicants
are similar to those that one might use in minimizing a
function using a Karnaugh map. The MINI process starts
with an initial solution and iteratively improves it. There
are three basic modifications that are performed on the
implicants of the function. First, each implicant is re-
duced to the smallest possible size while still maintaining
the proper coverage of minterms. Second, the implicants
are examined in pairs to see if they can be reshaped by
reducing one and enlarging the other by the same set of
minterms. Third, each implicant is enlarged to its maxi-
mal size and any other implicants that are covered are
removed. Thus, both the first process, which may reduce
an implicant to nothing, and the third process, which re-
moves covered implicants, may reduce the number of
implicants in the solution. The second process facilitates
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the reduction of the solution size that occurs in the other
two processes. The order in which the implicants are
reduced, reshaped, and enlarged is crucial to the success
of the procedure. The details of these processes and the
order in which they are applied to the implicants is dis-
cussed in later sections. However, the general approach
is to iterate through the three main procedures until no
further reduction is obtained in the size of the solution.

Our algorithm is designed for minimizing *‘shallow
functions,” those functions whose minimal solution con-
tains at most a few hundred implicants regardless of the
number of variables. Most practical problems are of this
nature because designers usually work with logic speci-
fications that contain no more than a few hundred con-
ditions. The designer is able to express the function as a
few hundred implicants because the statement of the
problem leads to obvious groupings of minterms. The
purpose of the algorithm is to further minimize the repre-
sentation by considering alternative groupings that may
or may not be obvious from the statement of the problem.

To facilitate the manipulation of the implicants in the
function, a good representation of the minterms is neces-
sary. The next section describes the cubical notation that
is used.

~ Generalized cube format

The universe of n Boolean variables can be thought of as
an n-dimensional space in which each coordinate repre-
sents a variable of two values, 0 or 1. A Karnaugh map
is an attempt to project this n-dimensional space onto a
two-dimensional map, which is usually effective for up
to five or six variables. Each lattice point (vertex) in this
n-dimensional space represents a minterm, and a special
collection of these minterms forms an implicant, which is
seen as a cube of vertices. Following Roth [4], the usual
definition of a cube is an n-tuple vector of 0, 1 and X,
where 0 means the complement value of the variable, 1
the true value, and X denotes either 0 or 1 or both values
of the variable. The following example depicts the mean-
ing of the usual cube notation.

Example la
Consider a four-variable (4, B, C and D) universe.

Cube
Implicant notation Meaning
ABCD 0010  Minterm with
A=B=D=0,C=1
AC 1 X0X Minterms with4d = 1,
B=0orl,C=0,
D=0orl
U=universe XX XX Minterms withA = Qor I,

B=0orl,C=0o0rl,
D=0orl

@ = null 0 No minterms
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A more convenient machine representation of 0, 1 and
X in the cube is to denote them as binary pairs, i.e., to
code 0 as 10, 1 as 01, and X as 11. This representation
has the further meaning that 10 is the first of the two
values (0) of the variable, 01 is the second value (1),
and 11 is the first or the second or both values. Naturally,
the code 00 represents no value of the variable and,
hence, any cube containing a 00 for any variable posi-
tion depicts a null cube.

Example 1b
Consider the encoded cube notation of Example 1a.
Cubes Encoded cubes
0010 10 10 01 10
1X0X 01111011
XXXX 1111111
0 10 .00 11 01

(The 00 entry can be in any variable position. The other
values are immaterial. )

We call this encoded cube notation a positional cube
notation since the positions of the 1’s in each binary pair
denote the occupied coordinate values of the correspond-
ing variables. With this notation, any non-Boolean vari-
able, which has multiple values, can be accommodated
in a straightforward manner. If a variable has ¢ values,
the portion corresponding to that variable in the position-
al cube notation is a binary t-tuple. The positions of each
1 in this t-tuple denote the values of the ¢-valued variables
occupied by the minterms in the cube. Su and Cheung
[16] use this positional cube notation for the multiple-
value logic. A Boolean variable is a special case of the
multiple-value variable.

Consider P variables; let p; denote the number of val-
ues the variable i takes on. We call the p-tuple in the po-
sitional cube notation the ith part of the cube (there are
P parts); p, is called the part size, which is the total num-
ber of values there are in the ith coordinate of the P-di-
mensional multiple-value logic space. Notice that in a
cube, the values specified by the 1’s in a part are to be
ored, and this constrained part is to be ANDed with other
parts to form an implicant.

Any Boolean (binary) output function F with P mul-
tiple-value inputs can be mapped into a P-dimensional
space by inserting 1’s in all points where F must be true
and 0’s in all points where F must be false. The unspeci-
fied points can be filled with d’s, meaning the DON’T CARE
output conditions. (Often, the 1’s and d’s are specified
and the 0’s are filled later.) A list of cubes represents the
union of the vertices covered by each cube and is called
a cubical cover of the vertices, or simply a cover. The
goal of the MINI procedure is to cover all of the 1’s and
none of the 0’s with a cover containing a minimum num-
ber of cubes. The covers exclusively covering the 1’s,
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0’s, and unspecified points are called, respectively, the
ON cover, the OFF cover, and the DON’T CARE cover.
When there is no confusion, these covers will be denoted
by F, F, and DC, respectively.

For multiple-Boolean-output functions (f,, f,,***, f,.)
a tag field [18] has been catenated to the input portion
of a cube to denote the multiple-output implicant. We
can add an additional m valued dimension for the out-
puts. This new dimension can be interpreted as represent-
ing a multiple-value variable called the output. The tradi-
tional tag field of an m-tuple binary vector corresponds to
our output part in a cube. If the ith bit of the output part
is a 1, the ith output is occupied by the cube. We call the
whole multiple-output space the generalized universe.
Any cube in this universe automatically denotes a multi-
ple-output cube. We denote by F the whole of the multi-
ple-output functions f, through f, . The MINI procedure
aims to cover F with a minimal number of cubes in the
generalized space.

For generality, we also group input variables into a set
multiple-value variables such that the new variables X
comprising n, of Boolean input variables have 2" values
and are called parts. The part sizes are defined as p, for
inputs and m for the output. When groups of inputs are
processed through small decoders, the values of decoder
output correspond to the multiple values of parts. Each
part constitutes a coordinate in the generalized space.
The specification of the function is assumed to be a list
of regular Boolean cubes with the output tags. The output
tag is composed of 0, 1, and d, where 0 means no infor-
mation, 1 means the cube belongs to the output, and d
means the cube is a DON'T CARE for the output. The out-
put side of this specification is the same used by Su and
Dietmeyer [12], sometimes known as the output con-
nection matrix.

Example 2a
A Boolean specification and its Karnaugh map.

Inputs Outputs
A B C D hi £ £
0 1 X X 0 1 0
1 0 X X 0 1 1
X 0 0 0 1 0 d
X 0 1 1 1 d 1
A
"
1 1 1 1 d d
1 1 1
D
1 1 dj1 d 1 1
c
1 1 1
-
B
fi f2 13
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The circled d’s in the Karnaugh map show the conflict
between 1's and d’s. We allow the specification to have
conflicts for the sake of enabling the designer to write a
concise specification. Any such conflict will be overrid-
den by the d’s in our MINI process. Suppose now the in-
puts are partitioned as X, = {4, B} and X, = {C, D}.
The specification of Example 2a is preprocessed to the
generalized positional cube notation as shown below.
We call this preprocess a decoding step.

Example 2b

Decoding Boolean specification into the cube format:
There are three parts; X, and X,, which take on the four
values 00, 01, 10 and 11, and the output, with part size 3.
The DON’T CARE cover overrides the ON cover.

X, X, Output
0100 1111 010
0010 1111 011
1010 1000 100 }F
1010 0001 101
1010 1000 001}
1010 0001 101 bc

The first four cubes for F (oN cover) are the decoded
cubes in Example 2a with the output d’s replaced with
0’s. The last two DC cubes are obtained by decoding
only those cubes with d’s and replacing the d’s with I’s
and any non-d output with 0’s.

% Classical concepts in cubical notation

Several classical concepts have immediate generaliza-
tions to the cube structure described in the previous sec-
tion. The correspondences between a minterm and a point
and between an implicant and a cube have already been
described. In addition, a prime implicant corresponds to a
cube in which no part can admit any more 1's without
including some of the F space. Such a cube is called a
prime cube.

A useful concept in minimization is the size of a cube,
which is the number of minterms that the cube contains.
It follows from this definition that the size of a cube is
independent of the partition of the space into which it is
mapped or decoded. Thus, the size of a cube is given by

P
cube size = H (number of 1’s in part p,). (1)

i=1

Since a cube with one variable per part represents the
usual Boolean implicant, each implicant can be mapped
into any partitioned cube. Because the resulting cubes
can in some cases be merged when the Boolean impli-
cants could not, we have the following theorem.
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Theorem I The minimum number of cubes that can repre-
sent a function in a partitioned space is less than or equal
to the minimum number of cubes in the regular Boolean
minimization.

To manipulate the cube representation of a function,
it is necessary to define the oR, AND, and NOT operations.

1. The or of two cubes C, and C, is a list containing C,
and C,. The or of two covers A4 and B is thus the
catenation of the two lists.

2. The aND of two cubes C, and C, is a cube formed by
the bit-by-bit AND of the two cubes. The AND of two
covers A and B follows from the above by distributing
the AND operation over the OR operation.

3. The NoT of a cube or cover is a list containing the
minterms of the universe that are not contained in the
cube or cover. The algorithm for constructing this
list is discussed in a later section.

The simplest way to decrease the number of cubes of
a given problem is to merge some of the cubes in the list.
Although this is not a very powerful process, it is well
worth applying to the initial specification, especially if
there are many entries (a minterm-by-minterm specifica-
tion is a good example). The following shows the merg-
ing of two cubes, which is similar to the merging of two
unit-distance Boolean implicants, e.g., ABC VABC =AB.

Definition The distance between two cubes C, and C, is
defined as the number of parts in which C, and C, differ.

Lemma I If C, and C, are distance one apart, then C,
vV C, = C,, where C, is a bit-by-bit or of C, and C,,.

Proof Let us assume that the difference is in the first part.
Let

C,=aa, a,,llblbz"'b,,zl |n1n2"'n,,p
and
C,= alaz..‘%l\blbz. "b,,2\ RPN REE ”pp’

where a,, b, -, are O or 1. Q.E.D.

The cubes C| and C, are identical in all but one dimen-
sion or part. Therefore, the vertices covered by C, V C,
can be covered by a single cube with the union of all co-
ordinate values of C, and C, in that differing coordinate,
e, (a,Va,),(a,Va,), (ap \ apz).

The concept of subsumption in cubes is similar to sub-
sumption in the Boolean case (4BC V BC = BC).

Definition A cube C, is said to cover another cube C, if
for every 1 in C, there is a corresponding 1 in C,. In other
words, C, AND NOT C, (bit-by-bit) is all 0’s. Since the
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cube C, is completely contained in C,, it can be removed
from the list, thus reducing the number of cubes of the
solution in progress.

Example 3
Consider a three-part example as follows,

1010 10 10 cube?2

1010 01 10 cubel
F={
0010 11 10 cube3

Cube 1 and cube 2 are distance one apart since they differ
only in the second part. The result of merging these two
cubes is 1010 11 10, which covers cube 3. Hence, F re-
duces to one cube, 101011 10.

Description of MmINI and some theoretical considera-
tions

* MINI philosophy

The minimization process starts from the given initial
F cover and DC cover (lists of cubes where each cube
has P parts). Each part of a cube can be viewed as desig-
nating all allowed values of the multiple-valued logic var-
iable, corresponding to that part. The output part can be
interpreted as merely another multiple-value variable
which may be called the output. When each part’s allowed
values are ANDed, the resulting cube describes some of
the conditions to be satisfied for the given multiple-output
logic function corresponding to F and DC specifications.
The objective, then, is to minimize the number of cubes
for F regardless of the size and shape of the constituent
cubes. This corresponds to minimizing only the number
of AND gates without fan-in limit, in the regular Boolean
two-level AND-OR minimization. We discuss later a sim-
ple way of modifying the solution to suite the classical
cost criterion.

The basic idea is to merge the cubes in some way to-
ward the minimum number. To do this, MINI first “ex-
plodes” the given F cover into a disjoint F cover where
the constituent cubes are mutually disjoint. The reasons
are

1. To avoid the initial specification dependency. The
given cubes may be in an awkward shape to be merged.

2. To introduce a reasonable freedom in clever merging
by starting with small, but not prohibitively numerous,
fragments such as a minterm list.

The disjoint F is an initial point of the ever decreasing
solution. At any point of the process from there on, a
guaranteed cover exists as a solution. A subprocess
called disjoint sharp is used for obtaining the disjoint F.

Given a list of cubes as a solution in progress, a merg-
ing of two or more cubes can be accomplished if a larger
cube containing these cubes can be found in F V DC
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space to replace them. The more merging is done, the
smaller the solution size becomes. We call this the cube
expansion process. The expansion first orders the given
cubes and proceeds down the list until no more merging is
possible. This subprocess is not unlike a human circling
the ‘‘choice” prime implicants in a Karnaugh map. Ob-
viously, one pass through this process is not sufficient.

The next step is to reduce the size of each cube to the
smallest possible one. The result of the cube expansion
leaves the cubes in near prime sizes. Consequently, some
vertices may be covered by many cubes unnecessarily.
The cube reduction process trims all the cubes in the
solution to increase the probability of further merging
through another expansion step. Any redundant cube is
removed by the reduction and, hence, it also ensures a
nonredundant cover.

The trimmed cubes then go through the process called
the cube reshaping. This process finds all pairs of cubes
that can be reshaped into other pairs of disjoint cubes
covering the same vertices as before. This step ends the
preparation of the solution for another application of
cube expansion.

The three subprocesses, expansion, reduction, and
reshaping, are iteratively applied until there is no more
decrease in the solution size. This is analogous to the
trial and error approach used in the Karnaugh map meth-
od. We next describe each of these subprocesses and dis-
cuss the heuristics used. Brief theoretical considerations
are given to formulate new concepts and to justify some
of the heuristics.

¢ Disjoint sharp process (complementation)
The sharp operation A # B, defined as 4 A B, is well
known. It also yields the complement of 4 since 4 = U
# A, where U denotes the universe. Roth [4] first de-
fined the process to yield the prime implicants of AB and
used it to generate all prime implicants of F by computing
U # (U # (F V DC)). He later reported [17] that
Junker modified the process to yield AB in mutually dis-
joint implicants. The operation is easily adapted to our
general cubical complex as described in this section.
The disjoint sharp operation,@, is defined as follows:
A @ B is the same cover as AB, and the resultant cubes
of A @ B are mutually disjoint. To obtain this, we give
a procedural definition of # by which 4 # B can be
generated. Consider two cubes A =7 m,: - 7, and B

p
ol TS T

Lemma2 A @ B=C=V_" C, where C, is given by
C,=(mpm,) mymy " Ty

C,= (771:“1) (772’72) Tg' " Ty
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C, = (mypy) (momy) (mong) - - Tps

C,= (mypy) (mopay) (mropsy) -+ (i), (2)

and AND and NOT operations are performed in a bit-by-
bit manner. Whenever any C; becomes a null cube, i.e.,
ik, = @, C,is removed from the 4 (# B list.

Proof 1t is obvious that the C, are mutually disjoint;
C = AB has to be shown. Since for all i, C; C 4 and
C, C B,wehave C C AB. We must show now that every
vertex W € AB also belongs to C. Let W=ww, - w;
then each w; is covered by w; and there exists at least one
w; which is not covered by u,. Let the first part where w,
is not covered by u, be i. From Eq. (2), we see that
Q.E.D.

W € C,and, therefore, w € C.

Example 4a

A Karnaugh map example for 4 = universe = XXXX
(wmymym,= 1111 11 11 in our notation) and B = 11X0
(s pMoptgpr, = 01 01 11 10), the shaded area of the map.
Then

(S

C,=0XXX (10 11 11 11),
C,=10XX (011011 11),
C,=null (010100 11) — (delete),
C,=11Xx1 (01011101).

Equation (2) can be expressed more concisely as
C,= (A ) (my A py) - ('n'j_1 A [.Lj_l) (7r]. A i)
(3)

which shows that the y; are complemented in order from
part 1 through part P. The parts can be complemented in
an arbitrary order and still produce a valid 4 @ B. Let
o denote an arbitrary permutation on the index set 1
through P. Then Eq. (3) can be rewritten as

X ., T,

1T T

p’

Ci= (T N o) (Tooy N Bgy)
(”ou—n A Mig(imp) Ty N By )
Teii+1 " Tapy (4)

It'is easily shown that the proof of Lemma 2 is still val-
id if the index set is replaced by the permuted index set. In
addition, 4 @ B may be performed for any given per-
mutation and the result will always yield the same num-
ber of cubes. However, the shapes of the resultant cubes
can vary depending on the part permutation o, as shown
in Example 4b.
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Example 4b

Let A= 110110 11 and B = 0101 11 01. We calculate
A @ B with two distinct part-permutations, using
Eq. (4).

_ 100010 11 .. _ N
! @B*{oml 10 10} if o= (1,2,3)(C,=9);

_f11o11010y .. ~
A@B*{looo 1001}‘f‘f—(2,3,1)(c1_@)_

The extension of the (#) operation to include the cov-
ers as the left- and the right-side arguments is similar to
the regular # case. One difference is that the left-side ar-
gument cover F of F (# G must already be disjoint to
produce the desired disjoint FG cover. Thus, when F =
V f; with the f; disjoint and g is another cube, F @ g is
defined as

F@e=Vv{® e (5)

IfG= Vj=1" &; where the g; are not necessarily disjoint,

FAG=((F®sg) gy ) ®D e, ® e,
(6)

If F is not in disjoint cubes, the above calculations still
produce a cover of FG, but the resultant cubes may not
be disjoint. The proof of the above extensions of @) is
simple and we omit it here.

The definition of F (# G given in Eq. (6) can be gen-
eralized to include the permutation on the cubes of G.
One can replace each g, in Eq. (6) with a permuted in-
dexed g, ;. This cube ordering o for the right-side argu-
ment G influences the shape and the number of resultant
cubes in F (# G. Example S illustrates the different out-
come of F (#) G depending on the order of the cubes
of G.

Example 5
Let F be the universe and G be given as follows.

Produce G disjoint=F @ G.
F=11111111
G={10110111—g1

11 0010 01 — g,
01 1111 11
F@® 1_{10001011
01 1101 11
(F®g) ® g2={01 0010 10
10 0010 10
=

11 1101 11
F@® =1 0010 10

(F@gz) @gl___{Ol 1101 11

11 0010 10

The part ordering o = (1, 2, 3) is used for both cases to
show the effect of just g,,g, ordering.
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As shown by examples 4b and 5, there are two places
where permutation of the order of -carrying out the @
process affects the number of cubes in the result. One is
the part ordering in cube-to-cube (#), and the other is
the right-argument cube ordering. The choice of these
two permutations makes a considerable difference in the
number of cubes of F @ G. Since we obtain F as U @&
(FVDC)and FasU @ (F V DC) initially, we choose
these permutations such that a near minimal number of
disjoint cubes will result. The detailed algorithm on how
these permutations are selected is presented in a later sec-
tion. We mention here that these permutations do not af-
fect the outcome in the case of the regular sharp process,
because the regular sharp produces all prime cubes of
the cover. The disjoint F obtained in the process of ob-
taining the disjoint F as above is put through one pass of
the cube expansion process (see next section) to quickly
reduce the size and thus facilitate the subsequent compu-
tations. The F used thereafter need not be disjoint.

When the left argument of (#)is the universe, the re-
sult is the complement of the right argument. Since we
treat the multiple Boolean outputs f,, f,," -, f,, as one part
of a single generalized function F, we now explain the
meaning of F.

Theorem 2 The output part of F represents f, -+, f,..

Proof The complementation theorem in [18] states that
ifF=VEf,VE,=1and E,f,=f, then F=V E,f, Let
E, in our case be the whole plane off; in the universe; i.e.,
E, is a cube denoted by all 1’s in every input part and a
single 1 in the ith position of the output part. Obviously,
VE =1, EF=Ef,=f,and F =V f,=V E f,. Hence,
F=VEf,=Vf. Q.E.D.

s Cube expansion process

The cube expansion procedure is the crux of the MINI
process. It is principally in this step that the number of
cubes in the solution decreases. The process examines
the cubes one at a time in some order and, from a given
cube, finds a prime cube covering it and many of the other
cubes in the solution. All the covered cubes are then
replaced by this prime cube before a next remaining cube
is expanded.

The order of the cubes we process is decided by a
simple heuristic algorithm (described later). This order-
ing tends to put those cubes that are hard to merge with
others on the top of the list. Therefore, those cubes that
contain any essential vertex are generally put on top of
the other cubes. This ordering approximates the idea of
taking care of the extremals first in the classical covering
step. Thus, a “chew-away-from-the-edges™ type of merg-
ing pattern evolves from this ordering.

Let S denote the solution in progress; S is a list of cubes
which covers all F-care vertices and none of the F-care
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vertices, possibly covering some of the DC vertices.
Now, from a given cube f of §, we find another cube in
F V DC, if any, that will cover f and hopefully many of
the other cubes in §, to replace them. This is accom-
plished by first expanding the cube f into one prime cube
that “looks” the best in a heuristic sense. The local ex-
traction method (see, for instance, [7]), also builds
prime cubes around the periphery of a given cube. The
purpose there is to find an extremal prime cube in the
minimization process. Even though the local extraction
approach does not generate all prime cubes of the func-
tion, it does generate all prime cubes in the peripheries,
which can still be too costly for many-variable problems.
To approximate the power of local extraction, the expan-
sion process relies on the cube ordering and other sub-
processes to follow. Since only one prime cube is grown
and no branching is necessary, the cube expansion pro-
cess requires considerably less computation than the
local extraction process.

The expansion of a cube is done one part at a time. We
denote by SPE(f; k) the single-part expansion of f along
part k; SPE can be viewed as a generalized implementa-
tion of Roth’s coface operation on variable k.

Definition Two disjoint cubes 4 and B are called k-con-
Jugates if and only if 4 and B have only one part £ where
the intersection is null; i.e., when part k of both 4 and B
is replaced with all 1’s, the resultant cubes are no longer
disjoint.

Example 6
Let £ be 101X in regular Boolean cube notation. The
cubes 0X11, X1XX and 1000 are examples of 1-, 2- and
3-conjugates of f, respectively. There is no 4-conjugate
of fin this case.

Let H(f; k) be the set of all cubes in F that are k-con-
jugates of the given cube fin §.

H = {g,|fand g, are k-conjugates}, (7)

where we assume that the F is available as F =V g,
which is obtained as a by-product of the disjoint F calcu-
lation. (Since the cube expansion process makes use of F,
we say that § is expanded against F.) Further denote as
Z(f, k) the bit-by-bit or of the part k of all cubes in
H(f: k). When H(f; k) isanull set, Z(f; k) isall 0’s. The
single-part expansion of f=mm, -, - 7 along part
k is defined as

SPE(fik)=mmy - m_, Z(fi k) Tppys " Ty (8)
where Z denotes bit-by-bit complementation.
Example 7a

Let fand F be as follows. The SPE along parts 1,2 and 3
is obtained.
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f= 10100110

11 11 1000 =g,,
F=[11 010011 =g,,

01 10 0001 = g,.
Then,

H(f;1)=0and Z(f; 1) =00
SPE(f; 1) = 11 10 0110,

H(f;2)={g,}and Z(f;2) =01
SPE(f;2)=10 100110 =,

H(f;3)={g,} and Z(f; 3) = 1000
SPE(f,3)=10100111.

Example 7b

In the regular Boolean case, let f = 101X and let F = g,
Vg,V g,={00X0, 0XX1, 110X} as shown in the Kar-
naugh map below.

0
x2 &3
0

K H(f; k) Z(fi k) SPE(f; k)
1 8 & 1 101X=f
2 null X 1IX1X
3 null X 10XX
4 null X 101X=f

Notice that the Boolean case is a degenerate case where
1 or 0 in any variable can stay the same or become an X
when the coface operation succeeds.

Lemma 3 Let C be any cube in F vV DC which contains
the cube f of §. Then part £ of C is covered by part £ of
SPE(f; k). Thatis,if C = pp,* - gy -+ * g, the U's in g,
are a subset of the 1I’'sin Z(f; k).

Proof Suppose p, contains a 1 that is not in Z(f; k). This
implies p, - Z(f; k) # @, which in turn implies that there
exists a cube g in F which is a k-conjugate of f and part k
of g has a non-nuil intersection with u,. Since C covers
f, and f and g have non-null intersection in every part but
k, C and g have non-null intersection. This contradicts
the hypothesis that C isin F V DC. Q.E.D.
It follows from the above that part k of SPE(f; k) is
prime in the sense that no other cube in F V DC contain-
ing f can have any more 1’s in part k than SPE (f; k) has.
We define part k, Z(f; k), or SPE(f; k) as a prime part,
which leads to the following observation. 449
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Theorem 3 A cube is prime if and only if every part of the
cube is a prime part.

A cube can be expanded in every part by repeatedly
applying the SPE as follows:

expand(f) =
SPE(-SPE(SPE(SPE(f;1);2);3)-4p). (9)

To be more general, let o be an arbitrary permutation
on the index set 1 through p; then

expand(f) = SPE( - SPE(SPE(SPE(f; o(1)); o(2));
a(3)) 5 0(p)). (10)

The result of expand(f) may not be distinct for distinct
part permutations. However, the part permutation does
influence the shape of the expanded cube, and each ex-
pansion defines a prime cube containing f by Theorem 3.

Example 8
Letf, F and the part permutations be as follows.

f= 01 1000 10 | part permutation : expand(f)

110100 11 |o,=(1,2,3) :11101110: 4
F={10001101 g,=(1,3,2) :11100011:B
01011001 loy=(3,2,1) :01100111:C

The part permutations (2, 1, 3) and (2, 3, 1) both pro-
duce 4 and (3, 1, 2) produces B.

There is no guarantee of generating all prime cubes
containing f even if all possible part permutations are
used unless, of course, f happens to belong to an essen-
tial prime cube. The goal is not to generate prime cubes
but rather to generate an efficient cover of the function.
Therefore, a heuristic procedure is used to choose a per-
mutation for which expand(f) covers as many cubes of
S as possible. Consider a cube C(f) defined by

CH=ZH,VZ[2)--Z(f; P). (11)

For Example 8, C(f) is 11 1011 11. Obviously, C(f) is
not always contained in F V DC. However, any expan-
sion of f can at best eliminate those cubes of S that are
covered by C(f) which is called the over-expanded cube
of f. The permutation we choose is derived from ex-
amining the set of cubes of S that are covered by C(f).

Let the super cube C of a set of cubes T = {C,|i € I'}
be the smallest cube which contains all of the C, of T. We
state the following lemma omitting the proof.

Lemma 4 The super cube C of T is the bit-by-bit Or of all
the C,of T.

One can readily observe that C(f) is a super cube of
all prime cubes that cover f and is also the super cube
of the set of cubes {SPE(f;k)lk=1,2, -+, P}.

For a given f € §, let f' = expand(f) obtained with a
chosen part permutation. If f' covers a subset of cubes
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S’ of §, fE€ §’, the whole set S’ can be replaced by f”,
which decreases the solution size. If, instead of /', one
uses a super cube f” of §* in the replacement, the reduc-
tion of the solution is not affected. The reason for using
f” is that f” C f’, which implies that f” has a higher
probability of being contained in another expanded cube
of § than f’ does. Of course, f” may not be a prime cube.
In the next section we show how this f” is further reduced
to the smallest necessary size cube that can replace the S'.

The cube expansion process terminates when all re-
maining cubes of S are expanded. The expansion process
described above also provides an alternate definition of
an essential prime cube.

Theorem 4 The cube expand(f) of a vertex f is an es-
sential prime cube (EPC) if and only if expand (f) equals
the over-expanded super cube C(f). It follows that when
expand(f) is an essential prime cube, the order of part
expansion is immaterial. (Proof follows from the remark
after Lemma 4.)

e Cube reduction process

The smaller the size of a cube, the more likely that it will
be covered by another expanded cube. The expansion
process leaves the solution in near-prime cubes. There-
fore, it is important to examine ways of reducing the size
of cubes in S without affecting the coverage. Define the
essential vertices of a cube as those vertices that are in
F and are not covered by any other cube in §. Let f’ be
the supercube of all the essential vertices of a cube f € §;
then f' is the smallest cube contained in f which can re-
place f in S without affecting the solution size. Of course,
if £ does not contain any essential vertices, then the re-
duced cube is a null cube and f may be removed from the
S list, decreasing the solution size by one. Let § = f
V {S,]i € I}; then the reduced cube f' can be obtained as

f' = the super cube of f @ ((v §) v DC). (12)
i€

In Eq. (12) a regular # operation can be used in place
of @ In fact, the irredundant cover method [5, 7, 12]
uses the regular # operation between a given cube and
the rest of the cubes of a solution. The purpose of this #
operation in the irredundant cover method is to remove
a redundant cube. In our case the reduction of the size
of the given cube is the primary purpose. Regardless of
the purpose, we claim that the use of @ facilitates this
type of computation in general. The number of disjoint
cubes of a cover is usually much smaller than the num-
ber of all prime cubes of the same cover, which is the
product of regular # operations.

In our programs the reduced cube f' is not obtained in
the manner suggested by Eq. (12). Since the super cube
is the desired result, a simpler tree type algorithm can be
used to determine the appropriate reduction of each part
of the given .
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The cube reduction process goes through the list of
cubes in the solution S in a selected order and reduces
each of them. The cube ordering algorithm for the reduc-
tion step is a heuristic way to maximize the total cube
size reductions; the process removes the redundant cubes
and trims the remaining ones.

In the previous section, we mentioned how the replace-
ment cube (f”) was found by the expansion process. The
size of this cube can be further reduced along with the
sizes of the remaining cubes in the solution. We do this
within the cube expansion process by first reducing all
the remaining cubes in the solution one at a time against
the replacement cube 1", and then reducing the f” to the
smallest necessary size. This is illustrated in the following
example.

Example 9

Let the replacement cube f” (the shaded area) and some
of the remaining cubes of § in the periphery of f” be as
shown on the left below. The right side shows the de-
sired cube shapes before the expansion process proceeds
to the next cube in the solution.

= -

"/

Trimmed

The reduction of one cube A against another cube B as-
sumes that B does not cover 4 and that the two differ in
at least two parts. Cube A4 can be reduced if and only if
all parts of B cover A except in one part;let that be part .
Given A=mam, a7, and B=p - p o p
the trimmed 4 becomes A’ = mm, "+ (mp;) - 7,

s Cube reshaping process

After the expansion and reduction steps are performed,
the solution in progress contains minimal vertex sharing
cubes. The nature of the cubes in § is that there is no cube
in F V DC that covers more than one cube of S. Now we
attempt to change the shapes of the cubes without chang-
ing their coverage or number. What we adopted is a very
limited way of reorganizing the cube shapes, called the
cube reshaping process. Considering that the reshapable
cubes must be severely constrained, it was our surprise
to see significant reshaping taking place in the course of
minimization runs on large, practical functions.

The reshaping transforms a pair of cubes into another
disjoint pair such that the vertex coverage is not affected.
Let us assume that S is the solution in progress in which
no cube covers another and the distance between any
two cubes is greater than or equal to two. Let 4 and B be
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two cubes in S. Then the cubes 4 =mm, - 7, and
B = p,p, -+ p, in that order are said to satisfy the re-

shaping condition if and only if

1. The distance between A and B is exactly two.
2. One part of A covers the corresponding part of B.

Let i/ and j be the two parts in which 4 and B differ and
let j be the part in which 4 covers B, i.e., ; COVETS ;3
, cannot cover u, for, if it did, then 4 would cover B. The
two cubes

A/=7TI7T2...,n-i...(Wj/\il})...np (13)
and
B’=ﬂ1772.”(Triv#‘i)-..”’j...ﬂp (14)

are called the reshaped cubes of 4 and B. The process
is called reshape (A; B).

Lemma 5 The reshaped cubes 4’ and B’ are disjoint and
AVB=A'VB'.

Proof The jth part of 4" is m; A i (bit-by-bit) and the
Jjth part of B’ is 7 hence, A’ and B’ are disjoint. In re-
shaping, A4 is split into two cubes 4’ and A" = 7 m,
cee (77]. AN, But (rrj A ,u,j) =y because m; covers
w5 thus the distance between A” and B is one. So A” and
B merge into the single cube B’. Q.E.D.

The reshape operation between 4 and B is order de-
pendent. If the cubes in S are not trimmed, it may be pos-
sible to perform reshape in either of two ways (e.g., if 4
and B are distance two apart, 7; O p, and ; C u;). Since
A is split and one part is merged with another cube B, the
natural order would be the larger cube first and the small-
er cube second when checking the conditions for reshap-
ing. After reshaping, 4’, the remaining part of A4, has a
greater probability of merging since it has been reduced
in size.

Example 10a
Let S consist of three cubes 4, B and C as follows.

10 100101 : B

11011001 : A4
S —
01011010: C
A and B satisfy the reshaping condition to yield

A'=010110 01 (can merge with C in the next
expansion step)
B'=10 111101

Or A and C may yield

A'=100110 01 (can merge with B)
C'=01011011

Example 10b
Regular Boolean Karnaugh map example.
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L A reshape (A B) B
¢ ©

A’ can merge with C in the next expansion step. Or 4
and C could be reshaped to 4’ and C’ such that 4’ and
B can merge later.

The reshaping operation can be viewed as a special
case of the consensus operation. Notice that the reshaped
cube B’ is the consensus term between 4 and B. The re-
shaping condition holds only if the pair of cubes can be
represented by a consensus cube plus another cube for
the remainder of the vertices covered by 4 and B. The
consensus operation is used in classical minimization
methods to generate prime implicants from a given im-
plicant list of functions.

Algorithmic description of MinI

This section describes the algorithms which implement
the procedures outlined in the previous section. The al-
gorithms are intended as a level of description of MINI
which is between the theoretical considerations and a
real program. They show the flow of various subpro-
cesses and the management of many heuristics.

® Main procedure

M1. Acceptthe Boolean specification.

M2. Accept the partition description.

M3. Extract the F-care specification and decode into
cubes according to the partition description. As-
signto F.

M4. Generate DON'T CARE specification (DC) due to
any inputs which appear in more than one part.

MS5. Extract the original DON'T CARE specification and
add to the DC specification generated in M4,

Mé6. Decode the DC specification into cubes. Assign
to DC.

M7. Generate the partition description in the format re-
quired by subsequent programs.

M8. Let F be the distance one merging of F V DC.

M9. LetFbeU @ F.

M10. Let F be F expanded against F.

M11. Generate the disjoint F by U @ (F Vv DC).

M12. Let F be F expanded against F and compute the
solution size.

M13. Reduce each cube of F against the other cubes in
F v DC.

M14. Reshape F.

MI15. Let F be F expanded against F and compute the
solution size.

M16. If the size of the new solution is smaller than the
size of the solution immediately before the last exe-
cution of M13, go to M13. Otherwise F is the so-
lution.
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Remarks

M3 and M6 give the F and the DC covers, respectively.
MS8 is performed for computational advantage only. M9
produces the disjoint F cover. M 10 is for computational
advantage. M 11 produces the disjoint F cover. M13-16
form the main loop which produces decreasing size solu-
tions which contain all of the F vertices and perhaps
some of the DC vertices. M1 through M6 are for the
Boolean specified functions. If the original specification
is in cube notation for F and DC, the procedure should
startat M7.

© Preparatory algorithms

Assume that the function is given as a Boolean specifica-
tion and that the partition information is given as a per-
muted input list and a part size list. The sum of the num-
bers in the input part size list should equal the length of
the permuted input list. For example, the input variable
permutation (0 13 54 2 1) and the decoder sizes (22 3).
imply that the inputs are partitioned as (0, 1), (3, 5), and
(4, 2, 1). The variable number 1 is assigned to both the
first and the third parts. The order of variables within a
part does not influence the minimization, but it does in-
fluence the bit pattern in the part.

Separate F and DC specifications.

F specification:

PF1. Eliminate from the original specification all rows
that do not contain a 1 in the output portion.

PF2. Replace each d (DON'T CARE symbol) in the output
portion with a 0.

DC specification:

PDC1. Select all rows of the original specification that
contain at least one d in the output portion.

PDC2. In the output portion, replace each 1 with a 0.

PDC3. In the output portion, replace each d with a 1.

Decode the given Boolean specification of F (the output
portion now contains only I's and O’s) into a cubical
representation with the given partition.

PDI1. Construct a matrix G whose kth column is the
column of the input specification that corresponds
to the kth variable in the permuted input list.

PD2. Perform steps PD2-6 for each input part from
first to last.

PD3. Let NF be the first p columns of G, where p is the
number of variables in the part.

PD4. Drop the first p columns of G.

PD5. Decode each row of NF into the bit string of
length 2°, which corresponds to the truth table
entries for that row. (For example, —10 becomes
001000100.)

PD6. For the next part, go to PD3.
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PD7. The output portion of the specification without
change becomes the output part of the decoded
cubes.

Generate, for M4, the DC specification due to the as-
signment of an input to more than one part. The result
has the form of the matrix G given in PDI1. The output
part of each of the resultant cubes contains all I's.
PMDCI. Start witha null DC.

PMDC2. Repeat steps PMDC3-7 for all variables.

PMDC3. If variable I appears in k parts, generate the
following 2* — 2 rows of DC. The matrix M
gives the input parts and the output parts are
all 1’s,

PMDC4. Let M be a matrix of —'s with dimensions
(2* —2) rows X (length of the permuted in-
put list) columns.

PMDCS5. Let W be a (2" — 2) X k matrix of 1's and 0’s
where the nth row represents the binary value
of n. The all-0 and all-1 rows are not present.

PMDC6. The tth column of W replaces the column of
M that corresponds to the rth occurrence of
variable [ in the permuted input list.

PMDC7. For the next variable, go to PMDC3.

e Distance one merging of cubes

S1. Consider the cubes as binary numbers and reorder
them in ascending (or descending) order by their
binary values.

S2. The bits in part £ (initially X = P, the last part) are
the least significant ones. Starting from the top cube,
compare adjacent cubes. If they are the same except
in part k, remove both cubes and replace them with
the bit-by-bit or of the two cubes. Proceed through
the entire list.

S3. Reorder the cubes using only the bits in part k. In
case of a tie, preserve the previous order.

S4. Part k — 1 now contains the least significant bits. Let
k be k— 1 and go to S2. Terminate when all parts
have been processed.

Remark

If any set of cubes are distance one apart and the differ-
ence is in part k, the set of cubes will appear in a cluster
when ordered using the bits of part & as the least signifi-
cant positions.

¢ Disjoint sharp of a cover F against a cover G

(F® G)

Ordering of right side argument; reorder cubes of G:

ORDG1. Sum the number of 1’s in each part of the list
G and divide by the part size to obtain the
average density of 1’s in each part.

ORDG2. For each part, starting from the most dense to
the least dense, do steps ORDG3-6.
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ORDG3. Sum the number of 1’s per bit position for
every bit in the part. Order the bits from most
1’stoleast I’s.

ORDG4. Do steps ORDGS5, 6 for all bits in the part in
the order computed in ORDG3.

ORDGS3. Reorder the cubes of G such that the cubes
with a 1 in the bit position appear-on top of the
cubes with a 0 in the bit position. Within the
two sets, preserve the previous order.

ORDG6. Go to ORDGS for the next bit of the part. If
all bits in a part are done, go to ORDG3 for
the next part.

ORDG?7. Terminate when the last bit of the last part has
been processed.

Remarks

The ordering procedure has been obtained from numer-
ous experiments. The objective is to order G such that
the number of cubes produced by the disjoint sharp will
be as small as possible. One of the properties of the above
ordering is that it tends to put the larger cubes on top of
the smaller cubes.

F® G:

DSHI1. Order G according to ORDG.

DSH2. Remove the first cube of G and assign it to the
current cube (CW).

DSH3. Let Z be the list of cubes in F which are disjoint
from CW. Remove Z from F.

DSH4. Compute the internal part ordering for F # CW
as follows: For each part compute the number of
cubes in G that are disjoint from CW in that part.
Order the parts such that the number of cubes
that are disjoint in that part are in descending
order.

DSHS. Using Eq. (4), compute F @ CW with the part
permutation given by DSH4; then add the result
to the Z list.

DSHS6. If G is empty, the process terminates and the Z
list is the result. If G is not empty, let F be the Z
list and go to DSH2.

Remarks

ORDG and DSH4 are the two heuristic ordering
schemes used in the sharp process. These two heuristics
were chosen so that the disjoint sharp process would pro-
duce a small number of disjoint cubes.

e Expansion of F against G

Ordering the cubes of F:

ORDF1. Sum the number of 1's in every bit position
of F.

ORDPF2. For every cube in F, obtain the weight of the
cube as the inner product of the cube and the
column sums.
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ORDF3. Order the cubes in F such that their weights
are in ascending order.

Remarks

This ordering tends to place on top of the list those cubes
that are hard to merge with other cubes. If a cube can
expand to cover many other cubes, the cube must have
I’s where many other cubes have 1’s, and hence its
weight is large. This heuristic ordering produces the effect
of “chewing-away-from-the-edges.”” When there is a huge
DON’T CARE space, F V DC can be used instead of F in
ORDF 1, for more effective expansion of cubes.

The expansion process:

EXP1. Order the cubes of F according to ORDF.

EXP2. Process the unexpanded cubes of F in order.
Let f be the current cube to be expanded.

EXP3. For each part £, compute the k-conjugate sets
H (f; k) given by Eq. (5) and their Z(f; k) ; then
form the over-expanded cube C(f) given by
Eq. (9).

EXP4. Let Y be the set of cubes of F that are covered
by C(f).

EXP5. For each part, compute the weight as the num-
ber of cubes in Y whose part k is covered by
partk of f.

EXP6. Order the parts in ascending order of their
weights.

EXP7. Let ZW be the expanded f using the above part
permutation and Eq. (8).

EXP8. Let Y be all of the cubes of F that are covered
by ZW and remove Y from F.

EXP9. LetS bethe supercube of Y.

EXP10. Find all cubes in F that are covered by ZW in
all parts but one. Let these cubes byY.

EXP11. Reduce each cube of Y against ZW.

EXP12. Let T be the super cube of Y. Let ZW be
ZWA(SVT).

EXP13. The modified expanded f is ZW. Append ZW
to the bottom of F.

EXP14. If there are any unexpanded cubes in F, go to
EXP2.

Remarks

EXP3 -6 defines the internal part permutation. The idea
is to expand first those parts that, when expanded, will
cover the most cubes that were not covered by the origin-
al cube. EXP8 removes all covered cubes. The S of
EXP9, which is contained in ZW, could replace f now if
a cube reduction were not employed. By EXP10-11, all
remaining cubes of F are reduced. The intersection of
T and ZW denotes the bits of the initial expanded prime
cube ZW which were necessary in the reduction of any
cube. The final replacement for the original cube F is
thus (ZW AT)VS=ZW A (T V S). The cube that re-
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places f is the smallest subcube of a prime cube contain-
ing f that can contain and reduce the same cubes of F that
the prime cube can.

* Reduction of cubes

The actual experimental program for this algorithm is
quite different from a straightforward disjoint sharp pro-
cess. For efficient computation a tree method of deter-
mining essential bits of a cube is used. The algorithm
given below is only a conceptual one. First the cubes to
be reduced (given as F) are reordered according to
ORDF except that ORDF?3 is modified to order cubes in
descending order of their weights. This ordering tends to
put cubes that have many bits in common with other
cubes on top of the list. It is assumed that the DC list is
also given.

REDI1. Order the cubes of F with the modified ORDF.

RED2. Do steps RED2-4 for all cubes of F in order.
Let the current cube be f.

RED3. Replace f with the super cube of the disjoint
sharp of f against DC V (F —f); F — f denotes
all the cubes of F except f. If the super cube is a
null cube, fis simply removed from the list.

RED4. Go to RED2 for the next cube.

* Reshape the cubes of F

RESHI1. Order the cubes of F by the modified ORDG
used in RED1.

RESH2. Do for all cubes of F in order. Let the current
cube be C1.

RESH3. Proceed through the cubes below C/ one at a
time until a reshape occurs or until the last
cube is processed. Let the current cube be C2.

RESH4. IfCI covers C2, remove C2 from F and go to
RESH3.

RESHS5. If CI and C2 are distance one apart, remove
C1 and replace C2 with C1I bit-by-bit or C2
and mark the ored entry as reshaped. Go to
RESH2.

RESH6. If CI and C2 do not meet the reshaping condi-
tion, go to RESH3.

RESH7. If CI and C2 meet the reshaping condition,
form the reshaped cubes C/’ and C2'. Re-
place C2 with CI’ and C! with C2’'. Mark
these cubes as reshaped. Go to RESH2.

RESHS8. If CI is not the last cube in the list, go to
RESH2.

RESH9. Let all reshaped cubes be R and all unchanged
cubesbe T.

RESH10. Let C1 range over all cubes in R and C2 range
over all cubes in T'; then repeat RESH2 - 8.

Remarks
The reordering of RESH1 puts more “splitable” cubes
at the top of the list. RESH? and RESH3 initiate the pair-
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wise comparison loop. Conditions of RESH4 or RESHS,
which result in the removal of a cube, may occur as a re-
sult of the current reshape process or as a result of a pre-
vious reduce process. RESH10 gives “stubborn” cubes
another chance to be reshaped.

Discussion

s Summary

A general two-level logic function minimization tech-
nique, MINI1, has been described. The MINI process does
not generate all prime implicants nor perform the cover-
ing step required in a classical two-level minimization.
Rather, the process uses a heuristic approach that ob-
tains a near minimal solution in a manner which is effi-
cient in both computing time and storage space.

MINI is based on the positional cube notation in which
groups of inputs and the outputs form separate coordi-
nates. Regular Boolean minimization problems are han-
dled as a particular case. The capability of handling mul-
tiple output functions is implicit.

Given the initial specification and the partition of the
variables, the process first maps or decodes all of the
implicants into the cube notation. These cubes are then
“exploded” into disjoint cubes which are merged, re-
shaped, and purged of redundancy to yield consecutively
smaller solutions. The process makes rigorous many of
the heuristics that one might use in minimizing with a
Karnaugh map.

The main subprocesses are

1. Disjoint sharp.

2. Cube expansion.
3. Cube reduction.
4. Cube reshaping.

The expansion, reduction, and reshaping processes ap-
pear to be conceptually new and effective tools in prac-
tical minimization approaches.

e Performance

The MINI technique is intended for “‘shallow” functions,
even though many “deep” functions can be minimized
successfully. The class of functions which can be mini-
mized is those whose final solutions can be expressed
in a few hundred cubes. Thus, the ability to minimize a
function is not dependent on the number of input vari-
ables or minterms in the function. We have successfully
minimized several 30-input, 40-output functions with
millions of minterms, but have failed (due to the storage
limitation of an APL 64-kilobyte work space) to minimize
the 16-variable EXCLUSIVE OR function which must have
2'° cubes in the final solution.
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For an n-input, k-output function, define the effective
number of input variables as n + log, k. For a large class
of problems, our experience with the APL program in a
64-kilobyte work space indicates that the program can
handle almost all problems with 20 to 30 effective inputs.
The number of minterms in the problem is not the main
limiting factor.

The performance of MINI must be evalutated using two
criteria. One is the minimality of the solution and the
other is the computation time. Numerous problems with
up to 36 effective inputs have been run; MiN1 obtained
the actual minimum solution in most of these cases. The
symmetric function of nine variables, S,,,,’, contains 420
minterms and 1680 prime implicants when each variable
is in its own part (i.e., the regular Boolean case). The
minimum two-level solution is 84 cubes. The program
produced an 85-cube solution in about 20 minutes of
360/75 (apL) CPU time. The minimality of the algorithm
is thus shown to be very good, considering the difficulty
of minimizing symmetric functions in the classical ap-
proach, due to many branchings. A large number of very
shallow test cases, generated by the method shown in
[19], were successfully minimized, although a few cases
resulted in one or two cubes more than the known mini-
mum solutions.

The run time is largely dependent on the number of
cubes in the final solution. This dependence results be-
cause the number of basic operations for the expand,
reduce, and reshape processes is proportional to the
square of the number of cubes in the list. It is difficult to
compare the computation time of MINI with classical ap-
proach programs. The many-variable problems run on
MINI could not be handled by the classical approach be-
cause of memory space and time limitations. For just a
few input variables (say, up to eight variables) , both ap-
proaches use comparable run times. However, the com-
plexity of computation grows more or less exponentially
with the number of variables in the classical minimiza-
tion, even though the problem may be a shallow one. An
assembly language version of MINI is now almost com-
plete. The run time can'be reduced by a factor as large
as 50, requiring only a few minutes for most of the 20- to
30-effective-input problems.' Thus it appears that MINI
is a viable alternative to the classical approach in mini-
mizing the practical problems with many input and out-
put variables.

e Minimal solutions in the classical sense

The MINI process tries to minimize the number of cubes
or implicants in the solution. The cubes in the solution
may not be prime, as in the classical minimization where
the cost function includes the price (number of input
connections to AND and oOR gates) of realizing each cube.
But if such consideration becomes beneficial, a prime
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cube solution can be obtained from the result of MINL
This is done by first applying the reduction process to
the output part of each cube in the solution and then ex-
panding all the input parts of the cubes in any arbitrary
part order. The MINI solution can also be reduced to
smaller cubes by putting through an additional reduction
step.

o Multiple-valued logic functions

It was mentioned that each part of the generalized uni-
verse may be considered as a multiple-valued logical in-
put. By placing n, Boolean variables in part i, we pre-
sented the MINI procedure with part lengths equal to
2™ except for the output part. MINI can handle a larger
class of problems if the specification of a function is given
directly in the cube format.

By organizing problems such as medical diagnoses,
information retrieval conditions, criteria for complex de-
cisions, etc. in multiple-value variable logic functions,
one can minimize them with MINI and obtain aid in anal-
ysis. This is demonstrated with the following example.

Example: Nim

The game of Nim is played by two persons. There is an
arbitrary number of piles of matches and each pile may
initially contain an arbitrary number of matches. Each
player alternately removes any number (greater than
zero) of matches from one pile of his choice. The player
who removes the last match wins the game. The strategy
of the game has been completely analyzed and the player
who leaves the so-called “correct position” is assured
of winning the game, for the other player must return it
to an incorrect position, which can then be made into a
correct one by the winning player.

The problem considered contains five piles and each
pile has two places for matches. Thus a pile can have no
match, one match, or two matches at any phase of the
game. Taking the number of matches in a pile as values of
variables, we have a five-variable problem and each vari-
able has three values (0, 1 or 2). Out of 243 (3°) possible
positions, 61 are correct. The 182 remaining incorrect
positions were specified and minimized by the MINI pro-
gram. For instance, the incorrect position (0, 1, 1, 0, 2)
is specified as (100 010 010 100 001) in the generalized
coordinate format. Using this result and the fact that all
variables are symmetric, one can deduce the incorrect
positions:

1. Exactly two piles are empty (cubes 1-10) or no pile
is empty (cube 21).

2. Only one pile has two matches (cubes 11, 13, 17~19).

3. Only one pile has one match (cubes 12, 14~ 16, 20).

The MINI result identified the 21 cubes shown below.

HONG, CAIN AND OSTAPKO

1 011 100 011 100 011
2 100 011 100 011 011
3 100 011 011 100 011
4 011 011 100 011 100
5 011 100 011 011 100
6 011 100 100 011 011
7 011 011 011 100 100
8 100 011 011 011 100
9 011 011 100 100 011
10 100 100 011 011 011
11 001 110 110 110 110
12 101 101 101 010 101
13 110 110 110 001 110
14 010 101 101 101 101
15 101 010 101 101 101
16 101 101 010 101 101
17 110 001 110 110 110
18 110 110 001 110 110
19 110 110 110 110 001
20 101 101 101 101 010
21 011 011 011 011 011

o Further comments

In the case of the single output function F, the designer
invariably has the option of realizing either F or F. The
freedom to realize either is often a consequence of the
availability of both the true and the complemented out-
puts from the final gate. However, it may also be a con-
sequence of the acceptability of either form as input to
the next level. Given the choice of the output phases for
a multiple-output function, a best phase assignment
would be the one that produces the smallest minimized
result. Since there are 2 different phase assignments for
k output functions, a non-exhaustive heuristic method is
desired. One way to accomplish this would be to double
the outputs of the function by adding the complementary
phase of each output before minimization. The phases
can be selected in a judicious way from the combined
minimized result. This approach adds only a double-size
output part in the MINT process. The combined result is
just about double the given one-phase minimization.
Hence, using the MINI approach a phase-assigned solu-
tion can be attained in about four times the time required
to minimize the given function that has every output in
true phase.

Our successful experience with the MINI process sug-
gests both challenging theoretical problems and interest-
ing practical programs. A theoretical characterization of
functions, which either confirms or refutes the MINI
heuristics, would be useful. The number of times the cube
expansion process need be iterated is another matter
requiring further study. Currently, we terminate the itera-
tion if there is no improvement from the previous applica-
tion of the expansion step.
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Appendix

Here we give an example of a four-input, two-output
Boolean function to illustrate the major steps of MINI.
Most functions of this size get to the minimal solution
by the first expansion alone. This example, however, is
an exception and illustrates all the subprocesses of MINI.
We use the Karnaugh map for the illustrations, rather
than the cube notation. The conventions for this map are

as follows:

Output 1 Output 2
X *1

x4

*3

Xy X
The ordered cubes are denoted by numbers in the ver-
tices of the cubes, as follows.
Cube 1 Cube 3
\ X

919110 51s 5 7
4 4 2 2 4 (6|6
1]1y1}j1]1]1]1
8 (7 8 5156 1 3
(a) (b)
3 7 7 6164 11]11
1 5(414 12 3112 1
12/9(9(12| 87|78
2 6 10] 2 10 11{11] 5
(c) (d)
51514 313 5{51t3 212
2 7|2 9 4 7|4 9
L2ty 2t |1]1]1 tirfrf{r|r]|1]1f1
616 4 3138 6|6 3 21218
(e) (3]
8| 814 8|8 7127 2 717
1 211 7 1 2126 6
919199919199 818|818 88|88
55 6 3136 414 5 31315

3(3 \ ]

B
11,2 2 ﬂ N

2 2 \

Cube 2

The function to be minimized and the effects of the sub-
processes are shown in Fig, Al.

20(14113 16 |17

11 21|22 19
2311|158 |7 |6|10]| 4
12118 3 9i2|5
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