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Analysis of Exception Data in a  Staging  Hierachy 

Abstract: This paper is an analysis of program address trace data in a demand-paged computer system with a three-level staging hier- 
archy. Our primary objective is to explore the data both graphically and numerically, using methods that may be useful when other data 
traces become available. In addition, plausible point-process type models are fit to the data. Such an approach, combining data-analytic 
procedures with probability  modeling, should prove  useful in understanding  program  behavior and thus will aid in the  rational  design of 
complex computer  systems. 

1. Introduction 
Although a number of stochastic  (queuing) models for 
the  structure of multiprogrammed computer  systems 
operating under demand paging have been  proposed  and 
studied, e.g., [ 1-41, the probabilistic representation of 
the behavior of programs running in such  systems  has 
received  relatively less  attention  (however,  see [ 5 ,  61 
for  examples of two  complementary approaches  to  the 
formulation of program  behavior models).  In view of 
the necessity of understanding the referencing patterns 
of programs in order  to improve the decision  algorithms 
in current and future  systems,  further  studies of program 
behavior  leading to  the mathematical  characterization of 
computer system  workloads are  appropriate. 

This  paper  reports  results of a study aimed at  better 
understanding  program  reference patterns in a demand- 
paged computer system  with  a  three-level staging hier- 
archy.  The  approach  taken is, first to  represent  the  actual 
program-address trace  data  and,  second,  to fit the  latter 
with plausible stochastic models. The point of view taken 
is rather similar to that of [5] concerning the modeling 
and  analysis of page exceptions in a two-level memory. 
However, in this paper  we  have emphasized the  use of 
simple graphical methods of statistical  data analysis 
and modeling rather than  more  formal  and  complex  sta- 
tistical techniques  such  as spectral  analysis  (cf. [7]). 
Throughout this  study we have used an interactive 
A P L / 3 6 0  computing system, a tool which we have found 
well suited to this type of statistical analysis and modeling. 

The  stochastic  processes studied here  occur in a 
three-level staging hierarchy. A description of the hier- 
archy  that  we  assume  and of the  stochastic  process 

models of interest  that suggest themselves therein are 
given in section 2. The  sense in. which the exception 
process in the staging hierarchy can be viewed as a bi- 
variate point process  (see [ S I )  is discussed briefly in 
section 3, and section 4 contains a description of the 
data available for analysis. The  data analysis and model- 
ing  of exception processes  are given in sections 5 -8. 
Estimates of values of the  parameters in the exception 
process model are  presented in section 9. Section 10 
contains  an  assessment of the fit  of the model, and sec- 
tion 11 gives a summary of the  results  and conclusions. 

2. Description of the staging hierarchy 
The  data  sequences studied in this paper  occur in a de- 
mand-paged computer system having as a storage struc- 
ture a three-level staging hierarchy,  as  described in [9]. 
In  such a system all information that is explicitly ad- 
dressable is divided into units of equal size called blocks, 
each of which is further divided into units of equal  size 
called pages. Level 1 of the hierarchy (the execution 
store) is similarly divided  into page-size sections called 
page frames and levels 2 and 3 of the storage  hierarchy 
are divided into block-size sections called block frames. 
In  such  computer  systems it is possible to  execute a 
program by supplying it with only a few page frames  and 
block frames of storage.  When the page containing the 
first executable instruction has been  loaded into a page 
frame, execution begins and  continues until some re- 
quired information is not in the execution store.  An 
attempt  to  reference information not  currently contained 
in level 1 is termed an exception. When  a “demand”  for 423 
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Figure 1 Staging hierarchy. 

a page occurs,  the page containing the required informa- 
tion is staged through adjacent storage  levels up  to  the 
execution  store in accordance with a  prescribed regime 
for hierarchy  management. Thus  the hierarchy is linear, 
i.e., there  are  data  paths only between  adjacent levels, 
and  data in level 3 must  pass through level 2 before going 
into level 1. 

In the three-level staging hierarchies we  consider  (see 
Fig. 1 ) , information is transmitted between levels 1 and 
2 of the hierarchy in page-size units. The size of a page, 
in bytes, is denoted by b, and  the page capacity of level 
1 is denoted by c,. Thus b,c, is the total number of bytes 
of information  which can be  contained in level 1 .  Sim- 
ilarly, information is transmitted  between  levels 2 and 3 
of the  hierarchy in block-size  units,  consisting of an in- 
tegral number of pages. The  byte size of a block is de- 
noted by b,. The block capacity of hierarchy  level 2 is 
denoted by c,, and thus b,c, is the  byte  capacity of level 
2. Level 3 of the hierarchy is considered to be of sufficient 
capacity to contain all information that is explicitly 
addressable in the  computer system. 

The staging hierarchy is assumed  to be managed under 
the  least recently  used (LRU) replacement policy in 
which reference is broadcast  to all levels of the hierarchy. 
Specifically, if the page containing the required informa- 
tion is currently in level 2 of the  hierarchy,  the page is 
fetched (page pull)  from level 2, overwriting  some  page 
currently in level 1. In general,  this  replaced  page must 
be  written down  into level 2 (page  push).  The page  se- 
lected to be overwritten is the page in level 1 which has 
been  referenced the  least recently of those in this ex- 
ecution storage level i.e., the  least recently  used page. 
An  instance of an exception of this type, in which the 
required page is found at level 2 of the  hierarchy, is 
termed  a “hit  to level 2.” 

Upon  an  attempt  to  reference information neither in 
level 1 nor in level 2, the page containing the required 
information is staged  up from level 3 as follows. The 

block containing the  desired page is fetched (block pull) 
from level 3, overwriting the  least recently  used block 
in level 2. Again, in general,  this  replaced block must be 
written down  into level 3 (block push).  Now  that  the 
block containing the required  page resides in level 2, the 
required page can be  transmitted to level 1 (via a page 
pull and a LRU page push)  and  the  reference  can  be 
executed.  An  instance of an exception of this type, in 
which the required page is not found at level 2 but only 
at level 3, is  termed a “hit to level 3.” In  the sequel, we 
shall use  the  term staging  hierarchy to mean a three-level 
staging hierarchy  managed under  the LRU replacement 
policy. 

There  are many related (but  not necessarily  equiva- 
lent)  data  sequences  that  describe page reference pat- 
terms in a staging hierarchy;  important  examples  are 
listed below. 

1 .  References { R t ( b ) } ,  i.e., sequences of page  refer- 
erences  for pages of size b, where R i ( b )  is  the  name 
of the page referenced at  (discrete) time i. 

2. Distances { D i ( b ) } ,  i.e., sequences of stack  distances 
for  LRU  replacement,  as defined in [ 101, where D i ( b )  
is the total number of distinct  pages (of size b )  refer- 
enced since the  last  reference  to R i ( b ) .  

3. Sequences corresponding to exceptions  to  either level 
for various  capacities at levels 1 and 2. We denote 
such a sequence by {Tj(cl, cz; b,, b,)},  where 
Tj(cl, cz; b,,  b,) is the time (in  references) of thejth 
exception in a three-level staging hierarchy in which 
level 1 contains c, pages of size b, and level 2 contains 
c, blocks of size b,. 

4. Sequences corresponding to exceptions of two  types. 
We denote  such a sequence by {Tj(cl, cz; b,, b,); 
hj(cl, c,; b,, b,)},  where Tj (c , ,  cz; b,,  b,) is  the time 
of the  jth exception and hj(c , ,  c,; b,,  b,) equals 2 if 
thejth  exception  is a hit to level 2 and hj(cl, c,; b,, 6,) 
equals 3 if the  jth  exception  is a hit to level 3. This is 
a complete description of the  pattern of exceptions. 

We note  here  that this last  sequence of exceptions of 
two  types is related to  distance  sequences by the follow- 
ing result  (derived in [9]). The relationship  facilitates 
the collection of data on the  sequence of exceptions of 
two  types.  The bivariate sequence of exceptions of two 
types  can be  obtained from  two  distance  sequences 
{Di(b, ) )  and { D i ( b , ) } .  

Proposition 1 

Provided that c, 1 c,, if T j ( c , ,  c,; b,, b,) = i, then 

2 if D i ( b l )  > c1 and Di(b , )  5 c, 

3 if D,(b , )  > c, and Di(b , )  > c,. ( 1 )  
hj(Cl ,  c,; b,,  b,) = 
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Table 1 Sample characteristics of the exception process  for  tape B with LRU replacement. Page size b, = 256 bytes; block size 
b, = 32,768 bytes:  number of references is 34,723,105. 

c ,  = 32 
c2 = 32 

Parameters 
c, = 32 c, = 64 
cp = 64 c, = 64 

_____ ~~ ~~ 

Number of exceptions 
Number of hits  to level 3 
Number of hits  to level 2 
Estimated  mean  time 

between  hits to level 3 
Estimated  variance of times 

between hits to level 3 
Estimated coefficient of 

variation of times  between 
hits to level 3 

Minimum time  between 
hits to level 3 

Maximum  time  between 
hits to level 3 

Estimated mean number of 
hits to level 2 between 
hits to level 3 

number of hits to level 2 
between hits to level 3 

~~ 

Estimated  variance of 

983,596 
598 

982,998 

58,138.5 

2.564 X IO" 

2.754 

2 

1,631,317 

1,645.3 

6.396 X IO8 
Estimated coefficient of 

variation  of number of hits 
to level 2 between hits to 
level 3 1.537 

Minimum number of hits to 
level 2 between  hits to 
level 3 0 

Maximum number of hits to 
level 2 between hits to 
level 3 27,898 

3. Exception processes  and point processes 
This  paper  is  concerned with the  derivation, via the 
statistical analysis of actual  program traces, of empiri- 
cally valid stochastic models for  sequences of exceptions 
in a  three-level staging hierarchy as described in the pre- 
vious  section. The point of view taken in the analysis 
and modeling is that  the  exception  processes  are bivariate 
point processes [8]. Assuming that  the page  size b,  and 
block size b, in the hierarchy have  been fixed, and given 
capacities c1 and c2 for levels 1 and 2 of the  hierarchy, 
along with a sequence of page references,  an  exception 
can occur  on any of the  successive page  references. If 
these  references  are considered to  occur  at  equidistant 
time points  and  the interval of time between  successive 
references  is taken to be the unit of time, the  exceptions 
constitute a (univariate) point process  (series of events) 
in discrete time,  and the  exceptions along with their  type 
(hit  to level 2 or hit to level 3 )  constitute a bivariate  point 
process [ 81. A  realization of this  bivariate  point process 
of exceptions is illustrated in Fig. 2 ,  where  exceptions 
that  are hits to level 2 are indicated by a dot  denoted 2 ,  

983,596 
380 

983,2 16 

9 1,552.8 

3.898 X IO" 

2.  I56 

2 

1,631,317 

2.617.1 

1.472 X IO' 

475,920 
3 80 

475,540 

9 1,552.8 

3.898 X IO" 

2.156 

2 

1,631,317 

1.252.8 

3.81 1 X IO8 

1.466 1.558 

0 0 

29,019 16,578 

and  exceptions  that  are hits to level 3 are indicated by 
a cross  denoted 3. Throughout, this  bivariate  point  pro- 
cess of exceptions is termed  the exception process. The 
length  (in references) of the generic  interval  between 
successive hits to level 3 is  denoted by Y .  We take Y 
to be the  number of references following a hit to level 3 
until the  next hit to level 3 (including  this next  hit) : thus 
Y 1 1. The number of hits to level 2 in the interval Y 
is  denoted by N ,  or by N ( Y )  when we wish to  emphasize 
the  dependence  on Y ;  necessarily for all Y,  0 5 N ( Y )  < Y .  

Figure 2 Realization of the  process of exceptions of two types: 
Ni is the  number of hits to level 2 and Y,  is the  number of ref- 
erences, both counted between  the ( i  - I)th  and ith hits to 
level 3. 

N1 N 2   N 3   N 4  

" b n  
A "   A -  - A -  " " A  A 

3 2 2   2 3 2   2 3 2   2 2   2 2 3  3 
\ v A h A &  v 

Y l  y2 y 3  y4 425 
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Figure 3 Scatter diagrams of points  in  the [ Y,  N (  Y ) ]  plane  for b, = 256, b, = 32,768, and (a) c ,  = 32, c, = 32; (b) c, = 32, c2 = 64; 
( c )  c, = 64, c2 = 64. 

4. Data and preliminaries 
Although data from  several  programs have been  exam- 
ined, results displayed in this paper  are  for a  particular 
address  trace referred to as  tape B. From  the  sequence of 
addresses  traced,  the  sequence of LRU distances  were 
derived  by  stack  processing techniques [ 101 for various 
page sizes b in the range 256 to 32,768 bytes. Also,  for 
various choices of pairs of capacities c1 and c, in the range 
16 to 64, sequences of exceptions  were obtained  from 
pairs of distance  sequences by the techniques described 
in [ 9 ] .  Results  are given  liere for  three pairs of capacities 
c,= 32 pages, c, = 32 blocks; c1 = 32, c, = 64; and c, = 64, 
c, = 64, all for the  case b, = 256 bytes  and b, = 32,768 
bytes.  The  trace  data consisted of 34,723,105 references 
to 166 distinct 32,768-byte blocks. 

In a staging hierarchy  encountered in practice, the 
number of hits to level 2 is typically several  orders of 
magnitude  larger than  the  number of hits to level 3. This 
is, in fact,  the  case  for  the  data obtained from  tape B (see 
Table 1) for which there  are several hundred hits to level 
3, but  hundreds of thousands of hits to level 2 (over  the 
range of b,,  b,, cl, and c2 considered).  Thus  hundreds of 
thousands of intervals and point-type  pairs would be  re- 
quired for a complete description of the  exception pro- 
cess.  Such a  voluminous amount of data is not  only diffi- 
cult  to  comprehend, it is also  expensive  to manipulate. 
As a result,  the statistical analysis and modeling de- 
scribed in this paper  was  based solely on the { Y }  and 
{N ( Y )  } sequences  -respectively,  the intervals between 
successive hits to level 3 and  the counts of hits to level 
2 between  successive hits to level 3. Much potentially 
informative data  can  be obtained  by  display and  analysis 
of the time  positions of level 2 hits. 

Some sample characteristics of the  data obtained from 
tape B are displayed in Table 1. Sample characteristics 
for  four non-overlapping sections of the  data  were ex- 
amined. No indication of gross  departure  from station- 
arity  was  observed. Accordingly, the  assumption of 
stationarity was  made in our analysis, details of which 
are given in the  next  three sections. 

5. Graphical study of points in the [ Y ,   N ( Y ) ]  plane 
Our  analysis of the available data began with a set of 
scatter diagrams of points in the [ Y ,  N ( Y )  ] plane (see 
Fig. 3) .  These  three  scatter diagrams reveal  the  apparent 
existence, in the material under scrutiny, of two distinct 
kinds of referencing  behavior. For  each of the  three 
pairs of capacities (cl = 32, c, = 32; c, = 32, c, = 64; and 
c1 = 64, c, = 64) there is a striking two-line relationship 
in the graphical  display of the  observed values of Y and 
the corresponding values of N ( Y ) .  By this we mean that 
points in the [ Y ,   N ( Y ) ]  plane appear  to  be of two  types, 
and in each of the  two  types, points of that  type  seem  to 
be  clustered  about a straight  line (through  the point Y = 1 ,  
N ( Y )  = 0) in the plane. The  data  analysis  that  has been 
done  proceeds  from this observed  double linearity of 
points in the [ Y ,   N ( Y ) ]  plane. The discovery of this 
empirical  relationship suggested the probability  models 
that we formulated. Work remains to explain the phe- 
nomenon in terms of program  peculairities and  to  estab- 
lish its generality, or lack  thereof. The  existence of a two- 
state phenomenon is not surprising in view of the  data- 
analytic  results of [ 5 ] ;  the linearity in the  two  states,  is, 
however,  quite striking. 

As a further  step,  for  each pair of capacities, the m 
observed points (yj, nj) in the [ Y ,  N ( Y )  ] plane  were 
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partitioned into  two disjoint sets by means of a separation 
line 8. One method for separating the points is by a 
least-squares line through  the point ( 1 ,  0 ) .  It  is easily 
shown  that  the slope s of the  least  squares line is 

m 

= J=1  c ../i nj". (2)  

Alternatively, we can take  as  the  separation line the line 
determined by the  points (1 ,O)  and ( y, ,  n,) where ( y, ,  n,) 
is  the  vector sum resultant of the  set of obseryed points 
{ ( y j ,  n j ) } .  The  latter method is equivalent to taking 
as  the  inverse of the slope of the  separation line the 
maximum likelihood estimate of the rate of occurrence of 
events  for a Bernoulli process model of the hits to level 
2 of the hierarchy as described in Section 7. This esti- 
mate for  the  rate of occurrence  is simply 

1 "  
s j - 1  j = ,  

m -=x .,/x ( Y j -  1 ) .  ( 3 )  

The resulting  classification of the points is somewhat 
sensitive to  the method of separation  because of the 
relatively large number of points that  are  close  to  the 
origin (see  Table 2 ) .  On purely empirical grounds, we 
chose  as  the separation line Y the Bernoulli process 
maximum likelihood (vector sum resultant) line. The 
equation  for this separation line 3 is 

Y = s N ( Y )  + 1 .  (4) 

The resulting  separation of points is summarized  in 
Table 3 .  

6. Properties of the  intervals between successive 
hits to  level 3 
In this  section we study the  sequence of Y intervals  be- 
tween successive hits to level 3 .  In  the  next section, 
based on this  analysis, we  consider models for  the  counts 
of the  number of hits to level 2 occurring in an interval 
between  successive hits to level 3 .  

Note  that  for fixed page  size b,  and block size b,, the 
sequence of Y intervals is determined by the value of c2. 
For c, = 32  as well as c, = 64, the  sequences of Y inter- 
vals have been  examined. (Sample  characteristics of 
the Y intervals  are given in Table 1 .  In  both  cases,  the 
marginal distributjons of Y are  quite positively skewed, 
having estimated coefficients of variation in excess of 2 
(see  Table 1 ) .  Moreover  the  sequence of Y values is 
correlated;  the  three estimated  first  serial coirelation 
coefficients b, all differ significantly from  zero  under  the 
normal  approximation. [Asymptotically, @, is normally 
distributed  with E[@,] - 0 and  Var[@,] - (n- l)-' un- 
der fairly general  conditions  when p1 = 0; cf. [7], p. 92.1 

In view of the  two  types of behavior suggested by the 
observed  double linearity in the [ Y ,  N ( Y ) ]  plane and 
the point classification we have made, it is reasonable 
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Table 2 Slopes of fitted separation lines in the [ Y ,   N ( Y ) ]  
plane for tape  B with LRU replacement. Rage size b,  = 256 
bytes; block size b, = 32,768 bytes. 

Parameters 
c, = 3 2   c , = 3 2   c , = 6 4  
c,= 32 c2 = 64 c2 = 6 4  

Least-squares fit 36.875  29.474  48.922 
Maximum likelihood fit 

(Bernoulli process) 35.336  34.982  73.078 

Table 3 Separation of points in the [ Y ,  N ( Y )  1 plane for tape 
B with LRU replacement. Page size b, = 256 bytes: block size 
b, = 32,768 bytes. 

Parameters 
c ,  = 32 e , =  32 c , = 6 4  
c p =  32 c 2 = 6 4   c 2 = 6 4  

Total number of points 597 379 379 
Number of upper points 65  60  56 

(Bernoulli maximum likelihood 
separation) 

(Bernoulli maximum likelihood 
separation] , ' ' 

Number of lower points 532  319  323 

Proportion of upper points 0.1089  0.1583  0.1478 

to examine  the  sequence of Y components, conditional 
on point  type.  We consider  two  sequences of intervals, 
Y ,  and Y, intervals, derived  from  the original sequence of 
Y components. Sample characteristics of the marginal 
distribution of these  two  sequences  are given in Table 4; 
corresponding  characteristics of the  counts of hits to 
level 2 between hits to level 3 are given in Table 5 .  Evi- 
dently,  the marginal distributions of Y , ,  the  type l Y 
components, and of Y,, the'  type 2 Y components,  are 
quite different,  with the mean of Y ,  being approximately 
ten  times larger than  the mean of Y,. 

Histograms of the  distributions of the Y ,  intervals 
suggest a mixture of random variables. Rlots of the log- 
arithm of the empirical survivor function R y, ( y ) ,  where 

number of Y ,  intervals  greater than y 
number of Y ,  intervals R . , ( Y )  = 

y =  1,2; . -  ( 5 )  

are generally convex with a linear tail. This suggests 
the  use of a mixture of two geometric (plus  one) distribu- 
tions  as a model for  the marginal distribution of Y,;  i.e., 
to  assume  that  for 0 < T, < 1 and 0 < q,,, q,, < 1 ,  

~ r ~ ~ , = y ~ = ~ , q l l Y " ~ ~ - q l l ~ +  ( ~ - - T , ) ~ , ~ ~ " I ( ~ - ~ , ~ ) ~  
y =  1 ,  2;s.. (6) 42 7 
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Table 4 Sample characteristics of intervals between  successive hits to level 3 conditioned on point type for tape B with LRU replace- 
ment. Page size b, = 256 bytes: block size b, = 32,768 bytes. 

" 

Number of hits 
Estimated mean time 

between hits 
Estimated variance of 

times between hits 
Estimated coefficient 

of variation of times 
between hits 

Maximum time between 
hits 

Minimum time between 
hits 

Parameters 
c ,  = 32 
c, = 64 

Type  1 Type  2 

65 532 

323,256 25,746 

1.196 X IO" 1.32 X lo9 

1.145 1.98 

1,631,317 850,172 

2 27 

60 3 19 

350,378 42,87 1 

1.31 1 X IO" 3.126 X IO' 

56 323 

376,424 42,163 

1.410 X 10" 3.049 X IO' 

1.068 1.70 1 

1,631,317 850,172 

2 27 

0.995 1.715 

1,631,317 850, I 7 2  

2 27 

Table 5 Sample characteristics of number of hits to level 2 between hits to level 3 conditioned on point type for tape B with LRU re- 
placement. Page size b, = 256 bytes; block size b, = 32,768 bytes. 

Parameters 
c, = 32 cl = 32 c, = 64 
c, = 32 c2 = 64 c, = 64 

Type 1 Type  2 Type 1 Type  2 Type 1 Type 2 

Estimated mean 2,797.5 1,504.5 3,078.2 2,530.4 1,048.1 1,288.3 
Estimated variance 8.842 X IO6 5.931 X IO6 9.120X IO6 1.576 X 10' 8.742 X 105 4.315 X lo6 
Estimated coefficient 

of variation 1.063 1.619 0.98 10 1.59 0.892 1.612 
Maximum  number 9,940 27,898 9,940 29,O I9  3,724 16,578 
Minimum  number 0 2 0 2 0 2 

Denoting by Y, ,  and Y,,  random variables having these 
geometric (plus one) distributions, we have forj = 1 ,  2, 
E[Y,j] = (1 - 41j)-1, Var[Ylj] = qV(1 - qij)-,, and 
Cz( Y l j )  = q,.. Similar considerations suggest  taking a 
mixture of two geometric (plus one) distributions as a 
model for the marginal distribution of Y,; i.e., to assume 
that for 0 < T, < 1 and 0 < q,,, qZ2 < 1, 

m y ,  = Y >  = T , 4 , 3  1 - q,,) 

+ ( 1  - 74422y-1( 1 - 9 2 2 ) .  (7) 

Geometric (plus  one) random variables with parameters 
qzl and q,,, respectively, are denoted by Y,, and Y,,. 

The Y ,  and Y z  sequences has been examined by es- 
timating serial correlation coefficients (see Table 6).  In 
the case of the Y ,  intervals, the first two estimated serial 
correlation coefficients do not differ  significantly  from 
zero. In fact, no indication of dependence in the Y ,  se- 
quences has  been found. 

Although the Y2's can apparently be considered as in- 
dependent, identically distributed, random variables 
having a mixture distribution, there is evidence that the 
Y,'s are a dependent mixture. In the case of the Y ,  se- 
quences, the sample sizes may  be too small to justify 
the use of the normal approximation for the estimated 
first serial correlation coefficients.  On the basis of this 
approximation, however, only for the sequence cor- 
responding to c,  = 64, c, = 64 is there evidence that the 
first serial correlation differs from zero. Note (in Table 
6) that estimates of second-order correlation coefficients 
indicate dependence in the Y ,  sequences, although the 
nature of the dependence is difficult to assess from the 
available data. Accordingly, in our model  we consider 
the Y,'s to be an independent mixture. 

7. Models for counts of hits to level 2 
In Section 5 ,  a double-line relationship between Y and 
N ( Y )  was observed by means of a scatter diagram in the 
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[ Y, N ( Y )  3 plane,  this observation leading us  to partition 
the  set of data points into  two disjoint sets:  those of type 
1, the points clustered  about  the  upper line, and type 2 ,  
the points clustered  about  the lower line. In this section 
we  concentrate  on  the phenomenon of linearity in the 
[Y, N (  Y)] plane, with the aim of postulating a point 
process model that  accounts  for  the  observed linearity. 

Recalling that  for i = 1, 2 we  denote  the generic  Y 
component of a type i point by Yi, we  denote  the cor- 
respondirig N component by N ( Yi).  Then,  for y = 1, 
2 ,  3 , .  . ., the  observed linear  relationship for  type i points 
can  be  summarized as 

EIN(Yi)IYi=yl  =pi(y - I ) ,  ( 8 )  

where 0 < p i  < 1; i =  1, 2. 
We  ultimately  seek a plausible stochastic mechanism 

for generating a bivariate  series of events  corresponding 
to  the hits to level 2 and  hits to level 3. We begin by  con- 
sidering the interval between  successive hits to level 3. 
Consideration of models  for  the  sequence of intervals 
between  hits to level 3 and  its relationship to the  two 
point types  is  deferred  to  later  sections of the paper. Per- 
haps the simplest way to account  for  the  observed linear- 
ity is to  assume  that  the hits to level 2 occur "at random" 
in the interval between  hits  to level 3. More specifically, 
given  a  point  in the [Y, N(Y)] plane of type i ,  within an 
interval Yi between  successive  hits to level 3, hits to 
level 2 occur according to a Bernoulli process.  Thus  the 
number of hits to level 2 between successive hits to level 
3 is conditionally binomial; i.e., for y 2 1 and 0 < p i  < 1, 

Pr{N(Yi)=n(Yi=y}= ('; ' )p i . (  1 -pi)", 

O Z n Z y - 1 .  (9)  

It  is  quite easy to  show  that  under this assumption, 
EIN(Yi)IYi=yl = p i ( y -  1). 

In view of our finding (in section 6)  that  the marginal 
distributions of Y, and Y, are mixtures, it seems plausible 
to  consider a mixed Bernoulli process model in which the 
parameter of the  process  depends  on  the distribution 
from which the interval between hits to level 3 is gen- 
erated.  The  number of hits  to level 2 is conditionally 
binomial: i.e., for 1 5 i ,  j 5 2 ,  

Proposition 2 
Let y 1 1 .  If for 1 5  i , j i  2 and some 0 < pi,. < 1 ,  

Table 6 Estimated  serial correlation coefficients for intervals 
between hits to level 3 for tape B with LRU replacement. 
Normalized values are given in parentheses. Page size b, = 256 
bytes; block size b, = 32,768 bytes. 

Parameters 
c ,  = 32 c1 = 32 c, = 64 

Coeficient/points  c, = 32 c, = 64 cp = 64 

First/ all 0.228 
(5.565) 

Second/ all 0.633 
( 15.432) 

First/ type 1 -0.165 
(-1.849) 

Second/ type 1 0.43 1 
(3.419) 

First/ type 2  -0.046 
(-1.049) 

Second/ type 2  -0.0075 
(-0.172) 

0.20 1 
(3.902) 
0.592 

( 1 1.486) 
-0.24 I 

(-1.849) 
0.459 

(3.500) 
0.016 

(0.282) 
-0.02 1 

(-0.377) 

0.20 1 
(3.902) 
0.592 

( 1 1.486) 
-0.307 

(-2.275) 
0.492 

(3.612) 
0.001 

(0.174) 
-0.00 1 

(-0.205) 

Table 7 Estimated  transition probabilities for Markov chain 
models for the sequence of point types for tape B with LRU re- 
placement. Page size b, = 256 bytes; block size b, = 32,768 
bytes. 

c, = 32 
c, = 32 
___- 

0.1089 
0.89 1 I 

0.5231 
0.4769 
0.0565 
0.9435 

0.8529 
0.1471 
0.3548 
0.6452 
0. I667 
0.8333 
0.0380 
0.9620 

Parameters 
c ,  = 32 c,  = 64 
cp = 64 c2 = 64 

0.1583 0.1478 
0.84 17 0.8522 

0.5667 0.6250 
0.4333 0.3750 
0.0786 0.062 1 
0.92 14 0.9379 

0.8824 
0.1 176 
0.3462 
0.6538 
0.1600 
0.8400 
0.0548 
0.9452 

0.857 1 
0.1429 
0.1905 
0.8095 
0.2500 
0.7500 
0.0532 
0.9468 
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Table 8. Estimated  serial  correlation  coefficients p j  of lag j 
for  process of  runs of point  types for tape B with LRU replace- 
ment. Page  size b, = 256 bytes; block size b, = 32,768 bytes. 

Parameters 
c, = 32 c1 = 32 cl = 64 

j c, = 32 cp = 64 c2 = 64 

1 -0.2374 
2 0.2464 
3 -0.24 I O  
4 0.0804 
5 -0.2078 
6 0.1426 
7 -0.142 1 
8 0.1781 
9 -0.1706 

10 0.361 1 
11 -0. I964 
12 0.0393 
13 -0.2272 
14 0.1394 
15 -0.2 107 
16 0.4173 
17 -0. I853 
18 0.2284 
19  -0.203 1 
20 0.1051 
21 -0.1549 
22 0.0008 
23 -0.1508 
24 0.0370 
25 -0.1304 
26 0. I644 
27 -0.1009 
28 0.1350 
29  -0.1428 
30  0.070 1 
31 -0.1 326 

-0.2404 
0.2 I98 

-0.2234 
-0.0345 
-0.1763 

0.08 17 

0.3332 

9.2759 
-0.1508 
-0.0745 
-0.1799 

0.1467 
-0.1626 

0.4035 
-0. I229 

0.2683 
-0. I85 I 
-0.0374 
-0.1213 
3 . 0 2 2 8  
-0.0388 

0.1765 

0.21 18 

-0.0952 

-0. I642 

-0.1708 

-0.2383 
0.050 1 

-0.2330 
0.0493 

-0.0887 
0.3482 

-0.1949 
0.0257 

-0. I I92 
0.1 129 

-0. I099 
0.0641 

-0.2  142 
0.345 1 

-0.1318 
0.0532 

-0.1415 
-0.06 I7 
-0.0849 

0.3043 
-0. I 155 

Thus, a mixed Bernoulli process model for  the hits to 
level 2 between successive hits to level 3 is consistent 
with the examination of the  data  that  we  have made so far. 

Such a mixed Bernoulli process model for  the  type i 
hits to level 2 is  attractive  since  it  is specified by but two 
parameters which, as we show in section 9, can be es- 
timated  conveniently by the method of moments. To 
complete  the formulation of a model for  the exception 
process, it remains  to  examine  the  sequence  of'point 
types.  This  is  the  topic of the  next section. 

8. Analysis of the process of point types 
In seeking a model for  the  process of point types, a nat- 
ural  choice (by virtue of its simplicity) is a two-state 
(Markov)  chain, including independent trials as a special 
case.  Estimates of conditional  probabilities of transition 
for  zeroth-, first-, and  second-order  chains  have  been 
obtained and  are given in Table 7. Denoting  the  process 
of point types by {ri}, i P 1 ,  where 

1 if the ith point is of type 1 
2 if the ith point is of type 2 ,  (12) 

T i =  [ 

we  let, in the  case of the  zeroth-order  (independent 
trials) chain, 

For  the first-order  chain we  let 

and  for  the  second-order chain we let 

Evidently, the estimated  conditional  probabilities in- 
dicate  gross  departures  from  an independent  trials  model, 
and give  little support  for a first-order Markov chain 
model. 

An  alternative  to a Markov chain  for the  process of 
point  types is an interval  model, i.e., one based on  the 
sequence of runs of points of the  same  type.  We now 
consider this process of intervals, the alternating se-  
quence of lengths L, of runs of points of type 1 and 
lengths L, of runs of points of type 2. Estimates of the 
serial  correlation coefficients p j  of lag j have been com- 
puted  for  the  sequence of runs and appear in Table 8. 
The striking feature of these estimated correlation coef- 
ficients is  the  almost  strict alternation of signs, suggesting 
an alternating  renewal process model for  the  sequence 
of runs of point types.  For  an alternating  renewal process 
the serial correlation coefficient of lag j 17, p. 1961 is 
a (- 1 )j, where 

and and ui2 are,  respectively,  the mean and  variance 
of the marginal distribution of the lengths of runs of type 
i. Estimates of these  quantities along with estimates of 
a are given in Table 9. Note,  however,  that  the estimated 
serial correlation coefficients are consistently  smaller 
in magnitude  than the estimated a. Estimates of the serial 
correlation coefficients have been computed  for  the 
sequence of lengths of runs of type 1 points and  the se- 
quence of lengths of runs of type 2 points.  Although 
interpretation of these estimated  correlation coefficients 
is difficult because of the small sample  sizes  involved, 
there  is  no strong  indication of dependence. Accordingly, 
we adopt  an alternating  renewal process model of the 
sequence of runs of point types. 

With respect  to  appropriate  forms  for  the distributions 
of the lengths of runs, note (Table 9)  that  the  runs of 
type 2 points have relatively  large  estimated means and 
estimated coefficients of variation close to one.  Runs 
of type 2 points have much  smaller  estimated  means, 
but larger  estimated coefficients of variation. 
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Plots of the estimated  log-survivor  functions In R,, (x) 
and In R L Z ( x )  have been  examined. From  the general 
shape of these plots we are led to  entertain  as  the dis- 
tribution of the length L, of runs of type 1 points a neg- 
ative binomial (plus  one) distribution with scale  param- 
eter r, and  shape  parameter e,; i.e., 

For  the distribution of the length L,  of runs of type 2 
points, we also  assume a  negative binomial (plus  one) 
distribution  with parameters rz and Y 2 ;  i.e., 

9. Estimates of parameters 
In  the proposed model of the  exception  process, using 
(17) and (18 )  a sequence of point types  (type 1 or 2)  
is generated according to  an alternating  renewal process 
for the lengths of runs of point types. Given a point of 
type i in this sequence,  an interval Yi between  successive 
hits to level 3 of the hierarchy is generated from the 
appropriate mixture  distribution. The distribution from 
which the interval  between  hits to level 3 was sampled 
( Yi,  or Yi,) determines a Bernoulli process  and N ( Y , )  
hits to level 2 are  generated within the interval Yi accord- 
ing to  Eq. ( 10). 
There  are  thus 14 parameters  to estimate: 

Bernoulli  processes of hits to level 2 
PI, for  type 1 hits to level 2 [ N ( Y , , ) ]  
P I 2  " 1 " 2 [ N ( Y , , ) ]  
P z  1 " 2 " 2 [ N ( Y 2 , ) ]  
P 2 2  " 2 " 2 [ N ( Y Z Z ) ]  

Renewal  processes of intervals  between hits to  level 3 
q , ,  for intervals Y , ,  (geometric  (plus one) )  
4 1 2  y12 

I ,  

' 7i, mixing probability for Y,  intervals 
G2, for intervals Y,, (geometric (plus one)) 

if, mixing probability for Y2 intervals 
4 2 2  " y 2 2  

Alternating  renewal  processes of runs of point  types 
i, scale  parameter for lengths L, of 

runs of points of 
type 1 (negative 1 2, shape  parameter binomial (plus  one)) 

i, scale  parameter 

2, shape 

runs of points of 
type 2 (negative 

Table 9 Sample characteristics of sequence of runs of point 
types  for  tape B with LRU replacement. Page size b, = 256 
bytes; block size h, = 32,768 bytes. 

$r 

points of type I 

of points of type 1 

variation of runs 
of points of type 1 

of points of type 1 

of points of type 1 

points of type 2 

of points of type 2 

variation of runs 
of points of type 2 

Maximum of runs of 
points of type 2 

Minimum of runs of 
points of type 2 

Mean of runs of 

Variance of runs 

Coefficient of 

Maximum of runs 

Minimum of runs 

Mean of runs of 

Variance of runs 

Coefficient of 

Parameters 

c ,  = 32 c1 = 32 
c2 = 32 cq = 64 

0.5087 

2.097 

11.49 

1.617 

17 

1 

17.13 

424.9 

1.203 

81 

I 

0.5058 

2.308 

17.66 

1.82 

17 

I 

12.23 

174.7 

1.08 1 

42 

I 

c, = 64 
cz = 64 

0.4787 

2.667 

2 I .43 

1.74 

17 

I 

15.38 

330.5 

1.18 

63 

I 

Parameters of the model were estimated from  the  data 
in an  ad hoc manner.  The  parameters qil were estimated 
from the slopes of the linear  tails of the log-survivor 
functions of Yi ;  this involved  a visual judgment of where 
the linearity set in. For c ,  = c2 = 32 these  points  were 
taken  to  be 350,000 for Y ,  and  75,000  for Y2 (cf. [5, 
p. 951). The  parameters vi and qi2 in the  geometric  (plus 
one) distribution  mixture  were then obtained by match- 
ing the estimated  mean and  variance of the marginal 
distribution of Yi. This  was accomplished by using the 
following construction  for a  mixture of this kind. 

Let p > 0 and u > 0 be  given such  that u2 > p2 + p. 
It  is easily verified that  for 0 < pq < p, if 

t h e n O < . r r < l , p , < ~ < p , ~ p p + ( l - ~ ) p q = ~ , a n d  
T( 2 p i  + p p )  + ( 1 - T) (2pq + pq) = d + p2. Thus  the 
mixture of two geometric (plus  one)  distributions  spec- 
ified by 

P r { X = . r } = . r r p s " ( l - p p ) + ( l - - ) q " " ( I - q ) ,  

f 

x =  1,2;*. ,  (21) 43' 
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Table 10 Estimated parameters for exception process model 
for tape B with LRU replacement. Page size b, = 256 bytes; 
block size b, = 32,768 bytes; level I capacity c1 = 32 pages; 
level 2 capacity cz = 32 blocks. The raised number indicates 
how  many times the preceding  digit is repeated. 

Parumeter Value 

2 2 2  
C,, (conditional 

mean > 350,000) 
@I2 

91 1 

e* 

I$ 

412  

&, (conditional 
mean > 75,000) 

qz1  

0.00728 
0.0409 
0.046 1 
0.1208 

386,788 

66,750 
0.9’74 
0.9485 
0.80 1 
74,801 

5,982 
0.9*86 
0.9383 
0.287 
0.90 
0.12 
0.96 
0.64 

with p and q determined by pLp = (1 - p)-’ and pq = 
( 1  - q)-’, has mean E[X] = p and Var[X] = 0’. The 
estimated parameters were  obtained  according to (19) 
and (20) using p = E[Yi] and v2 = G [ Y i ] ,  6, being 
chosen  such that log Gi, is  equal to the estimated  slope of 
the linear tail of the log-survivor function of Yi. 

We now consider the estimation of the  parameters in 
the Bernoulli processes of hits  to level 2. It  can be shown 
that if  Yii has a geometric (plus  one) distribution with 
parameter qii and the  number of hits to level 2 is con- 
ditionally binomial with parameter pi,., then N ( Y U )  has 
a geometric  distribution with pijqij[ 1 - qij( 1 - p i l ) ] - l  
as a parameter.  Using this fact, estimates of theplj  can  be 
obtained by matching the first moment of the marginal 
distribution of N ( Y i )  and  the first moment of the  product 
N (  Yi) Yi.  Specifically, having values  for +i,  cjil and 4,. 
estimated parameters p i t  and pi, were  obtained as the 
solution of the  simultaneous  equations 

For  the  runs L,  and L, of point types,  the  scale and 
shape  parameters of the assumed  negative binomial (plus 
one) distributions  were  obtained by the  method of mo- 
ments, i.e., Fi and 2i were obtained, for i =  1,2,  as the solu- 
tion of the simultaneous  equations 432 
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The estimates of the  parameters in the exception process 
model are given in Table 10 for c1 = 32, c, = 32. We 
denote by pij the quantities ( 1 - qJ1. 

10. Tests of the fit of the model 
We now consider the fit  of the proposed model by ex- 
amining computed  and  estimated characteristics of the 
model for c, = cz = 32. The marginal distribution of in- 
tervals Y between  successive hits to level 3 in the model 
can  be easily obtained. For y = 1, 2 , .  . ., 

where 

- - ~ l - ~ l ~ ~ l - ~ z ~ + ~ ~ - ~ z ~ ~ l ~ t  
2(  1 - r t )  ( 1  - r z )  + ( I  - rz )E1r l  + ( 1  - r l ) f z r z  (27) 

is the stationary probability in the alternating renewal 
process of point types  that a  point is of type 1. 

In Fig. 4 (a) the  empirical  log-survivor  function (dots) 
for the intervals Y is shown with the corresponding  the- 
oretical  log-survivor  function (solid line)  computed from 
(26) using the estimated parameters in Table 9. Note 
that  we  are validating or testing using the same  data that 
were  used  for fitting parameters. Although this procedure 
is convenient,  it  is  questionable and provides a relatively 
weak measure of goodness-of-fit. It would be desirable 
to validate  the model using other data. 

Proceeding, similarly, we  can  obtain  the marginal dis- 
tribution of counts N ( Y )  of hits to level 2 between hits 
to level 3. For n = 0, 1, 2; . ., 
Pr{N(Y) = n }  

1 - 411 
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Figure 4 Log-survivor functions for (a) intervals Y between hits to level 3 and (b) counts N (  Y )  of hits to level 2 between hits to level 
3 ;  b, = 256, b, = 32,768, c ,  = 32, c, = 32. 

The empirical  log-survivor  function for  the  counts N ( Y )  
is shown in Fig. 4 (b)  with the  corresponding theoretical 
log-survivor  function. 

To get  some idea of the  extent to which the  dependence 
structure of the model is consistent with the  observed 
dependence  between Y and N ( Y ) ,  we  consider  the  cross- 
correlation between  the variables defined by 

We sketch  the  computation of this quantity for  the pro- 
posed exception  process model. Expressions  for  the first 
and second  moments of N ( Y )  are given by 433 
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Table 11 Cross correlation between Y and N ( Y )  for tape B. 
Page size b, = 256  bytes; block size b,= 32,768  bytes. Estimated 
variances of b [ N  ( Y ) ,  Y ]  are given in parentheses. 

Parameters 
e, = 32 cl= 32 cI= 64 
c 2 =  32 c 2 =  64 e ,=@ 

Computed p [ N ( Y ) ,  Y ]  0.62 0.55 0.38 
Estimated /j[ N ( Y )  , Y ]  0.59 0.52  0.38 

(0.01)" (0.05)a (0.07)" 

aValues obtained from four sections of the data. 

An  expression  for  Var[N(Y)]  is obtained from (30) 
and (3 1 ). The corresponding  expression for  Var[ Y ]  is 
obtained  from (26) via 

Finally 

(34) 

and p [ N ( Y ) ,  Y] is obtained from (30)- (34) according 
to (29). 

The  computed values of p [ N (  Y )  , Y ]  along with the 
estimated  values I j [ N ( Y ) ,   Y ]  are given in  Table 11. 
Estimates of the  variance of the b[ N (  Y )  , Y] obtained 
from  four  sections of the  data  are given in parentheses. 

11. Summary  and  concluding  remarks 

0. We have shown  how the  process of exceptions in a 
three-level LRU staging  hierarchy may be represented 
graphically in the [ Y ,  N (  Y ) ]  plane. For  the particu- 
lar program analyzed  an  unexpected two-line config- 
uration appeared. 

1. A tentative model has been proposed  for  the bivariate 
point process of exceptions in the staging hierarchy, 
based on  the  observation  for realizations of the  pro- 434 
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cess of intervals between hits to level 3 of the hier- 
archy and counts of hits to level 2. The graphical dis- 
play of 0. above was instrumental in suggesting the 
model. 

2. Parameters of the model have been estimated  from 

3. The fit  of the model has been  examined  by  comparing 
the empirical  log-survivor  functions of intervals be- 
tween  hits to level 3 and  counts of hits to level 2 
between hits to level 3 with the  computed theoretical 
log-survivor functions  and  also by comparing the 
estimated  cross-correlation of intervals between hits 
to level 3 and  counts of hits to level 2 with the  com- 
puted theoretical value. On  the basis of these mea- 
sures,  the fit is reasonably good. 

4. A striking  indication of the  existence of two  types of 
paging behavior  was  observed- a  double linear re- 
lationship between intervals  between  hits to level 
3 of the hierarchy and  counts of hits to level 2. 

Several limitations of the  study should be mentioned. 

1. It would be desirable to formalize the  procedure  for 
estimating parameters  and also to  obtain  estimates 
of parameters  from  sections of the  data in order  to 
examine  the sensitivity of the estimation  procedure: 
Error  estimates,  such  as rough confidence  limits, for 
the  parameters  are  also  needed. 

2. The study should be done  for more  page and block 
sizes,  as well as  capacities,  to yield more  information 
on how the  parameters change. 

3. Relatively  weak measures of goodness-of-fit have 
been  used.  For  example,  the marginal distribution of 
intervals between hits to level  3  does not  depend  on 
detailed assumptions  about  the distributions of runs 
of point types of the conditional process of hits to 
level 2. 

4. More program tapes should  be  examined to confirm 
(or  deny)  double linearity (or multiple linearity) of 
intervals  between hits to level 3 and  counts of hits 
to level 2. Explanations for this behavior should  be 
deduced in the hope that  they will lead to improved 
hierarchy  designs. 

5. It would be  desirable to  relate  the  parameters of the 
model directly to  the basic  hierarchy  design pa- 
rameters  (page size, block size, and  capacities).  Some 
work  has  been done  on this  problem and will be re- 
ported  elsewhere. 

the available data in an ad  hoc manner. 
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