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Analysis of Exception Data in a Staging Hierachy

Abstract: This paper is an analysis of program address trace data in a demand-paged computer system with a three-level staging hier-
archy. Our primary objective is to explore the data both graphically and numerically, using methods that may be useful when other data
traces become available. In addition, plausible point-process type models are fit to the data. Such an approach, combining data-analytic
procedures with probability modeling, should prove useful in understanding program behavior and thus will aid in the rational design of

complex computer systems.

1. Introduction

Although a number of stochastic (queuing) models for
the structure of multiprogrammed computer systems
operating under demand paging have been proposed and
studied, e.g., [1-4], the probabilistic representation of
the behavior of programs running in such systems has
received relatively less attention (however, see [5, 6]
for examples of two complementary approaches to the
formulation of program behavior models). In view of
the necessity of understanding the referencing patterns
of programs in order to improve the decision algorithms
in current and future systems, further studies of program
behavior leading to the mathematical characterization of
computer system workloads are appropriate.

This paper reports results of a study aimed at better
understanding program reference patterns in a demand-
paged computer system with a three-level staging hier-
archy. The approach taken is, first to represent the actual
program-address trace data and, second, to fit the latter
with plausible stochastic models. The point of view taken
is rather similar to that of [5] concerning the modeling
and analysis of page exceptions in a two-level memory.
However, in this paper we have emphasized the use of
simple graphical methods of statistical data analysis
and modeling rather than more formal and complex sta-
tistical techniques such as spectral analysis (cf. [7]).
Throughout this study we have used an interactive
APL /360 computing system, a tool which we have found
well suited to this type of statistical analysis and modeling.

The stochastic processes studied here occur in a
three-level staging hierarchy. A description of the hier-
archy that we assume and of the stochastic process
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models of interest that suggest themselves therein are
given in section 2. The sense in- which the exception
process in the staging hierarchy can be viewed as a bi-
variate point process (see [8]) is discussed briefly in
section 3, and section 4 contains a description of the
data available for analysis. The data analysis and model-
ing of exception processes are given in sections 5-8.
Estimates of values of the parameters in the exception
process model are presented in section 9. Section 10
contains an assessment of the fit of the model, and sec-
tion 11 gives a summary of the results and conclusions.

2. Description of the staging hierarchy

The data sequences studied in this paper occur in a de-
mand-paged computer system having as a storage struc-
ture a three-level staging hierarchy, as described in [9].
In such a system all information that is explicitly ad-
dressable is divided into units of equal size called blocks,
each of which is further divided into units of equal size
called pages. Level 1 of the hierarchy (the execution
store) is similarly divided into page-size sections called
page frames and levels 2 and 3 of the storage hierarchy
are divided into block-size sections called block frames.
In such computer systems it is possible to execute a
program by supplying it with only a few page frames and
block frames of storage. When the page containing the
first executable instruction has been loaded into a page
frame, execution begins and continues until some re-
quired information is not in the execution store. An
attempt to reference information not currently contained
in level 1 is termed an exception. When a “demand” for
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Figure 1 Staging hierarchy.

a page occurs, the page containing the required informa-
tion is staged through adjacent storage levels up to the
execution store in accordance with a prescribed regime
for hierarchy management. Thus the hierarchy is linear,
i.e., there are data paths only between adjacent levels,
and data in level 3 must pass through level 2 before going
into level 1.

In the three-level staging hierarchies we consider (see
Fig. 1), information is transmitted between levels 1 and
2 of the hierarchy in page-size units. The size of a page,
in bytes, is denoted by b, and the page capacity of level
1 is denoted by c,. Thus b c, is the total number of bytes
of information which can be contained in level 1. Sim-
ilarly, information is transmitted between levels 2 and 3
of the hierarchy in block-size units, consisting of an in-
tegral number of pages. The byte size of a block is de-
noted by b,. The block capacity of hierarchy level 2 is
denoted by c,, and thus b,c, is the byte capacity of level
2. Level 3 of the hierarchy is considered to be of sufficient
capacity to contain all information that is explicitly
addressable in the computer system.

The staging hierarchy is assumed to be managed under
the least recently used (LRU) replacement policy in
which reference is broadcast to all levels of the hierarchy.
Specifically, if the page containing the required informa-
tion is currently in level 2 of the hierarchy, the page is
fetched (page pull) from level 2, overwriting some page
currently in level 1. In general, this replaced page must
be written down into level 2 (page push). The page se-
lected to be overwritten is the page in level 1 which has
been referenced the least recently of those in this ex-
ecution storage level i.e., the least recently used page.
An instance of an exception of this type, in which the
required page is found at level 2 of the hierarchy, is
termed a “hit to level 2.”

Upon an attempt to reference information neither in
level 1 nor in level 2, the page containing the required
information is staged up from level 3 as follows. The
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block containing the desired page is fetched (block pull)
from level 3, overwriting the least recently used block
in level 2. Again, in general, this replaced block must be
written down into level 3 (block push). Now that the
block containing the required page resides in level 2, the
required page can be transmitted to level 1 (via a page
pull and a LRU page push) and the reference can be
executed. An instance of an exception of this type, in
which the required page is not found at level 2 but only
at level 3, is termed a “hit to level 3.”” In the sequel, we
shall use the term staging hiérarchy to mean a three-level
staging hierarchy managed under the LRU replacement
policy.

There are many related (but not necessarily equiva-
lent) data sequences that describe page reference pat-
terms in a staging hierarchy; important examples are
listed below.

1. References {R;(b)}, ie., sequences of page refer-
erences for pages of size b, where R,(b) is the name
of the page referenced at (discrete) time .

2. Distances {D;(b)}, i.e., sequences of stack distances
for LRU replacement, as defined in [10], where D, (b)
is the total number of distinct pages (of size b) refer-
enced since the last reference to R,(b).

3. Sequences corresponding to exceptions to either level
for various capacities at levels 1 and 2. We denote
such a sequence by {Tj(cl, ¢,; b, b,)}, where
T,(c,, ¢;; by, b,) is the time (in references) of the jth
exception in a three-level staging hierarchy in which
level 1 contains c, pages of size b, and level 2 contains
¢, blocks of size b,.

4. Sequences corresponding to exceptions of two types.
We denote such a sequence by {T;(c,, c,; b, b,);
hi(cy, ¢y; by, by)}, where T;(cy, ¢,; by, by) is the time
of the jth exception and h(c,, ¢,; by, b,) equals 2 if
the jth exception is a hit to level 2 and hj(cl, Cy3 by, by)
equals 3 if the jth exception is a hit to level 3. This is
a complete description of the pattern of exceptions.

We note here that this last sequence of exceptions of
two types is related to distance sequences by the follow-
ing result (derived in [9]). The relationship facilitates
the collection of data on the sequence of exceptions of
two types. The bivariate sequence of exceptions of two
types can be obtained from two distance sequences
{D,(b,)} and {D,(b,)}.
Proposition 1
Provided that ¢, = ¢, if T, (c,5¢,; by, b,) = i, then

2if D,(b,) > ¢, and D,(b,) = ¢,
hj(cl, Cpi by, by) =
3if D,(b,) > ¢, and D,(b,) > c,.(1)
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Table 1

b, = 32,768 bytes; number of references is 34,723,105.

Sample characteristics of the exception process for tape B with LRU replacement. Page size b, = 256 bytes; block size

¢
¢

[l

32
32

Parameters
¢, =32
¢, =64

¢, =64
c, =64

Number of exceptions
Number of hits to level 3
Number of hits to level 2
Estimated mean time

between hits to level 3

Estimated variance of times

between hits to level 3

983,596
598
982,998
58,138.5

2.564 x 10"

983,596
380
983,216
91,552.8

3.898 x 10"

475,920
380
475,540

91,552.8

Estimated coefficient of
variation of times between
hits to level 3

Minimum time between
hits to level 3 2

Maximum time between
hits to level 3

Estimated mean number of
hits to level 2 between
hits to level 3

Estimated variance of
number of hits to level 2
between hits to level 3

Estimated coefficient of
variation of number of hits
to level 2 between hits to
level 3

Minimum number of hits to
level 2 between hits to
level 3 4]

Maximum number of hits to
level 2 between hits to
level 3

2.754

1.537

1,631,317

1,645.3

6.396 x 10°

27,898

3.898 x 10"

2.156 2.156
2 2

1,631,317 1,631,317

2,617.1 1,252.8

1.472 x 107 3.811 x 10°

1.466 1.558

29,019 16,578

3. Exception processes and point processes

This paper is concerned with the derivation, via the
statistical analysis of actual program traces, of empiri-
cally valid stochastic models for sequences of exceptions
in a three-level staging hierarchy as described in the pre-
vious section. The point of view taken in the analysis
and modeling is that the exception processes are bivariate
point processes [8]. Assuming that the page size b, and
block size b, in the hierarchy have been fixed, and given
capacities ¢, and c, for levels 1 and 2 of the hierarchy,
along with a sequence of page references, an exception
can occur on any of the successive page references. If
these references are considered to occur at equidistant
time points and the interval of time between successive
references is taken to be the unit of time, the exceptions
constitute a (univariate) point process (series of events)
in discrete time, and the exceptions along with their type
(hit to level 2 or hit to level 3) constitute a bivariate point
process [8]. A realization of this bivariate point process
of exceptions is illustrated in Fig. 2, where exceptions
that are hits to level 2 are indicated by a dot denoted 2,
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and exceptions that are hits to level 3 are indicated by
a cross denoted 3. Throughout, this bivariate point pro-
cess of exceptions is termed the exception process. The
length (in references) of the generic interval between
successive hits to level 3 is denoted by Y. We take Y
to be the number of references following a hit to level 3
until the next hit to level 3 (including this next hit); thus
Y = 1. The number of hits to level 2 in the interval ¥
is denoted by N, or by N(Y) when we wish to emphasize
the dependence on Y'; necessarily forall Y, 0= N(Y) <Y.

Figure 2 Realization of the process of exceptions of two types:
N, is the number of hits to level 2 and Y, is the number of ref-
erences, both counted between the (i — 1)th and ith hits to
level 3.
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Figure 3 . Scatter diagrams of points in the [ Y, N(Y)] plane for b, = 256, b, = 32,768, and (a) ¢, = 32, c,=32; (b) ¢,=32,¢,=64;

(¢) ¢, = 64, c,= 64,

4. Data and preliminaries ,
Although data from several programs have been exam-
ined, results displayed in this paper are for a particular
address trace referred to as tape B. From the sequence of
addresses traced, the sequence of LRU distances were
derived by stack processing techniques [10] for various
page sizes b in the range 256 to 32,768 bytes. Also, for
various choices of pairs of capacities c, and c, in the range
16 to 64, sequences of exceptions were obtained from
pairs of distance sequences by the techniques described
in [9]. Results are given here for three pairs of capacities
¢;=32 pages, ¢,= 32 blocks; ¢,= 32, ¢,=64; and ¢, = 64,
¢, = 64, all for the case b, = 256 bytes and b, = 32,768
bytes. The trace data consisted of 34,723,105 references
to 166 distinct 32,768-byte blocks.

In a staging hierarchy encountered in practice, the
number of hits to level 2 is typically several orders of
magnitude larger than the number of hits to level 3. This
is, in fact, the case for the data obtained from tape B (see
Table 1) for which there are several hundred hits to level
3, but hundreds of thousands of hits to level 2 (over the
range of b, b,, ¢, and ¢, considered). Thus hundreds of
thousands of intervals and point-type pairs would be re-
quired for a complete description of the exception pro-
cess. Such a voluminous amount of data is not only diffi-
cult to comprehend, it is also expensive to manipulate.
As a result, the statistical analysis and modeling de-
scribed -in this paper was based solely on the {Y} and
{N(Y)} sequences-respectively, the intervals between
successive hits to level 3 and the counts of hits to level
2 between successive hits to level 3. Much potentially
informative data can be obtained by display and analysis
of the time positions of level 2 hits.
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Some sample characteristics of the data obtained from
tape B are displayed in Table 1. Sample characteristics
for four non-overlapping sections of the data were ex-
amined. No indication of gross departure from station-
arity was observed. Accordingly, the assumption of
stationarity was made in our analysis, details of which
are given in the next three sections.

5. Graphical study of points in the [Y,N(Y)] plane
Our analysis of the available data began with a set of
scatter diagrams of points in the [Y, N(Y)] plane (see
Fig. 3). These three scatter diagrams reveal the apparent
existence, in the material under scrutiny, of two distinct
kinds of referencing behavior. For each of the three
pairs of capacities (¢, =32, c,=32; ¢, =32, ¢c,= 64; and
¢, = 64, c, = 64) there is a striking two-line relationship
in the graphical display of the observed values of Y and
the corresponding values of N(Y). By this we mean that
points in the [Y, N(Y)] plane appear to be of two types,
and in each of the two types, points of that type seem to
be clustered about a straight line (through the point Y= 1,
N(Y) = 0) in the plane. The data analysis that has been
done proceeds from this observed double linearity of
points in the [Y, N(Y)] plane. The discovery of this
empirical relationship suggested the probability models
that we formulated. Work remains to explain the phe-
nomenon in terms of program peculairities and to estab-
lish its generality, or lack thereof. The existence of a two-
state phenomenon is not surprising in view of the data-
analytic results of [5]; the linearity in the two states, is,
however, quite striking.

As a further step, for each pair of capacities, the m
observed points (yj, nj) in the [Y, N(Y)] plane were
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partitioned into two disjoint sets by means of a separation
line #. One method for separating the points is by a
least-squares line through the point (1, 0). It is easily
shown that the slope s of the least squares line is

s=3 njyj/ njz. 2)
=1 =

Alternatively, we can take as the separation line the line
determined by the points (1, 0) and (y,, n,} where (y,, n,)
is the vector sum resultant of the set of obseryed points
{( Vs nj) }. The latter method is equivalent to taking
as the inverse of the slope of the separation line the
maximum likelihood estimate of the rate of occurrence of
events for a Bernoulli process model of the hits to level
2 of the hierarchy as described in Section 7. This esti-
mate for the rate of occurrence is simply

1 m
=3/
i=1 Jj

m

o= 1. (3)

The resulting classification of the points is somewhat
sensitive to the method of separation because of the
relatively large number of points that are close to the
origin (see Table 2). On purely empirical grounds, we
chose as the separation line .# the Bernoulli process
maximum likelihood (vector sum resultant) line. The
equation for this separation line .% is

Y=sN(Y) + 1. (4)

The resulting separation of points is summarized in
Table 3.

6. Properties of the intervals between successive
hits to level 3 '

In this section we study the sequence of Y intervals be-
tween successive hits to level 3. In the next section,
based on this analysis, we consider models for the counts
of the number of hits to level 2 occurring in an interval
between successive hits to level 3.

Note that for fixed page size b, and block size b,, the
sequence of Y intervals is determined by the value of Cy.
For ¢, = 32 as well as ¢, = 64, the sequences of Y inter-
vals have been examined. (Sample characteristics of
the Y intervals are given in Table 1. In both cases, the
marginal distributions of Y are quite positively skewed,
having estimated coefficients of variation in excess of 2
(see Table 1). Moreover the sequence of Y values is
correlated; the three estimated first serial correlation
coefficients p, all differ significantly from zero under the
normal approximation. [Asymptotically, g, is normally
distributed with E[$,] ~ 0 and Var[p,] ~ (n— 1) " un-
der fairly general conditions when p, = 0; cf. [7], p. 92.]

In view of the two types of behavior suggested by the
observed double linearity in the [Y, N(Y)] plane and
the point classification we have made, it is reasonable
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Table 2 Slopes of fitted separation lines in the [Y, N(Y)]
plane for tape B with LRU replacement. Bage size b, = 256
bytes; block size b, = 32,768 bytes.

Parameters
c, =32 c,=32 c, =64
c,=32 c, = 64 c, =64
Least-squares fit 36.875 29.474 48.922
Maximum likelihood fit
(Bernoulli process) 35.336 34.982 73.078

Table 3 Separation of points in the [Y, N(Y)] plane for tape
B with LRU replacement. Page size b, = 256 bytes; block size
b, = 32,768 bytes.

Parameters
¢,=32 ¢,=32 ¢,=64
c,=32 ¢,=64 c¢,=64

Total number of points 597 379 379
Number of upper points 65 60 56
(Bernoulli maximum likelihood
separation)
Number of lower points 532 319 323
(Bernoulli maximum likelihood
separation) =~
Proportion of upper points 0.1089 0.1583 0.1478

to examine the sequence of Y components, conditional
on point type. We consider two sequences of intervals,
Y, and Y, intervals, derived from the original sequence of

Y components. Sample characteristics of the marginal

distribution of these two sequences are given in Table 4;
correspohding characteristics of the counts of hits to
level 2 between hits to level 3 are given in Table 5. Evi-
dently, the marginal distributions of Y, the type 1 Y
components, and of Y,, the type 2 Y components, are
quite different, with the mean of Y, being approximately
ten times larger than the mean of Y. o
Histograms of the distributions of the Y, intervals
suggest a mixture of random variables. Plots of the log-
arithm of the empirical survivor function Ryl (y), where
number of Y, intervals greater than y

Ry, ()= number of Y, intervals ’

y=1’2’... (5)

are generally convex with a linear tail. This suggests
the use of a mixture of two geometric (plus one) distribu-
tions as a model for the marginal distribution of Y ; i.e.,
to assume that for 0 <o, < l'and 0 < q,,, q,, < 1,

Pr{Y,=y}= quuy_l(l —q,)+ (- 7"1)‘112”—1(1 —d5)

y=1929.‘.' (6)

427

EXCEPTION DATA




428

Table 4 Sample characteristics of intervals between successive hits to level 3 conditioned on point type for tape B with LRU replace-

ment. Page size b, = 256 bytes: block size b, = 32,768 bytes.

Parameters
c, =32 =32 ¢, =64
c, =32 c,= 64 c, = 64
Type 1 Type 2 Type 1 Type 2 Type 1 Type 2
Number of hits 65 532 60 319 56 323
Estimated mean time
between hits 323,256 25,746 350,378 42,871 376,424 42,163
Estimated variance of
times between hits 1.196 X 10" 1.32% 10° 1.311 x 10" 3.126 x 10° 1.410 x 10" 3.049 x 10°
Estimated coefficient
of variation of times
between hits 1.145 1.98 1.068 1.701 0.995 1.715
Maximum time between
hits 1,631,317 850,172 1,631,317 850,172 1,631,317 850,172
Minimum time between
hits 2 27 2 27 2 27

Table 5 Sample characteristics of number of hits to level 2 between hits to level 3 conditioned on point type for tape B with LRU re-

placement. Page size b, = 256 bytes; block size b, = 32,768 bytes.

Parameters
c, =32 c, =32 ¢, =64
c,=32 c, =64 c, =64
Type 1 Type 2 Type 1 Type 2 Type 1 Type 2
Estimated mean 2,797.5 1,504.5 3,078.2 2,530.4 1,048.1 1,288.3
Estimated variance 8.842 x 10° 5.931 x 10° 9.120 x 10° 1.576 x 107 8.742 x 10° 4315 % 10°
Estimated coefficient
of variation 1.063 1.619 0.9810 1.59 0.892 1.612
Maximum number 9,940 27,898 9,940 29,019 3,724 16,578
Minimum number 0 2 0 2 0 2

Denoting by Y, and Y,, random variables having these
geometric (plus one) distributions, we have forj =1, 2,
E[Y,;] = (1 — ¢,)7", Var[Y,;] = q,(1 = q;,)”", and
CZ(YU.) = q, Similar considerations suggest taking a
mixture of two geometric (plus one) distributions as a
model for the marginal distribution of Y,; i.e., to assume
that for 0 < 7, < 1 and 0 < q,,, q,, < 1,

Pr{Y, =y} =m,q," (1 — q,)
+ (1= m,)q," (1 —ay).  (7)

Geometric (plus one) random variables with parameters
4,, and g,,, respectively, are denoted by Y,, and Y,,.

The Y, and Y, sequences has been examined by es-
timating serial correlation coefficients (see Table 6). In
the case of the Y, intervals, the first two estimated serial
correlation coefficients do not differ significantly from
zero. In fact, no indication of dependence in the Y, se-
quences has been found.
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Although the Y,’s can apparently be considered as in-
dependent, identically distributed, random variables
having a mixture distribution, there is evidence that the
Y,’s are a dependent mixture. In the case of the Y, se-
quences, the sample sizes may be too small to justify
the use of the normal approximation for the estimated
first serial correlation coefficients. On the basis of this
approximation, however, only for the sequence cor-
responding to ¢, = 64, ¢, = 64 is there evidence that the
first serial correlation differs from zero. Note (in Table
6) that estimates of second-order correlation coefficients
indicate dependence in the Y, sequences, although the
nature of the dependence is difficult to assess from the
available data. Accordingly, in our model we consider
the Y’s to be an independent mixture.

7. Models for counts of hits to level 2

In Section 5, a double-line relationship between Y and
N(Y) was observed by means of a scatter diagram in the
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[Y, N(Y)] plane, this observation leading us to partition
the set of data points into two disjoint sets: those of type
1, the points clustered about the upper line, and type 2,
the points clustered about the lower line. In this section
we concentrate on the phenomenon of linearity in the
[Y, N(Y)] plane, with the aim of postulating a point
process model that accounts for the observed linearity.

Recalling that for i = 1, 2 we denote the generic Y
component of a type i point by Y,, we denote the cor-
respondinig N component by N(Y,). Then, for y = 1,
2,3, -, the observed linear relationship for type i points
can be summarized as

i=1,2.

We ultimately seek a plausible stochastic mechanism
for generating a bivariate series of events corresponding
to the hits to level 2 and hits to level 3. We begin by con-
sidering the interval between successive hits to level 3.
Consideration of models for the sequence of intervals
between hits to level 3 and its relationship to the two
point types is deferred to later sections of the paper. Per-
haps the simplest way to account for the observed linear-
ity is to assume that the hits to level 2 occur “‘at random™
in the interval between hits to level 3. More specifically,
given a point in the [Y, N(Y}] plane of type i, within an
interval Y, between successive hits to level 3, hits to
level 2 occur according to a Bernoulli process. Thus the
number of hits to level 2 between successive hits to level
3 is conditionally binomial; i.e., fory= 1 and 0 < p, < 1,

where 0 < p, < I;

Pr{N(Y,) zﬂlyi'—_y}:(y; 1>pi"(1_pi)y‘l—n’

0=n=y—1. (9)

It is quite easy to show that under this assumption,
E[IN(Y)|Y,=y]l=p,(y—1).

In view of our finding (in section 6) that the marginal
distributions of ¥, and Y, are mixtures, it seems plausible
to consider a mixed Bernoulli process model in which the
parameter of the process depends on the distribution
from which the interval between hits to level 3 is gen-
erated. The number of hits to level 2 is conditionally
binomial; i.e., for 1 = {,j= 2,

Pr{N(Y,) = nlV, =y} = <y; l)pi,-"(l )t

0<pﬁ<1;n=0,1,~--,y—1. (10)

(Recall that Y, is a mixture of Y;; and Y,,.) It is easy to
show that linearity in the [Y, N(Y)] plane is retained.

Proposition 2
Lety= 1. Iffor t =i, j= 2 and some 0 < p; < 1,
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Table 6 Estimated serial correlation coefficients for intervals
between hits to level 3 for tape B with LRU replacement.
Normalized values are given in parentheses. Page size b, =256
bytes; block size b, = 32,768 bytes.

Parameters

¢, =32 c, =32 ¢, =64

Coefficient/ points c, =32 ¢, =64 ¢, =64
First/ all 0.228 0.201 0.201
(5.565) (3.902) (3.902)

Second/ all 0.633 0.592 0.592
(15.432) (11.486) (11.486)

First/type 1 —0.165 —0.241 —0.307
(—1.849) (—1.849) (—2.27%)

Second/ type | 0.431 0.459 0.492
(3.419) (3.500) (3.612)

First/type 2 —0.046 0.016 0.001
(—1.049) (0.282) (0.174)

Second/ type 2 —0.0075 -0.021 —0.001

Table 7 Estimated transition probabilities for Markov chain
models for the sequence of point types for tape B with LRU re-
placement. Page size b, = 256 bytes; block size b, = 32,768
bytes.

Parameters
c, =32 c,=32 ¢, =64
c, =32 c, = 64 ¢, =64
Zeroth-order model
p(1) 0.1089 0.1583 0.1478
p(1) 0.8911 0.8417 0.8522
First-order model
p(1, 1) 0.5231 0.5667 0.6250
p(1,2) 0.4769 0.4333 0.3750
p(2, 1 0.0565 0.0786 0.0621
p(2,2) 0.9435 0.9214 0.9379
Second-order model
p(1,1, 1) 0.8529 0.8824 0.8571
p(1,1,2) 0.1471 0.1176 0.1429
p(1,2, 1) 0.3548 0.3462 0.1905
p(1,2,2) 0.6452 0.6538 0.8095
p(2,1,1) 0.1667 0.1600 0.2500
p(2,1,2) 0.8333 0.8400 0.7500
p(2,2, 1) 0.0380 0.0548 0.0532
p(2,2,2) 0.9620 0.9452 0.9468
PriN(Y,)=n|Y,=y}= y-l "(1—p )"
ij ' yi= n pii Pij )
n = 0’ 1’ nt .’ y - 1’
and for 0 <m, < 1,
Pr{Y,=y}=aPr{Y, =y} + (1 —7)Pr{Y, =y},
then
=py—1. (11) 429

EXCEPTION DATA




430

Table 8. Estimated serial correlation coefficients g, of lag j
for process of runs of point types for tape B with LRU replace-
ment. Page size b, = 256 bytes; block size b, = 32,768 bytes.

Parameters
c, =32 ¢, =32 ¢, =64
j c,=32 , = 64 c, = 64
1 -0.2374 —0.2404 —0.2383
2 0.2464 0.2198 0.0501
3 —0.2410 —0.2234 —0.2330
4 0.0804 —0.0345 - 0.0493
5 —0.2078 —0.1763 —0.0887
6 0.1426 0.0817 0.3482
7 —0.1421 —0.0952 —0.1949
8 0.1781 0.3332 0.0257
9 —0.1706 —0.1642 —0.1192
10 03611 0.2759 0.1129
11 —0.1964 —0.1508 —0.1099
12 0.0393 —0.0745 0.0641
13 —0.2272 -0.1799 —0.2142
14 0.1394 0.1467 0.3451
15 —0.2107 —0.1626 —0.1318
16 0.4173 0.4035 0.0532
17 —(.1853 —0.1229 —0.1415
18 0.2284 0.2683 —0.0617
19 —0.2031 —0.1851 —0.0849
20 0.1051 —0.0374 0.3043
21 —0.1549 -0.1213 —0.1155
22 0.0008 —0.0228
23 -0.1508 —0.0388
24 0.0370 0.1765
25 —0.1304 —0.1708
26 0.1644 0.2118
27 —0.1009
28 0.1350
29 —0.1428
30 0.0701
31 —0.1326

Thus, a mixed Bernoulli process model for the hits to
level 2 between successive hits to level 3 is consistent
with the examination of the data that we have made so far.
Such a mixed Bernoulli process model for the type i
hits to level 2 is attractive since it is specified by but two
parameters which, as we show in section 9, can be es-
timated conveniently by the method of moments. To
complete the formulation of a model for the exception
process, it remains to examine the sequence of point
types. This is the topic of the next section. ‘

8. Analysis of the process of point types

In seeking a model for the process of point types, a nat-
ural choice (by virtue of its simplicity) is a two-state
(Markov) chain, including indebendent trials as a special
case. Estimates of conditional probabilities of transition
for zeroth-, first-, and second-order chains have been
obtained and are given in Table 7. Denoting the process
of point types by {r;}, i = 1, where ;

- {1 if the ith point is of type 1
¢ {2 if the ith point is of type 2, (12)
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we let, in the case of the zeroth-order (independent
trials) chain,

p()=Pr{r,=i},i=1,2. (13)
For the first-order chain we let

p(i,j))=Prir, =jlr, =L 1= Lj=2 (14)
and fo; the second-order chain we let

pli,j, k) =Pr{r, =klr,_,=j 7,, =1}
1=i,j,k=2. (15)

Evidently, the estimated conditional probabilities in-
dicate gross departures from an independent trials model,
and give little support for a first-order Markov chain
model.

An alternative to a Markov chain for the process of
point types is an interval model, i.e., one based on the
sequence of runs of points of the same type. We now
consider this process of intervals, the alternating sé-
quence of lengths L, of runs of points of type 1 and
lengths L, of runs of points of type 2. Estimates of the
serial correlation coefficients p; of lag j have been com-
puted for the sequence of runs and appear in Table 8.
The striking feature of these estimated correlation coef-
ficients is the almost strict alternation of signs, suggesting
an alternating renewal process model for the sequence
of runs of point types. For an alternating renewal process
the serial correlation coefficient of lag j [7, p. 196] is
a(—1), where

2 2 -1
a= {E—‘—iﬁ—)Jr 1} , (16)
2(p, — /"‘1)2

and u,; and o-f are, respectively, the mean and variance
of the marginal distribution of the lengths of runs of type
i. Estimates of these quantities along with estimates of
« are given in Table 9. Note, however, that the estimated
serial ‘correlation coefficients are consistently smaller
in magnitude than the estimated «. Estimates of the serial
correlation coefficients have been computed for the
sequence of lengths of runs of type 1 points and the se-
quence of lengths of runs of type 2 points. Although
imerpretation of these estimated correlation coefficients
is difficult because of the small sample sizes involved,
there is no strong indication of dependence. Accordingly,
we adopt an alternating renewal process model of the
sequence of runs of point types.

With respect to appropriate forms for the distributions
of the lengths of runs, note (Table 9) that the runs of
type 2 points have relatively large estimated means and
estimated coefficients of variation close to one. Runs
of type 2 points have much smaller estimated means,
but larger estimated coefficients of variation.
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Plots of the estimated log-survivor functions In R L (x)
and In R, (x) have been examined. From the general
shape of these plots we are led to entertain as the dis-
tribution of the length L, of runs of type 1 points a neg-
ative binomial (plus one) distribution with scale param-
eter r, and shape parameter ¢ ; i.e.,

Pr{L, =i} = (" 7)r (=),
O<r<lif,>0ii=1,2,-.  (17)

For the distribution of the length L, of runs of type 2
points, we also assume a negative binomial (plus one)
distribution with parameters r, and ¢,; i.e.,

PriL,=i}= (277, (1= 1),

0<r,<l1;¢,>0;i=1,2,""" (18)

9. Estimates of parameters

In the proposed model of the exception process, using
(17) and (18) a sequence of point types (type 1 or 2)
is generated according to an alternating renewal process
for the lengths of runs of point types. Given a point of
type i in this sequence, an interval Y, between successive
hits to level 3 of the hierarchy is generated from the
appropriate mixture distribution. The distribution from
which the interval between hits to level 3 was sampled
(Y, or Y,,) determines a Bernoulli process and N(Y;)
hits to level 2 are generated within the interval Y, accord-
ing to Eq. (10).

There are thus 14 parameters to estimate:

Bernoulli processes of hits to level 2
p,, fortype 1 hitstolevel 2 [N(Y ;)]

Py, 1 " 2 [N(Y,)]
Py "2 g 2 [N(Y,)]
ﬁZZ " 2 " 2 [N ( Y22 ) ]

Renewal processes of intervals between hits to level 3
gy, for intervals Y,, (geometric (plus one))
quZ ! Y12 !
- 7, mixing probability for Y, intervals
4,, for intervals Y, (geometric (plus one))
q"22 ” Y22 "
7, mixing probability for Y, intervals

2
Alternating renewal processes of runs of point types
scale parameter | for lengths L, of
runs of points of
type 1 (negative
/1 shape parameter) binomial (plus one))
7, scale parameter ] for lengths L, of
runs of points of
type 2 (negative
22 shape parameter) binomial (plus one))

r
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Table 9 Sample characteristics of sequence of runs of point
types for tape B with LRU replacement. Page size b, = 256
bytes; block size b, = 32,768 bytes.

Parameters
c, =32 ¢, =32 c, =64
¢, =32 c,=64 c,= 64
@ 0.5087 0.5058 0.4787
Mean of runs of
points of type 1 2.097 2.308 2.667
Variance of runs
of points of type 1 11.49 17.66 21.43

Coeflicient of

variation of runs

of points of type | 1.617 1.82 1.74
Maximum of runs

of points of type 1
Minimum of runs

of points of type 1 1 { 1
Mean of runs of

points of type 2 17.13 12.23 15.38
Variance of runs

of points of type 2 424.9 174.7 330.5
Coefficient of

variation of runs

of points of type 2 1.203 1.081 1.18
Maximum of runs of

points of type 2 81 42 63
Minimum of runs of

points of type 2 1 1 1

17 17 17

Parameters of the model were estimated from the data
in an ad hoc manner. The parameters g, were estimated
from the slopes of the linear tails of the log-survivor
functions of Y; this involved a visual judgment of where
the linearity set in. For ¢, = ¢, = 32 these points were
taken to be 350,000 for Y, and 75,000 for Y, (cf. {5,
p. 95]). The parameters =, and g,, in the geometric (plus
one) distribution mixture were then obtained by match-
ing the estimated mean and variance of the marginal
distribution of Y,. This was accomplished by using the
following construction for a mixture of this kind.

Let u > 0 and o > 0 be given such that o” > u* + u.
It is easily verified that for 0 < u, <, if

2 2
— Ly e -
B, =p+ 2(""—,’(‘(]) and (19)
_ 2
= 20— ty) (20)

(72—/.L—,L4,2+2(/.L—-/J.q)2’
then0 <7 <1,p, <p<p,mp,+ (1 -—m)n,=p,and
7T(2[.Lp2 +u,)+ (1 —m7) (ZMq +p) = o + u’. Thus the
mixture of two geometric (plus one) distributions spec-
ified by

PriX=x}=mp"'(1-p)+ (1 —m)g" "(1 — q),

x=12,- (21)
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Table 10 Estimated parameters for exception process model
for tape B with LRU replacement. Page size b, = 256 bytes;
block size b, = 32,768 bytes; level 1 capacity c, = 32 pages;
level 2 capacity ¢, = 32 blocks. The raised number indicates
how many times the preceding digit is repeated.

Parameter Value

P 0.00728
Py 0.0409
Py 0.0461
Pay 0.1208
ft,, (conditional 386,788
mean > 350,000)
By 66,750
4y, 0.9°74
Gy 0.9'85
r, 0.801
fi,, (conditional 74,801
mean > 75,000)
Doy 5,982
G, 0.9°86
Gy 0.9°83
L 0.287
7 0.90
L 0.12
7, 0.96
i, 0.64

with p and ¢ determined by p, = (1 —p)~" and , =
(1 — ¢)7", has mean E[X] = p and Var[X] = o°. The
estimated parameters were obtained according to (19)
and (20) using u = E[Yi] and ¢* = @[Yi], 4, being
chosen such that log §;, is equal to the estimated slope of
the linear tail of the log-survivor function of Y.

We now consider the estimation of the parameters in
the Bernoulli processes of hits to level 2. It can be shown
that if Y;; has a geometric (plus one) distribution with
parameter ¢; and the number of hits to level 2 is con-
ditionally binomial with parameter p,, then N(Y;) has
a geometric distribution with p,q,;[1 — q,;(1 — py)1™"
as a parameter. Using this fact, estimates of the p;; can be
obtained by matching the first moment of the marginal
distribution of N(Y;) and the first moment of the product
N(Y,)Y,. Specifically, having values for #, g4, and g,
estimated parameters p, and p,, were obtained as the
solution of the simultaneous equations

4 Puda Py
EINY)]| =77+ (1 —m) ——; 22
IN(Y)]=m, —aq,) (1—m) (- ay) (22)
N 2p,.q; 2p..4,
BIN(Y) Y] =m—Ludn_ o (g ) —Fede (53
—qil) (1 —qiz)

For the runs L, and L, of point types, the scale and
shape parameters of the assumed negative binomial (plus
one) distributions were obtained by the method of mo-
ments, i.e., , and £, were obtained, for i= 1, 2, as the solu-
tion of the simultaneous equations
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E[L]=14+¢r/(1—1r); (24)
Var[L,] = ¢/ (1—r)% (25)

The estimates of the parameters in the exception process
model are given in Table 10 for ¢, = 32, ¢, = 32. We
denote by g, the quantities (1~ g,)~".

10. Tests of the fit of the model

We now consider the fit of the proposed model by ex-
amining computed and estimated characteristics of the
model for ¢, = ¢, = 32. The marginal distribution of in-
tervals Y between successive hits to level 3 in the model
can be easily obtained. Fory= 1, 2, -,

Pr{Y =y} =Blmq," " (1—q,)
+(1—7m)q," (1 —q,)]
+ (1 =B lmg,' " (1 —qy,)
+ (1= m,)gq," " (1—g,)], (26)

where
_ E[L,]
A= E[L,] + EI[L,)

. (1=r)(1—r)+{Q—r)r,
T2(1=r) (A=) + (M=), + (1 =)ty

(27)

is the stationary probability in the alternating renewal
process of point types that a point is of type 1.

In Fig. 4(a) the empirical log-survivor function (dots)
for the intervals Y is shown with the corresponding the-
oretical log-survivor function (solid line) computed from
(26) using the estimated parameters in Table 9. Note
that we are validating or testing using the same data that
were used for fitting parameters. Although this procedure
is convenient, it is questionable and provides a relatively
weak measure of goodness-of-fit. It would be desirable
to validate the model using other data.

Proceeding, similarly, we can obtain the marginal dis-
tribution of counts N (Y) of hits to level 2 between hits
to level 3. Forn=10,1,2,---,

Pr{N(Y) = n}

- B["l(l = qi):{llu— pu))n(l - ;u—(lqi Pu))
+ (1= "1)<1 - qilz(,(lzlf— p,2)> (1 - ‘1112—(qu plz))]

b =)t ()

+ (- 772)(1 - qff?(f”— p22)>”(l - 61122—(161f Pzz))]‘

(28)
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Figure 4 Log-survivor functions for (a) intervals Y between hits to level 3 and (b) counts N (Y) of hits to level 2 between hits to level

3 b, = 256, b, = 32,768, ¢, = 32, ¢, = 32.

The empirical log-survivor function for the counts N(Y)
is shown in Fig. 4(b) with the corresponding theoretical
log-survivor function.

To get some idea of the extent to which the dependence
structure of the model is consistent with the observed
dependence between Y and N (Y), we consider the cross-
correlation between the variables defined by

E[N(Y)Y] — EIN(M]E[¥]

N(Y), Y)= i
PN, 1) {Var[N(Y)]Var[Y]}

(29)

We sketch the computation of this quantity for the pro-
posed exception process model. Expressions for the first
and second moments of N(Y) are given by
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e =2 + U2 e
+ (- B)[(?'ff:) u (_1 7})”22“22];(30) 4
R TR
i e
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Table 11 Cross correlation between Y and N(Y) for tape B.
Page size b, = 256 bytes; block size b, = 32,768 bytes. Estimated
variances of [N (Y), Y] are given in parentheses.

Parameters
¢, =32 c, =32 ¢, =64
c, =32 ¢, = 64 c,= 64

Computed p[N(Y), Y] 0.62 0.55 0.38
Estimated [ N(Y), Y] 0.59 0.52 0.38
‘ 0.0n* (0.05)® (0.07)?

*Values obtained from four sections of the data.

An expression for Var[N(Y)] is obtained from (30)
and (31). The corresponding expression for Var[Y] is
obtained from (26) via

_ ™, (1—m)
ELY) =8 —a " (1—qlz>]
_ T, (1—m,) )
+{ B)[(l—%n * (1—q22)]’ (32)
2 mlq,+1) (1—7m)(q,+1)
E[Y] =
vl B[ (1—q,)* (1—gq,)* ]
Wz(q21+1) (1*77'2)(q22+1)
+ (1~
( B)[ (1—q,,) " (1="g,)" ]
(33)
Finally
2 1— 2
I, ¥1 - g 22t (=t
Ty 2Dy, 45, (1 = ) 2Py,
+(1—-8)
P l:(1—%1)2 (1— g, ]
(34)

and p[N(Y), Y] is obtained from (30)- (34) according
to (29).

The computed values of p[N(Y), Y] along with the
estimated values p{N(Y), Y] are given in Table 11.
Estimates of the variance of the p[ N(Y), Y] obtained
from four sections of the data are given in parentheses.

11. Summary and concluding remarks

0. We have shown how the process of exceptions in a
three-level LRU staging hierarchy may be represented
graphically in the [Y, N(Y)] plane. For the particu-
lar program analyzed an unexpected two-line config-
uration appeared.

1. A tentative model has been proposed for the bivariate
point process of exceptions in the staging hierarchy,
based on the observation for realizations of the pro-

GAVER, LEWIS AND SHEDLER

cess of intervals between hits to level 3 of the hier-
archy and counts of hits to level 2. The graphical dis-
play of 0. above was instrumental in suggesting the
model.

2. Parameters of the model have been estimated from
the available data in an ad ho¢ manner.

3. The fit of the model has been examined by comparing
the empirical log-survivor functions of intervals be-
tween hits to level 3 and counts of hits to level 2
between hits to level 3 with the computed theoretical
log-survivor functions and also by comparing the
estimated cross-correlation of intervals between hits
to level 3 and counts of hits to level 2 with the com-
puted theoretical value. On the basis of these mea-
sures, the fit is reasonably good.

4. A striking indication of the existence of two types of
paging behavior was observed—a double linear re-
lationship between intervals between hits to level
3 of the hierarchy and counts of hits to level 2.

Several limitations of the study should be mentioned.

1. It would be desirable to formalize the procedure for
estimating parameters and also to obtain estimates
of parameters from sections of the data in order to
examine the sensitivity of the estimation procedure:
Error estimates, such as rough confidence limits, for
the parameters are also needed.

2. The study should be done for more page and block
sizes, as well as capacities, to yield more information
on how the parameters change.

3. Relatively weak measures of goodness-of-fit have
been used. For example, the marginal distribution of
intervals between hits to level 3 does not depend on
detailed assumptions about the distributions of runs
of point types of the conditional process of hits to
level 2.

4. More program tapes should be examined to confirm
(or deny) double linearity (or multiple linearity) of
intervals between hits to level 3 and counts of hits
to level 2. Explanations for this behavior should be
deduced in the hope that they will lead to improved
hierarchy designs.

5. It would be desirable to relate the parameters of the
model directly to the basic hierarchy design pa-
rameters {page size, block size, and capacities). Some
work has been done on this problem and will be re-
ported elsewhere.
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