
S. P. Ghosh
M. E. Senko

String Path Search Procedures for Data Base Systems

Abstract: This paper structures algorithms for the translation of set theoretic queries into procedures for the search of arbitrary com-
plex networks constructed on a data base using three basic types of strings. A method for parametrization of queries which is appropriate
for accessing string structures is outlined and it is shown how the properties of string structures can be used to construct an algorithm
for finding a search path with minimum path cardinality for a given query addressed to such a network. (The term data management
system is used instead of data base management system.)

1. Introduction
In a computing environment, data management systems
deal with the problems of storing and retrieving informa-
tion from large complex data bases based on non-numer-
ical types of information. Like any other software system,
a data management system has a high-level language,
called a query language for user interaction with the data.
The primitives of a query language are based on a data
description. Usually the data bases are very large; hence;
different kinds of data accessing rules are also associated
with data management systems for efficient retrieval of
subsets of data requested by different queries. Some data
management systems have more than these two levels
contained in them. A good review of many different data
management systems is given in the CODASYL-system
committee’s technical report [1 1.

In the last few years there has been a trend to introduce
multiple independent levels in data management systems.
In this approach a user can interact with the system at
any level without having to know the levels that are
below it (i.e., closer to the hardware). A good example of
work on this subject is reflected in the Data Indepen-
dent Accessing Model (DIAM) system architecture de-
veloped by Senko et al. [21. In the DIAM the data man-
agement system is divided into four levels, viz., data
description model, access structure model, encoding
model, and physical model. The data description model
is based on an entity set concept. A query language based
on entity sets has been developed by Fehder [3]. The
access structure model is based on string structures which
define access paths through different subsets of the data,
A neat presentation of string structures has been given
by Altman et al. [4].

When a user is free to request queries without knowl-
edge of the access structures embedded in the data base,
the computer has to take the responsibility of analyzing
the query and reducing it to a parametric form such that
the parameters can be used to select the proper access
paths for retrieving the subsets of the data relevant to
the query. One of the purposes of this paper is to inves-
tigate the methods for parametrizing the queries based on
entity set concepts. The major part of the paper is de-
voted to studying properties of access path structures
that can be constructed from string structures. The pri-
mary reason for studying properties of string structures
is that these properties can be used to construct efficient
algorithms for answering queries based on entity set
concepts. Many authors have done basic work on search
algorithms. Knuth [5] provides an excellent treatment
on searching tree, multilist, and other structures. Theories
and properties of complex queries and data structures
involving paths between data units have not been dis-
cussed up to now. Based on the results of this paper
Ghosh and Astrahan [6] and Astrahan and Ghosh [7]
have developed detailed algorithms for selecting optimum
search paths for providing answers to queries based on
entity sets. This paper does not discuss optimum con-
struction of string structures over a data base. I t is as-
sumed that the string structures necessary to answer a
given query are available.

The materials presented in this paper are organized
into six sections. The following section deals with string
structure description of data. Section 3 contains a method
of parametrizing queries to expedite a search through
string structures. Section 4 deals with properties of search

IBM J. RES. DEVELOP.

paths. Section 5 provides a general algorithm for obtain-
ing a search path with minimum path cardinality, and
section 6 summarizes the results and provides a dis-
cussion.

2. String structure description
String structures were introduced by Senko et al. [2]
and formalized by Altman et al. [4] . The reader may
refer to these papers for a detailed description of the
subject. For completeness of our paper a sketchy de-
scription of string structures is provided in this section.

A string is an access path through the data. There are
three basic string types:

i. The A-string (atomic string) is used to characterize
the access paths connecting sets and/or subsets of at-
tribute domain name/role name/attribute values.
ii . The E-string (entity string) is used to characterize

the access paths connecting structurally homogeneous
(i.e., having the same type description) sets of subsets
of data.
iii. The L-string (link string) is used to characterize
the access paths connecting structurally heterogeneous
sets and/or subsets of data.

Each string type is defined in a generic form over at-
tribute values or a set of string types which are referred
to as the components and are specified in the exiting
list (E X L) of the string type definition format. A string
type can have multiple instances in a data base. The
string type definition format also contains a name, its
kind, a string selection criterion and an O N criterion.
An exiting list is a list of the components (i.e., strings
or attributes) which are used to construct the instances
of the particular string type. String criteria (SC, with
values S C) can specify the criteria on the bases of which
instances of the components are selected and/or ordered
for constructing the instances of the particular string
type. The ordering of the instances of the components
can also be specified through the exiting list. The string
criteria represent three concepts in the description given
by Altman et al. [4] , viz., selection criteria, matching
criteria, and ORDER ON criteria. This substitution is done
to improve parametrization of the string structures. The
O N criterion specifies the names of the strings for which
the particular string type is a component.

A string catalogue provides a list of the descriptions
of all the string types defined on the data. Henceforth,
for simplicity, the word “string” is used instead of
“string type.”

Example 1
Suppose we have a personnel file. Each person has
children and holds a number of jobs. The attributes in
this file are man number, man name, man age, child(ren)

name (s), job name (s) and average wage (s). A catalogue
of the string types for the data representing a man, his
children, his jobs, and the corresponding associations is
given as follows:
Person Entity Set [(P . Man No.)]
PA 1 AS G [E X L = (P . Man No. , P . Man

Name , P . Man Age) ; ON =
P E l]

PE 1 ES G [E X L = (P A 1) ; 00= (P . Man
N o . 1 1

P. Man No. is the. name given to the attribute man
number when it is a property of the entity person. Sim-
ilarly, P. Man Name and P. Man Age are attributes of
the person. In this catalogue each instance of the person
entity set is identified by its P. M a n N o . The three at-
tributes are components of the string PA 1 , which is an
A-string (denoted by A S G) with E X L = (P. Man No. ,
P . Man Name, P . Man Age) . The string PE 1 is defined
on PA 1 . An instance of PA 1 is obtained by construct-
ing an access path through one value of P. Man No., one
value of P. Man Name, and one value of P. Man Age,
all belonging to the same person. The value of P. Man
N o . is the first element in an instance of PA 1 , the value
of P. Man Name is the second element, and so on. PE1
is an E-string (denoted by E S G) constructed over PA I .
It has one instance and is an access path connecting all
the instances of PA 1 in a sequential manner, ordered
on the values of P. Man No. The entry 00 is referred
to as the SC for PE 1 ; PE1 connects only the heads of
the list of P. Man No. , P. Mun Name, and P. Man Age.

The following strings are constructed on the child and
job entity sets.

Child Entity Set [(C . Man No., C .
Child Name)]

[E X L = (C. Mun No.,
C . Chi ld Name);
O N = C E l]

[E X L = (C A 1) ; 0 0 =
(C . M a n N o . , C .
Ch i ld Name)]

C . Child Name Attribute [O N = C A 1 1
C . M a n N o . Attribute [O N = C A 1 1
Job Entity Set [(J. Man No., J. Job

JA 1 A S G [E X L = (J . Man No. , J .

J E 1 ES G [E X L = (J A 1) ; 00= (J.

JA2 ASG [E X L = (J . Mun N o .) ;

JA 3 A S G [E X L = (J . Man No., J .
Job Name , J . Av .

S a l .) ; O N = J E 2]

Name, J . Av. Sal.)]

A v . S a l .) ; O N = J E I]

J o b N a m e)]

O N = J L l]

C A 1 A S G

CE1 ESG

409

SEPTEMBER 1974 ACCESSING STRING STRUCTURES

JE2 ESG

J L 1 LS C

JE3 ESG

J. Av. Sal Attribute
J . Job Name Attribute
J . Man No. Attribute

[E X L = (JA3); PART =
J . Man No .) ; 00= (J.
J o b N a m e) ; ON =

J L l]
[E X L = (J A 2 , J E 2) ;

M C = (J. Man No.
= J . M a n N o .) ; O N =
J E 3]

[E X L = (J L l) ; 00= (J.

[O N = J A l ; O N = J A 3]
[O N = J A l ; O N = J A 3]
[O N = J A l ; O N = J A 2 ;

Man No .)]

O N = JA31.

In the string C E l , the SC is an ORDER ON criterion on
the values of two attributes. I t implies that the instances
of C A 1 are connected in a sequential manner ordered on
the values of C . Man No. For a fixed value of C. Man
N o , , the instances are ordered on the values of C. Child
Name. JE2 is an E-string with multiple instances, where
each instance corresponds to a distinct value of J. Man
N o . Within each instance of JE2 there may be multiple
instances of JA3. The instances of JA3 within each in-
stance of JE2 are ordered on the values of J . Job Name .
JL1 is an L-string (denoted by LSG) whose compo-
nents are JA2 and JE2. An instance of JL1 is obtained
by constructing an access path from an instance of JA2
to an instance of JE2 where both have the same value
of J. Man No. In this catalogue J. Man No. is an attri-
bute with three A-strings defined on it.

If this catalogue is critically examined, it is obvious
that the L-string JL1 is redundant. The instances o f J E 3
may be used as entry points to the network thus described
by the catalogue.

3. Parametrization of queries
Fehder [3] and others working with query languages
have provided some ideas for parametrization of queries.
It appears that the best method is to base the parametriza-
tion on the data description because the queries are used
for extracting information from the data base. Senko et
al. [2] used the data description as the basis for defining
access path structures. When such structures are avail-
able they should be used for parametrization of queries
so that identification of search paths relevant to a query
are simplified. The approach taken in this section is
based on this concept.

A query seeks some information from data that satisfy
certain conditions. If the data base were described in
terms of attributes, values, and entities, then the infor-
mation which the data can supply can be translated into
these parameters. It is assumed, for this paper, that there
exists a translator which transforms the query from the

query languageform to the parametrized form. Thus, for
the query which states “find the records of all employees
who are over 40 years of age when hired” from a data
base which does not contain “age when hired” but con-
tains “date of birth” and “date of hire,” the attribute
“age when hired” has to be transformed into a function
of two attributes, “date of birth” and “date of hire.”
Without such a translation a search cannot be performed
on the data base.

In the parametrized form the attributes specified by
the query can be classified into two groups, viz., qualifi-
cation attributes and output attributes. In some cases,
it is possible for an attribute to play a dual role. In our
description the output attributes are those which have
no restrictions imposed on their values by the queries
but are relevant to the query. A qualification criterion
(QC, with values Q C) of a query is stated in terms of
functions of qualification attributes and their values. The
values, or some function of the values, of the output
attributes in one or more entities which satisfy the QC
are the information desired by the query. Thus, when
seeking the records of all employees with “age at hire
> 40,” the QC attributes are “date of hire” and “date
of birth.” The values of these two attributes specified
by the Q C are their whole domain because corresponding
to any value of one of the attributes, there can exist a
value of the other attribute such that the instance of the
entity set is relevant to the query. Here the output at-
tributes of the query are all the attributes in the entity
set “employee.”

In a data base which is described by entities and their
properties, it is easy to see that all subsets of the entity
sets can be defined in terms of Boolean functions of at-
tributes, where each attribute specifies subsets of its
domain, i.e., are of the type

~ A , = ~ , ~ A (A , = ~ ,) v (A , = ~ ,) v . ~ . A (A , = ~ , ~ (I)

where A, , A,, . .. A, are the attributes and the Oi are a
subset of the R, (the domain of A ,) i = 1 , 2 ; . e, 1. (As in
most set theoretic situations it is assumed that a set, as
well as the null set, can be regarded as a subset of itself.)
Thus the SC of any string can be represented by functions
and /or equations in functions of the type (1) . A Boolean
function of this type which contains only A (AND) func-
tions, Le.,

(A , = 0,) A (A , = 8,) A (A , = e,) A . . . A (A , = 0,) (2)

is called a canonical form or canonical term. It is easy
to see that any general (well defined) Boolean function
of the type (1) can be expanded into a number of ca-
nonical terms connected by V (OR) functions. If an SC
is an ORDER ON criterion on an attribute A i , then SC
= (A i = ai). Other uses of ORDER ON criteria in search

IBM J. RES. DEVELOP.

are not discussed here. Thus, for parametrization it is
sufficient to identify the QCs by Boolean functions.

In some situations the query may specify a complex
function over some attributes, say, A , , A, , . . ., A, ; then
for retrieval purposes QC is of the form (A , = a,) A
(A, = a,) A . . . A (A, = a,). For simplicity of analysis
it is assumed that the SC and the QC are all expanded in
canonical form. All the results in this paper are derived
under the assumption that QC and SC contain only one
canonical tei-m each. If they’contain more than one term
in the canonical expansion, then the procedures described
hereafter have to be repeated for all pairs of terms be-
tween SC and QC. To determine whether the access
path defined 6y a string is relevant to a query or not,
SC is cornparEd with QC.

Let ei and e,’ be two sets of values of Ai. If Oi n 0,’
= 0 (empty set), then Oi negates 8i’. It also implies that
the two criteria QC = (Ai = e i) and SC = (A , = Oi‘)
negate each other and there is no intersection between
the SC and the QC. If Oi 2 Bi’ then (QC covers SC) E
(QC contains SC) = (SC is contained in the Q C) , and
there is an overlap between QC and SC. Similarly, the
concept of the QC covering the SC can be defined when
they contain more than one attribute. When a QC is
compared with a SC the following situations may arise:

1. The default SC (as in an A-string) .$ The relevance
of the query to the string depends on the exiting list
of the ‘string. If the exiting list contains all the QC

‘attributes and the output attributes, then the SC con-
tains the answer for the QC; otherwise, the SC does
not completely answer the QC. If the exiting list con-
tains other strings, then the exiting lists of those
strings, along with their SC, have to be examined
against the QC.

2. The SC attributes are identical with the QC attributes
.$ The values of the attributes determine whether the
QC is contained in the SC. If the values specified by
at least one SC attribute negate the values of that
QC attribute, then the SC negates the QC. OtherWise,
there is an overlap between the SC and the QC. If
the values specified by each QC attribute are con-
laked in the values of the corresponding SC attribute.
then the SC contains the QC.

3. The SC attributes are a subset of the QC attributes
3 If the values specified by at most one SC attribute
negate the values of that QC attribute, then the SC
negates the QC. Otherwise, there is an overlap. If
the values specified by each SC attribute contain the
values of the corresponding QC attribute, then the
SC contains the QC.

4. The QC attributes are a subser of the SC attributes
.$ If the values specified by at least one QC attribute
are negated by the values of that SC attribute, then the

SEPTEMBER 1974

SC negates the QC. Otherwise, there is an overlap.
If the values specified by each QC attribute contain
the values of the corresponding SC attribute, then the
SC is contained in the QC.

5 . A subset of the SC attributes is contained in the set of
QC attributes .$ If the values specified by at most
one of the common attributes of SC negate the values
of that QC attribute, then the SC negates the QC.
Otherwise there is an overlap.

When comparing the QC with the SC, very often the
QC will not be completely contained in the SC and thus
only a subset of the information requested by the query
can be retrieved from the corresponding string. The
remaining portion of the information desired by the query
has to be retrieved from other strings. Thus it is essential
to obtain an analytic expression for the non-overlapping
portion (of the QC) between a QC and a SC. Even when
the SC and the QC are canonical terms, in general, the
non-overlapping portion contains multiple terms. In the
following analysis the non-overlapping portion is ex-
pressed as the union of disjoint canonical terms. One of
the advantages of this type of disjoint canonical decom-
position is that it eliminates redundant searching.

An attribute can specify a single value or a range of
values or a set of discrete values. We use 0 and L to
denote any of these three types; 0 - L denotes the subset
of 8 when L has been deleted. The criteria are assumed to
be of the following form:

Q C = (A ,=e ,) A & = e ,) A . . . A (~ , = O ,) , a n d (3)

SC = (A , = L ~) A (A, = 12) A . . . A (All = b l l) . (4)

SC and QC are based on the same attributes
Consider only two attributes; then

QC - sc = (A , = e,) A (A , = e,)
- (A , = 1 ,) A (A , = 1,)

= ((A , = 0,) A (A, = (0, - 6 ,)))

v ((A , = (e, - L 1)) A (A , = (L , n q)) .
(5)

For three attributes,

QC - sc = (A , = e,) A (A , =e,) A (A , = 0,)

- (A , = 1 ,) A (A , = L,) A (A, = b 3)

= ((A , = (e , - 6,)) A (A , = 0,)

A (~ , = e ,)) v ((A , = (L1 n e,))
A (A , = (e,--,)) A (A , = o ,))

v ((A , = (6, n e,)) A (A , = (1, n 0,))

A (A , = (6, - 6,) 1) . (6) 41 1

ACCESSING STRING STRUCTURES

Hence, in general,

Thus, when the QC and the SC are based on the same
I attributes, the difference (same as non-overlap) QC -
SC can have a maximum of I canonical terms. If, for any
attribute Oj E 0 , then Aj = (ej - b j) denotes the empty
set and the cooresponding term drops of€. The operation

i\ 3 intersection of zero number of sets = whole
. .

space.
j=l

41 2

s. P. mosn AND M. E. SENKO

SC attributes are a subset of the QC attributes
When the QC has two attributes and the SC has one
attribute, then

When the QC has three attributes and the SC has two
attributes, then

In general, when the QC has I attributes and the SC has
I , attributes and 1,5 1, then

Qc-sc= (~ , = e ,) A (A , = e ,) A . . . A (A,=e,)

- (A , L ,) A (A, = L,) A. . . A (Al l = bI1

A (A*+,) = (ei+, - ++J) i\ = e j)) .
j=i+Z

(10)
Thus, when 1,5 I, the maximum number of terms in the
disjoint canonical decomposition of the non-overlapping
portion of the QC with respect to the SC is I,.

QC attributes are a subset of the SC attributes
Suppose the QC has one attribute and the SC has two
attributes; then

If the QC has one attribute and the SC has 1, > 1 attri-
butes. then

QC - SC = (A , = e,) - (A , = b ,) A (A, =

A . . . A (A ~ , = L ~ ~) = (A , = (~ , - ~ ,))

A (A , = (ai-- (0)) . (12)

If the QC has 1 attributes and the SC has 1, attributes
and I, 1 I, then

QC - sc = (A , = e,) A (A , = e,) A . .. A (A ~ = e,)

(Note that Oj = for j > 1 by default.)

Thus, when I, 1 I, the maximum number of terms in
the disjoint canonical decomposition of the non-over-
lapping portion of the QC with respect to the SC is I,.
For each of these three cases the maximum number of
terms in the disjoint canonical decomposition of the non-
overlapping portion of the QC with respect to the SC
is equal to the number of attributes in the SC.

4. Properties of access paths
Altman et al. [4] have provided the basic tools for con-
structing access paths through a data base and complex
access-path networks can be created. Searching effi-
ciently through such a network is a desirable aim of any
information retrieval system. In order to achieve this,
properties of access paths based on A-strings, E-strings,
and L-strings have to be studied. In this section some
important properties of access paths are discussed.

An instance of an A-string is defined over the values
of the attributes. Thus the path cardinality (PC, with
values P C) of an instance of an A-string is equal to the
number of attributes in its exiting list. In some queries
the attributes of the A-string may not all be relevant.
To reflect the effect of such phenomena the frequency
distribution of usage of the queries for different sets of
attributes has to be considered. Analysis at that detail
level is not considered in this paper. The PC of an access
path, for this paper, is defined as the sum of the number
of instances of A-strings, E-strings, and L-strings con-
nected by the access path.

IBM J. RES. DEVELOP.

Suppose an E-string is defined over an A-string which
is defined over the values of the attributes A,, A,; * . ,A,.
If the multivariate frequency function of the A-string
for these attributes is available, then summing the fre-
quency function over the SC of the E-string provides the
PC of the E-string. If it is assumed that the occurrences
of the values of different attributes are statistically in-
dependent, then the multivariate frequency function is
proportional to the product of the frequency functions
of the attributes. Thus the PC of the E-string can be ob-
tained from the frequency functions of the attributes.
When the E-strings are ordered on one or more attributes,
the PC of a query is calculated from the cumulative fre-
quency functions of the attributes, which are calculated
from the frequency functions.

Simple analytic forms for the PC of an E-string or an
L-string can be obtained from files which have some
simple distribution with respect to the attributes. One
such file is the uniformfile. In a uniform file the instances
of the entity sets have uniform distribution with respect
to the values of each pertinent attribute.

Suppose an A-string is defined over the attributes A,,
A,, . .-, A,; then the number of instances of the A-string

in a uniform file is given by r(=, [ail. In such a file, if n

E-strings are defined on the A-string, it is not necessary
to calculate the PC for each E-string to find the string
with the minimum PC. Suppose SC,, SC,, . * ., SC, are
the string criteria for the E-strings. (In this paper, when-
ever there is no confusion, a string is referred to by its
SC). Let A,, A,, . . ., A , be the union of the SC attributes.
The following function is calculated for SC,, i = 1,2; . ., n:

(14)

where C , is the cardinality of the set of values of Aj
specified by SC,. If A, is not specified by SC, then C , is
equal to the cardinality of

The left side of Eq. (14) is proportional to the PC of
SC,. The constant of proportionality is the same for all
SC,; thus, the most favorable SC,, i.e., the one with the
minimum PC, can be determined from the&. The& can
be calculated if the C , are available. I t is also possible
to store the PC of each string, defined on the A-string,
as parameters and then determine the most favorable
SC,. This approach was suggested by Astrahan et al. [8].

A string with an ORDER ON criterion is called an ordered
string. In ordered strings the instances of the components
are connected in an order determined by the values of
one or more attributes. (In case of ordering on multiple
attributes, the ordering is nested.) This property of an
ordered string can be used to reduce the search length
of a query if the query specifies values of the ordered
attributes. In an ordered string, the search for a query

i=1

& = n C,,
m

j=1

SEPTEMBER 1974

can terminate when the maximum value specified by the
QC for the highest ordering attribute of the SC is reached.
Hence, the most favorable ordered SC for a QC is that
ordered SC (among a set of ordered SC covering the
QC) which ties together the minimum number of in-
stances of the components needed to reach the maximum
value specified by the QC for the ordering attribute of the
SC. The most favorable SC among a set of SC depends
on the query if the SC are ordered but is invariant of the
QC for unordered SC.

Suppose A: is the attribute on which SC,, i = 1, 2,
. . ., n, is ordered and Cio is the cardinality of the set of
values of A: within the SC,. If e,, is the set of values of
A: specified by a QC and if

&' = fi X (rank of the maximum value of Oi0 in SC,) ,
cio (15)

then the most favorable SC, for the QC is the one for
whichf,' is minimum.

Example 2
Suppose there are four attributes A,, A,, A,, A,. An A-
string is defined over these attributes. The instances of
the A-string have uniform distribution with respect to
the three attributes A, , A , and A,. These three attributes
can take integral values in the ranges 1 S A , 4 5 ; 1 5 A ,
5 10; and 1 5 A, i 20. Thus, there are 1000 distinct in-
stances of the A-string. I t is assumed that there is no
repetition of any triplet of values (Al , A,, A3) . Suppose
two E-strings, say E, and E,, are constructed with SC
as follows:

E,: SC, = (2 9 A , 5 5, 1 5 A, i 8) 00 A, ;

E , : S C , = (3iA,59,19A35 16)00A, .

Thenfl=4-8.20=640;f,=5.8-16=640.1fthetwo
strings were not ordered, both would be equally favored.

Consider a query with QC = (A, = 4, 3 4 A, 5 6, 10
5 A, i 15) and A, as the output attribute. The number
of instances of the A-string in E , that have to be searched
to answer the query (i.e., up to an including A , = 4) is
3 + 8 .20 = 480. The number of instances of the A-string
in E, that have to be searched to answer the query (i.e.,
up to A, = 6) is 4 - 16 5 = 320. Thus, E, is the more
favorable search path for the query.

Theorem I If a query and a set of unordered E-strings
satisfy the conditions

i. the QC and the SC are canonical terms;
ii . the QC attributes and the output attributes are a

subset of the exiting list of an A-string;
iii. all the E-strings are defined over the same A-string

and their SC do not negate the QC, and none of the
SC are defined on the output attributes,

then 41 3

ACCESSING STRING STRUCTURES

a. the search for the query can be confined to one and
only one E-string if there exists at least one SC cover-
ing the QC;

b. the most favorable E-string for the query is the one
with minimum path cardinality if there is more than
one SC which covers the QC.

Proof Let E (Q C) denote the set of instances of the A-
string which are relevant to the QC and E (SC) denote
the set of instances of the A-string which are connected
by the E-string corresponding to the SC. Thus, the PC
of the E-string is IE(SC) I. Let

QC = (A , = O ,) A (A , = @ ,) A . . . A (A,=@,),and (16)

SC 3 (A , = al) A (A, = a,) A . . . A (A,, = a',), (17)

where Oi and ai denote collections of values of the
attribute Ai.

That the SC covers the QC 3 1' i 1 and ak 2 0, for
k = 1, 2, . . ., 1'; hence, from the theory of product sets
it follows that E (S C) 2 E (Q C) 3 E (Q C) - E (S C) =4.
Since the SC is not defined on the output attributes, the
search for the QC can be confined to the E-string cor-
responding to the SC, which proves a of the theorem.

In an unordered string the search length for any query
is equal to the PC of the string. Thus, if there is more
than one SC covering the QC, the most favorable one
is the one with the minimum PC. This completes the
proof.

Lemma I If the QC of a query and a set of unordered
E-strings with selection criteria SC,, i = 1,2; ., n, satisfy
conditions i , ii , and iii of theorem 1 and
iv. the SC attributes of each SC are a subset of the QC
attributes but none of the SC cover the QC,
then the largest collection of instances of the A-string
pertinent to the QC, in a uniform file is in the E-string
for which

1

c # ~ ~ = II u.. is maximum, (18)

where uil = IOj r l ail I (if A, is not specified in the SC,,
then aii = 0,)

Q C ~ (A , = e l) ~ (A , = e ,) ~ . . . ~ (A 1 = e ,) , a n d (19)

j-1 u

SC, E (A , = a,,) A (A, = ai,) A . . . A (A1, = ail,), (20)

where i = 1, 2 , . . ., n and I' f 1.

Proof The proof follows from the fact that the +i are
proportional to the number of instances of the A-string
pertinent to the QC and the constant of proportionality
remains the same for all the SC,. This completes the
proof.

Remark When lemma 1 yields more than one E-string,
the result b of theorem 1 can be applied to these E-strings
to obtain a minimax solution.

The results of lemma 1 can be generalized to the case
when the QC has partial intersection with the SC and
are given by the following theorem.

Theorem 2 If a query and a set of unordered E-strings,
which have one instance each, with selection criteria
SC,, i = 1, 2 , . . ., n, satisfy the conditions i , ii, and iii of
theorem 1, then the largest collection of instances of the
A-string pertinent to the QC, in a uniform file, is the E-
string for which

Qi = uii is maximum, (21)

where L = smaller set between the set of indices of the
attributes of the A-string and the set of indices of the
union of the attributes belonging to the QC and the SC,
uil' = 18, f l ail([if A, is'not specified in the SCi (and/or
the QC), then ail (and/or Oj) = s l j] and

QC (A , = e,) A (A, = e,) A . . . A (A , = e ,) , and (2 2)

jeL

fori= 1,2;**,n.

Proof The proof is exactly similar to that of lemma 1.

The string structures defined by Altman et al. [4] do
not permit splitting the instances of the component
strings, but it is possible to construct access path net-
works in which such splitting i s permissible. Access path
networks whiclj contaid subsets of instances of the com-
ponent strings can provide search paths with shorter PC
for some queries; hence, some of their properties are
begin studied. A hierarchical nested structure ofE-strings
can be constructed in the following manner:

A A : A S G [E X L = (A , , A , ; . . , A ,) ; O N = E ,] ;

E,: ESG [EXL = (A A) ; SC, = (A , = L ,) ; ON = E ,] ;

E,: ESG [EXL = S U B D (E ,) ;

SC, (A, = L ,) ; O N = E ,] ;

E,: ESG [EXL =SUBD(E,); SC, = (A, = L ,)] .

In this construction the instance of E, is obtained by
subdividing tlie instance of E , [referred to as S U B D (E ,)]
and constructing an access path through those instances
of AA which satisfy SC,. In a hierarchical nested struc-
ture of strings, -the string whose EXL's do not contain
SUBD of a string are referred to as the strings of level
1. The strings defined over the strings of level 1 are re-
ferred to as strings of level 2, and so on. The strings which
have no strings, defined over them are referred to as
strings at the highest level of the structure. The effect of

IBM J. RES. DEVELOP.

constructing a hierarchical nest of E-strings on the in-
stances of the string at level 0 is the same as that of prop-
agating the SC (of the E-strings) at different levels using
AND functions. Thus, the instances of the E-string

E,': ESG [E X L = (A A) ; SC,' = (A , = L, A A ,

= L, A A , = L ~)]

and those of E3 are the same. For simplicity it is assumed
that the E-strings at two successive levels do not access
the same set of instances of level 0.

Suppose {E, , i = 1, 2 , . . ., n} is set of E-strings with a
set of string criteria {SC,, i = 1, 2 , . . ., n} which form a
hierarchical nest structure; E , is defined over an A-string
(level 0) and E , is defined over E,-,. Let E(SC,) denote
the set of instances of A-strings which are relevant to
SC,; then

E (S C ,) 3 E(SC,) 3 . . . E(SC,).

Lemma 2 The search time for the instances at level 0 for
a query in a hierarchical nest structure of unordered E-
strings is a monotone nonincreasing function of the level
of the E-string.

Proof In an unordered string the search for a query re-
quires access to every instance connected by the string.
Since E(SC,) 3 * . . 3 E(SC,) in a hierarchical nest
structure, whatever may be the storage locations of the
instances of the string at level 0, the search time for the
instances at level 0 for a query using Ei cannot be greater
than the search time using either E,-, or Ei-, or. . . or E,.
This completes the proof.

Suppose for a given query with qualification criter-
ia QC,

E(QC)-E(SC,ASC,A...ASC,)=@,but (24)

E (Q C) - E (S C , A SC, A . * * A SC,+,)# @; (25 1
then all the instances of level 0 which are pertinent to the
query can be accessed by E,. However, all of them can-
not be accessed by Thus, if the search strategy is
to access all the pertinent instances of the query with
one string, then Ei should be used. These results are
summarized in the following theorem.

Theorem 3 The optimun (minimum access time for the
instances at level 0) E-string for answering a query using
a hierarchical nest structure of unordered E-strings is
given by E, where the QC of the query and the SC, of
E, satisfy the conditions

E (Q C) = E (S C , A SC, A , . . A SC,) = 6, and (2 6)

E (Q C) - E (S C , A SC, A . . . A SC,,,) # @. (27)

Corollary 3.1 The optimum E-string for answering a

SEPTEMBER 1974

query using a hierarchical nested structure of ordered
E-strings is determined by the conditions of theorem 3
provided that all the E-strings are ordered on the same
attribute.

Proof. If an E-string is ordered on a particular attribute
which is also a QC attribute, then the search terminates
when the maximum value of that attribute specified by
the QC is reached. Since each E-string orders, the in-
stances of level 0 with respect to the values of the same
attribute, for a fixed QC in a hierarchical nest structure,
the number of instances of level 0 that have to be ac-
cessed to reach the last pertinent instance for the QC
when E, is used cannot be greater than when E,-, is used.
The rest of the proof follows from lemma 2 and the-
orem 3.

For discussing the properties of a more general string
structure network, some symbols are introduced. Let
Z(S) denote the set of instances of the string S and let
Z(SC) denote the set of instances of the string whose
string criterion is SC; Z (S / Q C) denotes the set of in-
stances of the string S which are relevant to the query
with qualification criteria QC, and if SC denotes the
string criteria, then the analogous set is denoted by
I (S C / Q C) ; Z(S, C Z(S,)) denotes the set of instances
of S, which are contained in the instances of S,.

Theorem 4 When the answer to a query is contained in
multiple instances of a string S , and many ,strings are
defined over S,, then among them the strings desirable
to the search for the query are those which satisfy one
of the following conditions:

i. The string is a partitioning string for S , or an ordering
string on all instances of S,.

ii. The SC of the string does not affect the QC but all
the instances of the string contain all the instances
of S,.

iii. The SC of the string contains the QC.

Proof Suppose a string S, (which is an E-string in this
situation) is defined over S,. Then the instances of S,
are obtained by connecting together the instances of S,.
In searching, the desirable strings are those which con-
tain the complete answers to the QC.

If S, is a partitioning string for S,, then Z(S, C I (S,))
= /(S,). Thus, the set of instances of S , in Z(S , /QC) ,
i.e., Z(S, C Z(S , /QC)) , is equal to Z(S , /QC) . Hence,
S, can be used as a search path for the QC. Similarly,
when S, is an ordered string on all the instances of S,,
then Z(S, C / (S ,)) = Z(S,) 3 Z(S, C I (S i / Q C)) =

/ (S , / Q C) . Thus S, can be used as a search path for the
QC. That the SC of S, does not affect a QC implies that
if the instances of the components of S, are relevant
(or not relevant) to the QC, then the instances of S, are
also relevant (or not relevant as the case may be). 41 5

ACCESSING STRING STRUCTURES

If the SC of S, does not affect the QC but Z (S, C Z (S,))
= Z(S,), then it also implies that Z(S, C Z(S,/QC))
= Z(S,/QC). Thus, S, can be used as a search path for
the QC.

If the SC of S, contains the QC, then Z(S, C Z(S,/
Q C)) 3 Z(S,/QC). Hence, S, can be used as a search
path for the QC.

When S, is defined over S,, then Z(S, C Z(S,)) C
Z(S,). Thus, the search for the QC using S, may involve
access to a lesser number of instances of S , than when
using S,. This completes the proof.

In the above proof, if S, does not satisfy any of the
conditions i , i i , or iii , then either

C Z(S,/QC)) C Z(S,/QC) or

Z(S, C Z(S,/QC)) = +. (28)

Thus, the answer to the query cannot be obtained com-
pletely from S,. If there exists a set of strings S,, S,, . . .,
S, defined over S , such that

Z(S, C Z (S i / Q C)) C Z(S,/QC) f o r i = 2 , 3 ; . . , n

and

u 1 0 , C Z(Si/QC)) = I(S,/Qc), (29 1

then it is possible to answer the query using the strings

A string S is called the (A,, A,, . . ., A,)-attribute con-
jugate of strings s,, s,, . . ., A , when S is defined over
S,, S,, . . ., S,. An instance of S is obtained by tying to-
gether instances of S,, S,, . . ., S, which have the same
I-tuple of values for the attributes A, , A , , . . ., A,. If an
instance of either S , or S, or. . * or S, contains more than
one distinct value of any one of the attributes A, , A , ,
. . ., A, , then the (A, , A, , . . ., A,)-attribute conjugate is
undefined. Thus, the number of instances of S is equal
to the number of distinct I-tuples of values of A, , A , , . . .,
A,. Since the SC of S contains the attributes A, , A, , . . .,
A,, any other string defined over S can contain only these
attributes and any other attributes which have only one
distinct value in each instance of S. In the rest of this
paper all attributes that have a unique value in each in-
stance of an entity set are referred to as ID (identifica-
tion, with .values I D) attributes5.

Lemma 3 If a string S is a one-ID-attribute conjugate
over the strings S,, S,, . . ., S,, then the number of in-
stances of S is equal to the number of distinct values of
the ID-attribute in the union of the instances of S,,

n

i=2

s,, s,, . . ., s,.

s,, . ' ., s,.
Proof The proof is a direct consequence of the face that
each distinct value of the ID attribute in the union of the

41 6 instances of S,, S,; . ., S, identifies an instance of S.

S. P. GHOSH AND M. E. SENKO

The pth accessible component of a string, defined over
multiple strings, is that component of the string whose
instances are accessed after those of p - 1 components.
If a query is relevant to a string S and there are multiple
strings defined over it, then the most desirable string is
the one in which S is the shortest accessible component,
provided that none of the other strings contains additional
information relevant for the query. As shown later, this
condition would lead to a shorter search path.

Consider the following two L-strings:

S : LSG [E X L = (S,, S,, S ,) ; SC = (S,ID = S,ZD

= S,ZD) ; ON -1
. and

S': LSG [EXL = (S,, S,, S,, S 5) ; SC = (SJD = S,ZD

=S,ZD=S,ZD); O N -] .

Here S, is the second accessible component in S and first
accessible component in S ' ; hence, S, is the shortest
accessible component in S ' .

The path cardinality for the subset of components
S,, S,, . . ., S, of a string S (which is defined over a larger
set of components) is defined as the number of com-
ponents (of S) that have to be accessed in order to ac-
cess all the elements of the subset; this is denoted by
PC(S , , S,, . . ., S,/S). The path cardinality of a query
in a string S is defined as the number of instances of
strings that have to be accessed when the string S is
used for accessing instances (of the A-string) relevant
to the query Q; it is denoted by P C (Q / S) . Since the
complete answer to a query may not be accessible by a
particular string, P C (Q / S) may not be the maximum
number of instances of A-strings that have to be accessed
to answer Q completely.

Dejinition The most favorable string for a query is the
one for which the path cardinality is a minimum.

Remark The path cardinality of a subset of components
can easily be determined from the order of the com-
ponents in the exiting list of the string.

Theorem 5 If S,, S,, . . ., S, is a subset of components of
a string S and Zj(S) is an instance of S which is relevant
to a query Q, then

P C (Q / Z j (S)) = 2 P C (Q / I i (S i))
P

i= l

+PC(S,,S,,...,S,/~j(S))+~- 1, (30)

where Zi(Si) denotes the instances of S i in Zj(S).

Proof The search for Q using the instance Zi(S) involves
accessing each component of Zi(S) and checking it to
see whether it is relevant to Q. If it is relevant, say to Si,

IBM J. RES. DEVELOP.

then the access path with Zj(Si) is used to access the
relevant instances of Q in fj(Si). The path cardinality
of Q in fj(Si) is given by PC(Q/Zj(Si)). When the search
for Q in Zj(Si) is complete, the search control returns to
Si [i.e., where Si is labeled as a component of Zj(S)] for
the second time to continue the search using fj(S). Then
the next component of Zj(S) is checked to see if it is
relevant to Q. This process continues until the last rel-
evant component in Zj(S) for Q is searched. Thus,
P C (Q / f j (S)) consists of

i. the sum of the path cardinality of Q in fj(Sl), fj(S,),

ii. the path cardinality of the subset S,, S,, . . ., S, of the

iii. the sum of the number of components in fj(S) which

Therefore, we can deduce Eq. (30). This completes
the proof.

Remark If the string S has multiple instances, the formula
of theorem 5 has to be applied to all the instances that
are relevant to the query. If these instances are not con-
nected together somehow in the network, it may not be
possible to answer the query completely.

Theorem 6 If f'(S) is an instance of an E-string S which
connects together instances of a string S,, then

P C (Q / f ' (S)) = P C (Q / I i (S ,))

+ P C (I , (S ,) , I,(S,),..; f,(S,)/I'(S)) + P - 1 , (31)

where f,(S,), f,(S,), . . ., Zp(Sl) are the instances of S,
which are relevant to Q and are connected together by
the instance f ' (S) .

Proof This proof is exactly similar to that of theorem 5.
The E-string S is defined over the instances of the
string SI and it is assumed that S has multiple instances.
Thus, an instance of S, i.e., I ' (S), connects some in-
stances of S, according to some string criteria. Suppose
f ' (S) connects Il (Sl) , f,(S,), ..., I p (S ,) , Ip+,(S1), ...,
Z,,(S,), although not necessarily in that order. The in-
stances relevant to Q in f'(S) are I,(S,), f ,(S,) , ...,

The search in I' (S) for Q consists of accessing each
instance of S, and checking to see if it is relevant to Q.
If it is relevant, say it is Ii(Sl) , then the access path
within fi(S,) is used to access the relevant instances of
Q in f i (Sl) . The path cardinality of Q in fi(S,) is P C (Q /
f i (S l)) . When the search for Q in Zi(S,) is complete, the
search control returns to fi(S,) for the second time to
continue the search using the access path of f ' (S) . Then
the next component of f ' (S) is checked to see if it is
relevant to Q , and so on. This process is continued until

. . .7 fj(Sp);

components in fj(S); and

are accessed twice.

4(S1)

IP(S1).

SEPTEMBER 1974

the last relevant instance for Q has been searched. By
using the same summing technique as in the proof of
theorem 5 it follows that

P C (Q / Z ' (S)) = 2 P C (Q / f i (S ,))
li(S1)

+ P C (f , (S ,) , f , (S ,) , . . ; f,(SJ/Z'(S))

+ p - 1 . (32)

This completes the proof.

In many situations the catalogue may not provide a
clue for calculating P C (Q / f i (S ,)) or P C (Z , (S ,) , f,(S,),
..., Z,(S,)/Z'(S)) or even for determining the set
f ,(S,) , f,(S,), ..., Z,(S,). Thus, additional information
has to be stored so that these parameters can be de-
termined. Usually the QC of the query and the SC of
the string are specified in terms of attributes and their
values. Thus, if the string is ordered on the appropriate
attribute and the ranks of the values specified by Q for
that attribute in SI are known, then these parameters can
be determined. If the instances of SI are not ordered on
a QC attribute or if the rank of the maximum value of
the ordered QC attribute cannot be determined in SI,
then P C (f , (S ,) , f,(S,), ..., Z,(S,)/f'(S)) cannot be
determined and its value may have to be chosen to be
equal to the number of instances connected by f ' (S). If
it is not possible to determine whether a particular in-
stance, say f i (S l) , is relevant to Q by examining it (i.e.,
its encoded representation), then further search of the
access path defined by fi(S,) has to be performed to
determine whether f i (S,) is relevant to Q. In such cases
the term p - 1 in theorem 6 has to be replaced by n - 1
where n is the number of instances of S, connected to-
gether by f (S).

The path cardinality of access paths in string networks
that have some specific characteristics can be calculated
by more simple techniques. One such string network is
a tree-string structure. A tree-string structure is a tree-
structure of access paths that are constructed by using
a series of E-strings or L-strings or a combination of both.
Here we discuss only a tree-string structure constructed
by using E-strings alone. An example of such a tree-
string structure is as follows

Example 3
Suppose { f i (S) } denotes the set of instances of a string
S where each instance is parametrized by the values of
the attributes A , , A,, . . ., A,. The instances of any E-string
defined over S can be parametrized by the values of
A, , A,, . . ., A,, where p < 1. Suppose E , is defined over
S with a parametrized string criteria

SC(v, , v,;. ., v,) zz (A , = v,) A (A, = v,)

A . . . A (A , = v p) ; (33) 41 7

ACCESSING STRING STRUCTURES

i.e., each distinct p-tuple (v,, v,,. . ., v,) corresponds to
an instance of E,. Similarly, E, is defined over E , with
parametrized string criteria

SC(v , , v,;.., up-,) (A , = v ,) A (A , = v ,)

. A (A,-, = v,-,); (34)

E, is defined over E,-, with S C (v ,) = (A , = v,); E,+, is
defined over E,. Here E,+, is the root of the tree-string
structure and the instances of E , are the leaves of the
tree.

Multilevel sorting can be implemented by an ordered
tree-string structure. The ORDER ON specification in the
SC is used to construct the ordered tree-string structure
as follows: The string criterion of E,-,, is given by

SC(v , , vZ;. ., vi) E (A , = v,) A (A, = vz)

A. . . A (A i = vi, 00 A i + l) . (35)

The SC of E,,, is (00 A ,) and the SC of E , may or may
not have an order on specification.

Suppose there are n instances of E, and the number of
instances of within the j,th instance of which
is within the j,-,th instance of E,-,+, and so on. . . which
is within j,th instance of E, is denoted by nj42,.,jk. Then
the path cardinality of the longest search path in an
ordered tree-string structure is given by

PC,,,(T,) = 2n - 1 + 2 (2nj, - 1)
.I1

+ (2njlj2- 1) +...
jl j ,

+ 2 . . 2 (2njlj2.. . jp-z - 1)
j , j, j p - z

+ 2. . . c nj,jz. ' j,-; (36)
j, j 2 jg - ,

If PC of the search for the query with QC = (Ail = e,)
A (AiZ = e,) A . . . A (Aik = 0,) has to be determined, then
the njIjz., j , have to be replaced by the ranks of the
maxima of the values of the attributes specified by the
QC within the appropriate instances of the E-strings.

5. Algorithm for search path
In any efficient network every node cannot be used as
entry points to the network. Hence, each network has
associated with it a search path algorithm. The search
algorithm proposed here for a query in the access path
network attempts to obtain a search path with minimum
path cardinality. The shortest path is not attempted
because the algorithm would need too much storage. The
algorithm' is based on the assumptions that the QC are
given in the canonical form and the SC of the E-strings
and L-strings are given as the unions of canonical terms.
The algorithm outlines procedures for handling only

41 8 one canonical term in the SC. If there are multiple ca-

S. P. GHOSH AND M. E. SENKO

nonical terms in the SC, then the matching of the QC
has to be performed with each term of the SC. If one of
the terms matches or covers the QC, then the SC matches
or covers the QC. If all the terms negate the QC, then
the SC negates the QC. The algorithm is composed of
three parts which are denoted A l , A2 and A3.

A l : Query on one entity set

Step 1
Locate the A-strings which are defined over all the QC
attributes and the output attributes. If there are no such
A-strings, then search for multiple A-strings with I D
conjugates (or ID conjugates over E-strings defined over
the A-strings with SC, non-negating the QC. As the query
is based on one entity hence these relevant E-strings
cannot connect more than one instance of an A-string)
with this property. If no such A-string is available, then
search for multiple A-strings with the same I D attribute
which covers all the QC attributes and the output at-
tributes. If no such A-string is available, then the query
cannot be answered by the access path network.

Step 2
If there exist one or more A-strings defined over all the
QC attributes and the output attributes, then proceed
to the following substeps.

Substep 2.1 Examine the E-strings defined over each of
these A-strings. If there exists only one E-string whose
SC covers the query, then select it. If there is more than
one such E-string, then select the one which has the
most favorable SC covering the query (results of the-
orems 1 and 2 may be needed). Then search for the entry
point of the E-string by using algorithm A2.

Substep 2.2 If there is no E-string covering the query
satisfying substep 2.1, check to see if there exists a set
of E-strings defined over the A-strings whose SC do not
negate the QC. Then obtain a canonical disjoint decom-
position of the QC with respect to these E-strings (i.e.,
from QC - S C) . If the set of E-strings provides a com-
plete decomposition of the QC and covers the output
attributes, then a cover for the query has been obtained.
If the set of E-strings provides a partial decomposition
of the QC and/or a partial cover for the output attributes,
then the residual portion over the A-strings. In such
cases the substep 2.3 also has to be executed, otherwise
the search for the entry point of the E-string is performed
by using algorithm A2.

Substep 2.3 If there is no E-string defined over the A-
strings or a cover for the query has not been obtained
from substeps 2.1 or 2.2, then the L-strings defined on
the A-strings are examined. Select only those L-strings
which form I D conjugates. The procedures described

IBM J . RES. DEVELOP.

for the A-strings in substeps 2.1 and 2.2 are then applied
to each of the L-strings with respect to the query or the
residual QC and or the residual output values (if substep
2.2 has not resulted in a cover for the query). If there is
more than one E-string defined on the L-string which
covers the query (or the residual QC and /or the residual
output values, as the case may be), then the one with
the minimum PC is selected. If there is no E-string de-
fined on the L-string, this substep (i.e., 2.3) has to be
repeated until an E-string is obtained. Then the search
for the entry points of the E-strings are performed by
algorithm A2.

Step 3
If there exist multiple A-strings with I D conjugates (i.e.,
L-strings) such that there are multiple L-strings defined
over them and each of these covers all the QC-attributes
and the output attributes, then the procedures described
for A-strings in step 2 and its substeps are applied to
each L-string. If there is more than one qualified L-string,
the one with the minimum PC is selected. (Results of
theorems 5 and 6 may be needed.) Then the search for
the entry points for the relevant strings is performed by
algorithm A2.

Step 4
If a sequence of ID conjugate L-strings over multiple
A-strings results in an L-string which covers all the QC-
attributes and the output attributes, then the procedures
described for A-strings in step 2 and its substeps are
applied to this L-string. If E-strings are mixed with L-
strings to create an L-string which covers all the QC-
attributes and the output attributes, the SC of the E-
strings are checked to determine that they do not negate
the QC. Then step 2 and its substeps are applied.

Step 5
If there exist multiple A-strings with the same ID at-
tributes but not I D conjunction between them, then
apply step 2 to each A-string with respect to the seg-
ment of the QC which is relevant to that A-string. Then
search for the entry points using algorithm A2. When the
sets of instances of the different A-strings relevant to
the query are retrieved, an ID-conjugation has to per-
formed by matching to obtain the data relevant to the
query.

Step 6
If steps 2 through 5 are not applicable to a query with
respect to the access path network, then the query cannot
be completely answered from the network.

A2: Entry point search
Results of theorems 4, 5, 6, and 7 have been used to de-
rive this algorithm.

SEPTEMBER 1974

Case 1
For one E-string or L-string which has one instance only:
Use the ON criterion to locate the string or strings (there
have to be L-strings) defined on it. Repeat this process
for all the new L-strings. Continue the process until
one or more entry points are reached. As the process is
continued a record of the different access paths and their
PC (using theorem 5 and 6) is kept. The best choice is
the path with the minimum PC.

Case 2
For multiple E-strings or L-strings (all of them need not
cover the A-strings) which have one instance each: The
method is explained for multiple E-strings with one in-
stance each; the same method is applicable to L-strings
or combinations of L-strings and E-strings. Suppose the
E-strings are E,, E,, . . ., E,. Choose any one, say E,, as
the starting point. Then examine the L-strings defined on
E,. Examine the components (from the exiting list) of
each L-string and include those components which con-
tain any member of the set E,, E,, . . *, E, in the relevant
access paths. If some of the components are L-strings,
then the same process is repeated for those L-strings.
In constructing relevant access paths, only those strings
which are defined over nonredundant relevant E-strings
are included. Thus, a set of L-strings defined over E,
which have access paths to a subset of E,, E,, . * ., E, can
be selected. The relevant access paths associated with
each L-string are recorded and their PC are calculated
by using theorems 5 and IS. The same process is repeated
with the new L-strings until entry points are reached.
This process associates with each entry point a set of
favorable access paths to E,, E,, ' e . , E, or its subset.
Then a set of paths covering E,, E,, * . e, E, is selected on
the basis of minimum PC.

C a s e 3
For one E-string or L-string which has multiple instances:
If there is a set of E-strings or L-strings with one instance
each defined over the given string which forms a cover
for the relevadt instances, then the method of case 2 is
applied to these new strings. If there is a set of E-strings
or L-strings, each with multiple instances, defined over
the given string and the set forms a cover for the relevant
instances, then the method of case 4 has to be applied.
If there is only one ID-conjugate L-string defined over
the given string, then the method for this case (i.e., case
3) has to be applied again to the new string. If there is
one E-string or L-string with one instance. defined over
the given string which forms a cover for the relevant in-
stances, then the method of case 1 is applied to the new
string. If all the strings defined over the given string,
taken together, do not form a cover for all the desired
instances, then the search cannot be completed. 41 9

ACCESSING STRING STRUCTURE 1

Case 4
For multiple E-strings or L-strings which have multiple
instances: Use the ON criterion of the given strings and
the SC of the strings defined on it to find a set of strings
which covers all the desired instances. Then apply the
methods for cases 1, 2, and 3 to the new strings to find
the best access paths for the desired instances. In some
situations this method may have to be applied repeatedly
to subsets of the set of desired instances. If there does
not exit a set of strings which covers all the desired in-
stances, then the query cannot be answered completely.

A3: Query on nzultiple entity sets
This algorithm is based on results of algorithms A I
and A2.

Step 1
Locate all the A-strings defined over subsets of the QC
attributes and output attributes.

Step 2
Use algorithm A1 on the A-strings associated with each
entity set with respect to the segment of the QC which
is relevant to that entity set. During this process, if L-
strings are encountered which connect other relevant
entity sets, then modify the segment of the QC accord-
ingly and check for its non-negation. If there is more than
one access path over the same subset of the relevant
entity sets, then select the access path with the min-
imum PC.

Step 3
Apply algorithm A2 to the output strings obtained from
step 2. Among the access paths obtained from A2 only
those which access strings on all the desired entity sets
(i.e., somewhere along the path there exist appropriate
L-string conjunctions between strings defined over all
the relevant entity sets) are relevant paths. Among these
the one with the minimum PC is selected.

Step 4
If no such access path is obtained from step 3, then an
attempt should be made to access the desired entities
by different access paths and then to obtain the relevant
data for the query by matching.

Example 4
To illustrate the algorithm consider the data set and the
string network outlined in example 1. Suppose the query
is of the form: Retrieve the average salary of the person
with man number 74672. Thus, the QC attribute is
Man and the output attribute is A v Sal. Now we apply
algorithm A 1. Using step 1 we find that there are two
A-strings, namely J A 1 and JA3, which are relevant to
the query.

Then we apply step 2 of A 1. This leads to substep 2.1.
The E-string JEl is defined over JA 1 and it covers the
query. The E-string JE2(n) is defined over JA3 and it
also covers the query. Both J E l and J E 2 (n) connect
the same A-string instances although they do not have
the same PC.

Now apply algorithm A2. Case 1 of A2 is applied to
JE 1. There is no string defined over JE 1 ; hence, if JE 1
is an entry point, then JE 1 + JA 1 is an acceptable search
path. If J E 1 is not an entry point, then this path cannot
be used for retrieval. Case 3 of A2 is applicable to
JE2(n). There is one L-string, viz. JL1, defined over
the relevant instances of J E 2 (n) ; hence, case 3 has to
be applied again to JL1. There is one E-string with one
instance, viz. JE3, defined over JL1; hence, case 1 is to
be applied to JE3. If J E 3 is an entry point, another
alternate search path is obtained. Then the PC of the
two paths are calculated by using theorems 5 and 6 to
determine the best search path for this query.

6. Conclusion
Logical relations and query sets can induce a large num-
ber of strings on a given set of data, which can result in
a very complex access path network. Thus, analyzing
all properties of string structures and providing the best
search path algorithm for all situations are extremely
difficult. When placement rules for data on complex
storage media and migration of data are taken into con-
sideration, the problem becomes still more complex.
In this paper we have provided a solution to the search
path problem for any general network constructed using
A-strings, E-strings and L-strings, and the algorithm is
based on minimum path cardinality. The algorithm is
suitable for core-type storage media and is quite complex
because the network is of very general nature. Simple
algorithms can be deduced from this algorithm if the net-
work has some systematic structure. However, the prob-
lem of constructing the optimum network for a given set
of likely queries and the effect of placement algorithms
on search paths are still open questions.

7. Acknowledgments
The authors thank E. B. Altman, M. M. Astrahan,
P. L. Fehder, and A. D. Inselberg for valuable discus-
sions during this work.

Appendix
Pictorial diagrams of the types of string networks covered
by the steps of the algorithms are given below. For this
purpose

QC = (A, = e,) A (A, = e,) A (A, = e,)
and the output attributes are A, and A,.

IBM J . RES. DEVELOP.

Substep 2.2

..............

..........................
.........

._..
A I A 2 A , ID A s A 5 * *.

Subsrep 2.1

\

% . .

and decomposition of the QC w.r.t. the SC'S.

Substep 2.3

. *Q&

\ \

Step 3

.........

ASG,

Step 4

.......

...

c"

and one SC covering the query.

SEPTEMBER 1974 ACCESSING STRING

422

S. P. GHOSH AND M. E. SENKO

Algorithm A 2

Case 1

Case 2
\ \ \ \
\ \

Case 3
\ \ \ \ \ \
\ \ \

or any combination.

Case 4
\ \ \ \ \ \ \

\

$J $J ... h...&...&...@
or

\ \ \ \ \ A /&...A A...h.. .A ...A
or any combination of these

References
1. CODASYL Data Base Task Group, Report to the

CODASYL Programming Language Committee, Report
C R I I , 5(70) 19, 080, Association for Computing Machin-
ery, New York, 1969.

2. M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L.
Fehder, “Data Structures and Accessing in Data-Base
Systems,” IBM Syst. J . 12, 30 (1973).

3. P. L. Fehder, “The Representation Independent Language,
Part 1: Introduction and the Subsetting Operation,” Re-
search Report RJ 1121, IBM Research Laboratory, San
Jose, California, 1972.

4. E. B. Altman, M. M. Astrahan, P. L. Fehder, and M. E.
Senko, “Specifications in a Data Independent Architectural
Mode,” Proceedings of the ACM SICFIDET Conference,
Denver, Colorado, 1972.

5 . D. E. Knuth, The Art of Computer Programming, Funda-
mentalAlgorithms, Vol. l , 1969, and Sorting and Searching,
Vol. 3, 1973, Addison-Wesley Publishing Co. Inc., Reading,
Massachusetts.

6. S. P. Ghosh and M. M. Astrahan, “A Translator Optimizer
for Obtaining Answers to Entity Set Queries from an Arbi-
trary Access Path Network,” Proceedings of IFIP Con-
gress, Stockholm, Sweden, August 1974, to be distributed
by North-Holland Publishing Company, Amsterdam, Neth-
erlands.

7. M. M. Astrahan and S. P. Ghosh, “A Search Path Selection
Algorithm for Data Independence Access Model (DIAM),”
Proceedings of the ACM SICFIDET Workshop, Ann
Arbor, Michigan, 1974, to be published.

8. M. M. Astrahan, E. B. Altman, P. L. Fehder, and M. E.
Senko, “Concepts of a Data Independent Architectural
Model,” Proceedings of the ACM SIGFIDET Conference,
Denver, Colorado, 1972.

Kccri \~rd December 6 , 1973; revisedApri1 IO, I974

S . P. Ghosh is located at the I B M Research Laboratory,
Monterey and Cottle Roads, San Jose, California 951 93;
M . E. Senko is at the IBM Thomas J . Watson Research
Center, Yorktown Heights, New York 10598.

IBM J . RES. DEVELOP.

