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Abstract: This  paper  structures algorithms for the translation of set  theoretic  queries  into  procedures  for  the  search of arbitrary com- 
plex networks  constructed on a data  base using three basic types of strings. A method for parametrization of queries which is appropriate 
for  accessing string structures  is outlined and  it  is  shown how the  properties of string structures  can  be  used to construct  an algorithm 
for finding a search path with minimum path  cardinality for a given query  addressed  to  such a network. (The term data management 
system is used  instead of data  base management system.) 

1. Introduction 
In a computing environment,  data management systems 
deal with the problems of storing and retrieving informa- 
tion from large  complex data  bases  based  on non-numer- 
ical types of information. Like  any  other  software  system, 
a data management system  has a high-level language, 
called a query language for  user interaction  with the  data. 
The primitives of a query language are based on a data 
description.  Usually the  data  bases  are very  large; hence; 
different  kinds of data  accessing  rules  are also associated 
with data management systems  for efficient retrieval of 
subsets of data  requested by different  queries. Some  data 
management systems  have  more  than  these  two levels 
contained in them. A  good  review of many different data 
management systems  is given in the  CODASYL-system 
committee’s  technical report [ 1 1. 

In  the  last  few  years  there  has been a trend  to introduce 
multiple independent levels in data management systems. 
In  this  approach a user  can  interact with the  system  at 
any level without having to know the levels that  are 
below it (i.e., closer  to  the  hardware). A good example of 
work  on this  subject is reflected in the  Data  Indepen- 
dent Accessing  Model (DIAM) system  architecture de- 
veloped  by Senko  et al. [ 21. In  the DIAM the  data man- 
agement  system is divided into  four levels, viz., data 
description  model, access  structure model,  encoding 
model, and physical model. The  data  description model 
is based on  an  entity  set  concept. A query language based 
on entity sets  has  been developed  by Fehder [3]. The 
access  structure model is based on string structures which 
define  access  paths through  different subsets of the  data, 
A neat  presentation of string structures  has been  given 
by Altman et al. [4]. 

When a user  is  free to request  queries  without knowl- 
edge of the  access  structures  embedded in the  data base, 
the  computer  has  to  take  the responsibility of analyzing 
the  query  and reducing it  to a parametric  form such that 
the  parameters  can  be used to  select  the  proper  access 
paths  for retrieving the  subsets of the  data  relevant to 
the query. One of the  purposes of this paper is to inves- 
tigate the  methods  for parametrizing the  queries  based  on 
entity  set  concepts.  The major part of the paper is de- 
voted  to studying properties of access path structures 
that can  be constructed from  string structures.  The pri- 
mary reason  for studying properties of string structures 
is that  these  properties  can be  used to  construct efficient 
algorithms for answering queries based on entity  set 
concepts.  Many  authors  have  done basic work  on  search 
algorithms. Knuth [ 5 ]  provides an excellent treatment 
on searching tree, multilist,  and other  structures.  Theories 
and  properties of complex queries  and  data  structures 
involving paths  between  data  units  have not been dis- 
cussed  up  to now. Based on  the  results of this paper 
Ghosh  and  Astrahan [6] and  Astrahan and Ghosh [7] 
have developed  detailed  algorithms for selecting  optimum 
search  paths  for providing answers  to  queries based on 
entity  sets. This  paper  does  not  discuss  optimum  con- 
struction of string structures  over a data  base. I t  is as- 
sumed  that  the string structures  necessary  to  answer a 
given query  are available. 

The materials presented in this paper  are organized 
into six sections. The following section  deals with  string 
structure description of data. Section 3 contains a  method 
of parametrizing queries  to  expedite a search through 
string  structures.  Section 4 deals with properties of search 
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paths.  Section 5 provides a general  algorithm for obtain- 
ing a search  path with minimum path cardinality, and 
section 6 summarizes the  results  and provides  a  dis- 
cussion. 

2. String structure description 
String structures  were introduced by Senko  et al. [ 2 ]  
and  formalized by Altman  et al. [ 4 ] .  The  reader may 
refer to  these  papers  for a detailed description of the 
subject. For completeness of our  paper a sketchy  de- 
scription of string structures is provided in this  section. 

A  string is an  access  path through the  data.  There  are 
three basic  string types: 

i. The A-string (atomic  string) is used to  characterize 
the  access  paths connecting sets  and/or  subsets of at- 
tribute domain name/role  name/attribute values. 
ii .  The E-string (entity  string) is used to characterize 

the  access  paths connecting  structurally  homogeneous 
(i.e., having the  same  type  description)  sets of subsets 
of data. 
iii. The L-string (link string) is used to  characterize 
the  access  paths connecting  structurally heterogeneous 
sets  and/or  subsets of data. 

Each string type  is defined in a  generic  form over  at- 
tribute values or a set of string types which are referred 
to  as  the  components  and  are specified in the exiting 
list ( E X L )  of the string type definition format. A string 
type can have multiple instances in a data  base.  The 
string type definition format  also  contains a name,  its 
kind,  a  string  selection  criterion and  an O N  criterion. 
An exiting list is a list of the  components (i.e.,  strings 
or attributes) which are used to  construct  the  instances 
of the particular  string  type.  String criteria (SC, with 
values S C )  can specify the  criteria  on  the  bases of which 
instances of the  components  are selected and/or  ordered 
for constructing the  instances of the particular string 
type. The ordering of the  instances of the  components 
can  also be specified through the exiting list. The string 
criteria  represent  three  concepts in the description  given 
by Altman et al. [ 4 ] ,  viz., selection criteria, matching 
criteria, and ORDER ON criteria. This substitution is  done 
to  improve parametrization of the string structures.  The 
O N  criterion specifies the  names of the strings for which 
the particular  string type  is a component. 

A string  catalogue provides a list of the descriptions 
of all the string types defined on  the  data.  Henceforth, 
for simplicity, the word “string” is used  instead of 
“string  type.” 

Example 1 
Suppose  we  have a personnel file. Each  person  has 
children and holds a number of jobs.  The  attributes in 
this file are man number, man name, man age, child(ren) 

name (s), job  name (s) and average wage (s). A  catalogue 
of the string types  for  the  data representing a man, his 
children, his jobs,  and  the  corresponding  associations is 
given as follows: 
Person Entity Set [ ( P .  Man No. ) ]  
PA 1 AS G [ E X L  = (P .   Man  No. ,   P .   Man 

Name ,   P .   Man   Age) ;   ON = 
P E l ]  

PE 1 ES G [ E X L  = ( P A 1 ) ;  00= (P .   Man  
N o .  1 1  

P. Man  No. is the.  name given to  the  attribute man 
number when it is a property of the entity  person. Sim- 
ilarly, P.  Man  Name and P.  Man  Age are  attributes of 
the person. In this  catalogue each  instance of the person 
entity  set is identified by its P. M a n   N o .  The  three  at- 
tributes  are  components of the string PA 1 ,  which is an 
A-string (denoted by A S G )  with E X L  = (P. Man  No. ,  
P .   Man  Name,   P .   Man  Age) .  The string PE 1 is defined 
on PA 1 .  An  instance of PA 1 is obtained by construct- 
ing an  access path  through one value of P.  Man  No.,  one 
value of P.  Man  Name,  and  one value of P.  Man  Age,  
all belonging to  the  same  person.  The value of P.  Man 
N o .  is the first element in an  instance of PA 1 ,  the value 
of P.  Man  Name is the second element, and so on. PE1 
is an E-string (denoted by E S G )  constructed  over PA I .  
It  has  one  instance and is an  access path  connecting all 
the  instances of PA 1 in a sequential manner,  ordered 
on  the values of P.   Man  No.  The  entry 00 is referred 
to as  the  SC for PE 1 ; PE1 connects only the  heads of 
the  list of P.  Man  No. ,   P.   Mun  Name,  and P.  Man  Age. 

The following strings are  constructed  on  the child and 
job  entity  sets. 

Child  Entity Set [ ( C .  Man  No., C .  
Child Name)] 

[ E X L =  (C.  Mun  No.,  
C .  Chi ld   Name);  
O N  = C E l ]  

[ E X L =   ( C A 1 ) ;  0 0 =  
( C .   M a n   N o . ,   C .  
Ch i ld   Name) ]  

C .  Child  Name Attribute [ O N  = C A  1 1  
C .   M a n   N o .  Attribute [ O N  = C A  1 1  
Job Entity Set [ (J.  Man  No.,  J.  Job 

JA 1 A S G  [ E X L  = ( J .  Man  No. ,  J .  

J E  1 ES G [ E X L  = ( J A 1 ) ;  00= (J.  

JA2   ASG [ E X L  = ( J .  Mun N o . ) ;  

JA 3 A S G  [ E X L  = (J .  Man No.,  J .  
Job   Name ,   J .   Av .  

S a l . ) ;   O N  = J E 2 ]  

Name, J .  Av.  Sal.) ] 

A v .   S a l . ) ;   O N = J E I ]  

J o b   N a m e ) ]  

O N  = J L l ]  

C A  1 A S G  

CE1  ESG 
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JE2 ESG 

J L  1 LS C 

JE3  ESG 

J.   Av.   Sal  Attribute 
J .   Job   Name  Attribute 
J .  Man No. Attribute 

[ E X L  = (JA3);   PART = 
J .  Man  No . ) ;  00= (J.  
J o b   N a m e ) ;  ON = 

J L l ]  
[ E X L  = ( J A 2 ,   J E 2 ) ;  

M C  = (J.  Man No. 
= J .   M a n   N o . ) ;   O N  = 
J E 3 ]  

[ E X L  = ( J L l ) ;  00= (J.  

[ O N = J A l ;   O N = J A 3 ]  
[ O N = J A l ;   O N = J A 3 ]  
[ O N   = J A l ;   O N = J A 2 ;  

Man No . ) ]  

O N  = JA31. 

In  the string C E l ,  the SC is an ORDER ON criterion on 
the values of two  attributes. I t  implies that  the  instances 
of C A  1 are  connected in a sequential manner  ordered  on 
the  values of C .  Man  No.  For a fixed value of C. Man 
N o , ,  the  instances  are  ordered on the values of C. Child 
Name.   JE2 is  an E-string  with  multiple instances,  where 
each  instance  corresponds  to a distinct  value of J.   Man 
N o .  Within each  instance of JE2 there may be multiple 
instances of JA3.  The  instances of JA3 within each in- 
stance of JE2 are  ordered  on the  values of J .   Job   Name .  
JL1 is an L-string (denoted by LSG ) whose compo- 
nents  are JA2 and JE2.  An  instance of JL1 is obtained 
by  constructing an  access path  from an  instance of JA2 
to an instance of JE2 where both have  the  same value 
of J.   Man  No.  In  this catalogue J.   Man  No.  is an attri- 
bute with three A-strings defined on it. 

If this  catalogue is critically examined, it is obvious 
that  the L-string JL1 is  redundant.  The  instances o f J E 3  
may be  used as  entry points to  the  network  thus  described 
by the catalogue. 

3. Parametrization of queries 
Fehder [3] and  others working  with query languages 
have provided some  ideas  for parametrization of queries. 
It appears  that  the  best method is to base  the parametriza- 
tion on  the  data description because  the  queries  are used 
for extracting  information  from the  data  base.  Senko  et 
al. [ 2 ]  used the  data description as  the basis for defining 
access  path  structures. When such  structures  are avail- 
able  they should be used for parametrization of queries 
so that identification of search  paths  relevant  to a query 
are simplified. The  approach  taken in this  section is 
based on this concept. 

A query  seeks  some information  from data  that satisfy 
certain  conditions. If the  data  base  were described in 
terms of attributes, values, and  entities,  then  the infor- 
mation  which the  data  can supply can be  translated into 
these  parameters.  It is assumed,  for  this  paper,  that  there 
exists a translator which transforms the  query from the 

query  languageform to the parametrized  form. Thus,  for 
the  query which states “find the  records of all employees 
who are  over 40 years of age  when  hired” from a data 
base which does  not  contain  “age when hired” but  con- 
tains “date of birth”  and  “date of hire,” the  attribute 
“age  when  hired” has  to  be transformed into a function 
of two  attributes,  “date of birth”  and “date of hire.” 
Without  such a translation  a search  cannot be performed 
on  the  data  base. 

In  the parametrized  form the  attributes specified by 
the  query  can be classified into  two  groups, viz., qualifi- 
cation  attributes  and  output  attributes.  In  some  cases, 
it is possible for  an  attribute  to play a dual role. In our 
description the  output  attributes  are  those which have 
no  restrictions imposed on  their values by the  queries 
but  are relevant to  the  query. A qualification criterion 
(QC, with values Q C )  of a query  is  stated in terms of 
functions of qualification attributes  and  their values. The 
values, or some function of the  values, of the  output 
attributes in one or more entities which satisfy the QC 
are  the information desired  by  the  query.  Thus, when 
seeking the records of all employees with  “age at hire 
> 40,” the QC attributes  are  “date of hire” and  “date 
of birth.” The  values of these  two  attributes specified 
by the Q C  are  their whole  domain because corresponding 
to  any value of one of the  attributes,  there  can exist a 
value of the  other  attribute  such  that  the  instance of the 
entity  set is relevant  to  the  query.  Here  the  output  at- 
tributes of the  query  are all the  attributes in the entity 
set “employee.” 

In a data  base which is described by entities  and their 
properties, it is easy  to  see  that all subsets of the entity 
sets can  be defined in terms of Boolean functions of at- 
tributes,  where  each  attribute specifies subsets of its 
domain, i.e., are of the type 

~ A , = ~ , ~ A ( A , = ~ , ) v ( A , = ~ , ) v . ~ . A ( A , = ~ , ~  ( I )  

where A, ,  A,,  . .. A,  are  the  attributes  and  the Oi are a 
subset of the R, (the domain of A , )  i = 1 , 2 ;  . e, 1. (As in 
most  set  theoretic situations it is assumed  that a set,  as 
well as  the null set, can  be  regarded as a subset of itself.) 
Thus  the SC of any string can  be represented by functions 
and /or equations in functions of the  type ( 1 ) . A  Boolean 
function of this type which contains only A (AND)  func- 
tions, Le., 

( A ,  = 0,) A ( A ,  = 8,) A ( A ,  = e,) A . .  . A ( A ,  = 0,) ( 2 )  

is called a canonical form or canonical term. It  is  easy 
to  see  that any general (well defined) Boolean function 
of the  type (1) can  be  expanded  into a number of ca- 
nonical terms  connected by V (OR) functions. If an SC 
is an ORDER ON criterion on an  attribute A i ,  then SC 
= ( A i  = ai). Other  uses of ORDER ON criteria in search 
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are  not discussed  here. Thus,  for parametrization it is 
sufficient to identify the QCs by Boolean functions. 

In  some situations the query may specify a  complex 
function over  some  attributes,  say, A , ,  A, ,  . . ., A, ;  then 
for retrieval purposes QC is of the  form ( A ,  = a,) A 
(A,  = a,) A . . . A (A, = a,). For simplicity of analysis 
it is  assumed  that  the SC and the QC are all expanded in 
canonical  form. All the  results in this paper  are derived 
under  the  assumption  that QC and SC contain  only one 
canonical tei-m each. If they’contain  more than one  term 
in the  canonical expansion, then the  procedures described 
hereafter  have  to be repeated  for all pairs of terms be- 
tween SC and QC. To determine  whether  the  access 
path defined 6y a string is relevant  to a query or not, 
SC is cornparEd with QC. 

Let ei and e,’ be two  sets of values of Ai. If Oi n 0,’ 
= 0 (empty  set),  then Oi negates 8i’. It  also implies that 
the  two  criteria QC = (Ai = e i )  and SC = ( A ,  = Oi‘)  
negate each  other  and  there is no intersection  between 
the SC and  the QC. If Oi 2 Bi’ then (QC covers SC) E 
(QC contains SC) = (SC is contained in the Q C ) ,  and 
there is an overlap between QC and SC. Similarly, the 
concept of the QC covering the SC can  be defined when 
they  contain  more  than one  attribute. When a QC is 
compared with a SC the following situations may arise: 

1.  The default SC (as in an  A-string) .$ The  relevance 
of the  query  to  the string depends  on  the exiting list 
of the ‘string. If the exiting list contains all the QC 

‘attributes  and the  output  attributes,  then  the SC con- 
tains  the  answer  for  the QC; otherwise,  the SC does 
not completely answer  the QC. If the exiting  list  con- 
tains  other strings, then  the exiting  lists of those 
strings,  along with their SC, have  to  be examined 
against the QC. 

2. The  SC attributes  are  identical  with  the QC attributes 
.$ The values of the  attributes  determine  whether the 
QC is contained in the SC. If the  values specified by 
at  least  one SC attribute negate the values of that 
QC attribute,  then  the SC negates the QC. OtherWise, 
there  is  an  overlap  between  the SC and  the QC. If 
the  values specified by each QC attribute  are con- 
laked in the  values of the corresponding SC attribute. 
then  the SC contains  the QC. 

3.  The  SC attributes  are a subset of the QC attributes 
3 If the values specified by at  most  one SC attribute 
negate the values of that QC attribute, then the SC 
negates  the QC. Otherwise,  there  is  an  overlap. If 
the  values specified by each SC attribute  contain  the 
values of the corresponding QC attribute, then the 
SC contains  the QC. 

4. The  QC attributes  are  a subser of the SC attributes 
.$ If the values specified by at least  one QC attribute 
are negated by the  values of that SC attribute,  then  the 
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SC negates  the QC. Otherwise,  there is an overlap. 
If the values specified by each QC attribute contain 
the values of the corresponding SC attribute, then the 
SC is contained in the QC. 

5 .  A subset of the SC attributes is contained  in  the set of 
QC attributes .$ If the values specified by at most 
one of the common attributes of SC negate the values 
of that QC attribute,  then  the SC negates the QC. 
Otherwise  there is an overlap. 

When comparing the QC with the SC, very  often the 
QC will not  be  completely contained in the SC and  thus 
only  a subset of the information requested by the  query 
can  be retrieved  from the corresponding string. The 
remaining portion of the information  desired by the  query 
has  to be  retrieved from  other strings. Thus it is essential 
to obtain  an  analytic  expression  for  the non-overlapping 
portion (of the QC) between a QC and a SC. Even when 
the SC and  the QC are canonical terms, in general, the 
non-overlapping  portion contains multiple terms. In  the 
following analysis the non-overlapping  portion is ex- 
pressed as  the union of disjoint  canonical terms.  One of 
the  advantages of this type of disjoint  canonical  decom- 
position is that it eliminates redundant searching. 

An  attribute  can specify a single value or a range of 
values  or a set of discrete values.  We use 0 and L to 
denote  any of these  three  types; 0 - L denotes  the  subset 
of 8 when L has been  deleted. The  criteria  are  assumed to 
be of the following form: 

Q C =  (A ,=e , )  A & = e , )  A . . . A  ( ~ , = O , ) , a n d  ( 3 )  

SC = ( A ,  = L ~ )  A (A,  = 12)  A . .  . A (All  = b l l ) .  (4) 

SC and QC are  based on the  same  attributes 
Consider only two attributes;  then 

QC - sc = ( A ,  = e,) A ( A ,  = e,) 
- ( A ,  = 1 , )  A ( A ,  = 1,)  

= ( ( A ,  = 0,) A (A,  = (0, - 6 , ) ) )  

v ( ( A ,  = (e, - L 1 ) )  A ( A ,  = ( L ,  n q ) ) .  
(5) 

For  three  attributes, 

QC - sc = ( A ,  = e,) A (A ,  =e,) A ( A ,  = 0,) 

- (A ,  = 1 , )  A (A ,  = L, )  A (A,  = b 3 )  

= ( ( A ,  = (e ,  - 6,)) A ( A ,  = 0,) 

A ( ~ , = e , ) )  v ( ( A , =  (L1  n e,))  
A ( A , =  (e,--,)) A ( A , = o , ) )  

v ( ( A ,  = (6, n e,)) A ( A ,  = (1, n 0,) )  

A (A ,  = (6, - 6,) 1) .  ( 6 )  41 1 
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Hence, in general, 

Thus, when the QC and the SC are based on the same 
I attributes, the difference (same as non-overlap) QC - 
SC can have a maximum of I canonical terms. If, for any 
attribute Oj E 0 ,  then Aj = (ej  - b j )  denotes the empty 
set and the cooresponding term drops of€. The operation 

i\ 3 intersection of zero number of sets = whole 
. .  

space. 
j=l 

41 2 
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SC attributes are a subset of the QC attributes 
When the QC has two attributes and the SC has one 
attribute, then 

When the QC has three attributes and the SC has two 
attributes, then 

In general, when the QC has I attributes and the SC has 
I ,  attributes and 1,5 1, then 

Qc-sc= ( ~ , = e , )  A ( A , = e , )  A . . . A  (A,=e,)  

- (A ,  L , )  A (A,  = L,)  A.  . . A (Al l  = bI1 

A (A*+,) = (ei+, - ++J) i\ = e j ) ) .  
j=i+Z 

(10) 
Thus, when 1,5 I, the maximum number of terms in the 
disjoint canonical decomposition of the non-overlapping 
portion of the QC with respect to the SC is I,. 

QC attributes are a subset of the SC attributes 
Suppose the QC has one attribute and the SC has two 
attributes; then 

If the QC has one  attribute and the SC has 1, > 1 attri- 
butes. then 

QC - SC = (A ,  = e,) - (A ,  = b , )  A (A,  = 

A . . . A ( A ~ , = L ~ ~ ) = ( A , = ( ~ , - ~ , ) )  

A ( A , =  (ai-- ( 0 ) ) .  (12) 

If the QC has 1 attributes and the SC has 1, attributes 
and I, 1 I, then 

QC - sc = ( A ,  = e,) A (A ,  = e,) A .  .. A ( A ~  = e,) 

(Note  that Oj = for j > 1 by default.) 

Thus, when I, 1 I, the maximum number of terms in 
the disjoint canonical decomposition of the non-over- 
lapping portion of the QC with respect to  the SC is I,. 
For each of these three cases the maximum number of 
terms in the disjoint canonical decomposition of the non- 
overlapping portion of the QC with respect to the SC 
is equal to the number of attributes in the SC. 

4. Properties of access paths 
Altman et al. [4] have provided the basic tools for con- 
structing access paths through a  data base  and  complex 
access-path networks can be created. Searching effi- 
ciently  through such a network is a desirable aim  of any 
information retrieval system. In order to achieve this, 
properties of access paths based on A-strings, E-strings, 
and L-strings have to be studied. In this section some 
important properties of access paths are discussed. 

An instance of an A-string is defined over the values 
of the attributes. Thus the path cardinality (PC, with 
values P C )  of an instance of an A-string is equal to the 
number of attributes in its exiting  list. In some queries 
the attributes of the A-string may not  all  be relevant. 
To reflect the effect of such phenomena the frequency 
distribution of usage of the queries for different sets of 
attributes has to be considered. Analysis at that detail 
level is not considered in this paper. The PC of an access 
path, for this paper, is defined as  the sum  of the number 
of instances of A-strings, E-strings, and L-strings con- 
nected by the access path. 
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Suppose  an E-string is defined over  an A-string  which 
is defined over  the  values of the  attributes A,, A,; * . ,A,. 
If the multivariate frequency function of the A-string 
for  these  attributes  is available,  then summing the fre- 
quency  function over  the SC of the E-string  provides the 
PC of the E-string.  If it is assumed  that  the  occurrences 
of the values of different attributes  are statistically in- 
dependent,  then  the multivariate frequency function is 
proportional to  the  product of the  frequency  functions 
of the  attributes.  Thus  the PC of the E-string can be  ob- 
tained from  the  frequency  functions of the  attributes. 
When the E-strings are  ordered  on  one  or  more  attributes, 
the PC of a query is calculated from  the cumulative  fre- 
quency  functions of the  attributes, which are calculated 
from the  frequency functions. 

Simple  analytic forms  for  the PC of an E-string or  an 
L-string  can be obtained  from files which have some 
simple  distribution  with respect  to  the  attributes.  One 
such file is the uniformfile. In a uniform file the  instances 
of the  entity  sets  have uniform distribution with respect 
to the values of each  pertinent  attribute. 

Suppose  an A-string is defined over  the  attributes A,, 
A,, . .-, A,; then  the  number of instances of the A-string 

in a uniform file is given by r(=, [ail. In  such a file, if n 

E-strings are defined on  the A-string, it is not  necessary 
to calculate  the PC for  each E-string to find the string 
with the minimum PC. Suppose SC,, SC,, . * ., SC, are 
the string criteria  for  the E-strings. (In  this  paper, when- 
ever  there is no confusion, a string is referred to by  its 
SC). Let A,, A,, . . ., A ,  be  the union of the SC attributes. 
The following function is calculated for SC,, i = 1,2; . ., n: 

(14) 

where C ,  is the cardinality of the  set of values of Aj 
specified by SC,. If A, is not specified by SC, then C ,  is 
equal to  the cardinality of 

The left side of Eq. (14) is proportional to  the PC of 
SC,. The  constant of proportionality is  the  same  for all 
SC,; thus,  the most favorable SC,, i.e., the  one with the 
minimum PC, can be determined  from  the&. The& can 
be calculated if the C ,  are available. I t  is also possible 
to  store  the PC of each string, defined on  the A-string, 
as parameters  and  then  determine  the  most  favorable 
SC,. This  approach  was suggested by Astrahan  et al. [8]. 

A  string  with an ORDER ON criterion is called an ordered 
string. In  ordered strings the  instances of the  components 
are  connected in an  order  determined by the  values of 
one  or  more  attributes.  (In  case of ordering on multiple 
attributes,  the ordering is  nested.)  This  property of an 
ordered string can  be used to  reduce  the  search length 
of a query if the  query specifies values of the  ordered 
attributes.  In  an  ordered string, the  search  for a query 

i=1 

& =  n C,, 
m 

j=1 
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can  terminate  when  the maximum  value specified by the 
QC for  the highest  ordering attribute of the SC is reached. 
Hence,  the most favorable  ordered SC for a QC is that 
ordered SC (among a set of ordered SC covering the 
QC) which ties  together  the minimum number of  in- 
stances of the  components needed to reach  the maximum 
value specified by the QC for  the ordering attribute of the 
SC. The  most  favorable SC among a set of SC depends 
on  the  query if the SC are  ordered but is invariant of the 
QC for  unordered SC. 

Suppose A: is the  attribute  on which SC,, i = 1, 2, 
. . ., n, is ordered  and Cio is the cardinality of the set of 
values of A: within the SC,. If e,, is the  set of values of 
A: specified by a QC and if 

&' = fi X (rank of the maximum  value of Oi0 in SC,) , 
cio (15) 

then  the most favorable SC, for  the QC is  the  one  for 
whichf,' is minimum. 

Example 2 
Suppose  there  are  four  attributes A,, A,, A,, A,. An  A- 
string is defined over  these  attributes.  The  instances of 
the A-string have uniform  distribution  with respect to 
the  three  attributes A, ,  A ,  and A,. These  three  attributes 
can  take integral values in the  ranges 1 S A ,  4 5 ;  1 5 A ,  
5 10; and 1 5 A, i 20. Thus,  there  are 1000 distinct in- 
stances of the A-string. I t  is  assumed  that  there is no 
repetition of any triplet of values (Al ,  A,, A3 ) .  Suppose 
two E-strings,  say E,  and E,, are  constructed with SC 
as follows: 

E,:  SC, = (2  9 A ,  5 5, 1 5 A, i 8)  00 A, ;  

E , : S C , =  (3iA,59,19A35 16)00A, .  

Thenfl=4-8.20=640;f,=5.8-16=640.1fthetwo 
strings  were not  ordered,  both would be  equally  favored. 

Consider a query  with QC = (A,  = 4, 3 4 A, 5 6,  10 
5 A, i 15) and A, as  the  output attribute. The number 
of instances of the A-string in E ,  that  have to be  searched 
to  answer  the  query (i.e., up to an including A ,  = 4) is 
3 + 8 .20 = 480. The  number of instances of the A-string 
in E, that  have  to  be  searched to answer  the  query (i.e., 
up  to A, = 6 )  is 4 - 16 5 = 320. Thus, E, is  the  more 
favorable  search path for  the  query. 

Theorem I If a query  and a set of unordered E-strings 
satisfy the  conditions 

i. the QC and  the SC are canonical terms; 
ii .  the QC attributes  and  the  output  attributes are a 

subset of the exiting list of an A-string; 
iii. all the E-strings are defined over  the  same A-string 

and their SC do not negate the QC, and  none of the 
SC are defined on  the  output  attributes, 

then 41 3 
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a. the search for the query can  be  confined to one and 
only one E-string if there exists at least one SC cover- 
ing the QC; 

b. the most favorable E-string for the query is the one 
with minimum path cardinality if there is  more  than 
one SC which covers the QC. 

Proof Let E ( Q C )  denote the set of instances of the A- 
string  which are relevant to the QC and E (SC) denote 
the set of instances of the A-string which are connected 
by the E-string corresponding to the SC. Thus,  the PC 
of the E-string  is IE(SC) I. Let 

QC = ( A , = O , )  A ( A , = @ , )  A . . . A  (A,=@,),and  (16) 

SC 3 ( A ,  = al) A (A,  = a,) A . .  . A (A,, = a',), (17) 

where Oi and ai denote collections of values of the 
attribute Ai. 

That the SC covers the QC 3 1' i 1 and ak 2 0, for 
k = 1, 2,  . . ., 1'; hence, from the theory of product sets 
it  follows that E ( S C )  2 E ( Q C )  3 E ( Q C )  - E ( S C )  =4. 
Since the SC is  not  defined  on the output attributes, the 
search for the QC can be  confined to the E-string cor- 
responding to the SC, which proves a of the theorem. 

In an unordered string the search length for any query 
is equal to the PC of the string. Thus, if there is  more 
than one SC covering the QC, the most favorable one 
is the one with the minimum PC. This completes the 
proof. 

Lemma I If the QC of a query and a set of unordered 
E-strings with  selection criteria SC,, i = 1,2; ., n,  satisfy 
conditions i ,  ii ,  and iii of theorem 1 and 
iv. the SC attributes of each SC are  a subset of the QC 
attributes but none of the SC cover the QC, 
then the largest collection of instances of the A-string 
pertinent to  the  QC, in a uniform  file is in the E-string 
for which 

1 

c # ~ ~  = II u.. is  maximum, (18) 

where uil = IOj r l  ail I (if A, is not specified in the SC,, 
then aii = 0,) 

Q C ~ ( A , = e l ) ~ ( A , = e , ) ~ . . . ~ ( A 1 = e , ) , a n d  (19) 

j-1 u 

SC, E ( A ,  = a,,) A (A,  = ai,) A .  . . A (A1, = ail,),  (20) 

where i = 1, 2 , .  . ., n and I' f 1. 

Proof The proof  follows  from the fact that the +i are 
proportional to the number of instances of the A-string 
pertinent to the QC and the constant of proportionality 
remains the same for all the SC,. This completes the 
proof. 

Remark When  lemma 1 yields  more than one E-string, 
the result b of theorem 1 can be  applied to these E-strings 
to obtain a  minimax solution. 

The results of lemma 1 can be  generalized to the case 
when the QC has partial intersection with the SC and 
are given by the following theorem. 

Theorem 2 If a query and a  set of unordered E-strings, 
which  have one instance each, with selection criteria 
SC,, i = 1, 2 , .  . ., n,  satisfy the conditions i ,  ii, and iii of 
theorem 1, then the largest collection of instances of the 
A-string pertinent to the QC, in a uniform  file,  is the E- 
string for which 

Qi = uii is  maximum, (21) 

where L = smaller set between the  set of indices of the 
attributes of the A-string  and the set of indices of the 
union of the attributes belonging to the QC and the SC, 
uil' = 18, f l  ail( [if A, is'not specified in the SCi (and/or 
the QC), then ail (and/or Oj) = s l j ]  and 

QC ( A ,  = e,)  A (A,  = e,) A . .  . A (A ,  = e , ) ,  and ( 2 2 )  

jeL 

fori=  1,2;**,n.  

Proof The proof  is exactly similar  to that of lemma 1. 

The string structures defined by Altman et al. [ 4 ]  do 
not permit  splitting the instances of the component 
strings, but it is possible to construct access path net- 
works in  which  such  splitting i s  permissible. Access path 
networks whiclj contaid subsets of instances of the com- 
ponent strings can provide search paths with shorter PC 
for some queries; hence, some of their properties are 
begin  studied. A hierarchical  nested  structure  ofE-strings 
can be constructed in the following  manner: 

A A : A S G   [ E X L =  ( A , , A , ; . . , A , ) ;  O N = E , ] ;  

E,:  ESG  [EXL = ( A A ) ;  SC,  = ( A ,  = L , ) ;  ON = E , ] ;  

E,:  ESG  [EXL = S U B D ( E , ) ;  

SC, (A,  = L , ) ;  O N  = E , ] ;  

E,:   ESG  [EXL  =SUBD(E,);  SC, = (A,  = L , ) ] .  

In this construction the instance of E, is obtained by 
subdividing  tlie instance of E ,  [referred to  as S U B D  ( E , ) ]  
and constructing an access path through those instances 
of AA which  satisfy SC,. In a hierarchical nested struc- 
ture of strings, -the string whose EXL's do not contain 
SUBD of a string are referred to  as the strings of level 
1. The strings defined over the strings of level 1 are re- 
ferred to  as strings of level 2, and so on. The strings which 
have no strings, defined over them are referred to  as 
strings at the highest  level of the structure. The effect of 
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constructing a hierarchical nest of E-strings on  the in- 
stances of the string at level 0 is the  same  as  that of prop- 
agating the  SC (of the  E-strings)  at different  levels using 
AND functions. Thus,  the  instances of the E-string 

E,': ESG [ E X L  = ( A A ) ;  SC,' = ( A ,  = L, A A ,  

= L, A A ,  = L ~ ) ]  

and  those of E3 are  the  same.  For simplicity it is assumed 
that  the E-strings at  two  successive levels do  not  access 
the  same  set of instances of level 0. 

Suppose {E, ,  i = 1, 2 , .  . ., n} is  set of E-strings  with a 
set of string criteria {SC,, i = 1, 2 , .  . ., n} which  form  a 
hierarchical nest  structure; E ,  is defined over  an A-string 
(level 0) and E ,  is defined over E,-,. Let E(SC, )  denote 
the  set of instances of A-strings which are relevant to 
SC,; then 

E ( S C , )  3 E(SC,)  3 . . . E(SC,).  

Lemma 2 The  search time for  the  instances  at level 0 for 
a query in a hierarchical nest  structure of unordered  E- 
strings is a monotone nonincreasing  function of the level 
of the E-string. 

Proof In  an  unordered string the  search  for a query re- 
quires  access  to  every  instance  connected by the string. 
Since E(SC,)  3 * . .  3 E(SC,)  in a  hierarchical nest 
structure,  whatever may be  the  storage  locations of the 
instances of the string at level 0, the  search time for  the 
instances  at level 0 for a query using Ei cannot be greater 
than the  search time using either E,-, or Ei-, or. . . or E,.  
This  completes the proof. 

Suppose  for a  given query with qualification criter- 
ia QC, 

E(QC)-E(SC,ASC,A...ASC,)=@,but (24) 

E ( Q C )  - E ( S C ,  A SC, A . * * A  SC,+,)# @; (25 1 
then all the  instances of level 0 which are  pertinent  to  the 
query  can  be  accessed by E,. However, all of them can- 
not  be  accessed by Thus, if the  search strategy is 
to  access all the  pertinent  instances of the  query with 
one string,  then Ei should be used. These  results  are 
summarized in the following theorem. 

Theorem 3 The optimun  (minimum access time for  the 
instances  at level 0) E-string for answering  a query using 
a hierarchical nest  structure of unordered E-strings is 
given by E, where  the QC of the query and the SC, of 
E,  satisfy the conditions 

E ( Q C )  = E ( S C ,  A SC, A , .  . A SC,) = 6, and ( 2 6 )  

E ( Q C )  - E ( S C ,  A SC, A . . .  A SC,,,) # @. (27) 

Corollary 3.1 The optimum  E-string for answering  a 
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query using a hierarchical nested  structure of ordered 
E-strings is determined by the conditions of theorem 3 
provided that all the E-strings are  ordered  on  the  same 
attribute. 

Proof. If an E-string is  ordered  on a particular attribute 
which is also a QC attribute, then the  search  terminates 
when  the maximum value of that  attribute specified by 
the  QC is reached. Since  each  E-string orders, the in- 
stances of level 0 with respect  to  the values of the  same 
attribute,  for a fixed QC in a hierarchical nest  structure, 
the number of instances of level 0 that  have  to be ac- 
cessed  to  reach  the  last  pertinent  instance  for  the  QC 
when E, is used cannot be greater  than when E,-, is used. 
The  rest of the proof follows from lemma 2 and the- 
orem 3. 

For discussing the  properties of a more  general string 
structure  network, some  symbols are  introduced.  Let 
Z(S) denote  the  set of instances of the string S and  let 
Z(SC) denote the set of instances of the string  whose 
string  criterion is SC;  Z ( S / Q C )  denotes  the  set of in- 
stances of the string S which are relevant to  the  query 
with qualification criteria QC,  and if SC denotes  the 
string criteria,  then  the analogous set is denoted by 
I ( S C / Q C ) ;  Z(S, C Z(S,)) denotes  the  set of instances 
of S, which are contained in the  instances of S,. 

Theorem 4 When the  answer  to a  query is contained in 
multiple instances of a  string S ,  and many  ,strings are 
defined over S,,  then among  them the strings desirable 
to  the  search  for  the  query  are  those which  satisfy one 
of the following conditions: 

i. The string is a partitioning string for S ,  or  an ordering 
string on all instances of S,. 

ii. The  SC of the string does  not affect the QC but all 
the  instances of the string contain all the  instances 
of S,. 

iii. The  SC of the string contains  the  QC. 

Proof Suppose a string S, (which is  an E-string in this 
situation) is defined over S,. Then  the  instances of S, 
are obtained by connecting together  the  instances  of S,. 
In searching, the  desirable strings are  those which  con- 
tain the  complete  answers  to  the  QC. 

If S, is a partitioning  string for S,,  then Z(S, C I (S,)) 
= /(S,). Thus,  the  set of instances of S ,  in Z(S , /QC) ,  
i.e., Z(S, C Z(S , /QC) ) ,  is equal to Z(S , /QC) .  Hence, 
S, can be  used as a search  path  for the QC. Similarly, 
when S, is an  ordered string on all the instances of S,, 
then Z(S, C / ( S , ) )  = Z(S,) 3 Z(S, C I ( S i / Q C ) )  = 

/ ( S , / Q C ) .  Thus S, can be used as a search path for  the 
QC.  That  the  SC of S, does not affect a QC implies that 
if the  instances of the  components of S, are relevant 
(or  not  relevant)  to  the  QC, then the  instances of S, are 
also  relevant  (or  not  relevant as the  case may be). 41 5 
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If the  SC of S, does not  affect the QC but Z (S, C Z (S,) ) 
= Z(S,), then it also implies that Z(S, C Z(S,/QC)) 
= Z(S,/QC). Thus, S, can be  used as a search path for 
the  QC. 

If the  SC of S, contains the QC,  then Z(S, C Z(S,/ 
Q C ) )  3 Z(S,/QC). Hence, S, can  be used as a search 
path for the  QC. 

When S, is defined over S,, then Z(S, C Z(S,)) C 
Z(S,). Thus,  the  search  for  the QC using S, may involve 
access  to a lesser  number of instances of S ,  than when 
using S,. This  completes  the proof. 

In  the  above proof, if S, does not  satisfy any of the 
conditions i ,   i i ,  or iii ,  then either 

C Z(S,/QC)) C Z(S,/QC) or 

Z(S, C Z(S,/QC)) = +. (28) 

Thus,  the  answer  to  the  query  cannot  be obtained  com- 
pletely from S,. If there  exists a set of strings S,, S,, . . ., 
S, defined over S ,  such  that 

Z(S, C Z ( S i / Q C ) )  C Z(S,/QC) f o r i = 2 , 3 ; . . , n  

and 

u 1 0 ,  C Z(Si/QC)) = I(S,/Qc), (29 1 

then it is possible to answer  the  query using the strings 

A  string S is called the (A,,   A,,  . . ., A,)-attribute con- 
jugate of strings s,, s,, . . ., A ,  when S is defined over 
S,, S,, . . ., S,. An  instance of S is obtained  by tying to- 
gether  instances of S,, S,, . . ., S, which have  the  same 
I-tuple of values for  the  attributes A, ,   A , ,  . . ., A,.  If an 
instance of either S ,  or S, or.  . * or S, contains  more than 
one  distinct value of any  one of the  attributes A, ,   A , ,  
. . ., A, ,  then the (A, ,   A, ,  . . ., A,)-attribute conjugate is 
undefined. Thus,  the  number of instances of S is equal 
to  the  number of distinct I-tuples of values of A, ,   A , ,  . . ., 
A,.  Since  the  SC of S contains  the  attributes A, ,  A, ,  . . ., 
A,,  any  other string defined over S can contain only these 
attributes  and  any  other  attributes which have only one 
distinct value in each  instance of S. In  the  rest of this 
paper all attributes  that  have a unique value in each in- 
stance of an  entity  set  are referred to as   ID (identifica- 
tion,  with .values I D )  attributes5. 

Lemma 3 If a string S is a one-ID-attribute conjugate 
over  the strings S,, S,, . . ., S,, then  the  number of in- 
stances of S is equal to  the number of distinct  values of 
the  ID-attribute in the union of the  instances of S,, 

n 

i=2 

s,, s,, . . ., s,. 

s,, . ' ., s,. 
Proof The proof is a direct  consequence of the face  that 
each  distinct value of the ID attribute in the union of the 

41 6 instances of S,,  S,; . ., S, identifies an  instance of S. 
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The  pth  accessible  component of a  string, defined over 
multiple  strings, is that  component of the string whose 
instances  are  accessed  after  those of p - 1 components. 
If a query is relevant to a string S and  there  are multiple 
strings defined over it, then  the  most  desirable string is 
the  one in which S is  the  shortest  accessible  component, 
provided that  none of the  other strings contains additional 
information  relevant for  the  query.  As  shown  later, this 
condition would lead to a shorter  search path. 

Consider  the following two L-strings: 

S : LSG [ E X L  = (S,,  S,, S , ) ;  SC = (S,ID = S,ZD 

= S,ZD) ; ON -1 
. and 

S': LSG [EXL = (S,, S,, S,, S 5 ) ;  SC = (SJD = S,ZD 

=S,ZD=S,ZD); O N - ] .  

Here S, is the  second  accessible  component in S and first 
accessible  component in S ' ;  hence, S, is the  shortest 
accessible  component in S ' .  

The path cardinality for the subset of components 
S,, S,,  . . ., S, of a string S (which is defined over a larger 
set of components) is defined as  the  number of com- 
ponents (of S)  that  have  to be accessed in order to ac- 
cess all the elements of the  subset; this is denoted by 
PC(S , ,  S,, . . ., S,/S). The path cardinality of a  query 
in a string S is defined as  the number of instances of 
strings  that have  to  be  accessed when the string S is 
used for accessing instances  (of  the  A-string)  relevant 
to  the query Q;  it is  denoted by P C ( Q / S ) .  Since  the 
complete  answer  to a query may not be accessible by a 
particular string, P C ( Q / S )  may not  be  the maximum 
number of instances of A-strings that  have  to  be  accessed 
to  answer Q completely. 

Dejinition The most favorable string for a query is the 
one  for which the  path cardinality is a minimum. 

Remark The  path cardinality of a subset of components 
can easily be  determined from the  order of the com- 
ponents in the exiting list of the string. 

Theorem 5 If S,, S,, . . ., S, is a subset of components of 
a string S and Zj(S) is  an  instance of S which is relevant 
to a query Q, then 

P C ( Q / Z j ( S ) )  = 2 P C ( Q / I i ( S i ) )  
P 

i= l  

+PC(S,,S,,...,S,/~j(S))+~- 1, (30) 

where Zi(Si )  denotes  the  instances of S i  in Zj(S). 

Proof The  search  for Q using the  instance Zi(S) involves 
accessing each  component of Zi(S) and checking it  to 
see  whether it is relevant to Q. If it  is relevant,  say to Si, 
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then  the  access path with Zj(Si) is used to  access the 
relevant  instances of Q in fj(Si). The path  cardinality 
of Q in fj(Si) is given by PC(Q/Zj(Si)). When the  search 
for Q in Zj(Si) is complete,  the  search  control  returns  to 
Si  [i.e., where Si is labeled as a component of Zj(S)] for 
the  second time to  continue  the  search using fj(S).  Then 
the  next  component of Zj(S) is checked  to  see if it is 
relevant to Q. This  process  continues until the last rel- 
evant  component in Zj(S) for Q is  searched.  Thus, 
P C ( Q / f j ( S ) )  consists of 

i. the sum of the  path cardinality of Q in fj(Sl),  fj(S,), 

ii. the  path cardinality of the  subset S,, S,, . . ., S, of the 

iii. the sum of the  number of components in fj(S) which 

Therefore,  we can deduce  Eq. (30). This  completes 
the proof. 

Remark If the string S has multiple instances,  the formula 
of theorem 5 has  to  be applied to all the  instances  that 
are relevant to  the  query. If these  instances  are not  con- 
nected together somehow in the  network, it may not be 
possible to  answer  the  query completely. 

Theorem 6 If f'(S) is an  instance of an E-string S which 
connects together instances of a string S,, then 

P C ( Q / f ' ( S ) )  = P C ( Q / I i ( S , ) )  

+ P C ( I , ( S , ) ,  I,(S,),..;  f,(S,)/I'(S)) + P -  1 ,  (31) 

where f,(S,), f,(S,), . . ., Zp(Sl) are  the  instances of S, 
which are relevant to Q and  are  connected  together by 
the  instance f ' (S) .  

Proof This proof is exactly similar to  that of theorem 5. 
The E-string S is defined over  the  instances of the 
string SI and it is assumed  that S has multiple instances. 
Thus,  an instance of S, i.e., I '  (S), connects some in- 
stances of S, according to some  string  criteria. Suppose 
f ' (S)  connects Il (Sl) ,  f,(S,), ..., I p ( S , ) ,  Ip+,(S1), ..., 
Z,,(S,), although not necessarily in that order. The in- 
stances relevant to Q in f'(S) are I,(S,), f ,(S,) ,  ..., 

The  search in I' (S) for Q consists of accessing each 
instance of S, and checking to  see if it is relevant to Q. 
If it is  relevant,  say it is Ii(Sl) ,  then the  access path 
within fi(S,) is used to  access  the relevant instances of 
Q in f i (Sl) .  The  path cardinality of Q in fi(S,) is P C ( Q /  
f i (S l ) ) .  When the  search  for Q in Zi(S,) is complete, the 
search  control returns to fi(S,)  for  the second  time to 
continue  the  search using the  access  path of f ' (S) .  Then 
the  next  component of f ' (S)  is checked  to  see if it is 
relevant  to Q ,  and so on. This  process is continued until 

. . .7 fj(Sp); 

components in fj(S); and 

are  accessed twice. 

4(S1 ) 

IP(S1). 
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the  last relevant instance  for Q has been searched. By 
using the  same summing technique  as in the proof of 
theorem 5 it follows that 

P C ( Q / Z ' ( S ) )  = 2 P C ( Q / f i ( S , ) )  
li(S1) 

+ P C ( f , ( S , ) ,  f , (S , ) , . . ;  f,(SJ/Z'(S)) 

+ p -  1 .  (32) 

This  completes  the proof. 

In many situations the catalogue may not provide a 
clue  for calculating P C ( Q / f i ( S , ) )  or P C ( Z , ( S , ) ,  f,(S,), 
..., Z,(S,)/Z'(S)) or even  for determining the  set 
f ,(S,) ,  f,(S,), ..., Z,(S,). Thus, additional  information 
has to be  stored so that  these  parameters  can be  de- 
termined.  Usually the QC of the  query  and  the SC of 
the string are specified in terms of attributes  and their 
values. Thus, if the string is ordered  on  the  appropriate 
attribute and the  ranks of the values specified by Q for 
that  attribute in SI are known,  then these  parameters can 
be  determined. If the  instances of SI are not ordered  on 
a QC attribute  or if the rank of the maximum  value of 
the  ordered QC attribute  cannot  be  determined in SI, 
then P C ( f , ( S , ) ,  f,(S,), ..., Z,(S,)/f'(S)) cannot  be 
determined and  its value may have  to be chosen  to be 
equal  to  the number of instances  connected by f '  (S). If 
it is not possible to  determine  whether a  particular in- 
stance, say f i ( S l ) ,  is relevant  to Q by examining it (i.e., 
its  encoded representation), then further  search of the 
access path defined by fi(S,)  has  to be  performed to 
determine  whether f i (S,)  is relevant  to Q. In  such  cases 
the term p - 1 in theorem 6 has  to be  replaced by n - 1 
where n is the  number of instances of S, connected  to- 
gether by f (S ). 

The path  cardinality of access  paths in string networks 
that  have  some specific characteristics  can be  calculated 
by more  simple  techniques. One  such string  network is 
a tree-string  structure. A  tree-string structure is a tree- 
structure of access  paths  that  are  constructed by using 
a series of E-strings or L-strings or a combination of both. 
Here we discuss only  a  tree-string structure  constructed 
by using E-strings  alone. An  example of such a tree- 
string structure is as follows 

Example 3 
Suppose { f i ( S ) }  denotes  the  set of instances of a string 
S where  each  instance is parametrized by the values of 
the  attributes A , ,  A,, . . ., A,.  The  instances of any E-string 
defined over S can be  parametrized  by the values of 
A, ,  A,, . . ., A,, where p < 1. Suppose E ,  is defined over 
S with a parametrized string criteria 

SC(v, ,  v,;. ., v,) zz ( A ,  = v,) A (A,  = v,) 

A . . . A  ( A , = v p ) ;  (33) 41 7 
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i.e., each distinct  p-tuple (v,, v,,. . ., v,) corresponds  to 
an  instance of E,.  Similarly, E,  is defined over E ,  with 
parametrized  string criteria 

SC(v , ,  v,;.., up-,)  ( A , = v , )  A ( A , = v , )  

. A (A,-, = v,-,); (34) 

E, is defined over E,-, with S C ( v , )  = ( A ,  = v,); E,+, is 
defined over E,. Here E,+, is the  root of the tree-string 
structure  and  the  instances of E ,  are  the  leaves of the 
tree. 

Multilevel  sorting can be  implemented  by an ordered 
tree-string structure.  The ORDER ON specification in the 
SC  is used to  construct  the  ordered tree-string structure 
as follows: The string criterion of E,-,, is given by 

SC(v , ,  vZ;. ., vi) E ( A ,  = v,) A (A,  = vz) 

A. . . A ( A i =  vi, 00 A i + l ) .  (35) 

The  SC of E,,, is (00 A , )  and  the  SC of E ,  may or may 
not  have  an  order  on specification. 

Suppose  there  are n instances of E,  and  the  number of 
instances of within the j,th instance of which 
is within the j,-,th instance of E,-,+, and so on. . . which 
is within j,th  instance of E, is  denoted by nj42,.,jk. Then 
the  path cardinality of the longest search path in an 
ordered tree-string structure is given by 

PC,,,(T,) = 2n - 1 + 2 (2nj, - 1 )  
.I1 

+ (2njlj2- 1 )  +... 
jl j ,  

+ 2 . . 2 (2njlj2.. . jp-z  - 1)  
j ,  j, j p - z  

+ 2. . . c nj,jz. ' j,-; (36)  
j, j 2  jg - ,  

If PC of the  search  for  the query with QC = (Ail  = e, )  
A (AiZ = e,) A .  . . A (Aik = 0,) has  to be determined, then 
the njIjz., j ,  have  to  be replaced by the  ranks of the 
maxima of the values of the  attributes specified by the 
QC within the  appropriate  instances of the E-strings. 

5. Algorithm for search path 
In  any efficient network every  node  cannot be  used as 
entry points to  the network. Hence,  each network has 
associated  with it a search  path algorithm. The  search 
algorithm proposed here for a query in the  access path 
network attempts  to  obtain a search path with minimum 
path  cardinality. The  shortest  path is not  attempted 
because  the algorithm would need too much  storage. The 
algorithm' is based on  the  assumptions  that  the QC  are 
given in the canonical  form and  the  SC of the E-strings 
and L-strings are given as  the unions of canonical  terms. 
The algorithm outlines  procedures  for handling only 

41 8 one canonical  term in the  SC. If there  are multiple ca- 
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nonical terms in the  SC, then the matching of the QC 
has  to be  performed with each term of the  SC. If one of 
the  terms matches or  covers  the  QC, then the  SC  matches 
or  covers  the  QC. If all the  terms negate the  QC, then 
the  SC negates the  QC.  The algorithm is composed of 
three  parts which are  denoted A l ,  A2  and  A3. 

A l :  Query on one  entity  set 

Step 1 
Locate  the A-strings  which are defined over all the  QC 
attributes  and  the  output  attributes. If there  are  no  such 
A-strings,  then search  for multiple  A-strings  with I D  
conjugates (or   ID conjugates over E-strings defined over 
the A-strings with SC, non-negating the  QC.  As  the  query 
is based on  one entity hence  these relevant  E-strings 
cannot  connect  more than one  instance of an  A-string) 
with  this  property. If no  such A-string is available,  then 
search  for multiple A-strings with the same I D  attribute 
which covers all the QC attributes  and  the  output at- 
tributes. If no  such A-string is available,  then the  query 
cannot  be  answered by the  access  path network. 

Step 2 
If there  exist  one  or more  A-strings defined over all the 
QC attributes  and  the  output  attributes, then  proceed 
to  the following substeps. 

Substep 2.1 Examine  the E-strings defined over  each of 
these A-strings.  If there  exists only one E-string  whose 
SC  covers  the  query, then  select it. If there is more than 
one such  E-string,  then select  the  one which has  the 
most favorable SC covering the  query  (results of the- 
orems 1 and 2 may be needed).  Then  search  for  the  entry 
point of the E-string by using algorithm A2. 

Substep 2.2 If there is no E-string  covering the  query 
satisfying substep 2.1, check  to  see if there  exists a set 
of E-strings defined over  the A-strings whose  SC  do  not 
negate the  QC.  Then  obtain a  canonical  disjoint  decom- 
position of the QC with respect  to  these E-strings (i.e., 
from QC - S C ) .  If the  set of E-strings  provides  a com- 
plete  decomposition of the  QC  and  covers  the  output 
attributes, then a cover  for  the  query  has been  obtained. 
If the  set of E-strings  provides  a  partial  decomposition 
of the QC  and/or a  partial cover  for  the  output  attributes, 
then  the residual  portion over  the A-strings. In such 
cases  the  substep 2.3 also has  to be executed,  otherwise 
the  search  for  the  entry point of the E-string is performed 
by using algorithm A2. 

Substep 2.3 If there is no E-string defined over  the  A- 
strings or a cover  for  the  query  has not  been  obtained 
from substeps 2.1 or 2.2, then  the L-strings  defined on 
the A-strings are examined. Select only those L-strings 
which form I D  conjugates. The  procedures described 
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for  the A-strings in substeps 2.1 and 2.2 are then  applied 
to  each of the L-strings  with respect  to  the  query or the 
residual QC and or the residual output values  (if substep 
2.2 has  not resulted  in  a cover  for  the  query). If there is 
more than  one E-string defined on  the L-string  which 
covers  the  query (or the  residual QC and /or the residual 
output  values,  as  the  case may be),  then  the  one with 
the minimum PC is selected. If there is no E-string de- 
fined on  the L-string,  this substep (i.e., 2.3) has  to  be 
repeated until an E-string is obtained.  Then  the  search 
for the  entry points of the E-strings are performed by 
algorithm A2. 

Step 3 
If there  exist multiple A-strings  with I D  conjugates (i.e., 
L-strings)  such  that  there  are multiple  L-strings defined 
over them and  each of these  covers all the  QC-attributes 
and  the  output  attributes, then the  procedures described 
for A-strings in step 2 and its substeps  are applied to 
each L-string. If there is more than  one qualified L-string, 
the  one with the minimum PC is selected.  (Results of 
theorems 5 and 6 may be  needed.)  Then  the  search  for 
the  entry points for  the relevant  strings is performed by 
algorithm A2. 

Step 4 
If a sequence of ID conjugate  L-strings over multiple 
A-strings results in an L-string  which covers all the  QC- 
attributes  and  the  output  attributes, then the  procedures 
described for A-strings in step 2  and  its substeps  are 
applied to this  L-string. If E-strings are mixed with L- 
strings to  create  an L-string  which covers all the  QC- 
attributes  and  the  output  attributes,  the  SC of the E- 
strings are  checked  to  determine  that they do  not negate 
the  QC.  Then  step 2 and its substeps  are applied. 

Step 5 
If there  exist multiple A-strings  with the  same ID at- 
tributes  but  not I D  conjunction  between them,  then 
apply step 2 to  each A-string  with respect  to  the seg- 
ment of the  QC which is relevant to  that A-string. Then 
search  for  the  entry points using algorithm A2. When the 
sets of instances of the different A-strings relevant  to 
the query are  retrieved,  an ID-conjugation has  to per- 
formed by matching to obtain  the  data relevant to  the 
query. 

Step 6 
If steps 2  through 5 are not  applicable to a query with 
respect  to  the  access  path  network, then the  query  cannot 
be  completely answered from the  network. 

A2:  Entry  point  search 
Results of theorems 4, 5, 6, and 7 have been  used to de- 
rive this  algorithm. 
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Case  1 
For  one E-string or L-string  which has  one  instance only: 
Use  the ON criterion to  locate  the string or strings (there 
have  to be L-strings) defined on it. Repeat this process 
for all the new L-strings. Continue  the  process until 
one  or  more  entry  points  are  reached.  As  the  process is 
continued a record of the different access  paths  and  their 
PC (using  theorem 5 and 6) is kept. The  best  choice  is 
the path  with the minimum PC. 

Case 2 
For multiple E-strings or L-strings  (all of them need not 
cover  the  A-strings) which have  one  instance  each:  The 
method is explained for multiple  E-strings  with one in- 
stance  each;  the  same method is applicable to L-strings 
or combinations of L-strings and E-strings. Suppose  the 
E-strings are E,,  E,, . . ., E,. Choose  any  one, say E,,  as 
the starting  point. Then  examine  the L-strings defined on 
E,.  Examine  the  components  (from  the exiting  list) of 
each L-string and include those  components which  con- 
tain  any  member of the  set E,, E,, . . *, E, in the  relevant 
access  paths. If some of the  components  are L-strings, 
then  the  same  process is repeated  for  those L-strings. 
In  constructing  relevant  access  paths, only those strings 
which are defined over  nonredundant  relevant E-strings 
are included. Thus, a set of L-strings defined over E,  
which have  access  paths  to a subset of E,, E,, . * ., E,  can 
be selected. The relevant access  paths  associated with 
each L-string are  recorded  and  their PC  are calculated 
by using theorems 5 and IS. The  same  process  is repeated 
with the new  L-strings until entry points are  reached. 
This  process  associates with each  entry point a set of 
favorable  access  paths  to E,,  E,, ' e . ,  E,  or its  subset. 
Then a set of paths covering E,,  E,, * . e, E, is selected  on 
the basis of minimum PC. 

C a s e  3 
For  one E-string or L-string  which has multiple  instances: 
If there is a set of E-strings or L-strings  with one instance 
each defined over  the given string which forms a cover 
for  the relevadt instances,  then  the method of case 2 is 
applied to  these new  strings. If there is a set of E-strings 
or L-strings, each with multiple instances, defined over 
the given string and  the  set  forms a cover  for  the relevant 
instances, then the method of case 4 has  to  be applied. 
If there is only one  ID-conjugate L-string defined over 
the given string, then  the method for this case (i.e., case 
3 )  has  to be  applied again to the new string. If there  is 
one E-string or L-string  with one instance. defined over 
the given string which forms a cover  for  the relevant in- 
stances,  then  the method of case 1 is applied to the new 
string. If all the strings defined over  the given  string, 
taken together, do not  form a cover  for all the desired 
instances, then the  search  cannot be  completed. 41 9 
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Case  4 
For multiple E-strings or L-strings which have multiple 
instances: Use  the ON criterion of the given strings and 
the  SC of the strings defined on  it  to find a set of strings 
which covers all the  desired instances. Then apply the 
methods  for  cases 1, 2, and  3 to  the new  strings to find 
the  best  access  paths for the desired  instances. In some 
situations  this method may have  to  be applied  repeatedly 
to  subsets of the  set of desired  instances. If there  does 
not  exit a set of strings which covers all the  desired in- 
stances, then the  query  cannot  be  answered completely. 

A3: Query  on nzultiple entity  sets 
This algorithm is  based  on  results of algorithms A I  
and A2. 

Step 1 
Locate all the A-strings defined over  subsets of the  QC 
attributes and output  attributes. 

Step 2 
Use algorithm A1 on the A-strings associated with each 
entity set with respect  to  the segment of the QC which 
is relevant to  that entity  set.  During  this process, if L- 
strings are  encountered which connect  other  relevant 
entity sets, then modify the segment of the QC accord- 
ingly and  check  for  its non-negation. If there  is  more than 
one  access  path  over  the  same  subset of the  relevant 
entity sets,  then select the  access path with the min- 
imum PC. 

Step 3 
Apply algorithm A2  to  the  output strings  obtained from 
step 2. Among the  access  paths obtained  from A2 only 
those which access strings on all the desired entity  sets 
(i.e., somewhere along the  path  there  exist  appropriate 
L-string  conjunctions between strings defined over all 
the relevant  entity sets)  are relevant  paths.  Among these 
the  one with the minimum PC is selected. 

Step 4 
If no  such  access path is obtained from  step  3,  then  an 
attempt should be  made  to  access  the desired  entities 
by different access  paths  and then to obtain the relevant 
data for the  query by matching. 

Example 4 
To illustrate the algorithm  consider the  data set and  the 
string  network  outlined in example 1. Suppose  the  query 
is of the form: Retrieve  the average  salary of the  person 
with man number  74672. Thus,  the QC attribute  is 
Man and  the  output  attribute is A v  Sal. Now  we  apply 
algorithm A 1. Using step 1 we find that  there  are  two 
A-strings, namely J A  1 and  JA3, which are relevant to 
the query. 

Then  we apply step 2 of A 1. This leads to substep  2.1. 
The E-string JEl is defined over  JA 1  and it covers  the 
query. The E-string JE2(n )  is defined over  JA3 and it 
also  covers  the query.  Both J E l  and J E 2  ( n )  connect 
the  same A-string instances although  they do  not have 
the  same  PC. 

Now apply algorithm A2.  Case 1 of A2 is applied to 
JE 1. There  is  no string defined over JE 1 ; hence, if JE 1 
is  an entry  point, then JE  1 + JA 1 is  an  acceptable  search 
path. If J E 1  is  not  an  entry  point,  then  this path cannot 
be  used for retrieval. Case 3 of A2 is applicable to 
JE2(n).  There is one L-string, viz. JL1, defined over 
the relevant instances of J E 2  ( n )  ; hence, case 3 has  to 
be applied again to JL1. There  is  one E-string with one 
instance, viz. JE3,  defined over  JL1;  hence,  case 1 is to 
be  applied to  JE3. If J E 3  is an  entry  point,  another 
alternate  search path is obtained. Then  the  PC of the 
two  paths  are calculated  by using theorems 5 and 6 to 
determine  the  best search path  for this query. 

6. Conclusion 
Logical  relations  and query  sets can induce a large num- 
ber of strings on a given set of data, which can result in 
a very complex access path  network. Thus, analyzing 
all properties of string structures and  providing the best 
search  path algorithm for all situations are extremely 
difficult.  When placement  rules  for  data  on complex 
storage media  and migration of data  are  taken  into con- 
sideration,  the problem  becomes still more complex. 
In this paper we have provided a solution to  the  search 
path problem for  any general  network constructed using 
A-strings,  E-strings and L-strings,  and the algorithm is 
based on minimum path  cardinality. The algorithm is 
suitable for  core-type  storage media  and is quite  complex 
because  the  network  is of very  general  nature.  Simple 
algorithms can be  deduced from  this algorithm if the net- 
work has some systematic  structure.  However,  the prob- 
lem of constructing  the optimum network  for a given set 
of likely queries  and  the effect of placement  algorithms 
on  search  paths  are still open  questions. 
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Appendix 
Pictorial  diagrams of the  types of string networks  covered 
by the  steps of the algorithms are given below. For this 
purpose 

QC = (A, = e,) A (A, = e,) A (A, = e,) 
and  the  output  attributes  are A, and A,. 
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Algorithm A 2  

Case 1 

Case 2 
\ \  \ \ 
\ \  

Case 3 
\ \  \ \ \ \ 
\ \  \ 

or any combination. 

Case 4 
\ \   \ \  \ \ \ 

\ 

$J $J ... h...&...&...@ 
or 

\ \  \ \ \ A /&...A A...h.. .A ...A 
or any combination of these 
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