W. E. Donath

Equivalence of Memory to “Random Logic”

Abstract: A model of the design process for computer logic is used to estimate the number of bits of memory required to replace a
so-called “random logic” circuit. The model can also be used to compare the respective time delays of array logic and random logic.

Introduction

Normally, most of the logic in computers is in the form
of so-called “‘random logic,” which consists of electronic
circuits performing NOR, NAND, OR, AND or other func-
tions interconnected in a pattern that does not follow
some prior scheme. It has been customary for some
time, however, to implement the major portion of the
control logic in read-only storage, which permits far more
flexible machine design. Recently, work has progressed
on so-called “array logic,” which is essentially a type of
look-up logic and, unlike memory, does not require that
all possible input combinations be decoded. Either read-
only, read-mostly, or read and write storage can be used
for array logic.

The purpose of this paper is to point out some combi-
national results relating random logic to memory. In par-
ticular, we point out that a model of a design process
developed earlier [1, 2] shows that the number of dis-
tinct computers that can be built with C circuit-type ele-
ments is of the order of 2** ¢, which we interpret to mean
that a circuit is the equivalent of 8.5 cells of memory.

A basic question concerns the number of bits of mem-
ory required to replace one circuit in random logic; em-
pirical studies (e.g., [3]) found this “equivalence ratio™
to vary between 5:1 and 30:1. It was also observed [3]
that the use of larger memory arrays has led to more in-
efficient use of the memory array. From the point of view
of the present study, it is important that we now establish
that there exists such a ratio, and that it is basically
around 8.5. It is, of course, likely that selected functions

SEPTEMBER 1974

may achieve far better ratios of utilization; on the other
hand, we do not study here the dependence on array size,
which is an open problem.

Another implication of the above result is that the pro-
vision of several types of circuits, e.g., if AND and NOR
are provided simultaneously, will allow only a modest
improvement in circuit count. The equivalence ratio, in-
stead of being 8.5, would then be at most 9.5, which
would yield a 12 percent improvement in circuit count.

In the next section we discuss a model of the design
process, from which we derive an equation showing that
the information content of a logic design is asymptotically
proportional to the number of circuits in the design. In the
third section we derive actual values from this model.

In the last section we give some consideration to time
delay. In essence, we derive a crude and simple rule for
comparing the time delay of a memory array with that
of a circuit. Here we use previous results [1, 2] on path
lengths in computer logic.

Mode! of the design process

The essential idea in the model is that we use an expan-
sion process that preserves “self-similarity” [4]: Given
a graph representation of the computer at a fairly high
level of design, we replace each node of the graph by a
small graph, and each edge by a set of edges between the
nodes of the two graphs replacing the original nodes, as
indicated in Figs. 1 and 2. Note that the mathematical
basis for many derivations given here comes from the
theory of Markov processes [5].

401

RELATION OF RANDOM LOGIC TO MEMORY

402

rrm o e e e e —

Input Output
| . 3
|

2

B D

Figure 1 - The four blocks, or nodes, represent a pattern to be
used in the hierarchical design process for random logic. The
outermost outline represents the block in the higher level of the
design process. In between the two dotted lines, the input and
output edges are replaced by sets of “descendant” edges (see
text), where output edge 3 yields two descendant edges and
input edges 1 and 2 give rise to three and two descendant edges,
respectively. Inside the inner dotted line are four nodes con-
nected to each other with four edges as well as to the expanded
external edges.

The following parameters are of interest:

the average number of nodes in a replacement graph

the average number of edges in a replacement edge set

the average number of connections to a node at some

level of design

! the number of design levels

T the average number of connections to a set of nodes,
which are the descendants of a single node after [de-
sign levels

C the total expected number of descendant nodes of

this single original node.

ST

From these parameters we now define

T = A5 (1)
and
C=dq. (2)

Werelate T to C as

I=1log C/log q

—log C,
T=As° /log g

=4 Clog sflog ¢

=AC?, (3)
where we define
p=log §/log q. (4)

W. E. DONATH

The “Rent exponent” of Eq. (3) was originally ob-
served in computer operations by E. Rent [6]; a thorough
study of this relationship is that of Landman and Russo
[7], where the range of p was found to vary from 0.47
to 0.75. A theoretical basis for this relationship is given
in more detail in earlier work [1]; we give this derivation
in Appendix A. The starting point of this model was, of
course, the need for an understanding of the Rent rule.

We are now concerned with the number of computers
that can be designed with such a process. Suppose that
w different graphs can be substituted for a node at each
stage of substitution, and that there exist no two equiva-
lent nodes at any stage in the process. (The general
mathematical problem becomes far more difficuit when
this is the case, and we expect that the approximation
made here is not seriously in error.) Finally, let us denote
by W, the number of distinct graphs generated by the de-
sign process after / levels of design. It is obvious that

w,= wd g B

{— —
= @D (5)

Let us assume that
C=4g>1,
W, = wtlev
3
and we can then denote
log, W,= C(log, w) /(g —1). (6)

We may consider the quantity log, w/ (¢ — 1) to repre-
sent the information content of a design per elemental
node. This simple result shows that the information con-
tent of a logic design is proportional to the number of
nodes, and we therefore can speak of an “information
content” per node. In the next section a value is derived
for this quantity, which we find to be about 8.5 bits /node.

We find here for this design process a result that
states that the information content of a graph increases
linearly with the number of nodes in the graph. In con-
trast, we may note that the number of directed graphs
with C nodes and AC edges (4 finite, but A > 1) is far
larger than that given by Eq. (5) and has an asymptotic
behavior quite different from that given by Eq. (6). In
the latter case

W=<C(C—1)

which becomes, after substituting Stirling’s approxima-
tion for the large factorials involved, and after some fur-
ther manipulation,

W — CC(h—l) (e/hh)C
or
log, W=C[(h—1) log, C +log, ¢ — h log, h].

IBM J. RES. DEVELOP.

Obviously, the asymptotic behavior is C log C. Note
that the design process modeled here generates only a
small fraction of all the graphs possible. One might con-
jecture that most such graphs are too complex to be
worked with by human beings.

Evaluation of information content

To perform the exact computation, we need to model the
process in somewhat more detail. Each step of the ex-
pansion process consists of

1. Replacing edges by sets of edges.

2. Replacing nodes by small graphs.

3. Connecting the edges generated in Step 1 to the nodes
of the graphs generated in Step 2.

Later we amplify the design process; first, however, we
require some results very similar to Shannon’s in informa-
tion theory. Let us define a set {b} of B boxes, where
each box b holds N, elements and each element in {b}
has weight m,. We make M choices with replacement,
where each of the M choices is distinct from the others
(i.e., choosing element x at choice i is not the same event
as choosing element x at choice j). Let us fix M, as the
number of times we choose from box b, giving us a total of

N(M, M, - My)=M'T[N,"*/M,}! (7)
b
distinct choices (i.e., we do not say a priori if choice i is

to be from some prespecified box »). We define the fre-
quency c, of making choices from box b as

c,=M,/M. (8)

Theorem: For M much larger than B, the number N of
distinct choices becomes

N = 2MH+O(B log M) (9)
where the information function H is defined usually as
H=Ecb log, (N,/cy). (10)
b
Proof of Eq. (9): M and M, are large numbers, and we
can substitute Stirling’s approximation K!= V27K
(K /e)" for the factorials in Eq. (7) to give
N,\"

N~ V2rM M"] (ﬁb) / V2aM,,.

b b
Using M, = M, we have

N M\
N& V2aM H (T) /\/ 27TMb.
b b

Taking the logarithm to the base 2, we find
log,N =3 M, log, (NM/M,) + log, V27M
b

— 3 log, V27M,)
b

SEPTEMBER 1974

C
3
%E
B D

Figure 2 The nodes A, B, C, and D, of Figure 1, expanded one
step further in the design process.

Substituting Eq. (8) yields
log,N =M X ¢, log,(N,/c,) + log, V2uM
- log, V2aM,,
b
where the first sum is MH. Because M, < M and because
there are at most B terms, this simplifies to
log,N = MH + O(B log M). QE.D.

Next we fix the values of M, so that the average weight
m of our choices =X, m,M,/M has some predeter-
mined value, while the number of choices N is maxi-
mized. We find then that

c,= N, xy™, (11)
where x and y are parameters fixed so that

Zc,=1

Zm,c,=m (12)
Proof: It is essentially necessary to maximize H. We do

this using the method of Lagrangian multipliers, i.e., we
maximize with respectto ¢,

(In2) X 3 ¢, log,(N,/¢,) + A(E ¢, — 1)
+ FL(Z my, ¢, — 7"—),

where we introduce the factor In 2 only for convenience.
Differentiating with respect to c,, we find

log, N, /¢, — 1 + A+ pm, =0,

403

RELATION OF RANDOM LOGIC TO MEMORY

404

Table 1 Comparison of exact and approximate formulas for
number of graphs

q n Exact value® Approximate Ratio
formula
q(q—1)/2
()/ q!
n
6 7 24 9 2.7
7 9 131 38 2.3
8 12 1312 754 1.74
9 14 15615 6600 2.6

*J. Riordan, “An Introduction to Combinatorial Analysis,” J. Wiley & Sons, Inc.,
New York, 1958, p 196.

which gives us

¢, =N, "1™,

If we set x=¢" " and y = ", we obtain Eq. (11). Q.E.D.
Furthermore, we can see that

H=3c, log, N,/c,
=73 ¢, (log,x + m log,y)
=—log,x — i log, y. (13)

For the special case that b assumes the values 0 to B
with

=(y)

m,=b, (14)
we find

x=[(B—m)/BY’,

y=m/(B—m),

H=imlog, B/m+ (B— m) log, B/ (B — m). (15)
Proof

B
w=()) "

B
1=2cb=;(b)xyb=X(1+y)B,

m=3bo, =3 (L) bt =08 (5)0
b

p>0
=xyB(1 +y)® ™.

We then find, by dividing the second of the above two
equations by the first, that m = yB/{(1 + y),ory ="m/
(B—m).

Substituting y into either of the above two equations
yields x. Substituting x and y into Eq. (13) yields us the
expression for H in Eq. (15).

W. E. DONATH

The question of labeling of the nodes is of some impor-
tance; in the derivation of the information content per
node [Eq. (6)] we assumed after each step of expansion
that the nodes of the parent graph are nonisomorphic to
one another. Of course, this is an approximation which
would give us too large a count for the number of graphs
generated. In this section we assume that the small de-
scendant subgraphs have no isomorphic sets of nodes,
which would be an approximation leading to lower
counts.

To estimate roughly the amount of error introduced by
this approximation, we compare for simple line graphs
(i.e., g unlabeled nodes, n undirected edges) the exact
count and the approximate formula in Table 1.

It can be noted that approximate values are off by a
factor of about two. If w is in error by a factor of, let us
say, eight, for ¢ = 6, this would introduce an error in the
information content per node of, using Eq. (6),

log,8/5=0.6 (16)

as compared to a computed value of 8.5.

We may look at the expansion step, perhaps in a some-
what simpler fashion, as the substitution of a pattern for
a node, where the edges connecting to and from the pat-
tern are already expanded. Hence, in order to bring our
model closer to real logic, we may adopt the convention
that the edges emanating from a node constitute a net.
We call this set of edges the “‘output” of a node and we
also specify that it expand identically. We must specify,
for each expansion of a node, the following:

1. The graph g into which the node is expanded, its node
count g, and its edge count n. We set g as a constant,
and n is variable. We later derive a result for the aver-
age value of n.

2. The number s of sets into which the output net is ex-
panded, and the nodes of the graph g to which the
edges are connected.

3. The number of inputs generated from each input edge;
we note that, because each input is the output of some
other node, this is determined independently of this
node. However, the way these edges are connected
to the nodes of the graph g may be chosen at this point.

We now need to derive an expression for the number of
substitutions which can be made at each node.

Given some parent graphs of M nodes, let us say that
Step 1 can be performed in R ways, Step 2 in $* ways,
and Step 3 in T ways, so that the total number of ways
is given by (R § T)". We compute R, S, and T on the
basis of the descendant nodes being labeled. We assume
that no isomorphism among the descendant nodes then
requires us to divide by g!; this approximation was al-
ready discussed. Then

IBM J. RES. DEVELOP.

wh=RST/q)™. (17)

We now derive, in turn, R, S, and 7. For a graph of ¢ la-
beled nodes, there exist g(q — 1) possible ways of as-
signing a directed edge. n edges, when no multiple con-
nections between pairs of nodes are permitted, can be

assigned in (q(qn— ”) ways. If we specify an average

value 7 for the number of edges internal to a graph for the
substitutions, we can see that we satisfy essentially the
conditions in Eq. (14) and can apply Eq. (15), that is,

log, R=r7log, q(q— 1)/ + [g(qg—1) — 7]
X log, [(q(q ~1)/q{q— 1) —n]. (18)

The selection of the expansion factors of the nets (Step
2) we take simply to be a selection of s blocks out of the
g blocks of the graph g. There are

4

ways of selecting these. We also fix the average value 5 of
s, so that we again satisfy Eq. (14) and can use again Eq.
(14) to determine S; i.e., we have

log, S =5log, g/5+ (g—5) log, g/ (g — §). (20)

The factor T requires a somewhat different technique
for evaluation. We note that we have in the unexpanded
(i.e., the parent) graph fM edges, each of which gener-
ates a descendant edge set. The source (output) nodes of
these edge sets and their sizes are selected in Step 2; in
Step 3 we select the sink or input nodes. The number of
ways this can be done is

(gds=(q)(g— 1) (g—s+1)

if the edge is split into s descendant edges. Let c, be the
fraction of edges which have s descendants. Then we find
that

T =1 [(@s]=™. (21)

Equations (11), (15), and (19) can be combined to
give us

- s, _ -

=) G=) 5 @2)
s/ \g—7 q

and, substituting into (21), we find

tog, 7= 3,7 () (;{—s) (® ; 3),, log, (@)s. (23)

We make an approximation in treating average values
as if they were actual values. One can see that the error
due to the approximation is of the order of M'?, i.e., M
log T would be off by errors of about M*? which is negli-
gible. We find, then, for T

SEPTEMBER 1974

Table 2 Information content per circuit of logic (bits /circuits)

_ log 5/log q

q f 5 {Rent exponent] I
10 2 5 0.699 6.95
4 .602 6.99
3 477 6.86
10 2.5 6 778 8.36
5 699 8.54
4 .602 8.50
3 477 8.24
10 3 5 .699 10.04
4 602 9.88
3 477 9.49
12 2.5 7 783 8.76
6 721 8.92
5 .648 8.91
4 558 8.77
3 442 8.49
20 2.5 9 733 10.00
8 2.5 4 667 8.08
7 2.5 3 565 7.74
6 2.5 3 613 7.46
5 2.5 3 .683 7.01

tog, 7= 3./ (;’) (5) (q%&f_s log, (q)s. (24)

Using Eq. (17) with
w=RST/q! (25)

and Eqgs. (18), (20), and (24) we can compute values of
w for different values of 7, ¥, § and ¢. 7 can be related to
f, 5, and g by the self-similarity principle, as follows.

The total number of edges in the parent graph is given
by fM, where the descendant graph has (f s+ n) M
edges, with gM nodes. Because the average number of
edges per node should not change, we find that f =
(F§+#) M /Mg or that
n=f(g—s). (26)

It is now possible to compute (log, w)/q— 1 using
Rent exponent p, [see Eqs. (3) and (4)], average fan-in
£, and g, which are given in Table 2. The value 8.5 quoted
in this paper is for g = 10, p = 2/3, and f= 2.5; the lat-
ter two values are fairly typical of computer logic. From
Table 1 we can see, furthermore, that I [ie., log,w
=+ (g — 1)] is relatively insensitive to g and p, and moder-
ately sensitive to f (i.e., if f= 2, the I would be 7). In
terms of system design this result indicates that consider-
ation of too many entities at one step of the design pro-
cess is not helpful.

Delay considerations
We are concerned here with the evaluation of memory
logic in terms of delay. We use the result that the aver-

RELATION OF RANDOM LOGIC TO MEMORY

405

406

age path length L in a combinational logic complex is
given by a relationship [1, 2]

L=C", (27)

where L may be considered either as the average or maxi-
mum path length with slightly different values of o. We
give a derivation of Eq. (27) in Appendix B. Crudely,

a+p~ 1. (28)

In the empirical studies [2] « ranged from 0.36 for a
high speed machine to 0.65, and « + p was, in 4 out of 5
cases, a value of 1.1. From the data in that report we can
estimate a to be 0.43 for typical logic. In addition, we
need to know the particular equivalence ratio R for a
given type of memory array, the response time ¢
for that array, and its bit count M. For the case

(M/R) ;

memory

t

block memory /

in the absence of better information, one would use
a = 0.45.

Appendix A: Derivation of the terminal count rela-
tionship for the design process [1]

We have the relationship T = AC”, where C is the num-
ber of blocks in the logic complex and A is the average
number of connections per elemental block.

We show here that this relationship is a consequence
of the design process. At some stage of the design pro-
cess, we have M logic blocks in our graph, with an aver-
age number of terminals for each block of 4. In the hier-
archical expansion process, all the blocks descendant
from one particular block do not generate any new ter-
minal lines outside, but the current external connections
or terminal of this one particulatr get replicated, on the
average, by a factor § at each step of the expansion. We
show first that, after / steps, the expected replication
is 5.

Let p(s) be the probability that an edge is replicated s
times in one step. Then 3p(s) = 1 and Ssp(s) =s.

The generating function P(x) can be written [5]

P(x) =3 p(s)x

and
P(1)=1,
[dP(x)/dx],_, =s5.

Let us consider the probability p,(S) that after [stages
of the design process this single edge has generated S
edges, and the associated generating function

P(x) = p(s) x°,
s

which has also the property that

W. E. DONATH

P(1)=1,

[dP,(x) /dx],_, =S, (A1)
| The following is true [7]:

P,,(x) =P[P(x)].

Proof

P (8) = 2 pi(s,) % {s:25,= s} H p(s),

j=1

P, (x)= Zp,H(S)x —2 Zp,(s)

X Z {s;:Zs5,= s} H p(s;)

j=1

=3 Y p(s))2{s:Zs, = s} Hp(s)x%

8 So
K]
=3 psy) X E{s:Zs,=s}H]] p(s;)x7.
S s i=1

Because

> 3{s;:3s = s} =35},
we have

Py, (x) =3 p(sy)2{s;} H p(s)x"

So

“Zp,(s) H S p(s;)x¥

JlS

= 2 p(s) P(x)%

=P,[P(x)]. Q.E.D.
This leads to the result that
5= [(dP,(x) /d0)]x =1
=5 (A2)

Proof. The above is true for /= 1.
dP(x) /dx={dP_,[P(x)]/dx}x =1
= {dP, ,[P(x)]/dP(x) - dP(x)/dx}x =1
= [dP,_,(P)/dP]lx=1" [dP(x)dx]x=1
=85
Induction completes the proof. Q.E.D.
The entire statement
T =45 (A3)

is true because 4 and §' are independently determined
average quantities. Because

IBM J. RES. DEVELOP.

{=log C/log g, (A4)
we can see that

T = AEIOg Cllog q
— Aclog Silog ¢
which allows us to relate § to the Rent exponent p by

p=log §/log q. (A5)

Appendix B: Average path length relationship

We wish to show that it is plausible that the expectation
value of the number of blocks 7 on a path through a com-
binatorial logic with C circuits is given by

L= e (B1)

Let us specialize our design process for combinational
circuits and consider the number of blocks from input to
output as well as the number of paths from input to out-
put. Let us also consider the set of graphs to be used for
substitution in the design process; let the average lengths
of paths through such graphs be A, and the average num-
ber of descendant paths for any input be given as m. Then,
assume that a path of length r exists in a complex, after
one further step of the design process the expected length
of this path is given as
X, (B2)
while the number of descendant paths is '
. (B3)

The average length of the paths after one design step
is then greater than

A, (B4)

where r is the average length of the parent paths. We
then find

L) =x" (B35)

SEPTEMBER 1974

Equation (B5) would be an equality if the substitution
graphs would be of a ‘“‘regular form,” where the number
of blocks in any path is A and the number of blocks in the
graph at any level of the path is s (e.g., Fig. 1 represents
such a graph if we omit the input feeding the block at the
upper right-hand corner). In such a special case we have

s}\=q7
log s/log g +log A/log g=1,
pta=1. (B6)

In fact, it was found [2] that a + p was about 1.1.

References
1. W. E. Donath, “Stochastic Model of the Computer Logic
Design Process,” IBM Research Report RC-3136, Novem-
ber, 1970, IBM Thomas J. Watson Research Center, York-
town Heights, New York.
2. W. E. Donath and R. B. Hitchcock, “Path Lengths in Com-
binational Computer Logic Graphs,” IBM Research Report
RC-3383, June, 1971, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York.
. A. Weinberger, private communication.
4. B. Mandelbrot; e.g., “The Pareto-Levy Law and the Dis-
tribution of Income,” International Econ. Rev. 1,79 (1960);
Information Theory and Psycholinguistics: A Theory of
Word Frequencies,” from Readings in Mathematical
Sciences, P. F. Lazarsfeld and N. W. Henry, eds., MIT
Press, Cambridge, Massachusetts, 1968, p. 350.
5. K. L. Chang, Markov Chains with Stationary Transition
Probabilities, Springer Verlag, New York, 1967.

. E. Rent, private communication.

. B. S. Landman and R. L. Russo, “On a Pin-vs-block Rela-
tionship for Partitions of Logic Graphs,” IEEE Trans.
Electronic Computers C-20, 1469 (December, 1971).

3

~1 O\

Received November 12, 1973

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

RELATION OF RANDOM LOGIC TO MEMOR)Y

-

