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Equivalence of Memory to “Random Logic” 

Abstract: A model of the design process  for  computer logic is used to  estimate the number of bits of memory  required to replace a 
so-called “random logic” circuit. The model can  also  be used to compare  the  respective time delays of array logic and random logic. 

Introduction 
Normally,  most of the logic in computers is in the form 
of so-called  “random logic,” which consists of electronic 
circuits performing NOR,  NAND, OR, AND or  other func- 
tions  interconnected in a pattern  that  does  not follow 
some  prior  scheme. It  has  been  customary  for some 
time, however, to implement the major  portion of the 
control logic in  read-only  storage,  which  permits far more 
flexible machine  design. Recently, work has progressed 
o n  so-called “array logic,” which is essentially a type of 
look-up logic and, unlike memory,  does not require  that 
all possible  input  combinations be  decoded.  Either read- 
only,  read-mostly, or read  and  write  storage can  be used 
for  array logic. 

The  purpose of this paper is to point out  some combi- 
national results relating  random logic to memory. In par- 
ticular, we point out  that a model of a  design process 
developed  earlier [ 1, 21 shows  that  the number of dis- 
tinct computers  that  can be built with C circuit-type ele- 
ments is of the  order of 2”’ ‘, which we  interpret to mean 
that a  circuit is the equivalent of 8.5 cells of memory. 

A  basic question  concerns  the  number of bits of mem- 
ory required to replace one circuit in random logic; em- 
pirical studies (e.g., [3 ] )  found  this “equivalence  ratio” 
to vary between 5 :  1 and 30: 1. It  was  also  observed [3]  
that  the  use of larger  memory arrays  has led to more in- 
efficient use of the memory array.  From  the point of view 
of the  present  study, it is important  that  we now establish 
that  there  exists  such a  ratio,  and that it is basically 
around 8.5. It is, of course, likely that selected functions 

may achieve  far  better  ratios of utilization; on  the  other 
hand,  we  do  not study here  the  dependence  on  array size, 
which is an  open problem. 

Another implication of the  above result is that  the pro- 
vision of several types of circuits, e.g., if AND and NOR 
are provided  simultaneously, will allow only a modest 
improvement in circuit count.  The equivalence  ratio, in- 
stead of being 8.5, would then  be at most 9.5, which 
would yield a 12 percent improvement in circuit  count. 

In  the  next section we  discuss a model of the design 
process, from which we derive  an equation  showing that 
the information content of a logic design is asymptotically 
proportional to  the  number of circuits in the design. In  the 
third  section we derive  actual values from this model. 

In  the  last section we give some consideration to time 
delay. In  essence, we derive a crude  and simple rule for 
comparing the time  delay of a memory array with that 
of a circuit. Here we use  previous  results [ 1, 21 on path 
lengths in computer logic. 

Model of the design process 
The essential  idea in the model is  that we use  an expan- 
sion process  that  preserves “self-similarity” [4]: Given 
a graph representation of the  computer  at a fairly high 
level of design, we replace each  node of the graph by a 
small graph, and  each edge by a set of edges between  the 
nodes of the  two  graphs replacing the original nodes, as 
indicated in Figs. I and 2. Note  that  the mathematical 
basis for many derivations given here  comes from the 
theory of Markov  processes [ 51. 401 
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Figure 1 The four blocks, or nodes, represent a pattern to be 
used in the hierarchical design process for random logic.  The 
outermost outline represents the block in the higher level of the 
design process. In between the two dotted lines, the input  and 
output edges are replaced by sets of "descendant" edges (see 
text), where output edge 3 yields two descendant edges and 
input edges 1 and 2 give rise to three  and two descendant edges, 
respectively. Inside the inner dotted line are four nodes con- 
nected to each other with four edges as well as to the expanded 
external edges. 

The following parameters  are of interest: 

q the  average  number of nodes in a replacement graph 
S the  average  number of edges in a replacement edge set 
A the  average  number of connections  to a node at some 

1 the  number of design  levels 
T the  average  number of connections to a set of nodes, 

which are  the  descendants of a single node  after 1 de- 
sign levels 

C the  total  expected  number of descendant  nodes of 
this single original node. 

level of design 

From  these  parameters  we now define 

T =  AS^ ( 1 )  

and 

c = qz. ( 2 )  

We  relate T to C as 

= AC'" s'logq 

= AC', (3) 

where  we define 

p = log S/log q. (4) 

The  "Rent  exponent" of Eq. (3) was originally ob- 
served in computer  operations by E. Rent [6] ; a thorough 
study of this  relationship is that of Landman  and  Russo 
[7], where  the range of p was found to  vary  from 0.47 
to 0.75. A theoretical basis for this  relationship is given 
in more detail in earlier work [ 1 ] ; we give this derivation 
in Appendix A. The starting  point of this model was,  of 
course,  the need for  an  understanding of the  Rent  rule. 

We are now concerned with the  number of computers 
that  can be designed  with such a process.  Suppose  that 
w different graphs  can be substituted  for a node  at  each 
stage of substitution,  and  that  there  exist  no  two  equiva- 
lent  nodes  at  any  stage in the process. (The general 
mathematical  problem becomes  far  more difficult when 
this is the  case,  and  we  expect  that  the approximation 
made  here  is  not seriously  in error.)  Finally,  let  us  denote 
by W ,  the  number of distinct graphs  generated by the de- 
sign process  after I levels of design. It is obvious  that 

w = w$-1+$--2+...+1 

- - w(qL-l , / (q- l )  ( 5 )  

Let  us  assume  that 

c = ql>> 1, 
w = wc/(4-1) 

1 

and we can  then  denote 

log, w, = c (log, w )  / ( 4  - 1 ). (6) 

We may consider  the  quantity log, w /  ( q  - 1 ) to repre- 
sent  the information content of a design per elemental 
node. This simple  result shows  that  the information con- 
tent of a logic design is proportional to  the  number of 
nodes,  and  we  therefore  can  speak of an "information 
content"  per  node.  In  the  next section a value is  derived 
for this quantity, which we find to be about 8.5 bitslnode. 

We find here  for this  design process a result  that 
states  that  the information content of a  graph increases 
linearly  with the  number of nodes in the graph. In  con- 
trast, we may note  that  the  number of directed  graphs 
with C nodes  and hC edges ( h  finite, but h > 1) is far 
larger  than that given by Eq. (5) and  has  an  asymptotic 
behavior  quite different from  that given by Eq. (6) .  In 
the  latter  case 

w =  ( Ch ) / C ! ,  
C ( C -  1) 

which becomes,  after substituting Stirling's approxima- 
tion  for  the large  factorials  involved, and  after  some  fur- 
ther manipulation, 
w = CCW-1) (e lhhIc ,  
or 

l og ,W=C[(h-1 ) log ,C+log ,e -h log2h] .  

IBM J .  RES. DEVELOP. 



Obviously,  the  asymptotic  behavior is C log C .  Note 
that the design process modeled here generates only a 
small fraction of all the  graphs possible. One might con- 
jecture  that most  such  graphs are  too complex to  be 
worked with by human beings. 

Evaluation of information content 
To perform the  exact computation,  we  need to model the 
process in somewhat  more  detail.  Each step of the ex- 
pansion process  consists of 

1. Replacing edges by sets of edges. 
2. Replacing nodes by small graphs. 
3.  Connecting  the  edges  generated in Step 1 to  the  nodes 

of the  graphs generated in Step 2. 

Later we amplify the design process; first, however, We 
require  some  results  very similar to Shannon's in informa- 
tion  theory. Let  us define a set { b }  of B boxes,  where 
each box b holds N, elements  and  each element in {b }  
has weight m,. We make M choices with  replacement, 
where  each of the M choices  is  distinct  from the  others 
(i.e., choosing  element x at choice i is not the same  event 
as choosing  element x at choice j ) .  Let us fix M ,  as  the 
number of times we choose from box b, giving us a total of 

N(M, M ; . .  M E )  = M !  fl N b M b / M b !  (7 1 
b 

distinct  choices (i.e., we do  not say a priori if choice i is 
to  be from  some prespecified box 6 ) .  We define the  fre- 
quency cb of making choices from box b as 

c,, = M b / M .  (8 1 
Theorem: For M much larger than B ,  the number N of 
distinct choices becomes 

= 2MH+O(B log M )  (9 1 
where the information function H is defined usually as 

H = E cb log, (Nb/cb). (10) 
b 

Proof of Eq. ( 9 ) :  M and M ,  are large numbers,  and we 
can substitute Stirling's approximation ' K !  = 
( K l e ) "  for the factorials in Eq. (7 )  to give 

Using XM, = M ,  we have 

Taking the logarithm to  the base 2, we find 

log,N = M ,  log, (NbM/Mb) + log, 
b 

- log, m. 
b 

Figure 2 The nodes A, B, C, and D, of Figure 1, expanded one 
step further in the design process. 

Substituting  Eq. (8)  yields 

log,N = M X cb log,( Nb/ cb) + log, 

- 2 log, 
b 

where  the first  sum  is M H .  Because M ,  5 M and  because 
there  are  at most B terms,  this simplifies to 

log,N = M H  + O ( B  log M ) .  Q.E.D. 

Next we fix the values of M ,  so that  the average weight 
rn of our  choices K= X, m,M,/M has  some predeter- 
mined value, while the  number of choices  N is maxi- 
mized. We find then that 

cb = N ,  xymb, (11) 

where x and y are  parameters fixed so that 

- 

Zc ,=  1 

X mb cb = Til: 

Proofi It is essentially  necessary to maximize H .  We do 
this using the method of Lagrangian multipliers, i.e., we 
maximize with respect  to cb 

(In 2) x 8 cb log,(Nb/cb) + h ( 8  cb - 1) 

+ p(8  mb c b -  3, 
where we introduce the  factor In 2 only for convenience. 
Differentiating with respect  to cb, we find 

log, Nb/cb - 1 + h + pm, = 0, 
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Table 1 Comparison of exact and approximate formulas for 
number of graphs 

4 n Exact valuea Approximate Ratio 
formula 

6  7  24 9 
7 9 131 38 

2.7 

8 12 1312 754 
2.3 

9 14 15615 6600 
1.74 
2.6 

‘J. Riordan, “An Infroduction 10 Combinaforial Analysis,” J. Wiley & Sons, Inc., 
New York, 1958, p 196. 

which gives  us 

cb = N eA- l+Fmb 

If we set x = e*-‘ and y = e”, we  obtain Eq. ( 1 1 ) .  Q.E.D. 

Furthermore, we can  see  that 

H = 8 cb log, Nb/cb 

= -8 cb(logs + m log,y) 

= -logs - Klog,y. ( 1 3 )  

For  the special case  that b assumes  the values 0 to B 
with 

mb = b,  

we find 

X = [ ( B  - E )  / B I B ,  

y = E /  ( B  - E) ,  

H = E l o g , B / E +  ( B - E )  l o g , B / ( B - E ) .  ( 1 5 )  

Proof 

b 

m = 8 b ~ , = ? ( ~ ) b x y ~ = x y B z  B ( b -  B - 1   l ) x y b - l  
b>O 
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= xyB ( 1  + Y ) ~ - ’ .  

We then find, by dividing the second of the above two 
equations by the first, that ET = yB / ( 1 + y )  , or y = i j i /  
( B - 3 .  

Substituting y into  either of the  above  two  equations 
yields x .  Substituting x and y into  Eq. ( 13)  yields us the 
expression for H in Eq. ( 1 5 ) .  

The question of labeling of the nodes is of some impor- 
tance; in the derivation of the information content per 
node [Eq. ( 6 ) ]  we  assumed after  each  step of expansion 
that the  nodes of the  parent graph are nonisomorphic to 
one  another. Of course, this  is an approximation which 
would give us  too large a count  for the  number of graphs 
generated.  In  this  section  we assume  that  the small de- 
scendant subgraphs have  no isomorphic sets of nodes, 
which would be an  approximation leading to lower 
counts. 

To estimate roughly the amount of error introduced by 
this approximation,  we compare  for simple line graphs 
(i.e., q unlabeled nodes, n undirected edges) the exact 
count and  the  approximate  formula in Table 1 .  

It  can  be noted that approximate  values are off by a 
factor of about two. If w is in error by a factor of, let us 
say,  eight,  for q = 6 ,  this would introduce an  error in the 
information content  per node of, using Eq. (6) ,  

10g,8 / 5 = 0 . 6   ( 1 6 )  

as compared to a  computed  value of 8.5.  
We may look at  the expansion  step, perhaps in a some- 

what simpler fashion, as  the substitution of a pattern for 
a node,  where the edges  connecting  to and from the pat- 
tern are already  expanded. Hence, in order  to bring our 
model closer  to real logic, we may adopt  the convention 
that  the edges  emanating from a node constitute a net. 
We call this set of edges  the “output” of a node and we 
also specify that it  expand identically. We must  specify, 
for  each expansion of a node, the following: 

1 .  The graph g into which the node  is  expanded,  its  node 
count q, and its edge count n. We set q as a constant, 
and n is variable. We later  derive a result for the aver- 
age value of n. 

2 .  The  number s of sets into  which  the output  net is  ex- 
panded,  and the  nodes of the graph g to which the 
edges are connected. 

3.  The number of inputs generated  from each  input edge; 
we note  that,  because each  input i s  the  output of some 
other node,  this is determined  independently of this 
node. However,  the way these edges are connected 
to  the nodes of the graph g may be chosen at this  point. 

We now need to  derive an  expression for  the number of 
substitutions  which can  be  made  at  each node. 

Given some parent  graphs of M nodes,  let us say  that 
Step 1 can be performed in EM ways, Step 2 in S” ways, 
and  Step 3 in T” ways, so that  the total number of ways 
is given by ( E  TI”. We compute E, s, and T on the 
basis of the  descendant nodes being labeled. We assume 
that no  isomorphism among the descendant  nodes then 
requires us to divide by q ! ;  this  approximation  was al- 
ready  discussed. Then 
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wM = ( R  s T/q!)? ( 1 7 )  

We now derive, in turn, s, and  For a graph of q la- 
beled nodes, there  exist  q(q - 1 )  possible  ways of as- 
signing a directed  edge. n edges, when no multiple con- 
nections  between  pairs of nodes are permitted, can be 

assigned in (4(qi I ) )  ways. If we specify an average 

value ii for  the number of edges  internal to a  graph  for the 
substitutions, we can  see that  we satisfy essentially  the 
conditions in Eq. (14) and can apply Eq. (15),  that is, 

l o g , R = i i l o g , q ( q - l ) / i i + [ q ( q - l ) - " j  

XI%, [q(q-   1 ) /4(4-  1 1 - i I .  (18)  

The selection of the expansion factors of the  nets  (Step 
2) we take simply to  be a selection of s blocks out of the 
q blocks of the graph g. There  are 

ways of selecting these. We also fix the  average value S of 
s, so that we again satisfy  Eq. ( 1  4)  and can use again Eq. 
( 14)  to  determine 3 ;  i.e., we  have 

log, s = s log, q /S  + (q - S) log, q/  (q - S). (20) 

The  factor requires a somewhat different technique 
for  evaluation. We note  that we have in the unexpanded 
(i.e., the  parent)  graphfM edges, each of which gener- 
ates a descendant edge set.  The  source  (output) nodes of 
these edge sets and their sizes are selected in Step  2; in 
Step 3 we select the sink or input  nodes. The number of 
ways  this can be done is 

(q ) s=   (q ) (q -  I ) . . .  ( q - s +  1 )  

if the  edge is split into s descendant edges. Let c, be  the 
fraction of edges which have s descendants.  Then we find 
that 

TM = [ (q)s ]"JM.  (21) 
S 

Equations ( 1 1 ) , ( 15) ,  and ( 19) can be combined to 
give us 

and, substituting  into (2 1 ), we find 

We make an  approximation in treating average values 
as if they  were actual values. One  can  see  that  the  error 
due  to  the approximation is of the  order of MI", i.e., M 
log Twould be off by errors of about MI',, which is negli- 
gible. We find, then, for T 

Table 2 Information  content  per  circuit of logic (bits/circuits) 

log s / log q - 
4 f :  S [Rent  exponent] I 

10 2  5 0.699 
4 

6.95 
,602 6.99 

3 .477 
10 

6.86 
2.5 6  ,778 8.36 

5 .699 8.54 
4 .602 8.50 
3 .477 8.24 

10 3 5 ,699 10.04 
4 ,602  9.88 
3  ,477 9.49 

12 2.5 7  ,783 8.76 
6 .72 1 8.92 
5 .648 8.9 1 
4  ,558 8.77 
3  ,442 

20 
8.49 

2.5 9 .733 10.00 
8 2.5 4 .667 8.08 
7 2.5 3 .565 7.74 
6 2.5 3 .6  13 7.46 
5 2.5 3  ,683 7.01 

Using Eq. (17) with 

w =  R S T/q! (25 1 
and Eqs. ( IS ) ,  (20),  and (24) we can  compute values of 
w for different values of E ,  f; Sand q. ri can  be related to 
f;S; and  q by the self-similarity principle, as follows. 

The total  number of edges in the  parent graph is given 
by fM, where the  descendant graph  has (f S+ i i )  M 
edges, with qM nodes.  Because  the  average  number of 
edges  per  node  should not change,  we find that f = 
( f f+ i i )M/Mqor tha t  

"_ 

i i=f(q-s9.   (26) 

It is now possible to  compute (log, w) /q  - 1 using 
Rent  exponent p ,  [see Eqs. ( 3 )  and (4)],  average fan-in 
f; and q, which are given in Table 2. The value 8.5 quoted 
in this paper is for q = 10, p = 2/3, andf= 2.5; the lat- 
ter  two values are fairly typical of computer logic. From 
Table 1 we can see, furthermore, that [i.e., logw 
+ (q - 1 ) ] is relatively insensitive to q and p ,  and moder- 
ately sensitive to f (i.e., i f f =  2, the would be 7 ) .  In 
terms of system design  this  result  indicates  that  consider- 
ation of too many entities at  one  step of the  design pro- 
cess is not helpful. 

Delay considerations 
We are  concerned here  with the evaluation of memory 
logic in terms of delay. We use the  result that  the  aver- 406 
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age path length L in a combinational logic complex is 
given by a relationship [ 1, 21 

L = C", (27) 

where L may be considered either as the average or maxi- 
mum path length  with  slightly different values of a. We 
give a derivation of Eq. ( 2 7 )  in Appendix B. Crudely, 

a + p =  1. (28) 

In the empirical studies [ 2 ]  a ranged  from 0.36 for a 
high speed machine to 0.65, and a + p was, in 4 out of 5 
cases, a value of  1.1. From the data in that report we can 
estimate a to be 0.43 for typical  logic. In addition, we 
need to know the particular equivalence ratio R for a 
given type of memory array, the response time t,,,,, 
for that array, and its bit count M .  For the case 

tbloeh - trnemow/ (MI')", - 

in the absence of better information, one would use 
a = 0.45. 

Appendix  A: Derivation of the terminal count rela- 
tionship for the design process [ l ]  
We have the relationship T = ACp, where C is the num- 
ber of blocks in the logic  complex and A is the average 
number of connections per elemental block. 

We show here that this relationship is a consequence 
of the design process. At some stage of the design pro- 
cess, we have M logic blocks in our graph, with  an aver- 
age number of terminals for each block of A .  In the hier- 
archical expansion process, all the blocks descendant 
from one particular block do not generate any  new ter- 
minal lines outside, but the current external connections 
or terminal of this one particular get replicated, on the 
average, by a factor S at each step of the expansion. We 
show  first that, after 1 steps, the expected replication 
is s'. 

Let p ( s )  be the probability that an edge  is replicated s 
times in one step. Then Z p ( s )  = 1 and Z s p ( s )  = S. 

The generating function P ( x )  can be written [5] 

P ( x )  = 2 P b )  x" 
S 

and 

P (  1) = 1, 

[dP(x )   / dx l ,= ,  = s. 
Let us consider the probability p , ( S )  that after 1 stages 

of the design process this single  edge has generated S 
edges, and the associated generating function 

P , ( x )  = 2 P , b )  x", 
S 

which  has also the property that 

Proof. The above is  true for 1 = 1 .  

d P , ( x ) / d x = { d P , _ , [ P ( x ) ] / d x ) x =  1 

= {dP'-,[ P ( x ) ]  /dP(x) * l d x l x  = 1 

= [ d P , - , ( P ) / d P ] x =  1 * [ d P ( x ) d x ] x =  1 
- - s,-, * s. - 

Induction completes the proof. Q.E.D. 

The entire statement 

T =AS' (A3 1 
is true because A and S' are independently determined 
average quantities. Because 
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I = log C/log q, (A41 

we can  see  that 
= Aiio&? Cjlog g 

- A F l o r  q - 

which allows us to  relate S to  the  Rent  exponent p by 

p = log S/log q. (AS) 

Appendix B: Average path length relationship 
We wish to show that it is plausible that  the  expectation 
value of the number of blocks I on a path through a corn- 
binatorial logic with C circuits is given by 

t = Ca. (B1)  

Let  us specialize our design process  for combinational 
circuits  and  consider  the number of blocks from  input  to 
output  as well as  the number of paths  from  input  to out- 
put. Let us also  consider  the  set of graphs  to  be used for 
substitution in the design process; let the  average  lengths 
of paths through such  graphs be h, and  the  average num- 
ber of descendant  paths  for any input be  given as <. Then, 
assume  that a path of length r exists in a complex,  after 
one  further  step of the design process  the  expected length 
of this  path is given as 

rh , 032)  

while the number of descendant  paths is 

r .  
- m 

(€33) 

The  average length of the  paths  after  one design step 
is then greater  than 

,x, (B4)  

where 7 is the  average length of the  parent paths. We 
then find 

L ( 1 )  I x I .  (B5) 

Equation (B5) would be an equality if the substitution 
graphs would be of a  “regular form,”  where  the number 
of blocks in any path is A and  the number of blocks in the 
graph  at  any level of the  path  is s (e.g., Fig. 1 represents 
such a  graph if we omit the  input feeding the block at the 
upper right-hand corner).  In  such a special case we have 

SA = q, 

log s/log q + log h/log q = 1 ,  

p + a =  1 .  036) 

In  fact, it was found [ 2 ]  that a! + p was  about 1 . 1 .  
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