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Steady Solution for Circumferentially Moving Loads

on Cylindrical Shells

Abstract: The steady, forced-wave solution is obtained for loads that travel with constant speed on a simply supported circular shell,
the motion of which is damped externally by air. Critical speeds are identified above which the waveform, which is a standing wave in
moving coordinates, exhibits shorter wavelengths in front of the load than behind it. At supercritical speeds the solution becomes un-

bounded, because of loss of stability, in the limit of no damping.

Introduction
Solutions for circular cylindrical shells under dynamic
loading conditions of various forms have appeared in the
recent literature. Payton [1] solved the problem of dy-
namic membrane stresses in an infinitely long elastic
shell. He gave specific results for impulse-concentrated
and uniform-pressure loads as well as for a circumferen-
tially expanding pressure load. In [2] and [3], Forrestal
and Alzheimer evaluated the solution derived in [1] for
circumferentially moving loads. Liao and Kessel [4] con-
sidered the problem of cylindrical shells, with bending
as well as membrane effects, subjected to moving loads.
Their shell had finite length and was subjected to the
boundary conditions of simple support. Using appropri-
ate Fourier series decompositions in the axial and cir-
cumferential directions with a Laplace transform in time,
Liao and Kessel formally derived a solution that exhibits
resonant conditions at critical speeds of the moving load.
For the concentrated load moving circumferentially with
constant speed, their solution, Eq. (33) in [4], predicts
a form that is symmetrical with respect to the moving
load regardless of the speed at which the load travels. The
speed-independent property is quite unexpected in view
of the solution for moving loads on a simply supported
plate strip given by Reismann [5], which is symmetrical
for subcritical speeds but exhibits a forced-wave phenom-
enon for supercritical speeds with shorter wavelengths
in front of the load than behind it. This phenomenon was
also recently observed experimentally [6] in a short
cylindrical shell having a radius-to-length ratio of three
and a radius-to-thickness ratio of 1500.

The critical speed is associated with loss of stability
(see [7] and [8]). The inertia enters into the steady
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equation in moving coordinates with an effect equivalent
to compressive stress resultants and the instability is
similar to that of buckling. Aithough the membrane solu-
tion in [1] would not be expected to have critical speeds
with associated different wavelengths in front of and be-
hind the load, the bending effects included in the shells
considered in [4] should lead to such a phenomenon.

In this paper we obtain the steady, inextensible bend-
ing solution for a simply supported circular shell sub-
jected to loads moving circumférentially at constant
speeds. The a.malytical‘ procedure is similar to that em-
ployed in [1].In order to deal first with integrals that
exist in the: regular sense, we include external damping
effects. We obtain a forced-wave solutiont with different
wavelengths in front of and behind the load for the case
of supercritical speed The amplitudes of these waves
decay exponentially ‘with distance from the load for
damped or undamped soélutions at subcritical speeds, as
well as for damped solutions at supercritical speeds.
However, the undamped solution shows no decay at
supercritical speeds—in fact, the solution obtained does
not converge for this case because of the previously men-
tioned loss of stability. S

Formulation of the problem

The geometry and loading of the shell are shown in Fig. 1.
The cylinder is of length ¢, radius a, and thickness k. The
coordinates of a point are x, ¢; the displacement compo-
nents in these directions are u, v and the outward dis-
placement is w. The loading is q(x, ¢ — Vt/a), which
indicates that it is traveling without a change in its func-
tional form in the circumferential direction with speed V.
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g, (x,¢,t) = q(x,0 —Vt/a)

Figure 1 Geometry and loading for the cylindrical shell.

The equations used here are the thin-shell approximate
equations on page 220 of Fliigge [9], or page 522 of
Timoshenko and Woinowsky-Krieger [10]. After using

the inextensibility assumption,
u =0, u-=-—v', v=—w, (1)

and adding the inertia and damping terms to the radial
equation, we obtain the single equation

. —phd cd’ a
ML Y oypent) = ey, 52 z
k(W™ + 2w + wees?) D, "D w,+qDl, (2)
in which
k=Hh/12a", D,=Eh/1—+,
( )=0( )/o¢, ( ) =ad( )/ax (3)

where p, E, v and ¢ represent mass density, Young’s
Modulus, Poisson’s ratio, and damping coefficient, re-
spectively. The subscript ¢ denotes the time derivative.

The boundary conditions of simple support are
w=w"=0 atx=0, 7, (4)

and because we seek a steady solution, no initial condi-
tions are specified and the time interval is — < ¢ < =,

Steady, forced-wave solution
It is advantageous to change to dimensionless variables
according to

E=x/a, r=1tVy/a, w=wh/(l -Nd,

G=4q/E, y=ca/phV,, (5)
in which the plate velocity, V,, is given by

=V —
Vo= VE/(1—1V)p. (6)

Equations (2) and (4) then appear as
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k(Wegee + 24 + Wopgs) + W, +yW, = ¢ (7)
and
W=w, =0 at £€=0,¢/a, (8)

The load § (¢, ¢, 7) is of steady form and moves circum-
ferentially with constant speed V if it has the form

C}(f’ ¢a T)=Q(§7 ¢—(V/Vp1)a T)- (9)

To obtain the steady solution in moving coordinates
for loads of this form, we set

(D= ¢ - VT, W(f, Q) = W(ga ¢7 T), I}= V/VP,9

(10)
so that (7) becomes

k(W eeer + 2W 00 + Wogeo) + V' Wep — YWWo = 0.
(11)

The periodicity requirements in ® are met if we assume
the form [11]

W(E @) =S w(E @+ 2nm). (12)
Introducing

=+ 2nm, n=0,*1,*2,--- (13)
so that

—0 < § < oo for -7 <® <, (14)

and defining g (¢, 9) by

Q(¢&, @) for |8 < =

0 for |6| > m, (15)

q(¢, 6) ={

we obtain from (11)

Kk (Ugeee + 2Wip00 T Woape) + Vlbgg — YV, = q. (16)

In view of the boundary conditions (8) we assume the
series forms

$E 0) = 3 4,0 sin (\8),

(& 6) =3 g,(0) sin (\, ), (17)
in which
A, =mma/¢. (18)

The modes s, (6) uncouple in (16) and satisfy
k()‘m4l’]m - mezd’m,aa + lpm,¢9000) + I;Zdjm,()e - ‘}’I}lllm’e = qm-
(19)

Next we define the Fourier transform of () by

3. (p) = f v, (9)e™do, (20)
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which has the inversion formula

1 [ - ~ip@
b0 =5 [ Bl . (21)
Applying the transform to (19), we obtain

[p“ + <2>\m2 ——V—z)p2 +ﬁ ip + Am"]tﬁm(p) =q,(p)/k.

k k
(22)
Using (22) and (21), we find
* §Gn(ple™
¥, (6) =ﬁf - dp, (23)

- ]:[ (p _pm(j))
j=1

where p,"”’, j=1, 2, 3, 4 are the four roots (for each
m=1,2,-) of

4 2 v 2 'YV 4
p +<2)\m _7)17 +—k*ip+)\m =0. (24)

In view of (23), (17), and (12), the solution formally
appears as

W o) =3 {i sin (A £)

n=—ow [m=1
- - —ipd
2wk J_, & ()]
j=1
0= + 2nm, n=0,%x1,+2,--- (25)

This solution is not as formidable as it appears. For
many particular choices of the load, the integral can be
evaluated exactly by contour integration methods. The
speed of convergence of X7 _ depends on the smoothness
of the assumed loading and the location of the roots pm‘j ),
The series Z7___ is such that if the n = 0 term becomes
sufficiently small as |®| approaches , as is usually the

case [ 12], then only this term need be retained.

Properties of the solution

The solution given in (25) depends on the particular form

of loading through 7,,(p) and on the physical and geo-

metrical parameters through the roots pm‘j’ of (24). In

order to understand this latter dependence we must study

the location of these roots in the complex p plane.
Consider the transformation

A~

V

. Y
P=Ii\,s, O, =—— ¢ =—H"-F, (26
" o2Vkh, " 4V )
which carries (24) into
s +2(20,7 — 1)s* — 8¢,0,5 + 1 =0. (27)

This is precisely Eq. (43) of [5], where a complete dis-
cussion can be found regarding the dependence of the
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2.0

Speedrratio, ©,,,

Figure 2 Solution of the characteristic equation (a, vs @,
with €, as a parameter) from H. Reismann [5].

roots sm(j’, Jj=1, 2, 3, 4 on the reduced speed and

damping parameters @, ¢,. If we label the s, ac-
cording to

a _ __ . @ __ .
Sp =G t+ib,, s, =—a,—ib

@) _ . @ __ o
Sp =a,tiby, s, =a,—ib,,, (28)

then a,, is the non-negative real root of

a®+ (20, — 1)a*+0,°(0,’ - 1)d’ — 0%, =0.
(29)

Figure 2 shows a plot of a,, as a function of ®,, for vari-

ous fixed ¢,. Once a,, is known, b, %, b, * are computed

from

b(zl)m =20, —1+a,’*+20,,/a,. (30)
2

The results can be summarized as follows.

* A. Undamped (e, = 0)
i} Subcritical speed (0,, < 1)

by l=b, =20"—1+a,}r

im
a, = las®, — 0= doublerootsats, ==1
a, — 0 as @, — 1= double roots at s, = =i
0 < @,, < 1= four single roots on circle
|s,,] = 1 symmetrical about axes in s plane.
ii) Supercritical speed (®,, > 1)

byn==%[0,+ V0, 1]
by == [0, — VO,7~1].

a,=0,

* B. Damped (¢, # 0)
i) Overdamped: a,, > 0,b,,” > 0,5, ° < 0.

ii) Underdamped: (possible only fore, < 1/2)

a, >0,b,,>>0,b,">0.
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pplane sine series coefficients in (17) that depend on the func-

tional form of the line load. For this loading
(3) (4)  Fourier = —
p,: p,:, inversion qm(p) = Qm’ (32)
/ path 3| @ .
. p,:, P;n 5 which does not depend on p.
o p® Next we examine the solution (23) and observe that
. . the expression e ” O.appears in the integrand, which there-
1 (2 . .
Y P fore approaches zero exponentially as |p| — « in the
upper half-plane when # < 0 and in the lower half-plane
(i) Suberitical speed (i) Supereriticalspeed when.o > 0. Application .of residue theory with the ap-
6. <1 0. >1 propriate closed contour yields, from (23),
m m
(a) Undamped (¢,,= 0) -
i—Q"‘
k(pm<3) _ pm(4))
e_ipm(3)g
P:: ) X @) () 3) @)
P | p® (Pm ™ Pm )(P,,, ~ P )
P,(.? ) . . e_ipmu)g
- o @ (1) @) o 1 0<0
W I (P —Pp )Py =Dy )
. . Pm Pm ¥, (0) =<
pr(nl) PI(nZ) —i Qm
k(pm(l) _ pm(2))
(i) Overdamped (ji) Underdamped e—il’m(l)a
2 0 2 0 X
b5, > b5, > (pm(l) _ pm(a)) (pmu) _ pm(4))
(b) Damped (¢,,> 0) ip. (2)
e—zpm 6
Figure 3 Root locations and integration paths in the p plane. - @) @) @) @y |’ 6>0. (33)
L 20 = 2™ (2, = 2,
This expression is valid for ali m = 1, 2, - -, for undamped
In view of the transformation (26) the corresponding suberitical and supercritical harmonics, as well as for
root locations in the p plane appear as shown in Fig. 3. overdamped‘ and upderdam;?ed ones. The corresponfilng
Also shown there are the Fourier inversion paths for the real exp.ressmns will have different forms for the various
integrals in (23). Notice that in Case A (ii) the integra- harmonic types: N
tion path is deformed around the poles of the integrand FOI‘(?)aSCA(l), “”dafnpedv subcritical (e,,= 0,0, <1)
in a manner determined by considering A (ii) as the limit the p,,* are complex with
OfB(ii')aSE,,,'-’()- p (1)=_p ) p (3)=_p (2>=_p )
In general, all harmonics of the load function will be e m > rm m m
present in (17), so there will be a se% of four poles f(')r pmm =, +id, =\, (by, + ia,), (34)
each m=1, 2, ---. But when computing each ,,(8) in .
(23) only the four poles pm“’ corresponding to that mode and (33) gives

are used. Since by (15) the range of integration for a,(p)

is at most from —7 < @ < =, the functions g, (p) will in- ( Qmed'"e

troduce no singularities into the integrand in (23), so all ske.d (c.P+d ) le, cos (c,9)

the integrals can be evaluated by use -of residue theory. memem "

To proceed further, however, it is necessary to make the v (6) = J —~d, sin (c,0)], 6<0

load function g (¢, ) specific. m Qme—dme

c,.cos (c 0

Line load ke pdy(cp +d,) o 008 (€a0)

The simplest loading to consider is that of a line, so that ~1— d, sin (c,8)], 6> 0. (35)

4,,(8) in (17) has the form

These harmonics are even functions of ¢; they are oscil-

n(0) = 0,8(6), (3D latory in 8 with a wavelength that is inversely proportion-

398 in which 8(8) is the delta function and Q,, are the Fourier al to c,; they decay exponentially in |6| with constant
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d,. Since ®,— 0, ¢, = 0, and a,, = | as m — =, the
higher harmonics decay more rapidly than do the lower
ones. Such ¢, () are depicted in Fig. 4(a).

For Case A(ii), undamped, supercritical (e, =0,
®,, > 1) the p, " are real with
pmm - _pmm’ pmm — _pm(4), (36)

and (33) gives

Q,, sin (p,"'0)

k' (p Y = P (PP + 0,2 =0
m m m m m
¥, (0) =
Q,, sin (p,,*'6) 0> 0
P (p P —p P)(p @y p B :
m m m m m
(37)
Since p,,* > p,“ these harmonics are oscillatory in 6

with shorter wavelength for 8 > 0 [Fig. 4(b)]. They do
not decay with |0|, and therefore their amplitudes at
|8] = 7 will not be diminished. This means that all values
of nin (25) must be retained; and furthermore, the series
cannot converge.

For Case B(i), overdamped (€, > 0, b,,* <0) the
pm” " have the forms

“) __ . “4) 3) __ - 3) 2) __ o
P _lkm s Pn _lkm » P T €y ldm’

m’ km(S) = dm - Ile’

__ .
P, =—e,—id

km(4)=dm+ ICmI7 em::A b

m’1m’

(38)

with ¢, d, defined in (34). Equation (33) yields for
these roots

) k, B
m
[ 0. e
e

k(km(‘l)_km(?s)) m2 + (km(3)+ dm)Z
ekm(4)a
— , 6<0
e, + (kY + dm)z]
Y, (6) =<
Qme—dme

ke [(=lc, | — e, + 4d,’)* + 16e,’d, "]

X [4e,d,, cos (e,0) + (—|c, > —e,’

+4d.?) sin (e, 8)], 6> 0. (39)

Since d,, > |c,,| it follows that both k,*’, &_“ are posi-
tive, so these harmonics are non-oscillatory and decay
exponentially in |8] for & < 0. For 6 > 0 they are oscil-
latory, with wavelength proportional to em_1 and they
decay exponentially in 8 with constant d,, [see Fig. 4(c)].

Finally, for Case B(ii), underdamped (e, > 0,
b,,. > 0), the p, " have the forms

“4) . @) _ _ .
Py =c,+id, p, =—c,tid,

@ _ W,
Pp T €p ldm’ Pm €m ldm’
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¥m(0)

AR VA

(a) A (i) Undamped subcritical modes

¥m(8)

/ Yo

(b) A (ii) Undamped supercritical modes

¥r(6)

AN

N

(c) B (i) Overdamped modes

¥im(8)

N\

M

(d) B (ii) Underdamped modes

Figure 4 Form of modes for the different root locations in
Figure 3.

(Copp s €) =N (B A b)), (40)
and (33) yields

-

Qmed"’o

/\'Cm[(em2 - cm2 + 4a’m2)Z + 16cm2dm2]

X [4c,d, cos (c,0) — (e,’ —c,
+4d,?) sin (c,9)], <0

0,¢

I\'em[(cm2 — em2 + 4dm2)2 + 16em2dm2]

¥, (8) =1

X [4e,d, cos (e, 8) + (¢, — e,

+4d ?) sin (e,9)], 0> 0. (41)
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1.00 -
6,=1276
€, =0.129

05=0425
€, =0.0143

§5=0255
L €5=0.00517

6,=10.182
€7=0.00263

ﬂﬂAAn

s UUUVV

b5=0.141
SRS €5=0.00159
ot ]
gk
I I I L I | 1 | 1
<15 —10 05 0.0 0.5 1.0 15

8 (radians)

Figure 5 Steady solution in the center of the cylinder (¢
= ¢/2a) due to a circumferentially moving load (see text). Pa-
rameters are V' = 15.24 m/s (600 in/s), ¢ = 8.896 X 107> N
(2x 107" Ib/in.-s), a=3.81 c¢cm (1.5 in.), and ¢ = 0.635 cm
(0.25 in.). Odd mode values of @, and ¢,, show that each mode
is underdamped.

These harmonics are oscillatory in 6 and, because e,
> c,,, the wavelength for 6 > 0 is shorter than for § < 0.
The oscillations are damped exponentially in || with the
same constantfor & > 0 and 8 < 0 [Fig. 4(d)].

A numerical example for the steady wave solution due
to a circumferentially moving line ioad is shown in Fig.
S. In this example the first nine modes in Eq. (25) have
been used to calculate the normalized deflection in the
center of the shell. The reduced speed and damping pa-
rameters 6, and ¢, are shown for the odd modes and indi-
cate that each of the modes is underdamped. The even
modes are absent because the loading is symmetric.

Discussion and conclusions

The steady forced-wave solution derived here for cir-
cumferentially moving loads clearly exhibits the phenom-
enon of critical speeds, above which the standing wave-
form (in moving coordinates) in front of the load has a
shorter wavelength than that behind it. We find, however,
that such a steady solution for supercritical speeds does
not converge in the absence of damping. This is so be-
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cause the ¢, (8) do not decay as || — «, so that the
series =7___ does not converge, a result of the dynamic

n=—x
stability loss of the type discussed in [7] and [8].

We note that the path of integration for the Case A (ii)
as shown in Fig. 3 is deformed around the poles in a man-
ner dictated by considering Case B(ii) in the limit as
damping vanishes. If the damping had originally been
neglected altogether, the proper path for A (ii) would not
have been known a priori, i.e., radiation conditions in
moving coordinates would have to be applied to deter-
mine it; yet different paths lead to quite different results.
In particular, if the path were deformed under the two
poles on the negative real axis and over those on the posi-
tive real axis, or if the path were taken straight through
all the poles on the real axis, then a symmetrical form
would result for the subcritical and supercritical cases.
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