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Steady  Solution  for Circumferentially Moving Loads 
on Cylindrical Shells 

Abstract: The  steady,  forced-wave solution is obtained for loads that travel with constant  speed on a simply supported circular shell, 
the motion of which is damped externally by air. Critical speeds are identified above  which the waveform, which  is a standing wave in 
moving coordinates,  exhibits shorter wavelengths in  front of the load than  behind it. At supercritical speeds the solution  becomes un- 
bounded, because of loss of stability, in the limit of no damping. 

Introduction 
Solutions for  circular cylindrical  shells under  dynamic 
loading conditions of various forms  have  appeared in the 
recent  literature.  Payton [ 11 solved the problem of dy- 
namic membrane  stresses in an infinitely long elastic 
shell. He gave specific results  for impulse-concentrated 
and  uniform-pressure loads  as well as  for a  circumferen- 
tially expanding pressure load. In [2] and [3], Forrestal 
and Alzheimer evaluated  the solution  derived in [ 11 for 
circumferentially moving loads. Liao  and Kessel [4] con- 
sidered the problem of cylindrical  shells,  with  bending 
as well as  membrane effects,  subjected to moving loads. 
Their shell had finite length and  was subjected to  the 
boundary  conditions of simple support. Using  appropri- 
ate  Fourier  series  decompositions in the axial and cir- 
cumferential directions with a Laplace transform in time, 
Liao and  Kessel formally derived  a  solution that  exhibits 
resonant conditions at critical speeds of the moving load. 
For  the  concentrated load moving circumferentially with 
constant speed, their solution, Eq. (33 )  in [4], predicts 
a  form that is symmetrical with respect  to  the moving 
load regardless of the  speed  at which the load travels. The 
speed-independent property is quite  unexpected in view 
of the solution for moving loads on a simply supported 
plate strip given by Reismann [ 5 ] ,  which is symmetrical 
for subcritical speeds  but exhibits a forced-wave phenom- 
enon  for supercritical speeds with shorter wavelengths 
in front of the load than behind it. This phenomenon was 
also recently observed experimentally [ 6 ]  in a short 
cylindrical shell having a radius-to-length ratio of three 
and a radius-to-thickness ratio of 1500. 

The critical  speed is associated with loss of stability 
(see  [7] and [8]).  The inertia enters  into  the  steady 

equation in moving coordinates with an effect equivalent 
to  compressive  stress  resultants and the instability is 
similar to  that of buckling. Although the  membrane solu- 
tion in [ 1 J would not  be  expected to have critical speeds 
with associated different  wavelengths in front of and be- 
hind the load, the bending effects included in the shells 
considered in [4] should  lead to such a phenomenon. 

In this paper we obtain  the  steady, inextensible  bend- 
ing solution for a simply supported  circular shell sub- 
jected  to loads moving circuhferentially  at  constant 
speeds. The analytical' procedure is similar to  that em- 
ployed in [ 11. In ordel: to  deal first with  integrals that 
exist in the,regular  sense, we include external damping 
effects. We obtain a forced-wave solutiori with  different 
wavelengths in. f'0"t oE aqd  behind'  the load for  the  case 
of supercritical  speed. The amplitudes of these  waves 
decay exponentially  with distance from the load for 
damped  or undamped  solptions at subcritical speeds,  as 
well as  for ' damped solutions at supercritical speeds. 
However,  the undamped  solution shows  no  decay  at 
supercritical  speedy-in fact,  the solution obtained  does 
not  converge  for this case  because of the previously  men- 
tioned loss of stability. 

Formulation of the problem 
The geometry and loading of the shell are  shown in Fig. 1 .  
The cylinder is of length e, radius a, and  thickness h.  The 
coordinates of a point  are x, c#I; the displacement compo- 
nents in these  directions  are u, u and  the  outward dis- 
placement is w. The loading is q ( x ,  c#I - V t / q ) ,  which 
indicates that  it is traveling without a change in its  func- 
tional form in the circumferential  direction  with  speed V .  

, ,  
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Figure 1 Geometry and  loading for the cylindrical shell. 

The  equations used here  are  the thin-shell approximate 
equations  on page 220 of Fliigge [SI,  or page 522 of 
Timoshenko  and Woinowsky-Krieger [ 101. After using 
the inextensibility assumption, 

u' = 0, 11. = -u' U' = -w, ( 1 )  

and adding the inertia and damping terms  to  the radial 
equation,  we  obtain  the single equation 

in which 

k = h 2 /  12a2, D, = E h /  1 - v2, 

( a( )/a4, ( 1' = a  a( )/ax, (3) 

where p ,  E ,  v and c represent mass density, Young's 
Modulus,  Poisson's ratio,  and damping coefficient, re- 
spectively. The  subscript t denotes  the time  derivative. 
The boundary  conditions of simple support  are 

w = W'' = 0 at x = 0, e, (4) 

and because we seek  a steady solution, no initial condi- 
tions are specified and  the time  interval is -"m < t < 00. 

Steady, forced-wave solution 
It  is advantageous  to  change  to dimensionless  variables 
according to 

( = x / a ,  T = tVp,/a, d = w h /  (1  - v2)a2 ,  

4 = q/ E ,  y = ca/phVp, ,  ( 5 )  

in which the plate  velocity, V p l ,  is given  by 

V,, = v E /  ( 1 - v 2 ) p .  (6) 

Equations ( 2 )  and (4) then appear  as 

k (dpp,p + 2d,,,, + d,,,,) + dn + yGT = 4 (7) 

and 

d = dtp = 0 at 5 = 0, / / a ,  (8)  

The load 4 (6,4, T )  is of steady form  and moves circum- 
ferentially  with constant speed V if it  has  the form 

4(6, 4, T ) = Q ( ( ,  4- (V/F',,), 7 ) .  (9) 

TO obtain the  steady solution in moving coordinates 
for  loads of this  form, we  set 

@ =  4-  V T ,  w(6, @) = ~ ( 6 ,  4, 71, P = v/vp,, 
(10) 

The periodicity requirements in @ are met if we  assume 
the form [ 111 

Introducing 

e = @ + 2nT, n = 0, +1, +2;.. (13) 

and defining q (.$,e) by 

we  obtain from ( 1 1 )  

Next  we define the  Fourier transform of +,(e) by 
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which has  the inversion  formula I I 

Applying the transform to ( 19), we obtain 

Using (22) and (2 1 ), we find 

where p,"), j = 1 ,  2, 3, 4 are  the  four  roots  (for  each 
m = 1, 2; . .) of 

In view of (23), (17), and (12),  the solution  formally 
appears as 

9 = @ + 2 n ~ ,  n = 0,  k l ,  &2;..  (25) 

This solution is  not  as formidable as it appears.  For 
many  particular choices of the  load,  the integral can be 
evaluated exactly by contour integration  methods. The 
speed of convergence of depends on the  smoothness 
of the  assumed loading and  the location of the  roots p,"). 
The series is such  that if the n = 0 term  becomes 
sufficiently small as I@[ approaches T, as is usually the 
case [ 121, then only  this term need  be  retained. 

Properties of the solution 
The solution  given in (25) depends on the particular  form 
of loading through i j , ( p )  and on the physical  and geo- 
metrical parameters through the  roots p m ( j )  of (24).  In 
order  to  understand this latter  dependence  we  must  study 
the location of these  roots in the  complex p plane. 

Consider  the transformation 

P 
p=iA,s ,  0 =- , E r n = -  (26) Y 

, ZmA, 4*Am2 ' 

which carries (24) into 

s4 + 2(20,2 - l)s2 - 8 ~ ~ 0 , ~  + 1 = 0. (27) 

This is precisely Eq. (43) of [5], where a complete dis- 
cussion  can be  found  regarding the  dependence of the 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Speed ratio, 8, 

Figure 2 Solution of the characteristic  equation ( a ,  vs 0, 
with E ,  as a parameter) from H. Reismann [ 51. 

roots s, , j = 1 ,  2, 3, 4 on the reduced speed  and 
damping parameters a,, E,. If we label the s,") ac- 
cording to 

s,(l) = -a, + ib,,, s,(~) = - a ,  - ib,,, 

(j) 

s,(~) = a, + ib,,, s,(~) = a, - ib,,, (28) 

then a, is  the non-negative  real root of 

u 6  + (2OmZ - l)a4 + 0,z (~ ,2  - l ) a Z  - @:Emz = 0. 
(29) 

Figure 2 shows a plot of a, as a  function of 0,  for vari- 
ous fixed E,. Once a, is known, blm2,  bZm2 are  computed 
from 

b2 

The  results  can  be summarized as follows. 
(;Irn = 

20,' - 1 + am2 & 20,Em/am. 

A .  Undamped ( E ,  = 0 )  
i) Subcritical speed (0, < 1 ) 

blm2 = b,: = 20,' - 1 + a:, 

a,,, + 1 as 0, + 0 double  roots  at s, = *1 
a ,  + 0 as 0, + 1 =$ double  roots at  s, = -ti 
O < 0, < 1 =$ four single roots on circle 
Is,[ = 1 symmetrical about  axes in s plane. 

ii) Supercritical speed (0, > 1 ) 

a, = 0, b,,  = k [Om + -1 
b,, = * [Om - -1. 

B .  Damped ( E ,  # 0) 
i)  Overdamped: a, > 0, b,: > 0 ,  bZm2 < 0. 

ii)  Underdamped: (possible only for E ,  < 1 / 2 )  
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P p )  1 p>F; " * p plane 

inversion 
path 

Pm 
( 3 )  p p  

Pm 
( 1 )  

Pm 
(2)  

0 0 

( 1 )  (2) 
Pm Pm 

(i)  Subcritical  speed (ii) Supercriticalspeed 
e,< 1 

(4) 
Pm 

( i )  Overdamped (ii) Underdamped 

h i m  > 0 hirn > 0 

(b)Damped(E,>O) 

Figure 3 Root locations and  integration  paths in the p plane. 

In view of the transformation (26) the  corresponding 
root locations in the p plane appear  as  shown in Fig. 3. 
Also  shown  there  are  the  Fourier inversion paths  for  the 
integrals in (23 ) . Notice  that in Case A (ii)  the integra- 
tion path is deformed around  the  poles of the integrand 
in a manner  determined by considering A(ii)  as  the limit 
of B (ii)  as E, + 0. 

In general, all harmonics of the load  function will be 
present in ( 17), so there will be a set of four  poles  for 
each m = 1, 2, . . .. But when  computing each $,(e) in 
(23) only the  four poles p m ( j )  corresponding to that mode 
are used. Since by ( 15) the  range of integration for (1, ( p )  
is at most from -7r < 0 < T, the  functions ?j,( p )  will in- 
troduce no singularities into  the integrand in (23), so all 
the integrals can  be evaluated by use of residue  theory. 
To proceed further,  however, it is  necessary  to  make  the 
load function q ( 5 , e )  specific. 

Line load 
The simplest  loading to consider  is  that of a line, so that 
q,(t9) in (17)  hastheform 

in which s(e) is the  delta function and Q, are  the  Fourier 
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sine series coefficients in (17)  that  depend  on  the func- 
tional  form of the line load. For this loading 

G , ( P )  = Qm3 (32) 

which does  not  depend  on p .  
Next  we  examine  the solution (23)  and  observe  that 

the  expression e-ip*.appears in the integrand,  which  there- 
fore  approaches  zero exponentially as IpI "* 00 in the 
upper half-plane when 8 < 0 and in the  lower half-plane 
when 8 > 0. Application of residue theory with the ap- 
propriate closed contour yields, from  (23 ) , 

This  expression is valid for all m = 1,2; . ., for undamped 
subcritical and supercritical  harmonics, as well as  for 
overdamped  and underdamped ones.  The corresponding 
real expressions will have different forms  for  the various 
harmonic types. 

For  Case A (i) , undamped,  subcritical ( E ,  = 0, 0, < 1 ) 

and  (33) gives 

! Q,edm0 

4kc,d,(cm2 + dm2) 
k m  COS k,e) 

(34) 

(35) 

These harmonics are  even  functions of 0 ;  they are oscil- 
latory in fl with a wavelength that is inversely  proportion- 
al to cm; they decay exponentially in 101 with constant 
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dm. Since 0, + 0, E, + 0, and a, + 1 as m + 00, the 
higher  harmonics decay  more rapidly than  do  the lower 
ones.  Such $,(e) are  depicted in Fig. 4(a). 

For  Case A (  ii), undamped,  supercritical (E, = 0,  
0, > 1 ) the p,") are real  with 

( 2 )  (3)  = - (4) Pm(') = -P, 7 P ,  P m  9 (36) 

and (33) gives 

$,(e) = { 

(37) 

Since p,(') > p ,  these harmonics are oscillatory in 0 
with shorter wavelength for 0 > 0 [Fig. 4 ( b ) ] .  They  do 
not  decay with 161, and  therefore  their  amplitudes at  
101 = T will not be diminished. This  means  that all values 
of n in ( 2 5 )  must  be retained;  and  furthermore,  the series 
cannot converge. 

For  Case B (i) ,  overdamped ( E ,  > 0, bZm2 < 0) the 
p m ( j )  have  the  forms 

P ,  - ik, , P ,  -ut, , P ,  - e,-id,, 

(4  1 

(4) - (4) (3)  - . (3) (2 )  - 

p,(l) - e,  - id,, k,I3' = dm - I C , [ ,  
kmc4' = dm + I C , ( ,  e ,  = X,b,,, (38) 

with c,, dm defined in (34). Equation (33) yields for 
these  roots 

eli,(4)8 
- ] e < o  

em2 + (k,I4' + dm)' ' 

Q,e-dm8 

kern[ (-lc,12 - em2 + 4d,2)2 + 16em2dm21 

x [4e,d, cos (erne) + (-Icml - e ,  2 2  

+ 4dm2) sin ( e rne ) ] ,  e > 0. (39) 

Since dm > IC,[ it follows that both k,'", krnl4) are posi- 
tive, so these harmonics are non-oscillatory and  decay 
exponentially in 101 for 8 < 0. For 0 > 0 they are oscil- 
latory, with wavelength  proportional to ern-' and they 
decay exponentially in 8 with constant dm [see Fig. 4 ( c ) ] .  

Finally, for  Case B (ii) , underdamped ( E ,  > 0, 
b2,* > 0) ,  the p m ( j )  have  the  forms 

= c ,  + id,, p ,  - -c, + id,, (3) - 

(a)  A ( i )  Undamped subcritical modes 

e 

(b) A (ii) Undamped supercritical modes 

( c )  B ( i )  Overdamped modes 

(d)  B (ii) Underdamped modes 

Figure 4 Form of modes  for the different root locations in 
Figure 3 .  

Q,edmm" 
LC,[ (em2 - cm2 + 4dm2)* + 16cm2dmz] 

X [4c,d, cos (c,e) - (em2 - cm2 

+ 4dm2) sin (c,O)], 8 < 0  

Q,e-',' 

re,[ (cm2 - em2 + 4dm2)' + 16em2dm2] 

x [4e,d, cos (erne)  + (cm2 - em2 

+ 4dm2) sin ( e r n e ) ] ,  e > 0. 399 

SEPTEMBER 1974 LOADS ON CIRCULAR  SHELLS 



e, = 1.276 
c, = 0.129 

O3 = 0.425 
c3 = 0.0143 

e, = 0.182 

!@+++“ 
= 0.00263 

I b 9  = 0.141 
€9 = 0.00159 

L 

I 6’ (radians) 

Figure 5 Steady solution in the center of the cylinder (5 
= / /2u)  due  to a  circumferentially moving load (see  text). Pa- 
rameters  are V =  15.24 m / s  (600  in/s), c =  8.896 X N 
(2  X Ib/in.-s), a = 3.81 cm (1.5 in.),  and E =  0.635 cm 
(0.25 in.).  Odd mode  values of 0, and E ,  show that  each mode 
is underdamped. 

These harmonics are oscillatory in 8 and,  because e, 
> c,, the wavelength for 0 > 0 is  shorter  than  for 8 < 0. 
The oscillations are damped  exponentially in 161 with the 
sameconstantfore > Oand0 < 0 [Fig.4(d)]. 

A numerical  example for  the  steady  wave solution due 
to a circumferentially moving line load is shown in Fig. 
5 .  In this example  the first nine modes in Eq. (25) have 
been  used to  calculate  the normalized  deflection in the 
center of the shell. The reduced  speed and damping pa- 
rameters 0, and E ,  are shown  for  the  odd modes and indi- 
cate  that  each of the  modes is underdamped. The  even 
modes are  absent  because  the loading is symmetric. 

Discussion and conclusions 
The  steady  forced-wave solution  derived  here for cir- 
cumferentially moving loads clearly exhibits  the phenom- 
enon of critical speeds,  above which the standing  wave- 
form  (in moving coordinates) in front of the load has a 
shorter wavelength than  that behind it. We find, however, 
that  such a steady solution for supercritical speeds  does 
not converge in the  absence of damping. This  is so be- 
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cause  the $,(e) do not decay  as 101 + m, so that  the 
series  does  not  converge, a  result of the  dynamic 
stability loss of the  type  discussed in [7]  and  [8]. 

We  note  that  the path of integration  for the  Case A (ii) 
as shown in Fig. 3 is deformed around  the poles in a man- 
ner  dictated by considering Case  B(ii) in the limit as 
damping  vanishes. If the damping  had originally been 
neglected  altogether, the  proper  path  for A (ii) would not 
have been  known a priori, i.e.,  radiation  conditions in 
moving coordinates would have to be  applied to  deter- 
mine it;  yet different paths lead to quite  different results. 
In particular, if the path were deformed under  the  two 
poles on  the negative real axis  and  over  those  on  the posi- 
tive real axis,  or if the path were taken  straight  through 
all the poles on  the real axis, then  a  symmetrical  form 
would result for  the subcritical and supercritical cases. 
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