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Abstract: Effective  interatomic potentials for  impurities in aluminum have been constructed  according to pseudopotential  theory. 
Based on a local model potential, impurity  valence and size  factors  are defined and their  effects on the potential discussed.  With  these 
potentials, detailed calculations based on a Green’s  function  lattice  statics  method  are made  for the impurity-vacancy binding energy 
and the difference in diffusion activation energies for an impurity and a host atom. 

Within the range  of  valence  and  size factors  studied, it  is  found that the binding energy  is  generally  small  and  depends  primarily on the 
valence rather than the size,  whereas  the migration energy  shows  larger increases with both  valence and size  factors.  Contributions 
from the lattice relaxation  energies  are  important,  particularly  for  impurity  migration.  The  results  can  account  satisfactorily for the ex- 
perimental data of nontransition-metal  impurities,  but  less so for  the  noble-metal  impurities.  Dielectric  screening of the ion by the  con- 
duction  electrons is important  in  determining the  potential  and must be  properly  accounted  for in calculations of the  energetics  for im- 
purities. 

Introduction 
Atomic diffusion in dilute  alloys is strongly influenced 
by the  nature of the  interaction  between vacancies and 
solute atoms.  This diffusion plays an  important  role in 
many solid state phenomena. The  formation of precipi- 
tates  that  contribute  to alloy strengthening is one example 
having considerable  practical  importance. The phenom- 
enon of impurity  segregation to grain boundaries  and 
voids is another example. It  is,  therefore, of some inter- 
est  to  obtain a quantitative understanding of the  vacancy- 
impurity  interaction. The physical parameters of primary 
interest in this  regard are  the binding energy for vacancy- 
solute pairs and  jump  frequencies  for  vacancy migration 
in the vicinity of a solute  atom. 

The  purpose of the  present  paper is to  develop  an 
approach  for  the calculation of these  parameters  and  to 
apply it to impurity diffusion in aluminum, for which 
extensive experimental data  are available.  Such  calcu- 
lations  require 1 ) interatomic  potentials  describing the 
host-host  and host-impurity interactions  and 2 )  a  pro- 
cedure  for including the effect of the  lattice relaxation 
surrounding the point-defect  configurations. An impurity 
is commonly characterized by its  valence  and  “size”. 
We  have,  therefore,  attempted  to vary these  parameters 
in a systematic way to  determine their  effects on  the 
energetics of the vacancy-impurity  interaction. 

This  paper  is divided  into two  parts.  The first  de- 
scribes  the  construction of the  interatomic potential 
within the framework of pseudopotential  theory.  Based 
on a  local model potential,  size and valence factors  are 386 
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defined and  their effect on  the pair  potentials discussed. 
The  second  part  deals with the calculation of the impurity- 
vacancy binding energy and  the difference in diffusion 
activation  energies for  an impurity and a host atom. Here, 
considerable effort has been spent in the calculation of 
lattice relaxation  energies. For this purpose  the  Green’s 
function  formulation of lattice  statics [ 1 1  has  been used. 
The  results, particularly for migration energies,  show that 
lattice relaxation has a large effect. 

Nontransition-metal impurities in aluminum were chos- 
en  as  the  subject of numerical  calculations. This choice 
was motivated by the validity of the pseudopotential  ap- 
proach  for aluminum and  also  the  existence of some re- 
cent  data  for impurity diffusion and vacancy-solute bind- 
ing energies [2]. For simplicity, we limit our  study  to 
nontransition-metal  impurities. The transition-metal im- 
purities,  which have been  found to have  quite different 
diffusion behavior in aluminum,  should  be an interesting 
subject  for  future  study. 

Interatomic potentials 
Interatomic potentials for aluminum  alloys are developed 
here within the framework of pseudopotential  theory. 
Previously, vacancy-impurity interactions  have often 
been studied  according to interatomic  potentials  calcu- 
lated from  the  Fermi-Thomas [3]  screening  potential 
or  the  asymptotic  Friedel potential [4]. Recent reviews 
on  the early  models and  their  later refinements can  be 
found in [ 2 ] .  These models have  been used  recently [5], 
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but without much  success, in attempts  to explain the 
impurity diffusion data in aluminum. While the validity 
of the pseudopotential approach  to  describe  lattice de- 
fects  has  not been rigorously established [ 6 ] ,  this 
approach  does  represent a more  serious  attempt  at a 
realistic theory than those used in previous work. Pseude 
potential theory  has  at  least two advantages  over  the 
above mentioned  models: it avoids  the nonrealistic  point- 
ion  model, and it includes, at  least approximately, the 
effect of electron  gas  exchange  and  correlation  on  the 
screening. 

In  this section the pseudopotential  formulation of 
interatomic  potentials is reviewed, and a discussion of 
the local model potential  used in numerical  calculations 
is given. 

Consider a simple metal characterized by a nearly 
free-electron  valence  band. Its total  energy can  be  dividsd 
according to pseudopotential theory  into volume-depen- 
dent  and  structure-dependent  parts [7]. The  former in- 
cludes  the kinetic, exchange and correlation energies for 
a uniform electron  gas plus  the  first-order correction 
from the electron-ion  interaction. This  part can be  written 
as a  function of the  average  electron density and is essen- 
tial for maintaining the lattice  equilibrium. The second 
part depends  on  the detailed  atomic  arrangement. I t  con- 
sists of the  direct  electrostatic interaction  between  ions, 
and  the indirect ion-ion interaction  through the screening 
of the  conduction electrons. The  latter is called the band 
structure energy and  for  pure metals can be expressed 
as [81 

U B s = N / 2 a  x ( k Z / 2 r r ) / V i ( k ) l * S ( k ) [ ( ~ ) -  I)], 

where is the atomic  volume, N is the total number of 
ions, Vi(k), called the  strength function by Shaw [9], is 
the  Fourier transform of the  bare model potential of the 
ion, S ( k )  is the  structure  factor, ek is  the dielectric  func- 
tion, and  the sum extends  over all reciprocal lattice vec- 
tors.  Combining the ion-ion coulomb potential  with U,, 
one  can  express  the  structure-dependent energy  in terms 
of an effective  potential + ( r )  given by [ 81 

k#O 

I. 
A similar derivation  can  be carried out  for a dilute  alloy, 
and  one  arrives  at  an effective  potential bet  en “a” and 
“b” ions of the form [8] ,,/ 

x (t- 1)  y 4 ,  

where  the  subscripts a and b  refer to  the  two  types of ions. 
In  the dilute limit ek is simply the dielectric  function for 
the  pure  host metal. 

The separation of the total crystal energy  into volume- 
and  structure-dependent  parts  is very convenient  for 
defect calculations in metals. In  fact  the  parameters 
which we wish to  calculate, i.e., binding energies and 
migration energies,  may be  expressed in terms of struc- 
tural  energies alone,  as  is shown in the  appendix.  In  the 
calculation  described in third and  fourth  sections, we 
require  the pair  potentials c#Jaa(r) and +ah ( r ) .  The re- 
mainder of this section is concerned with the determina- 
tion of these quantities and particularly  with the depen- 
dence of 4ab(r) on the size and  valence of the impurity. 

To construct  the interatomic  potentials, we require  the 
explicit  form of the pseudopotential for  the  host  and im- 
purity ions. As in previous  work [ 101 we  adopt a local 
potential having a simplified Heine-Abarenkov [ 1 1 1  
form: 

r < R,‘ 

r > Rmi. 
Vi(r) = E -zie2 

Here i stands  for  either  an impurity or a host  atom.  This 
model potential contains  two  parameters: Vi, the poten- 
tial well depth  and R,’, the model radius of the ion. The 
Fourier transform of Vi(r) is 

Vi(k) = (-47rZ,ez/flk2) [ (1  - ai) cos kR,‘ 

+ (ai/R,’) (sin kR,’/k)], ( 2 )  

where ai = ViRmi/Zie2. a is a measure of the well depth 
relative to the  electrostatic potential at R,. Its value 
varies  according to  the particular model used for  the local 
potential, e.g., a = 0 for  the  Ashcroft “empty-core’’ po- 
tential and a = l for Shaw’s  optimized model potential. 
In  the  present work a was fitted to give agreement with 
the  elastic  constants of aluminum. 

On  the basis of this expression  for Vi(k),  one may dis- 
cuss  the effect of valence  and ionic  size on  the interatomic 
potential. The  factor in the  brackets  depends only on  the 
parameters a and R,, and  the  other  factor  depends only 
on  the ionic charge. One  can  consider  these  factors  to de- 
scribe respectively the “size” and valence  effects on  the 
interatomic  potential.  Substituting Eq. ( 2 )  into  Eq. ( 1 )  
one  observes  that +ab(r) simply scales with the valence 
of the impurity. Changes in the impurity  size may be 
simulated  by changes in the model radius R,’ while the 
parameter a is  kept  the  same  as  that of the host atom.  The 
size  factor, as defined by R,‘ in our model, is incorporated 
into  the  bare ion model potential. Since  the interatomic 
potential is obtained by screening the  bare ion  potential, 
the effect of the impurity  size depends  also  on  the  extent 
of the dielectric  screening. This  places  the size effect in 387 
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Figure 1 Interatomic potentials for homovalent impurities  in 
AI. The potential scale has been expanded tenfold for r > 9 a.u. 
to show the oscillations in the potential. The positions of the 
first five neighbors are also indicated. The parameters used in 
the host potential are Rma = 0.7 1 8, and a, = 0.42. 

a  framework quite different from  some of the earlier 
models [ 121 that  treat primarily the elastic  interaction 
between  the  defects. 

In general, of course, a may also vary. However, ap- 
propriate  values of the parameters a and R ,  for specific 
impurities are  not presently known. Therefore we attempt 
to  ascertain in a general  way the effects of size  and val- 
ence of the impurity on diffusion without specifying ex- 
plicitly the impurity that is being considered. 

4ab(r) for impurities with model radius 10 percent 
larger and smaller than  the  host, along with +aa(r) for 
aluminum, is  shown in Fig. 1. The impurity potentials are 
seen to  have forms similar to  that of the host-host  poten- 
tial and  exhibit  oscillations  starting at  the third-neighbor 
position. In  the  present calculations, the potentials are 
truncated at  the fifth-neighbor position. The  exact form 
of the potential  is  extremely  sensitive to  the particular 
dielectric  function used,  as recently  emphasized by 
Duesbery and Taylor [ 131. The importance of the di- 
electric  screening  is  underlined by the  fact  that  even  at 
the first-neighbor position the effective interaction ~ $ ~ ~ ( r )  
is  reduced by 99.7 percent  from the bare  Coulomb in- 
teraction. The choice of the dielectric  function  is  there- 
fore  critical for the  construction of the interatomic  poten- 
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tial. In  the  present work,  the  dielectric  function of Geldart 
and Taylor [ 141 has been  employed. These  authors  have 
computed electron  gas exchange  and  correlation  contri- 
butions in such a way that  the important  compressibility 
sum  rule is satisfied. Our pseudopotential  parameters  for 
aluminum, R ,  = 0.71 hi and a = 0.42, have been de- 
termined by fitting to the  measured  elastic  constants. 
Phonon dispersion curves and  vacancy  formation  and 
migration energies  calculated on  the basis of this  pseudo- 
potential are in good agreement with experimental values. 

In comparing the potentials in Fig. 1 ,  one  observes a 
systematic  change in the amplitude  and phase of the os- 
cillation as a function of the model radius. The potential 
for  the smaller ion has weaker  oscillations  and a more 
advanced  phase. This reflects a more  complete  screening 
of a smaller ion than  a larger one. The overall difference 
in the magnitudes of the potentials  is  quite small, which 
again results  from the completeness of the dielectric 
screening. 

Relaxation calculation 
In the  calculation of lattice  relaxation and relaxation 
energies,  the Green’s function formulation of lattice 
statics [ 11 was  employed. In this approach,  certain lat- 
tice  dynamical  techniques are applied in the zero-fre- 
quency limit to obtain the  static equilibrium configura- 
tion of atoms around a point  defect.  A brief outline of the 
Green’s function method and how it applies  to the par- 
ticular  defect configurations of interest in this work is 
given in this section. 

As in the  harmonic  approximation of lattice  dynamics 
one  expands the crystal energy to second order in the 
atomic  displacements: 

@ =  a0 - 2 F,(l)u,( l )  + y  4,B(1, l’)u,(l)uB(/‘). (3) 1 
c, 01 

aB 

Here u , ( f )  = r , ( f )  - R,(1) is the displacement of atom I 
from  its  unrelaxed  position (i.e., a perfect  lattice  site 
unless 1 corresponds  to  an  interstitial).  The coefficients 
F, ( 1 )  and +,B ( 1 ,  1 ‘ )  are determined from  the interatomic 
potentials. 

The equilibrium condition a@/au,(l) = 0 may be ex- 
pressed in matrix  form as +u = F ,  or 

u = +-‘F = G F .  (4) 

The central  problem in this approach is that of inverting 
4 to obtain the  Green’s function G .  

Any  point  defect may be considered to  be some com- 
bination of n, vacancies  and n, interstitials. We refer to 
each particular case by the shorthand  notation (nv,  n , ) .  
For example: vacancy, ( 1, 0) ; interstitial, (0, 1) ; “acti- 
vated”  or migrating vacancy, (2, 1 ) ; etc.  The n, vacan- 
cies  and n, interstitials  comprise the defect  “core.” 
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It  is  convenient  to divide 4 into  two  parts, 

4 = 4O - 84, ( 5 )  

where -84 is essentially the change in 4 caused by the 
introduction of the  defect.  The matrix 4 and  the  vectors 
u and F in Eq. (4) are of dimension D = 3 ( N  + n , )  where 
N is the total number of lattice sites. The matrix 4“ takes 
account only of the  interactions  present in the perfect 
crystal. -84 is  the  change in 4 which occurs  upon “turn- 
ing on”  the  interactions of the n, interstitial atoms  and 
“turning off” the interactions corresponding to  the n, 
vacant sites. This  procedure  for splitting 4 is illustrated 
schematically in Fig. 2 for  the  case of an impurity at  the 
saddle  point, i.e., ( 2 ,  1 ) .  For simplicity,  only the ( 1  11) 
plane with nearest-neighbor interactions  is shown. In  the 
calculation of 4” the interstitial atoms  are  treated  as non- 
interacting free particles. -84 accounts  for  the interac- 
tions of the impurity  atom  and the “turning off’ of the 
interactions  for  the  vacant site at  the origin. 

The substitution of Eq. (5) into Eq. (4) yields 

G = ( 1  - G08I$)”G0 = GO + G08+G, (6) 

where Go = (c$’)-’ 
Equation (6) is the familiar Dyson  equation  for 

Green’s function. The  methods  for solving this equation 
are  described in detail by Tewary [ 11 and  therefore  are 
only discussed in general terms  here.  Two  features 
simplify the analysis. First,  the  assumption of finite range 
interatomic interactions implies that only a small num- 
ber of the coefficients F a ( / )  and 8$1&(l, /‘) are  nonzero 
(in  the  present calculations we consider  interactions ex- 
tending to fifth nearest  neighbors). By applying the 
procedure of matrix  partitioning [ 151 to  Eq. (4) one  ob- 
tains the relation 

up = gf, ( 7 )  

g = go + g08&g. 

where 

Equation (7) governs  the displacements of atoms in the 
“perturbed  space,” which consists of the  defect  core plus 
the n, lattice  atoms  that  interact directly  with the  core. 
(For  the configuration shown in Fig. 2 ,  n, = 116).  The 
matrices g, go and and  the  vectors up and f a r e  of di- 
mensions 3n,, where np= n, + n, + n,. 

After g has been determined,  displacements of atoms 
outside  the  perturbed  space may also be  calculated [ 151. 
However, this is not necessary if one is interested only 
in the relaxation  energy.  Substituting  Eq. (4) into  Eq. 
(3  ), one may express  the relaxation  energy as 

E , = 4 - - ” = - - F u + t u 4 u = - t F u = - - f f u p .  ( 8 )  

The  second simplifying feature  derives  from  the sym- 
metry of the lattice  relaxation field. Some of the  atomic 

Host atom 

@ Impurity 
0 Vacancx 

Figure 2 Schematic illustration of splitting 4 into 4’ and -64 
for the saddle-point configuration of an impurity ut jump. 

the relations 

displacements u a ( l )  are  equal  to  others by virtue of this 
symmetry,  and  therefore  the number of degrees of free- 
dom in the  perturbed  space  is  less than 3np. This allows 
one  to obtain a “reduced” version of Eq. (7) : 

ur = g”. (9) 

Here  the reduced vectors  and  matrices  are defined by 

(9a) 

(9b) 

(9c) 

where  the Jl‘ are “basis” vectors in the  perturbed space. 
The  number of distinct basis vectors having the  proper 
symmetry is equal  to n,, the  number of degrees of free- 
dom in the  perturbed space. The  perturbed  space dis- 
placements  are related to  the U: by the inversion  formula 

nr 

u a ( 0  = 2 I uir. (10) 

The  reduced  Green’s function is  determined  from  the 
Dyson  equation 

- 
g’ = [ ( 1  - g”+)’]” g o r  ( A r ) - l  gar. (11) 

Equation (8) ,  in conjunction  with Eqs.  (9) - ( 1 1 ) , pro- 
vides  a means  for calculating  relaxation  energies. The  de- 
fect configurations for which we  require relaxation ener- 
gies are illustrated  in  Figs. 3 and 5 and  are  discussed in 
detail  in the  fourth  and fifth sections. We  point  out  here 
that  for  each configuration the  defect  core may be found 
by  inspection. Migrating atoms at saddle point  sites  and 
impurity atoms  are  treated formally as interstitials [ 161. 
A substitutional  impurity is treated as an interstitial  su- 
perimposed on a vacancy. For  example, substitutional 
impurity atom, (1, 1 ); migrating impurity atom (a2 jump), 389 
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Figure 3 The formation of an impurity-vacancy pair  in (b) is 
accomplished by  bringing together the isolated vacancy and  im- 
purity  in (a) .  
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Figure 4 ( 1  1 1 )  projection of displacement field for vacancy- 
impurity pair  in AI. This impurity has Z ,  = 4 but the same R ,  
as Al. 

(2,  1); dissociative jump configuration (03 jump),   (3,2);  
etc.  After  the  defect  core  for a particular  configuration is 
identified and  the  appropriate  interatomic potentials are 
specified, the calculation of the relaxation  energy may 
proceed as we  have outlined in this  section. 

Finally,  some  technical details should be mentioned 
here. The dimension 3n, of the  perturbed  space  is typical- 
ly large enough that  direct multiplication to obtain  the 
product go64 in Eq. ( 11 ) is quite time-consuming even 
when  performed on a computer. I t  is somewhat  more con- 
venient to  compute  the matrix A' from  the relation 

A' =A' + SA'. 
N 

(12) 

where 

n.. 

FA,'=- x 2 $ ; ( l )  8,: (1 ,  l " )  
la 1'a'I"B 

The reduced  matrices go' and 134' are defined in analogy 
to g' in Eq. (9c).  In  Eq. ( 12b)  the r' sum  includes the n, 
core vacancies. The basis vectors $ possess  no  nonzero 
elements in the  space of the  core vacancies. Therefore, 
the  contribution  to A' due  to  these  vacancies is accounted 
for explicitly in the term 6A'. In  the  case of a monova- 
cancy or a substitutional  impurity, it is easy  to  show  that 
SA'= 0 as a consequence of the inversion  symmetry 
about  the  defect site. For more  complicated configura- 
tions 6A' is in general nonzero  and must  be accounted for. 

In  the lattice statics calculations  performed in this 
work, pairs of atoms  were  assumed  to  interact via central 
forces.  In this  model, the  matrix may be  expressed in 
terms of the first two  derivatives of the  interatomic po- 

390 tential: 
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where r = R(/) - R(/') and + ( r )  is  the  interatomic po- 
tential  connecting atoms l and /'. 

Impurity-vacancy binding energy 
Figure 3 (b) illustrates a vacancy-impurity  pair in the 
nearest-neighbor  configuration,  and Fig. 3 (a) shows 
such a pair separated by a large distance.  The binding 
energy E,  is  the difference [ 171 in the  crystal energies 
for  these  two configurations. In  the  appendix  we show 
that this  difference  may be  expressed in terms of pair in- 
teractions alone. I t  is convenient  to divide the binding 
energy into  two  parts;  one, which we call E:, corre- 
sponds to the unrelaxed lattices, while the  other, EbR, 
accounts  for  the  lattice relaxation.  With reference  to Figs. 
3 (a)  and 3 (b),  the "configuration" energy E: may be 
written immediately as 

= +AB(r l )  - 4 A A ( r I ) ,  

where r ,  is the  nearest-neighbor  distance.  The calcula- 
tion of EbR is more involved since it requires  the applica- 
tion of the lattice statics method  described in the previous 
section to obtain  the relaxation  energies for  the vacancy- 
solute pair, the isolated vacancy, and the substitutional 
impurity.  If these energies are called,  respectively, ERvS, 
E," and E:, one may write EbR = E: + E," - E:. The 
calculation of the first two  terms  is relatively easy, since 
n, = 7, and 6A' = 0. The calculation of E,"' is more dif- 
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ficult, however,  since n, = 96 and 6A' # 0. A useful self- 
consistency  check  on  the  latter calculation is available. 
If the  solute is treated  as simply another host atom in the 
impurity-vacancy  pair  calculation, one should obtain 
results identical to  those  for  the isolated  vacancy. This 
was in fact verified in our calculations. 

In Fig. 4 is illustrated the  displacement field in a ( 1 1 1 ) 
plane  containing a vacancy-impurity pair,  for  an impurity 
of valence 4. As required, the  displacements exhibit  axial 
symmetry about  the vacancy-impurity line. The magni- 
tudes of the individual atomic displacements reflect the 
extra  attraction  associated with the  impurity;  compare, 
for example, the 2.8 percent inward displacement of the 
110 atom  with the 3.4 percent displacement of the im- 
purity. 

In  Table 1, the  results of the binding energy  calculation 
are given. For impurities that differ only in valence from 
the  host,  the binding energy results primarily from E;. 
However,  the relaxation  energy E,' is not negligible and 
it always  reduces E,. The sign of E,  depends  on  the sign 
and  magnitude of +AA(rI),  which in turn  depends  on  the 
dielectric  screening. In  the  present  case, since +AA(rl) is 
positive,  a  divalent  impurity is repelled by the vacancy 
and a  negative E,  is expected.  The  opposite situation 
exists for  a  quadrivalent  impurity. For impurities differ- 
ing only in size  from the  host, EbR is quite  important rela- 
tive  to E,', as  one  can  see from the  results in Table 1.  The 
sign of E,  for  such impurities depends  on  the  balance of 
E,' and E,'. 

Overall, the binding energies are  quite small. I t  is pos- 
sible to obtain an  upper bound for  the binding energy of 
impurities by setting E,' equal to + A A (  r l )  and ignoring 
the contribution from the relaxation  energy.  Based on  the 
effective potential for A1 in Fig. 1 ,  this upper limit is es- 
timated to  be 0.1 eV.  This value, of course,  depends  on 
the dielectric  function  used in calculating the potential. 
However, judging from the magnitude of other AI po- 

" 
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Figure 5 Various atomic jump frequencies entering kinetic 
analysis of impurity diffusion in the Howard-Manning [ 191 
model. 

tentials, e.g., those derived by Duesbery and Taylor [ 131 
and Shyu et al. [ 181, the value of 0.1 eV  appears  to be  a 
valid estimate. 

Activation energy for impurity diffusion 
The kinetics for impurity diffusion in an  fcc lattice has 
been  studied by Howard  and Manning [ 191. Figures 5 (a) 
and 5(b) depict  the various atomic  jumps entering their 
model. The  ratio of the diffusivities of the impurity and 
the  host  atom  can be expressed  as [ 191 

D b / D a  = ( & / f a )  (oz /wg)  (wq/03)9 

where  the first term is the ratio of the  correlation  factors, 
the second term  the ratio of the  frequencies of the saddle- 
point jumps  for  the impurity and  the  host,  and  the  last 
term  the  ratio of the  associative and  dissociative jump 
frequencies for  the vacancy-impurity  pair. The second 
term is related to  the migration energy  difference  and the 
third to  the binding energy. One can  write the difference 
in the diffusion activation  energies as [20] 

AQ = AE - E ,  - k alnfb/a( l /T) ,   (13 )  

where AE is the difference in migration energies for  the 
impurity and  the  host  atom, and the last  term arises from 

Table 1 Theoretical binding energy for impurity-vacancy pair  in  aluminum (all units  in eV).  

Impurity +ab(r l )  E," ERVS E," E, 

z,= 2 0.069 -0.034 "0.008 -0.104 0.0 12 -0.022 

2, = 4 0.138 0.035 0.007 -0.075 -0.0 16 0.0 19 

z, = 3 0.099  -0.004 -0.002 -0.09 1 0.005 0.00 1 

z,= 3 0.1 15 0.012 -0.005 -0.075 -0.0 14 -0.002 

Rmb = Rma 

Rmt' = Rma 

Rmh = 0.9R," 

R,, = 1 . 1  R," 

Note: q5AA(rJ = 0.103: E," = -0.084 391 
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Table 2 Theoretical AE for impurity migration in aluminum 
(all units in eV).  

Table 3 Theoretical AQ for impurity diffusion in aluminum 
(all units in eV).  

Impurity E: ( w , )  AEc E: (cog) AER AE 

z, = 2 1.318 -0.276 -0.243 0.209 -0.067 

z, = 4 2.637 0.276 -0.648 -0.225 0.051 

z, = 3 1.619 -0.306 -0.279 0.160 -0.146 

z,= 3 2.449 0.347 -0.643 -0.220 0.127 

R," = Rma 

R," = Rma 

R," = 0.9R," 

R," = I .  1 Rma 

Note: E: (w , )  is the "configuration" energy  for  the unrelaxed impurity saddle- 
point. Other  parameters  needed  for calculating A€ are: 1.977 eV for  the 
configuration energy of the  host saddle-point and -0.432 eV for E ,  ( O J .  

Figure 6 Valence of R, for  various elements obtained by Shaw 
[9] for the  optimized model potential  vs Pauling ionic radii [25]. 
Diffusion data for impurity in AI are given in the  table below. 
The  references for these  data  are given in the  second  part of [ 21. 

c u  1 0.00 0.14 
Ag 1 0.05 -0.05 
Zn 2 0.02 -0.006 
Cd 2 - 0.03 
G a  3 50.04 0.01 
In 3 - 0.01 

4 

3 

2 
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Impurity AE E, AQ 

z, = 2 -0.067 -0.022 -0.045 

z, = 4 0.05 1 0.019 0.032 

z, = 3 -0.146 0.00 1 -0.145 

z, = 3 0. I27 -0.002 0. I25 

R," = Rma 

R," = R," 

R," = 0.9R," 

R," = 1.1 R," 

the  temperature  dependence of the correlation factor  for 
the impurity. The  last  term  can be  calculated from the 
temperature  dependence of the  jump  frequencies in the 
kinetic model. Peterson and Rothman [5] estimated it to 
be very close  to  zero for  monovalent and divalent im- 
purities in AI, independent of whether  the  electrostatic 
model or  the oscillatory  potential is used. These  authors 
also  reported a  preliminary measurement of this  term 
for  Zn  isotopes  and found a small value of less  than 0.1 
eV.  For simplicity, we  assume this term  to  be  zero here. 

In analogy to  our  treatment of the impurity binding 
energy, AE may be  divided into a "configuration" con- 
tribution AEc associated with the unrelaxed  saddle-point 
configurations  and  a  contribution AER resulting from lat- 
tice  relaxation. In calculating AEc or AER, one  has  to ac- 
count  not only for  the different  saddle-point configura- 
tions but also  the different initial lattices.  Thus 

where  the relaxation  energies are  associated respectively 
with the impurity  saddle  point,  impurity-vacancy  pair, 
host-atom  saddle  point and isolated  vacancy. A similar 
expression  exists  for AE,. 

In  Table 2, numerical  values  calculated for AE are pre- 
sented.  It is found that  the value of AE, is determined 
mainly by the sign and magnitude of $IAA at  the  distance 
from the saddle-point to  one of the  four "ring" lattice 
sites. In  the  present calculation, $IAA at  that  distance is 
positive; therefore, a divalent impurity interacts less 
strongly with its  surrounding atoms than  a host  atom be- 
cause of its  smaller  valence. This gives rise  to a  negative 
AE,. A similar situation exists  for  the  homovalent im- 
purity  with model radius  smaller  than the  host.  The con- 
tribution  from  relaxation  energies is observed  to be com- 
parable to  that from AE, and therefore  must be carefully 
calculated to  ensure a reliable  value for AE. 
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Table 3  gives results  for A Q ,  neglecting the final term 
in Eq. ( 13 ). Comparing the  values of AE and E,, one  ob- 
serves  that  the size and valence have a  larger effect on 
impurity migration than on binding energies. 

Discussion 
It is interesting to  compare  the  present  results with avail- 
able data on the binding energy  and  activation  energy for 
nontransition-metal  impurities in  AI. In doing so, it is im- 
portant  to keep in mind that, since our calculations do not 
specify  particular  impurities,  the  comparison is only  semi- 
quantitative. Furthermore, it is difficult to  extrapolate our 
results  to very different impurity parameters.  In a recent 
review by  Balluffi and Ho  [2], it was noted  that the equi- 
librium experiments,  such  as  the lattice  expansion and 
positron  annihilation measurements, give binding ener- 
gies consistently  lower  than those obtained  from quench- 
ing-annealing experiments. Our results  seem  to  support 
the smaller binding energies  obtained  from the equi- 
librium measurements.  For some  impurities, the agree- 
ment is even  quantitative;  for example,  Si has a  valence 
of 4 and an E ,  of 0.03  eV  [2 I ] ,  and Mg is divalent and  its 
E, was  measured to be -0.1 k0.04 eV  [22], or <0.05 
eV  [23]. 

In Fig. 6 we list experimental  values of A Q  for  three 
solute pairs (Cu,  Ag),  (Zn,  Cd) and (Ga,  In)  together 
with values of R,  for  various elements recently deter- 
mined by Shaw [9, 241. In view of their model radii, the 
homovalent  pair (Ga,  In) should be almost  equal in size 
to AI, and  therefore their A Q  values are  expected  to be 
quite small. This prediction is  consistent with the experi- 
mental results.  For  the divalent  pair (Zn,  Cd),  the va- 
lence effect is expected to  dominate in Zn,  because its R ,  
is nearly equal  to  that of AI; on this basis a  negative AQ 
is predicted.  For  Cd, which is larger  than Zn,  the size 
effect is expected  to  compensate  the valence effect. These 
predictions appear to be  in accord with experimental 
data; AQ for  Cd is larger  than for Zn  and has  the  opposite 
sign. However, our calculated AQ's appear  to exceed the 
measured  values. The same line of reasoning fails when 
applied to  the monovalent  noble metal pair (Cu,  Ag). Ag 
is larger  than Cu and is therefore  expected  to  have a high- 
er A Q ,  but  this is not  borne out by experimental observa- 
tion. Thus, our calculation does not seem  to  account  even 
qualitatively  for the  behavior of noble metal impurities. 
This is not  surprising because  the applicability of a simple 
model potential to d-band  metals is questionable. 

In  the foregoing discussion, we  have  taken  the model 
radius R ,  rather  than,  say,  the Pauling ionic  radius R i  
(cf. Fig. 6)  to  represent  the impurity "size." The  former 
parameter is a characteristic of the metallic state  and is 
therefore more appropriate in the present  context.  One 
may note in Fig. 6 that in certain  cases a  large discrep- 
ancy  exists between R ,  and Ri. For  example,  the  series 
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of trivalent elements AI, Ga,  In  and TI have  almost equal 
model radii but  their ionic radii  vary by almost a factor 
of two. 

In view of model radii  plotted in Fig. 6, the monovalent 
pair Na and K and  the divalent  pair Be and Mg appear  to 
be  interesting elements for  experimental study. All of 
these  can  be classified as typical simple metal  ions and 
the model radii of the two members of each pair are  quite 
different. At  present,  there  are  no reliable diffusion data 
for  these impurities in aluminum. 

Finally, we consider  the validity of the  almost univer- 
sally adopted nearest-neighbor model for  the kinetic 
analysis of impurity diffusion in fcc crystals. A  crucial 
question is whether  the binding energy  for a  vacancy-im- 
purity  pair  beyond the nearest-neighbor distance is negli- 
gible compared  to  that  for a  nearest-neighbor pair. To 
settle this point, further detailed  calculation of the bind- 
ing energy would be  required. However, judging  from the 
generally small values obtained here  for  the binding en- 
ergy of a  nearest-neighbor  pair, it seems possible that 
some  more distant pairs can  have  comparable stability. 
If this  were the  case, a kinetic model incorporating more 
distant  jumps than those shown in Fig. 5 would be re- 
quired. For AI, values of the interatomic  potential  from 
the second- to  the fifth-neighbor  positions are  comparable 
in magnitude  and therefore any  extension  beyond the 
nearest-neighbor model would be  very  complicated. 
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Appendix 
It  is shown here  that  the volume-dependent part of the 
crystal energy may be neglected in binding energy  and 
migration energy  calculations. 

Consider  the migration of an isolated vacancy.  The 
migration energy may be  expressed  as 

E,=  @, , (N,  a,,) - @"(N,  a"), (AI )  

which is the difference in crystal energies for  the saddle 
point  and simple vacancy  configurations. N is the num- 
ber of atoms  and  the total  volume of the relaxed crystal. 
Because the vacancy  formation  volume differs in general 
from the self-diffusion activation  volume, asp # R,. Sub- 
tracting  and  adding the energy of a  perfect crystal, @ ( N ,  
a ) ,  to  Eq.  (A 1 ) , one  obtains 

E ,  = [ @ , , ( N ,  asp) - @ ( N ,  all - [ Q " ( N ,  a,) 
- @ ( N ,  a)] = E? - E;. (A2) 

The term within the second  pair of brackets is simply the 
vacancy  formation  energy. In earlier  work [ 151, it was 
shown  that this may be expressed in the form 393 
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E,Y = E,” + E,” - E,  - E,, (A3) 

where  the first  two terms  on  the right-hand side  are,  re- 
spectively, the “configuration” and “relaxation”  energies, 
E,  is  the  change in pairwise  interaction  energy associated 
with a uniform expansion of the  crystal by one  atomic 
volume, and E, is the pairwise  interaction  energy of a sur- 
face atom. In deriving Eq.  (A3),  the perfect crystal is 
taken to be  at equilibrium. An  expression similar to (A3) 
may be  derived for E T ,  

E~SP = E,” +- E,SP - E,  - E,. (A41 

Substituting Eq.  (A4) and (A3) into (A2),  one  obtains 

E ,  = EmC + EmR, 

where 

E,“ = Ecsp - Ec”, 

EmR = ERsp - E;, 

The migration energy is thus  expressed in terms of con- 
figuration and  relaxation contribution, both of which are 
determined by the pairwise  interactions. 

The  above discussion is concerned with the migration 
of an isolated  vacancy. Similar derivations may be  car- 
ried out  for  the impurity-vacancy binding energy and 
migration energies in the  presence of an impurity. One 
obtains, for  example, 

E,  = E,” + E:, 

a  relation  used in our section on impurity-vacancy bind- 
ing energy. 
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