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Interatomic Potentials and Defect Energetics

in Dilute Alloys

Abstract: Effective interatomic potentials for impurities in aluminum have been constructed according to pseudopotential theory.
Based on a local model potential, impurity valence and size factors are defined and their effects on the potential discussed. With these
potentials, detailed calculations based on a Green’s function lattice statics method are made for the impurity-vacancy binding energy
and the difference in diffusion activation energies for an impurity and a host atom.

Within the range of valence and size factors studied, it is found that the binding energy is generally small and depends primarily on the
valence rather than the size, whereas the migration energy shows larger increases with both valence and size factors. Contributions
from the lattice relaxation energies are important, particularly for impurity migration. The results can account satisfactorily for the ex-
perimental data of nontransition-metal impurities, but less so for the noble-metal impurities. Dielectric screening of the ion by the con-
duction electrons is important in determining the potential and must be properly accounted for in calculations of the energetics for im-

purities.

Introduction

Atomic diffusion in dilute alloys is strongly influenced
by the nature of the interaction between vacancies and
solute atoms. This diffusion plays an important role in
many solid state phenomena. The formation of precipi-
tates that contribute to alloy strengthening is one example
having considerable practical importance. The phenom-
enon of impurity segregation to grain boundaries and
voids is another example. It is, therefore, of some inter-
est to obtain a quantitative understanding of the vacancy-
impurity interaction. The physical parameters of primary
interest in this regard are the binding energy for vacancy-
solute pairs and jump frequencies for vacancy migration
in the vicinity of a solute atom.

The purpose of the present paper is to develop an
approach for the calculation of these parameters and to
apply it to impurity diffusion in aluminum, for which
extensive experimental data are available. Such calcu-
lations require 1) interatomic potentials describing the
host-host and host-impurity interactions and 2) a pro-
cedure for including the effect of the lattice relaxation
surrounding the point-defect configurations. An impurity
is commonly characterized by its valence and “‘size”.
We have, therefore, attempted to vary these parameters
in a systematic way to determine their effects on the
energetics of the vacancy-impurity interaction.

This paper is divided into two parts. The first de-
scribes the construction of the interatomic potential
within the framework of pseudopotential theory. Based
on a local model potential, size and valence factors are
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defined and their effect on the pair potentials discussed.
The second part deals with the calculation of the impurity-
vacancy binding energy and the difference in diffusion
activation energies for an impurity and a host atom. Here,
considerable effort has been spent in the calculation of
lattice relaxation energies. For this purpose the Green’s
function formulation of lattice statics [1] has been used.
The results, particularly for migration energies, show that
lattice relaxation has a large effect.

Nontransition-metal impurities in aluminum were chos-
en as the subject of numerical calculations. This choice
was motivated by the validity of the pseudopotential ap-
proach for aluminum and also the existence of some re-
cent data for impurity diffusion and vacancy-solute bind-
ing energies [2]. For simplicity, we limit our study to
nontransition-metal impurities. The transition-metal im-
purities, which have been found to have quite different
diffusion behavior in aluminum, should be an interesting
subject for future study.

Interatomic potentials

Interatomic potentials for aluminum alloys are developed
here within the framework of pseudopotential theory.
Previously, vacancy-impurity interactions have often
been studied according to interatomic potentials calcu-
lated from the Fermi-Thomas [3] screening potential
or the asymptotic Friedel potential [4]. Recent reviews
on the early models and their later refinements can be
found in [2]. These models have been used recently [5],
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but without much success, in attempts to explain the
impurity diffusion data in aluminum. While the validity
of the pseudopotential approach to describe lattice de-
fects has not been rigorously established [6], this
approach does represent a more serious attempt at a
realistic theory than those used in previous work. Pseudo-
potential theory has at least two advantages over the
above mentioned models: it avoids the nonrealistic point-
ion model, and it includes, at least approximately, the
effect of electron gas exchange and correlation on the
screening.

In this section the pseudopotential formulation of
interatomic potentials is reviewed, and a discussion of
the local model potential used in numerical calculations
is given.

Consider a simple metal characterized by a nearly
free-electron valence band. Its total energy can be divided
according to pseudopotential theory into volume-depen-
dent and structure-dependent parts [7]. The former in-
cludes the kinetic, exchange and correlation energies for
a uniform electron gas plus the first-order correction
from the electron-ion interaction. This part can be written
as a function of the average electron density and is essen-
tial for maintaining the lattice equilibrium. The second
part depends on the detailed atomic arrangement. It con-
sists of the direct electrostatic interaction between ions,
and the indirect ion-ion interaction through the screening
of the conduction electrons. The latter is called the band
structure energy and for pure metals can be expressed
as [8]

Us=N/20 S (/20,0 s®)](2) - 1)]

k=0 k

where ) is the atomic volume, N is the total number of
ions, V,(k), called the strength function by Shaw [9], is
the Fourier transform of the bare model potential of the
ion, S (k) is the structure factor, g, is the dielectric func-
tion, and the sum extends over all reciprocal lattice vec-
tors. Combining the ion-ion coulomb potential with U g
one can express the structure-dependent energy in terms
of an effective potential ¢ (r) given by [8]

Z~2 2 0 kZV k 2 .
¢,(,)=1_e[1_% [__L%]_(L_])Mdk]'
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A similar derivation can be carried out for a dilute alloy,
and one arrives at an effective potentialbytazen “3” and
“b” ions of the form [8]
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where the subscripts a and b refer to the two types of ions.
In the dilute limit €, is simply the dielectric function for
the pure host metal.

The separation of the total crystal energy into volume-
and structure-dependent parts is very convenient for
defect calculations in metals. In fact the parameters
which we wish to calculate, i.e., binding energies and
migration energies, may be expressed in terms of struc-
tural energies alone, as is shown in the appendix. In the
calculation described in third and fourth sections, we
require the pair potentials ¢,,(r) and ¢ (r). The re-
mainder of this section is concerned with the determina-
tion of these quantities and particularly with the depen-
dence of ¢,,(r) on the size and valence of the impurity.

To construct the interatomic potentials, we require the
explicit form of the pseudopotential for the host and im-
purity ions. As in previous work [10] we adopt a local
potential having a simplified Heine-Abarenkov [11]
form:

Vi(r) = 7 ¢ .
rl r>R_.

Here i stands for either an impurity or a host atom. This
model potential contains two parameters: V,, the poten-
tial well depth and Rmi, the model radius of the ion. The
Fourier transform of V,(r) is

V (k) = (—4wZ.e" /Qk*) [(1 — a,) cos kR,
+ (oy/R,,) (sin kR_'/k)], (2)

where @, = V,R_'/Z¢". a is a measure of the well depth
relative to the electrostatic potential at R . Its value
varies according to the particular model used for the local
potential, e.g., « = 0 for the Ashcroft “empty-core” po-
tential and « = 1 for Shaw’s optimized model potential.
In the present work a was fitted to give agreement with
the elastic constants of aluminum.

On the basis of this expression for V,(k), one may dis-
cuss the effect of valence and ionic size on the interatomic
potential. The factor in the brackets depends only on the
parameters « and R, and the other factor depends only
on the ionic charge. One can consider these factors to de-
scribe respectively the “size”” and valence effects on the
interatomic potential. Substituting Eq. (2) into Eq. (1)
one observes that ¢, (r) simply scales with the valence
of the impurity. Changes in the impurity size may be
simulated by changes in the model radius R, while the
parameter « is kept the same as that of the host atom. The
size factor, as defined by Rmi in our model, is incorporated
into the bare ion model potential. Since the interatomic
potential is obtained by screening the bare ion potential,
the effect of the impurity size depends also on the extent
of the dielectric screening. This places the size effect in
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Figure 1 Interatomic potentials for homovalent impurities in
Al. The potential scale has been expanded tenfold for r > 9 a.u.
to show the oscillations in the potential. The positions of the
first five neighbors are also indicated. The parameters used in
the host potential are R, = 0.71 A and o, = 0.42.

a framework quite different from some of the earlier
models [12] that treat primarily the elastic interaction
between the defects.

In general, of course, « may also vary. However, ap-
propriate values of the parameters « and R, for specific
impurities are not presently known. Therefore we attempt
to ascertain in a general way the effects of size and val-
ence of the impurity on diffusion without specifying ex-
plicitly the impurity that is being considered.

¢,,(r) for impurities with model radius 10 percent
larger and smaller than the host, along with ¢_,(r) for
aluminum, is shown in Fig. 1. The impurity potentials are
seen to have forms similar to that of the host-host poten-
tial and exhibit oscillations starting at the third-neighbor
position. In the present calculations, the potentials are
truncated at the fifth-neighbor position. The exact form
of the potential is extremely sensitive to the particular
dielectric function used, as recently emphasized by
Duesbery and Taylor [13]. The importance of the di-
electric screening is underlined by the fact that even at
the first-neighbor position the effective interaction ¢, (r)
is reduced by 99.7 percent from the bare Coulomb in-
teraction. The choice of the dielectric function is there-
fore critical for the construction of the interatomic poten-
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tial. In the present work, the dielectric function of Geldart
and Taylor [14] has been employed. These authors have
computed electron gas exchange and correlation contri-
butions in such a way that the important compressibility
sum rule is satisfied. Our pseudopotential parameters for
aluminum, R = 0.71 A and a=0.42, have been de-
termined by fitting to the measured elastic constants.
Phonon dispersion curves and vacancy formation and
migration energies calculated on the basis of this pseudo-
potential are in good agréement with experimental values.

In comparing the potentials in Fig. 1, one observes a
systematic change in the amplitude and phase of the os-
cillation as a function of the model radius. The potential
for the smaller ion has weaker oscillations and a more
advanced phase. This reflects a more complete screening
of a smaller ion than a larger one. The overall difference
in the magnitudes of the potentials is quite small, which
again results from the completeness of the dielectric
screening.

Relaxation calculation
In the calculation of lattice relaxation and relaxation
energies, the Green’s function formulation of lattice
statics [1] was employed. In this approach, certain lat-
tice dynamical techniques are applied in the zero-fre-
quency limit to obtain the static equilibrium configura-
tion of atoms around a point defect. A brief outline of the
Green’s function method and how it applies to the par-
ticular defect configurations of interest in this work is
given in this section.

As in the harmonic approximation of lattice dynamics
one expands the crystal energy to second order in the
atomic displacements:

1
o=, — ; F(Du, (D) + ; bog (L N, (Dug('). (3)
, aﬁ

Here u,(!) = r,(I) — R,(I) is the displacement of atom /
from its unrelaxed position (i.e., a perfect lattice site
unless [ corresponds to an interstitial). The coefficients
F_(l) and d)as(l, ") are determined from the interatomic
potentials.

The equilibrium condition 8®/du (l) = 0 may be ex-
pressed in matrix form as ¢u = F, or

u=¢'F = GF. 4)

The central problem in this approach is that of inverting
¢ to obtain the Green’s function G.

Any point defect may be considered to be some com-
bination of n, vacancies and n, interstitials. We refer to
each particular case by the shorthand notation (n,, n,).
For example:- vacancy, (1, 0); interstitial, (0, 1); “acti-
vated” or migrating vacancy, (2, 1); etc. The n, vacan-
cies and #, interstitials comprise the defect “core.”
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It is convenient to divide ¢ into two parts,
b=4¢"— 8¢, (5)

where —8¢ is essentially the change in ¢ caused by the
introduction of the defect. The matrix ¢ and the vectors
u and F in Eq. (4) are of dimension D = 3(N + n,) where
N is the total number of lattice sites. The matrix ¢’ takes
account only of the interactions present in the perfect
crystal. —8¢ is the change in ¢» which occurs upon “turn-
ing on” the interactions of the r, interstitial atoms and
“turning off the interactions corresponding to the n,
vacant sites. This procedure for splitting ¢ is illustrated
schematically in Fig. 2 for the case of an impurity at the
saddle point, i.e., (2, 1). For simplicity, only the (111)
plane with nearest-neighbor interactions is shown. In the
calculation of ¢’ the interstitial atoms are treated as non-
interacting free particles. —8¢ accounts for the interac-
tions of the impurity atom and the “turning off”’ of the
interactions for the vacant site at the origin.
The substitution of Eq. (5) into Eq. (4) yields

G=(1-G%¢)"'G"=G’+ G%¢G, (6)

where G* = (¢°)!

Equation (6) is the familiar Dyson equation for
Green’s function. The methods for solving this equation
are described in detail by Tewary [1] and therefore are
only discussed in general terms here. Two features
simplify the analysis. First, the assumption of finite range
interatomic interactions implies that only a small num-
ber of the coefficients F (/) and 6d>aﬁ(l, ') are nonzero
(in the present calculations we consider interactions ex-
tending to fifth nearest neighbors). By applying: the
procedure of matrix partitioning [15] to Eq. (4) one ob-
tains the relation

u, = gf, (7)

where

g=g"+2"%¢.z.

Equation (7) governs the displacements of atoms in the
“perturbed space,” which consists of the defect core plus
the n, lattice atoms that interact directly with the core.
(For the configuration shown in Fig. 2, n, = 116). The
matrices g, g° and 8¢, and the vectors 1, and f are of di-
mensions 3n,, where n,=n,+n,+n,.

After g has been determined, displacements of atoms
outside the perturbed space may also be calculated [15].
However, this is not necessary if one is interested only
in the relaxation energy. Substituting Eq. (4) into Eq.
(3), one may express the relaxation energy as

Ey=¢—d,=—Fu+iupu=—%Fu=—} fu, (8)

The second simplifying feature derives from the sym-
metry of the lattice relaxation field. Some of the atomic
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Figure 2 Schematic illustration of splitting ¢ into ¢° and —8¢
for the saddle-point configuration of an impurity w, jump.

displacements u_(/) are equal to others by virtue of this
symmetry, and therefore the number of degrees of free-
dom in the perturbed space is less than 3n_. This allows
one to obtain a “‘reduced” version of Eq. (7):

u'=g'f". (9)
Here the reduced vectors and matrices are defined by
the relations

=Sy, (1) u, (1), (92)
la

=S¢, (Df,W1), (9b)
la

=30, (1) gL 1) w1, (9¢)

-
do

where the l[li are ‘‘basis” vectors in the perturbed space.
The number of distinct basis vectors having the proper
symmetry is equal to n,, the number of degrees of free-
dom in the perturbed space. The perturbed space dis-
placements are related to the «," by the inversion formula

u, ()=, () u/. (10)

The reduced Green’s function is determined from the
Dyson equation

g =1(1-g%¢)71" g" = (4" g™ (1)

Equation (8), in conjunction with Egs. (9)-(11), pro-
vides a means for calculating relaxation energies. The de-
fect configurations for which we require relaxation ener-
gies are illustrated in Figs. 3 and 5 and are discussed in
detail in the fourth and fifth sections. We point out here
that for each configuration the defect core may be found
by inspection. Migrating atoms at saddle point sites and
impurity atoms are treated formally as interstitials [16].
A substitutional impurity is treated as an interstitial su-
perimposed on a vacancy. For example, substitutional
impurity atom, (1, 1); migrating impurity atom (w, jump), 389
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Figure 3 The formation of an impurity-vacancy pair in (b) is
accomplished by bringing together the isolated vacancy and im-
purity in (a).

(2, 1); dissociative jump configuration (e, jump), (3,2);
etc. After the defect core for a particular configuration is
identified and the appropriate interatomic potentials are
specified, the calculation of the relaxation energy may
proceed as we have outlined in this section.

Finally, some technical details should be mentioned
here. The dimension 3n, of the perturbed space is typical-
ly large enough that direct multiplication to obtain the
product g°8¢ in Eq. (11) is quite time-consuming even
when performed on a computer. It is somewhat more con-
venient to compute the matrix A" from the relation

A=A+ 84, (12)
where
A=1-g" 84" (12a)

54, == S S w10 g (L1

la UVa'l"B
X Bepge, (1", 1) W, (1), (12b)

The reduced matrices g* and 8¢" are defined in analogy
to g" in Eq. (9¢). In Eq. (12b) the / sum includes the n,
core vacancies. The basis vectors  possess no nonzero
elements in the space of the core vacancies. Therefore,
the contribution to A" due to these vacancies is accounted
for explicitly in the term 8A4". In the case of a monova-
cancy or a substitutional impurity, it is easy to show that
8AT=0 as a consequence of the inversion symmetry
about the defect site. For more complicated configura-
tions 84" is in general nonzero and must be accounted for.

In the lattice statics calculations performed in this
work, pairs of atoms were assumed to interact via central
forces. In this model, the ¢ matrix may be expressed in
terms of the first two derivatives of the interatomic po-
tential:
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202(1.1) 112(.79)  022(1.4)  132(.45)

211(.53)

JAVAVAY
JAVAVL VA
VAVATS YAV,

NAVAV/

022 112 202 313

230 (1.1)

Figure 4 (111) projection of displacement field for vacancy-
impurity pair in Al. This impurity has Z, = 4 but the same R,
as Al.

bl 1) = (=, +z@)1w¢_<r>

A2 r dr
IAARI0 :
- Poodt b2k
(;baB(l’ 1) = 2 ¢aB(l’ [’)’

P#L

where r = R(/) — R(l’) and ¢(r) is the interatomic po-
tential connecting atoms /and /'.

Impurity-vacancy binding energy

Figure 3(b) illustrates a vacancy-impurity pair in the
nearest-neighbor configuration, and Fig. 3(a) shows
such a pair separated by a large distance. The binding
energy E, is the difference [17] in the crystal energies
for these two configurations. In the appendix we show
that this difference may be expressed in terms of pair in-
teractions alone. It is convenient to divide the binding
energy into two parts; one, which we call Ebc, corre-
sponds to the unrelaxed lattices, while the other, EbR,
accounts for the lattice relaxation. With reference to Figs.
3(a) and 3(b), the “configuration” energy E,° may be
written immediately as

E = ¢,5(r)) — &, (1),

where r, is the nearest-neighbor distance. The calcula-
tion of EbR is more involved since it requires the applica-
tion of the lattice statics method described in the previous
section to obtain the relaxation energies for the vacancy-
solute pair, the isolated vacancy, and the substitutional
impurity. If these energies are called, respectively, E; ",
E. and E;’, one may write E," = E.* + E,' — E,". The
calculation of the first two terms is relatively easy, since
n,=7, and 84" = 0. The calculation of E;” is more dif-

IBM J. RES. DEVELOP,




ficult, however, since n, = 96 and 8A" # 0. A useful self-
consistency check on the latter calculation is available.
If the solute is treated as simply another host atom in the
impurity-vacancy pair calculation, one should obtain
results identical to those for the isolated vacancy. This
was in fact verified in our calculations.

In Fig. 4 is illustrated the displacement field ina (111)
plane containing a vacancy-impurity pair, for an impurity
of valence 4. As required, the displacements exhibit axial
symmetry about the vacancy-impurity line. The magni-
tudes of the individual atomic displacements reflect the
extra attraction associated with the impurity; compare,
for example, the 2.8 percent inward displacement of the
110 atom with the 3.4 percent displacement of the im-
purity.

In Table 1, the results of the binding energy calculation
are given. For impurities that differ only in valence from
the host, the binding energy results primarily from E,°.
However, the relaxation energy EbR is not negligible and
it always reduces E,. The sign of E, depends on the sign
and magnitude of ¢, , (r,), which in turn depends on the
dielectric screening. In the present case, since ¢,, (r,) is
positive, a divalent impurity is repelled by the vacancy
and a negative E, is expected. The opposite situation
exists for a quadrivalent impurity. For impurities differ-
ing only in size from the host, EbR is quite important rela-
tive to E,°, as one can see from the results in Table 1. The
sign of E, for such impurities depends on the balance of
Efand E,".

Overall, the binding energies are quite small. It is pos-
sible to obtain an upper bound for the binding energy of
impurities by setting E,° equal to ¢,,(r,) and ignoring
the contribution from the relaxation energy. Based on the
effective potential for Al in Fig. 1, this upper limit is es-
timated to be 0.1 eV. This value, of course, depends on
the dielectric function used in calculating the potential.
However, judging from the magnitude of other Al po-
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Figure 5 Various atomic jump frequencies entering Kinetic
analysis of impurity diffusion in the Howard-Manning [19]
model.

tentials, e.g., those derived by Duesbery and Taylor [13]
and Shyu et al. [18], the value of 0.1 eV appears to be a
valid estimate.

Activation energy for impurity diffusion

The kinetics for impurity diffusion in an fcc lattice has
been studied by Howard and Manning [ 19]. Figures 5(a)
and 5(b) depict the various atomic jumps entering their
model. The ratio of the diffusivities of the impurity and
the host atom can be expressed as [19]

D, /D, = (f,/f) @,/ ) (0,/w,),

where the first term is the ratio of the correlation factors,
the second term the ratio of the frequencies of the saddle-
point jumps for the impurity and the host, and the last
term the ratio of the associative and dissociative jump
frequencies for the vacancy-impurity pair. The second
term is related to the migration energy difference and the
third to the binding energy. One can write the difference
in the diffusion activation energies as [20]

AQ=AE—~E, —knf,/a(1/T), (13)

where AFE is the difference in migration energies for the
impurity and the host atom, and the last term arises from

Table 1 Theoretical binding energy for impurity-vacancy pair in aluminum (all units ineV).

Impurity b () ES° ES E” EX E,
Z,=2 0.069 —0.034 ~0.008 —0.104 0.012 —0.022

R b= R a

=4 0.138 0.035 0.007 —0.075 —0.016 0.019
Rmb = Rma

»=3 0.099 —0.004 —0.002 —0.091 0.005 0.001
R "=09R*

,=3 0.115 0.012 —0.005 —0.075 —0.014 —0.002
R =11R"

Note: ¢,,(r,) = 0.103; E.' =—0.084
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Table 2 Theoretical AE for impurity migration in aluminum
(all units ineV).

Table 3 Theoretical AQ for impurity diffusion in aluminum
(all unitsineV).

Impurity EC5 (w,) AE, ERs (w,) AE, AE Impurity AE E, AQ
z,=2 1318 —0.276 —0.243  0.209 —0.067 Z,=2 —0.067 —0.022 —0.045
Rmb =R* Rmh =R}
Z,=4 2637 0276 —0.648 —0.225 0.051 p=4 0.051 0.019 0.032
Rmb = Rma Rmb — Rma
,=3 1619 —0.306 —0.279  0.160 —0.146 b =3 —0.146 0.001 —0.145
R,"=09R} R."=09R’
=3 2449 0347 —0.643 —0.220 0.127 »=3 0.127 —0.002 0.125
R =1IR R, =1LIR

Note: ECs (e,) is the “configuration” energy for the unrelaxed impurity saddle-
point. Other parameters needed for calculating AE are: 1.977 eV for the
configuration energy of the host saddle-point and —0.432 eV for E, (w,).

Figure 6 Valence of R for various elements obtained by Shaw
[9] for the optimized model potential vs Pauling ionic radii [25].
Diffusion data for impurity in Al are given in the table below.
The references for these data are given in the second part of [2].

Valence charge

Solute of solute E, AQ
(Z) (V) (eV)
Cu 1 0.00 0.14
Ag 1 0.05 —0.05
Zn 2 0.02 —0.006
Cd 2 - 0.03
Ga 3 =0.04 0.01
In 3 — 0.01
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the temperature dependence of the correlation factor for
the impurity. The last term can be calculated from the
temperature dependence of the jump frequencies in the
kinetic model. Peterson and Rothman [5] estimated it to
be very close to zero for monovalent and divalent im-
purities in Al, independent of whether the electrostatic
model or the oscillatory potential is used. These authors
also reported a preliminary measurement of this term
for Zn isotopes and found a small value of less than 0.1
eV. For simplicity, we assume this term to be zero here.

In analogy to our treatment of the impurity binding
energy, AE may be divided into a “configuration” con-
tribution AE, associated with the unrelaxed saddle-point
configurations and a contribution AE, resulting from lat-
tice relaxation. In calculating AE, or AE,, one has to ac-
count not only for the different saddle-point configura-
tions but also the different initial lattices. Thus

AE, = [Ey’ (0,) — E”] — [Exlw,) — E'],

where the relaxation energies are associated respectively
with the impurity saddle point, impurity-vacancy pair,
host-atom saddle point and isolated vacancy. A similar
expression exists for AE, .

In Table 2, numerical values calculated for AE are pre-
sented. It is found that the value of AE_ is determined
mainly by the sign and magnitude of ¢,, at the distance
from the saddle-point to one of the four “‘ring” lattice
sites. In the present calculation, ¢,, at that distance is
positive; therefore, a divalent impurity interacts less
strongly with its surrounding atoms than a host atom be-
cause of its smaller valence. This gives rise to a negative
AE,. A similar situation exists for the homovalent im-
purity with model radius smaller than the host. The con-
tribution from relaxation energies is observed to be com-
parable to that from AE_ and therefore must be carefully
calculated to ensure a reliable value for AE.
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Table 3 gives results for AQ, neglecting the final term
in Eq. (13). Comparing the values of AE and E,, one ob-
serves that the size and valence have a larger effect on
impurity migration than on binding energies.

Discussion

It is interesting to compare the present results with avail-
able data on the binding energy and activation energy for
nontransition-metal impurities in Al. In doing so, it is im-
portant to keep in mind that, since our calculations do not
specify particular impurities, the comparison is only semi-
quantitative. Furthermore, it is difficult to extrapolate our
results to very different impurity parameters. In a recent
review by Balluffi and Ho [2], it was noted that the equi-
librium experiments, such as the lattice expansion and
positron annihilation measurements, give binding ener-
gies consistently lower than those obtained from quench-
ing-annealing experiments. Qur results seem to support
the smaller binding energies obtained from the equi-
librium measurements. For some impurities, the agree-
ment is even quantitative; for example, Si has a valence
of 4 and an E, of 0.03 eV [21], and Mg is divalent and its
E, was measured to be —0.1 £0.04 eV [22], or <0.05
eV [23].

In Fig. 6 we list experimental values of AQ for three
solute pairs (Cu, Ag), (Zn, Cd) and (Ga, In) together
with values of R for various elements recently deter-
mined by Shaw [9, 24]. In view of their model radii, the
homovalent pair (Ga, In) should be almost equal in size
to Al, and therefore their AQ values are expected to be
quite small. This prediction is consistent with the experi-
mental results. For the divalent pair (Zn, Cd), the va-
lence effect is expected to dominate in Zn, because its Ry,
is nearly equal to that of Al; on this basis a negative AQ
is predicted. For Cd, which is larger than Zn, the size
effect is expected to compensate the valence effect. These
predictions appear to be in accord with experimental
data; AQ for Cd is larger than for Zn and has the opposite
sign. However, our calculated AQ’s appear to exceed the
measured values. The same line of reasoning fails when
applied to the monovalent noble metal pair (Cu, Ag). Ag
is larger than Cu and is therefore expected to have a high-
er AQ, but this is not borne out by experimental observa-
tion. Thus, our calculation does not seem to account even
qualitatively for the behavior of noble metal impurities.
This is not surprising because the applicability of a simple
model potential to d-band metals is questionable.

In the foregoing discussion, we have taken the model
radius R rather than, say, the Pauling ionic radius R,
(cf. Fig. 6) to represent the impurity “size.” The former
parameter is a characteristic of the metallic state and is
therefore more appropriate in the present context. One
may note in Fig. 6 that in certain cases a large discrep-
ancy exists between R and R,. For example, the series
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of trivalent elements Al, Ga, In and TI have almost equal
model radii but their ionic radii vary by almost a factor
of two.

In view of model radii plotted in Fig. 6, the monovalent
pair Na and K and the divalent pair Be and Mg appear to
be interesting elements for experimental study. All of
these can be classified as typical simple metal ions and
the model radii of the two members of each pair are quite
different. At present, there are no reliable diffusion data
for these impurities in aluminum.

Finally, we consider the validity of the almost univer-
sally adopted nearest-neighbor model for the kinetic
analysis of impurity diffusion in fcc crystals. A crucial
question is whether the binding energy for a vacancy-im-
purity pair beyond the nearest-neighbor distance is negli-
gible compared to that for a nearest-neighbor pair. To
settle this point, further detailed calculation of the bind-
ing energy would be required. However, judging from the
generally small values obtained here for the binding en-
ergy of a nearest-neighbor pair, it seems possible that
some more distant pairs can have comparable stability.
If this were the case, a kinetic model incorporating more
distant jumps than those shown in Fig. 5 would be re-
quired. For Al, values of the interatomic potential from
the second- to the fifth-neighbor positions are comparable
in magnitude and therefore any extension beyond the
nearest-neighbor model would be very complicated.
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Appendix
It is shown here that the volume-dependent part of the
crystal energy may be neglected in binding energy and
migration energy calculations.

Consider the migration of an isolated vacancy. The
migration energy may be expressed as

Eﬂl:(psp(N’ Qsp) *QV(N’ Qv)y (Al)

which is the difference in crystal energies for the saddle
point and simple vacancy configurations. N is the num-
ber of atoms and () the total volume of the relaxed crystal.
Because the vacancy formation volume differs in general
from the self-diffusion activation volume, O, # Q. Sub-
tracting and adding the energy of a perfect crystal, ® (N,
Q),to Eq. (A1), one obtains

E, = [®,(N,Q,) — ®(N, Q)] — [®,(N, Q,)
- ®(N,Q)] =E’~E. (A2)

The term within the second pair of brackets is simply the
vacancy formation energy. In earlier work [15], it was
shown that this may be expressed in the form
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E'=E'+E,'—E,—E, (A3)

where the first two terms on the right-hand side are, re-
spectively, the “configuration’ and “relaxation” energies,
E, is the change in pairwise interaction energy associated
with a uniform expansion of the crystal by one atomic
volume, and E_ is the pairwise interaction energy of a sur-
face atom. In deriving Eq. (A3), the perfect crystal is
taken to be at equilibrium. An expression similar to (A3)
may be derived for E,”,

EXY=E”+E>—-E,—E, (A4)
Substituting Eq. (A4) and (A3) into (A2), one obtains
E,=E +E/F,

where

EmC — ECSD — E V’

c
EmR — ERSD . ERV~

The migration energy is thus expressed in terms of con-
figuration and relaxation contribution, both of which are
determined by the pairwise interactions.

The above discussion is concerned with the migration
of an isolated vacancy. Similar derivations may be car-
ried out for the impurity-vacancy binding energy and
migration energies in the presence of an impurity. One
obtains, for example,

. R
b_EbC+Eb’

a relation used in our section on impurity-vacancy bind-
ing energy.
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