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Bulk Queue Model for Computer  System  Analysis 

Abstract: A bulk queue model was developed  for analyzing a multiprogrammed  computer system. It can  be used in conjunction with 
closed queuing models to study message queuing in a teleprocessing system. The model is based on an  imbedded  Markov  chain  analysis. 

Introduction 
Computer  queues  can be classified theoretically in two 
kinds. Messages or transactions which are waiting to be 
processed at  the terminals or at  the  disks  can be  classi- 
fied as external queues. When  messages or transactions 
are processed by the  computer,  queues inside the com- 
puter  can be  formed because  these messages or trans- 
actions  contend  for various resources in the  computer 
system. Such internal queues  can be  studied by a closed 
computer network. The  external  queue  is  the  subject of 
this  discussion. 

A number of tasks, i.e., messages, transactions, or job 
steps, etc., are processed concurrently within a computer 
system. Each of these  tasks  demands  the  services of the 
CPU,  the  channels,  and  the 1 / 0  devices. Each  task waits 
for service if the facility is busy  servicing other  tasks. 
Clearly,  the processing  time of a task depends  on several 
factors:  the  number of simultaneously presented  tasks, 
the service  times of 1 / 0  devices  and  the CPU,  the num- 
ber and the  sequences of the I / 0 accesses,  and  the wait- 
ing times for  the resources. Hence,  the processing  time of 
a  task within a computer system is a function of the num- 
ber of concurrent  tasks in the system. The processing 
times  can  be  analyzed by using closed  queuing  models 
[ 1-31. In  what follows, we describe  the behavior of an 
external  queue, assuming that  we  can  determine  the pro- 
cessing  times  from other models. 

Multi-server model 
We  can formulate the problem as a  multi-server system 
with c servers.  We  assume  that  the arrival  distribution of 
messages or transactions  at a computer installation for 
processing is Poisson  with  input  density A. The maxi- 
mum number of messages or transactions which the com- 
puter system can  process simultaneously is c. A queue 
is formed if all the  servers  are engaged in processing 
messages. 

Let P ,  be the probability that  there  are n items in the 
system, including those being served.  Since  the process- 
ing time depends  on  the  state of the  system, i.e., the num- 
ber of simultaneously  processing tasks in the  system,  the 
processing of each  transaction (or the service  time of 
each  server) is assumed  to  depend  on i ,  where i = 1, 2 ,  
. . ., c. Let H i ( x )  be the  service time  distribution of each 
server, when i servers  are engaged in services;  let $,(s) 
be its  Laplace transform. If we  assume  that H i ( x )  is ex- 
ponentially distributed,  the  state probability P ,  can  be 
easily  determined  from the birth and  death  process; i.e., if 

then 

If n is larger  than c ,  then p, = pc. 
However,  such  an  approach is not always  satisfactory 

because H i ( x )  is not  exponential. The processing  time 
is  the sum of many small time increments which  include 
the  CPU times, the 1 / 0  times,  and the internal waiting 
times. In  other  words,  the processing  time  distribution 
is a convolution of many service time  and waiting time 
distributions  from  the closed  queuing  network. I t  is  better 
approximated by an Erlang  distribution.  If the process- 
ing time is a constant,  the solution of the multi-server 
queuing system is given in Riordan’s  book. [4]  Our for- 
mulation follows this  method  closely. 

Markov chain 
Assume  that  the processing  time is closer  to being con- 
stant  than exponentially distributed. We can approxi- 
mately  form a Markov chain as follows. 



Let  the transition  probability  be 

p , ( j )  = p e-xz[ (Ax)'/j!] dHi (x ) ,  ( 4 )  

where j is  the  number of new arrivals during a service 
time x. We  can  form  the following set of linear equations: 

0 

P 0 = p 1 ( O )  P 0 + P 1 ( O )  P ,  + P 2 ( 0 )  P 2 + . . . + P C ( 0 )  PC, 

P 1 = p l ( l )  P 0 + P l ( l )  P l + P , ( l )  P , + . . . + P C ( l )  PC 

. + P C ( O )  PC+,, (5 1 
c-1 n 

~ , = ~ l ( n ) ( P o + P l )  +x p i ( n )  P i + x ~ c ( n - A  
i=2 j=  0 

This formulation is similar to a single server  system 
with bulk services. That  is, during each  service period, 
the  system is capable of servicing up  to c customers  at a 
time. The  system  is  assumed  to be idle when an item ar- 
rives at time 0. The  system  serves this  item  with  a service 
time  distribution H ,  (x). When  this  item departs,  the sys- 
tem is at  whatever  state  corresponds  to  the  number of 
arrivals during the  service time. If there  was  no  arrival, 
the  system  at  the  departure point is idle. If there  was  one 
arrival, the  system is in state 1. Suppose  that  the  system 
is in state c and  there  was  no  arrival;  the  system will re- 
turn to the idle state  after all c items  depart.  The  system 
will be in state n if the previous state is less than c and 
during the  service period exactly n new  items arrive  [or 
if the  previous  state is larger than  or  equal  to c (at c + j 
state) and  exactly n - , j  new items arrive]. 

Multiplying both sides of ( 4 )  by zn, and noting that zn 
can  be  written as z ~ - ~ z ~ + ~ z - ~ ,  we obtain  a  generating  func- 
tion by summing up terms  on both  sides: 

(7 

Since zc - +,[A( 1 - z )  ] has  exactly c roots within the 
unit  circle z = 1 ,  and  since U ( 1 ) = 1, we  can  use  these 
roots  to  determine Po, PI, . * ., (the  numerator  must 
vanish at  these  roots). 

Queuing time distribution 
Let O(s) be the  Laplace transform of the queuing  time 
distribution (queuing time = waiting time + service  time). 
Since  the  number of new arrivals during the queuing 
time is equal to  the  queue size, i.e., O [ A ( l  - z ) ]  = U ( z ) ,  
we have 

e(s) = ~ ( 1 -  $ / A )  
c- i  x p j [  ( A  - s ) c + j ( ~ )  - A ~ - J ( A  - s ) ~ + ~ ( s ) I  

- j = O  - 

(A  - s)' - AC+,(s) 
, (9) 

Waiting  time  distribution 
Let W ( x )  be  the waiting time  distribution and  let n(s) 
be  its  Laplace transform. Since  the queuing  time is the 
sum of the waiting time and  the  service time, we have 

= ( p ,  + ~J+,( .S) + 2 ~ ~ + ~ ( s )  

+ En(s) - Pj1+c(49 

c-1 

j=2  

c-1 

(10) 
j = O  

from  which n (s )  can be  obtained as 

+ y P j   [ l  -Ac-' (A-s)" 
j = O  

Example 
Let c = 2 and A = 0.1. Let  the  service time  be  Erlang-2 
distributed: 

J I 0 ( s )  = +,(s) = [0.25/ (s + 0.25)],  Mean = 8; 

J12(s) = [0.2/ (s + 0.2)]' Mean = 10. 

The  denominator of 0 (s) can  be  factored as 

s ( S  - 0.155) (s' + 0.355s + 0.025) 0 ;  

thus s1 = 0.155. Substituting  this  value of s into  the nu- 
merator of O(s), we find P ,  = 0.698 Po. With this  relation- 
ship, and  after  some simplifying, we have 

e(s) = P ,  [0.25/ ( S  + o . ~ ) ] '  (1.7s' + 0.646s 

+ 0.06) / (s2 + 0.355s + 0.025). 

SinceO(O)= l,wefindPo=0.25,P,=0.17,and-O'(0) = 371 
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10.1. Finally,  with these  values  and  the mean  serving 
times the mean waiting time W can  be  determined from 

10.1 = (Po + P l ) 8  + ( 1  - Po - PI) ( W  + lo) ,  or 

W = 1.72. 

This model can be  used  with other closed  queuing 
models to study the queuing  behavior of a computer sys- 
tem. That problem requires  the  determination of a num- 
ber of roots in the  denominator of an equation. If c is 
large, one  must  use a computer program to  determine  the 
roots, which may also be a time-consuming  task. 
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