370

W. CHANG

Communication

W. Chang

Bulk Queue Model for Computer System Analysis

Abstract:

A bulk queue model was developed for analyzing a multiprogrammed computer system. It can be used in conjunction with

closed queuing models to study message queuing in a teleprocessing system, The model is based on an imbedded Markov chain analysis.

Introduction

Computer queues can be classified theoretically in two
kinds. Messages or transactions which are waiting to be
processed at the terminals or at the disks can be classi-
fied as external queues. When messages or transactions
are processed by the computer, queues inside the com-
puter can be formed because these messages or trans-
actions contend for various resources in the computer
system. Such internal queues can be studied by a closed
computer network. The external queue is the subject of
this discussion.

A number of tasks, i.e., messages, transactions, or job
steps, etc., are processed concurrently within a computer
system. Each of these tasks demands the services of the
CPU, the channels, and the I/O devices. Each task waits
for service if the facility is busy servicing other tasks.
Clearly, the processing time of a task depends on several
factors: the number of simultaneously presented tasks,
the service times of I/O devices and the CPU, the num-
ber and the sequences of the 1/ 0 accesses, and the wait-
ing times for the resources. Hence, the processing time of
a task within a computer system is a function of the num-
ber of concurrent tasks in the system. The processing
times can be analyzed by using closed queuing models
[1-3]. In what follows, we describe the behavior of an
external queue, assuming that we can determine the pro-
cessing times from other models.

Multi-server model

We can formulate the problem as a multi-server system
with ¢ servers. We assume that the arrival distribution of
messages Or transactions at a computer installation for
processing is Poisson with input density A. The maxi-
mum number of messages or transactions which the com-
puter system can process simultaneously is ¢. A queue
is formed if all the servers are engaged in processing
messages.

Let P, be the probability that there are n items in the
system, including those being served. Since the process-
ing time depends on the state of the system, i.e., the num-
ber of simultaneously processing tasks in the system, the
processing of each transaction (or the service time of
each server) is assumed to depend on i, where i = 1, 2,

.-+ c. Let H,(x) be the service time distribution of each

server, when / servers are engaged in services; let i, (s)
be its Laplace transform. If we assume that H,(x) is ex-
ponentially distributed, the state probability P, can be
easily determined from the birth and death process; i.e., if

H(x)=1—¢™", (1)
then

AP,=p, P and (2)
A 1) Py= A Py + by P 3)

If nis larger than ¢, then u, = u,.

However, such an approach is not always satisfactory
because H,(x) is not exponential. The processing time
is the sum of many small time increments which include
the CPU times, the 1/0 times, and the internal waiting
times. In other words, the processing time distribution
is a convolution of many service time and waiting time
distributions from the closed queuing network. It is better
approximated by an Erlang distribution. If the process-
ing time is a constant, the solution of the multi-server
queuing system is given in Riordan’s book. [4] Qur for-
mulation follows this method closely.

s Markov chain

Assume that the processing time is closer to being con-
stant than exponentially distributed. We can approxi-
mately form a Markov chain as follows.

IBM J. RES. DEVELOP.

Let the transition probability be
p) =[O/ dH). @
[}]

where j is the number of new arrivals during a service
time x. We can form the following set of linear equations:

P,=p,(0) P, +p,(0) P, + p,(0) P, +--+ p (0) P,
P,=p,(1) Py+p,(1) P, +p,(1) P+ + p,(1) P,

. +pc(0) Pc+1’ (5)
) c-1 n
P,=p(n)(P,+P)+ 3 pin) P+ pn—j) P,
i=2 =0

This formulation is similar to a single server system
with bulk services. That is, during each service period,
the system is capable of servicing up to ¢ customers at a
time. The system is assumed to be idle when an item ar-
rives at time 0. The system serves this item with a service
time distribution H, (x). When this item departs, the sys-
tem is at whatever state corresponds to the number of
arrivals during the service time. If there was no arrival,
the system at the departure point is idle. If there was one
arrival, the system is in state 1. Suppose that the system
is in state ¢ and there was no arrival; the system will re-
turn to the idle state after all ¢ items depart. The system
will be in state n if the previous state is less than ¢ and
during the service period exactly n new items arrive [or
if the previous state is larger than or equal to ¢ (at ¢ +j
state) and exactly n — j new items arrive].

Multiplying both sides of (4) by z", and noting that 2"
can be written as 2" 7z/*°z™°, we obtain a generating func-
tion by summing up terms on both sides:

Uz) = i P, 2= i 2 fw e ™I (Ax)7/ j!] dH,(x)
n=0 j=o 0

= fwe‘“l‘*” dH,(x) = ¥,[A (1 — 2)]. (6)
1]
Using (5) we also have

U(z) =P, y,[AN(1 =2)]+ P ¢ [A(1—2)] + -

+P,_ ¥ [AM1—2)]

-] UG - S P2 E)
or

S PALH I~ 2)] — 2 A1~)]}
U == . (®)

22—y [A(1—2)]
where §,[A(1 —2)] =¥, [(1 —2)}].

JuLy 1974

Since 2° — ¢ [A(1 — 2)] has exactly c roots within the
unit circle z = 1, and since U(1) = 1, we can use these
roots to determine P, P,, ', P, (the numerator must
vanish at these roots).

o Queuing time distribution

Let 6(s) be the Laplace transform of the queuing time
distribution (queuing time = waiting time + service time).
Since the number of new arrivals during the queuing
time is equal to the queue size, i.e., [A (1 —2)] = U(z),
we have

0(s)=U(1—s/X\)

c-1 . .
S PLON—5)W(s) = AT (A~ 5)d.(s)]
=0

= - , 9
(A= 35)" = N, (s) ®)

~» Waiting time distribution

Let W (x) be the waiting time distribution and let Q(s)
be its Laplace transform. Since the queuing time is the
sum of the waiting time and the service time, we have

8(s) = (Py+ P)U,(s) + 3 Py (s)
j=2
c—1
+[Q6) - Pj]ll/c(S), (10)
j=0
from which € (s) can be obtained as

Q=3 P L= = 11 4(5)

+ 1P]. (1= (A=9)] ¢, (s)

=0
== =2 Y ()] ¥ (5), (11)
where ¢, (s) = ¢, (s).

W

Example
Let c=2 and A = 0.1. Let the service time be Erlang-2
distributed:

U, (s) = ¢, (s) = [0.25/ (s + 0.25)]*
¥,(s) =1[0.2/(s +0.2))* Mean= 10.

The denominator of 8(s) can be factored as

Mean = 8;

s (s —0.155) (5 +0.355s + 0.025) = 0;

thus s, = 0.155. Substituting this value of s into the nu-
merator of (s), we find P, = 0.698 P,. With this relation-
ship, and after some simplifying, we have

6(s) =P, [0.25/ (s + 0.25)]* (1.75* + 0.646s
+0.06)/(s* + 0.355s + 0.025).
Since 8(0) = 1, we find P, =0.25, P, =0.17, and — ¢’ Q)=

BULK QUEUE MODEL

371

372

W. CHANG

10.1. Finally, with these values and the mean serving
times the mean waiting time W can be determined from

10.1= (P, + P,)8 + (1— P,— P,) (W + 10), or
W=172.

This model can be used with other closed queuing
models to study the queuing behavior of a computer sys-
tem. That problem requires the determination of a num-
ber of roots in the denominator of an equation. If c¢ is
large, one must use a computer program to determine the
roots, which may also be a time-consuming task.

References

1. M. Reiser and H. Kobayashi, “Recursive Algorithms for
General Queuing Networks with Exponential Servers,” Re-
search Report RC 4254, IBM Thomas J. Watson Research
Center, Yorktown Heights, N.Y., March 1973.

2. M. Chandy, U. Herzog and L. Woo, “Parametric Analysis
of Queuing Network Models,” Research Report RC 4730,
IBM Thomas J. Watson Research Center, Yorktown Heights,
N.Y., March 1974.

3. D. P. Gaver and G. S. Shedler, “Processor Utilization in
Multiprogramming Systems via Diffusion Approximations,”
Operations Research 21, 569 (1973).

4. J. Riordan, Stochastic Service Systems, John Wiley & Sons,
Inc., New York, 1962, p. 115.

Received January 29, 1974

The author’s current address is the IBM Data Process-
ing Division Headquarters, White Plains, New York
10601, this work was done at the IBM Education Center
in Poughkeepsie, New York.

IBM J. RES. DEVELOP.

