
Introduction 
The phenomenon of drop formation in a liquid jet  has 
been  studied by many authors.  The earliest analysis  ap- 
pears  to be that of Lord Rayleigh [ 1 1, who  made a linear- 
ized stability analysis of a nonviscous liquid jet.  This 
work was later  extended by Rayleigh himself [ 2 ]  and, 
more  recently, by others [3-71 who included  various 
effects of viscosity,  nonlinearity and ambient air pres- 
sure in their studies. Most of these  analyses followed the 
pattern of the classical treatment  set by Rayleigh. For 
linear  analysis,  solutions were sought  through an indirect 
quantity such  as potential  functions. Because of the com- 
plexities  involved, transient initial value  problems and 
steady  state boundary  value  problems, which describe 
a more  realistic drop forming process,  have  not been 
solved in closed-form  solutions. For a nonlinear  analysis, 
higher order expansion methods  or  complex numerical 
analyses  have  to be used. 

In this paper,  these complexities have been  circum- 
vented through simplification of the  hydrodynamic equa- 
tions,  and  the original, physically meaningful variables 
are retained  through  analysis. For this simplification, the 
axial velocity of the nonviscous fluid is  assumed  to be 
dependent upon  only the axial coordinate.  This assump- 
tion reduces  the  equations of stream motion to  two simple 
equations-  one  for momentum  balance and  the  other  for 
continuity. For the  quasi-stationary  stream analysis, 
these nonlinear equations  are then  transformed to a mov- 
ing coordinate  system. 

Both linear  and  nonlinear studies  have been  performed. 
The linearization makes closed-form  solutions  possible. 
These solutions  include the stability of the  stream, which 
shows  the optimal condition  for  drop formation, and so- 
lutions for  drop  breakup time under a  given initial per- 
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turbation  and under a continuous external 

solutions are  presented in tabular form. 
nonlinear readily adapted to numerical  methods. Typicid 

ions can  be  Due  to their simple form, the nonlinear equa 
excitation. 

The closed-form  solutions  obtained in this pnalysis are 
more easily adapted  to  the design  analysis f drop gen- 
erating devices  than  the  complex  results  fro  the classi- 
cal treatment.  Such  devices  have been  d  scribed by 
Sweet [8] and Kamphoefner [9]; the  latter is a review \ 
hyperbolic  function. 

Basic equations 

cal  coordinates  become 

where p is density; v, kinematic  viscosity; p ,  pressure; 
u, velocity; and A body force in directions f respective 
coordinates. P 
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The continuity equation [ 101 for incompressible flow 
of an infinitesimal element is 

or, as applied in a control volume of variable cross sec- 
tion (Fig. 1 1,  

-+ - (Au,) = 0, 
aA a 
at az 

where A = z-r; and ro(z,  t )  is the time-dependent stream 
radius. 

The  pressure term p in Eq. ( 3 )  includes the  surface 
tension, which plays a key role in the  drop formation. 
If the internal pressure balances the  surface tension for 
an infinitesimally thin cross section,  then 

where T is the surface  tension and rN and rT are mutually 
orthogonal principal radii of curvature of the curved sur- 
face.  Referring to Fig. 1 ,  one  gets 

rN = ro sec o! = ro [ 1 + (dr , /dz ) ' ]+,  and (7 1 

where f is the  pressure  contributed by any source  other 
than the surface  tension.  If  viscosity is ignored,  Eq. ( 1 )  
is decoupled  from  the  rest and it suffices to  solve  the fol- 
lowing equations  (denote u, = u from here  on) : 

-+u-=-- - - ,and  
a u  au  1 ap 
at az p az 

(10) 

- + - ( ro2u)  = 0. a 
at az 

Quasi-stationary  stream  analysis 
I f  an infinitely long stream  has a  velocity u,, a change 
of coordinates, 

alters  the  observation reference to  one in which the  ob- 
server follows  the stream and results in quasi-stationary 
hydrodynamic  equations: 

JULY 1974 

1'; 

pAA/sin a 

Figure 1 Free body diagram of an infinitesimal length of jet 
showing  variations of pressure, velocity, cross-sectional area 
and the stream  contour.  The radius of curvature r.,. lies in the 
plane of the  paper and rN is perpendicular to r.,.. 

Further, if we  introduce a velocity variation such  that 

u ( 7 ,  t )  = uo + u ( v ,  t )  or u ( 7 ,  t )  = u ( 7 ,  t )  - uo, ( 1 5 )  

then  the  equations of motion become 

au u I ap 

at a77 P av 
- + u - = - - - - , a n d  

p is shown by Eq. (9) .  

Linear analysis 
For  the linearization, the velocity  variation u and the 
derivative avo/ are regarded as small quantities and the 
u du/av, (ar0/av)' and u aro/av terms  are ignored. If we 
set  the radius ro = a ( 1 + S ) ,  then the linearized equations 
of motion  become 

Elimination of u results in 

a's T a's U T  a4s I a'f - +--+--=---~f( t ) .  
at2 2pa a$ 2p aq4 p a+' 0 7, 

(20) 
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Fromone-dimensional analysis 
From Rayleigh's equation 
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Figure 2 Stability  plots of  Eq. (23) and Rayleigh's  equation 
[ 11 as functions of wavelength-jet  diameter  ratio. 

Stability of an infinite stream Since  stream  breakup re- 
quires a wave form that  grows in exponential  fashion, the 
solution of Eq. ( 2 0 )  withf, = 0 takes  the  form 

6 ( q ,  t )  = 6, 3 ( 2 1 )  e ~ t + i k ~  

where y is a growth  factor, k = 2 r / A  and A is the  wave 
length. Substitution into Eq. ( 2 0 )  results in 

4 k2 Y2 T k - - + - = O  where@=-;or  
a2 a'@ 

( 2 2 )  
2Pa 

This  is  the stability equation similar to Rayleigh's  equa- 
tion [ l].  Equation (23) shows  that a2k2 < l is required 
for  the  stream  to break up. In  terms of wave length, the 
requirement is A > 2 m  = r d ,  i.e., that  the  stream will be 
broken  into drops  separated by distances  greater  than  the 
jet circumference. Comparison between Eq. ( 2 3 )  and 
Rayleigh's results showed  little difference. Stability  plots 
are shown in Fig. 2.  

The optimum  condition for  breakup  means maximum 
y, which is obtained from 

that is, 

2 1  k =- or A,,, = m r d  = 4.443d. 
OPt 2a2 

This  compares well with the result  obtained  from Ray- 
leigh's equation [ 1 1 ,  which  yields X,,, = 4.508d. 

Initial value problems If a uniform jet is given an initial 
disturbance in the  form of a  velocity  distribution or radius 
variation, the  stream will break up under  the influence of 

surface tension. Suppose  the initial disturbar 
soidal in nature:  the  form of the solution is ther 

6(q, t )  = A ( t )  cos ( 2 a q / h ) .  

Substituting 6 into  Eq. (201 ,  withf, 0 ,  we ot 

with  solution 

A ( t )  = C,  cosh y,t + C,  sinh yot, 

where 

and 

6(q,  t )  = (C, cosh yo t + C2 sinh yo t )  cos (; 

C ,  and C2 are  determined from initial conditio1 
Consider  the  case of initial disturbance  on t 

At t = 0 ,  

6 ( q ,  0) = 0, u ( q ,  0 )  = u, + Au sin ( 2 ~ r q / h )  

= u(q ,  0) - uo = Au sin ( 2 ~ q / h ) .  

From  Eq. (191, 

as 
- (7, 0 )  =--- (7, 0 )  =-AU - COS ( 2 ~ q  1 au 5T 

at 2 37 A 

e is sinu- 

These conditlions yield C, = 0 and yo C , = T A U / X .  There- 
fore 

6(q ,  t )  =-cos ( 2 ~ q / X )  sinh yet. 
TAU 
A 7 0  

( 2 6 )  

The  stream  breaks  into  drops when the amplitude of 6 
becomes 1 .  Hence,  the linear theory predicts the  breakup 
time to be 

When  this is normalized to  jet velocity uo, the so-called 
"break off distance" is obtained as 

Note  that in Eq. ( 2 6 )  when y,t is large, the function 
sinh yot may be approximated by +eyot, which was used  by 
Sweet in his analysis [8], resulting in a  logarithmic ex- 
pression for t ,  (Eq. 27) .  

Radially  disturbed j e t  Drop formation can be accom- 
plished by placing around a jet  one  or a series of equally 
spaced rings which exert pulsating radial pressure  or 
axial forces  on  the  stream.  The  forces may be electro- 
static  or magnetic in character.  For the simplified analy- 

IBM J. RES. DEVELOP. 



sis, this effect can be  studied by assuming an infinite 
number of rings. This makes the external  pulsation  travel 
with the  stream.  Then  the  pressure term becomes 

dynamic  equations.  That solution, however,  describes 
the  stream  contour  as a  sinusoidal  form,  which is true 
only  during the early  stages of the  stream  dynamics. In 
the  later stages, because  the slope of the contour  becomes 
large, the linear  analysis is no longer valid. Hence, more 
realistic stream dynamics  can  only be studied  through the 
nonlinear equations  such  as  Eqs. ( 16) and ( 1 7 ) .  Because 
of the simplicity of those  equations,  their numerical diffi- 
culty is minimal and  they are easily adapted  to a computer 
program as we have  done  to obtain the following results. 

We introduce  the following dimensionless parameters: 
6 = r,,/a, w = u / u o ,  Z = ? / A ,  t =  u o f / A ,  H = a / A  and 

). Then  the  equations of stream  dynamics 
( 17)  become 

where p ,  is the  pressure amplitude  resulting from  the ex- 
ternal disturbance.  The linearized equation of motion, 
Eq. (201, is rewritten as 

a's a's a46 
at' aV a77 - + p  ,+a'/? 7 

2?r2 p ,  - - _ _  cos ( 2 r ~ I h )  = p ,  COS ( 2 r V / h ) ,   ( 3 0 )  
A' P 

where 

p = - A ,  
2 r 2  p 

e A' P 

The solution is again in the form 

6 = A  ( t )  cos ( 2 r q / A ) ,  and 

A ( t )  = - ( p , / y ; )  + C ,  cosh ynt + C, sinh yot,  ( 3 1 )  

where 

If the initial conditions are S = 0 and a s / a t  = 0, then we 
obtain 

+ p )  and ( 3 5 )  

a6' a 
at  az 
- (6 'w);  where 

p =  Q [i- H'(6L6 /d22)  

Note  that in this  formulation there  are only two physical 
parameters: H ,  the  wave length parameter and Q ,  the  sur- 
face tension-disturbance parameter.  The quantity uo in 
the  parameter Q is any  quantity with the dimensions of 
velocity. In the following analysis, uo will denote  the 
velocity-disturbance  modulation  amplitude. 

Numerical  analysis An  exact solution to  Eqs. ( 3 5 ) - ( 3 7 )  
is not  known;  however,  this set of equations belongs to 
the  class of hyperbolic  partial differential equations  for 
which numerical methods  have been  extensively  studied. 
Here,  the Lax-Wendroff  method [ 1 1 1  for finite difference 
equations will be adopted.  The variables chosen  are s = 6' 
and m = 6'w. The quantity s represents  the cross-sec- 
tional area of the  stream and m is proportional to  the 
momentum. Equations ( 3 5 ) - ( 3 7 )  become 

[ l  + H 2 ( d 6 / d z ) 2 ] i  6 1 + H2(aS/dZ) '  1 . ( 3 7 )  

The  breakup time according  to this  linear theory is 

( 3 3 )  

If 

a" a ("13 sap 
a7 az az 

+ -  - =__ A2 = A:pl = 8?r a and gPt = T / 8 p a " ,  then 2 2  

"I+-= 0,  and 
as dm 
at az ( 3 9 )  

p' 2Q 
[4s + H'((as/az)']* Equations ( 2 7 )  and ( 3 3 )  allow comparison of breakup 

efficiency for  drop formation by different disturbances 
when values of Av and p c  can be estimated. 

Nonlinrmr unulysis 
The solution of the initial value  problem has been de- 
scribed above  for the linearized one-dimensional hydro- 

Then  the following relationships are obtained (from 
here  on, 7, 2, and p will be denoted by t ,  z, and p ,  respec- 
tively, for typographical convenience) : 367 
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Figure 3 Typical nonlinear variation of stream contour as 
time elapses from t = 0 to breakup time, t = tb. The result 
shows that the satellite drop is 4% of the total drop volume 
when Q = 22000 and H = 0.1. 

s ( z ,  t + At) = S ( Z ,  t )  + At(as /a t ) , ,  

f T  (a2s/at2)z,, + o ( A ~ ~ ) ) .  A t2 

Substituting Eq. (39) for the time derivatives, we get 

0 

0.82 
0.89 
0.94 
0.97 
0.99 
1 .O 

Similarly, 

+" ""f 

m2 s2 az ap az am az  az at z,t 

,.*] . (42) 

Similarly we can calculate - by replacing - with - aP am aa 

in Eq. (43). az az az 

Equations (41)-(43) enable computation of the state 
variables, m and s, at t + At in terms of their respective 
values at t .  A successful computation depends on the 
ability to control the numerical  stability. In particular, 
the grid size of At and Az is  such that the predicted states 
must  be  within the boundaries of characteristic lines [ 121. 
Due to the nonlinear characteristics, this range varies 
with  time. Thus,  a variation of the time interval At is 
required. One scheme used here to insure a proper At is 
to compare, at each step, two predicted state values, e.g., 
m1 (z, t + 2At) based on m (z, t )  and m2 (z, t + 2At), which 
was calculated from m(z,  t + A t ) ,  which  in turn had  been 
obtained from m(z,  t ) .  If the difference between m1 and 
m2 falls  within a specified  limit, the size At is acceptable. 
If the difference  is too large, At is reduced until the re- 
quired accuracy is obtained. The computation of stream 
contour continues until a singularity occurs, signifying a 
negative cross-sectional area. The final contour line is 
taken to be that obtained just before the singularity. 

Numerical results One simple  problem to study is the 
stream dynamics of a finite, quasi-stationary jet caused 
by an  initial disturbance with a periodic distribution. For 
such a problem the solution is periodic; therefore, it is 
necessary to examine only one wavelength. The bound- 

Table 1 Satellite volumes and breakup time.* 

A I d ( H )  4(H = 0.125) 5(0.1) 7 (0.07 14) 

300 0.0114 0.0626 (0.0717) 0.0432 0.057 (0.06 1 ) 0.1618 0.052 (0.052) 

7000 0.0 107 0.0 198 (0.02 17) 0.0400 0.0174 (0.0180) 0.142 0.0157 (0.0161) 
30000 0.0 107 0.0 1 1 1 (0.0 12) 0.0405 0.0096 (0.00993) 0.1385 0.00865 (0.0884) 

700000 0.0 107 0.00299 (0.003 17) 0.0406 0.00254 (0.0026) 0.136 0.00227 (0.0023 1 ) 

2000 0.0 107 0.0319 (0.0355) 0.0405  0.0283 (0.0297) 0.1473  0.0256 (0.0266) 

200000 0.0107 0.00509 (0.00542) 0.0405 0.00433 (0.00446) 0.136  0.0039 (0.00396) 

* v , / v ,  is the ratio of satellite volume to total drop volume; ?,,, breakup time; t,,, breakup time from linear theory. 
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ary  conditions  were obtained  from the  conditions of 
periodicity. For  the solutions presented here, the wave- 
length is divided into 20 segments and in the first set 
s(z,  0)  = 1 and m(z,  0) = -sin 2 m .  

A typical  solution is plotted  in Fig. 3.  The  curves map 
the  contours of a stream segment at various times. Only 
half the wavelength is shown. 

Since  there  are only two lumped parameters Q and H 
involved in the model, it appeared  to  be of interest  to 
study  their effects on  drop formation,  especially on  the 
secondary  drop called the “satellite” drop.  For this pur- 
pose the volume ratios of satellite and  parental  drops  have 
been computed  for  various combinations of Q and H .  In 
the range covered, satellites were  always formed. As 
seen from the table,  satellite  volumes are strongly in- 
fluenced by X l d ,  but only  weakly  by Q, which is the 
parameter involving surface tension and  disturbance am- 
plitude. The volume  ratios and  the  breakup times are tab- 
ulated in Table 1 .  For comparison, the times  predicted by 
linear theory, Eq. (27),  are given in parentheses.  The 
breakup time  from the  linear  theory agreed well with that 
from the nonlinear  solution. 

Nonharmonic initial distributions, such as sawtooth 
and rectangular functions,  have been  tried  and have re- 
sulted in little  difference in satellite  formation. 
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