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Drop Formation in a Liquid Jet

Abstract:

H. C. Lee

A one-dimensional analysis of drop formation in a liquid jet is developed under the assumption that the axial velocity of the

axisymmetric, nonviscous liquid jet remains independent of the radial coordinate. The resulting equations are used for both linear and
nonlinear analyses. In the linear form, this model provides a stream stability relation comparable to that of Rayleigh; transient solutions
are obtained for given initial conditions of an infinite stream. For the nonlinear equations, numerical simulation was done|to study the

satellite drop formation; with the present model, the satellite drop is always formed.

Introduction

The phenomenon of drop formation in a liquid jet has
been studied by many authors. The earliest analysis ap-
pears to be that of Lord Rayleigh [ 1], who made a linear-
ized stability analysis of a nonviscous liquid jet. This
work was later extended by Rayleigh himself {2] and,
more recently, by others [3-7] who included various
effects of viscosity, nonlinearity and ambient air pres-
sure in their studies. Most of these analyses followed the
pattern of the classical treatment set by Rayleigh. For
linear analysis, solutions were sought through an indirect
quantity such as potential functions. Because of the com-
plexities involved, transient initial value problems and
steady state boundary value problems, which describe
a more realistic drop forming process, have not been
solved in closed-form solutions. For a nonlinear analysis,
higher order expansion methods or complex numerical
analyses have to be used.

In this paper, these complexities have been circum-
vented through simplification of the hydrodynamic equa-
tions, and the original, physically meaningful variables
are retained through analysis. For this simplification, the
axial velocity of the nonviscous fluid is assumed to be
dependent upon only the axial coordinate. This assump-
tion reduces the equations of stream motion to two simple
equations--one for momentum balance and the other for
continuity. For the quasi-stationary stream analysis,
these nonlinear equations are then transformed to a mov-
ing coordinate system.

Both linear and nonlinear studies have been performed.
The linearization makes closed-form solutions possible.
These solutions include the stability of the stream, which
shows the optimal condition for drop formation, and so-
lutions for drop breakup time under a given initial per-

turbation and under a continuous external|excitation.
Due to their simple form, the nonlinear equaiions can be

readily adapted to numerical methods. Typic

solutions are presented in tabular form.
The closed-form solutions obtained in this

1 nonlinear

analysis are

more easily adapted to the design analysis of drop gen-
erating devices than the complex results from the classi-
cal treatment. Such devices have been described by

Sweet [8] and Kamphoefner [9]; the latter

is a review

paper on the status of the subject through about 1971.
Sweet’s report includes an analysis of drop formation in
which the disturbance growth is approximated by splic-
ing a linear function and an exponential function. In our

analysis, the disturbance growth is derived to be a single

hypeibolic function.

Basic equations
If the axial velocity and the pressure in the

jet are con-

stant over the cross section of the axisymmetric stream

and dependent only on axial coordinate z an

d time ¢, the

Navier-Stokes equations of momentum [10] in cylindri-

cal coordinates become

ov o E) arla )
Lt o+ v —"L=vi— |——(,) | +— +&, (1)
r 2
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at T or %0z ar Lr or

v, = 0, and (2)
av v 9 & v

—_—2 U_z=__1_£+v__z_+f_‘z’ (3)
ot ? 9z poz at P

where p is density; », kinematic viscosity;|p, pressure;
v, velocity; and f, body force in directions of respective
coordinates,
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The continuity equation [10] for incompressible flow
of an infinitesimal element is

1a 90, _
r ar(""‘) + 9z 0 ()
or, as applied in a control volume of variable cross sec-
tion (Fig. 1),

% )

;+£(sz)=0, (5)

where A = 7r? and r,(z, ) is the time-dependent stream
radius.

The pressure term p in Eq. (3) includes the surface
tension, which plays a key role in the drop formation.
If the internal pressure balances the surface tension for
an infinitesimally thin cross section, then

ps=T<’—+i> (6)

v Ty

where T is the surface tension and r, and r are mutually
orthogonal principal radii of curvature of the curved sur-
face. Referring to Fig,. 1, one gets

ry=ryseca=r,[1+ (bro/az)z]%, and (7)

_ L1+ (ary/32)" )

2 2 (8)
—d°r,/ 02

Iy

Thus the total pressure p is
p=p,t+f

azro/az2
1+ (or,/02)°

— [ b+reo, @
(1 + (ory/02)° ]2 \r,

where f is the pressure contributed by any source other

than the surface tension. If viscosity is ignored, Eq. (1)

is decoupled from the rest and it suffices to solve the fol-

lowing equations (denote v, = v from here on):

v v 1dp

FY! v£=-;az,and (10)
6r02 d 2\
2 +az (ryu)=0. (11)

Quasi-stationary stream analysis
If an infinitely long stream has a velocity v,, a change
of coordinates,

n=z—u,t, (12)

alters the observation reference to one in which the ob-
server follows the stream and results in quasi-stationary
hydrodynamic equations:
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Figure 1 Free body diagram of an infinitesimal length of jet
showing variations of pressure, velocity, cross-sectional area
and the stream contour. The radius of curvature r, lies in the
plane of the paper and ry is perpendicular to ..

v v 1 ap ‘

—+ (v—vy,) —=——;

Py (v—u,) P P (13)
s 8 .

T am (v—ur, = 0. (14)

Further, if we introduce a velocity variation such that
v(n, 1) =v,+u(n, t)oruln, t)=vin t)—v, (15)

then the equations of motion become

Bu+ u_  lap d (16)
at "an_ pan’an
ar, ary r, ou )
E+u—a;+2%—0, (17)

p is shown by Eq. (9).

s Linear analysis
For the linearization, the velocity variation u and the
derivative ar,/ dn are regarded as small quantities and the
u ou/ dm, (dry/ dm)® and u dr,/ én terms are ignored. If we
set the radius r, = a(1 + 8), then the linearized equations
of motion become

, & af
%=1(a—8+az§—i>+l '/and (18)
ot pa \d '/ P oy
du 09
— =2 19
on 28t (19)

Elimination of u results in

aza+ T 88 aT 9% 1 &f 1) 20)
T, Tt T Tt T T 5 = s, 1),
of  2pa o’ 2p o’ p anz ot
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Figure 2 Stability plots of Eq. (23) and Rayleigh’s equation
[ 1] as functions of wavelength-jet diameter ratio.

Stability of an infinite stream Since stream breakup re-
quires a wave form that grows in exponential fashion, the
solution of Eq. (20) with f, = 0 takes the form

8(m, 1) =8, """, (21)

where v is a growth factor, k = 27 /X and \ is the wave
length. Substitution into Eq. (20) results in
k2 y2
K —=+53=
a df
2 2

avy

i3

This is the stability equation similar to Rayleigh’s equa-
tion [1]. Equation (23) shows that a®4® < 1 is required
for the stream to break up. In terms of wave length, the
requirement is A > 2ma = nd, i.e., that the stream will be
broken into drops separated by distances greater than the
jet circumference. Comparison between Eq. (23) and
Rayleigh’s results showed little difference. Stability plots
are shown in Fig. 2.

The optimum condition for breakup means maximum
v, which is obtained from

T
0  where £ =—or (22)
2pa

47°d" (1 4772a2)

=dk (1 —ad'k*) = x o

(23)

d
a(a*k>)

(&K (1 — AkKH1=1-24K=0:
that is,

1

Koy == Or A, = V2 md = 4.443d.
2a

This compares well with the result obtained from Ray-

leigh’s equation [ 1], which yields A, = 4.508d.

Initial value problems If a uniform jet is given an initial
disturbance in the form of a velocity distribution or radius
variation, the stream will break up under the influence of

surface tension. Suppose the initial disturbance is sinu-
soidal in nature; the form of the solution is then

8(m, 1) =A(¢t) cos (2mm/N).
Substituting 8 into Eq. (20), with f, = 0, we obtain

dZA 471'2 4772 2 471'2 2
a4 _gdm 12y a=0, T 4<,
dr g % A2 A2
with solution
A(t) = C, cosh y,t + C, sinh vy,
where
2 p2 4w 47" _____T_4'n"2 _ﬂrz 2
Yo =B ’;\‘2—(1——2—a>—2pa-—2~<1 ak (24)
and

8(m, t) = (C, cosh y, 1 + C, sinh y 1) cos (2mm/N);
(25)

C, and C, are determined from initial conditions.
Consider the case of initial disturbance on the velocity.

Att=0,
3(n, 0) =0, v(n, 0) = v, + Av sin (27n/A)|or u(y, 0)

= v(n, 0) — v, = Av sin (27n/)).
From Eq. (19),

30 10U T
L = =T .
o (m, 0) 2 om (n, 0) v cos (2mm|/N\)

These conditions yield C, = 0 and y, C,=wAv/\. There-
fore

wAv

S, t) =
(n, 1) y

cos (2zm/\) sinh y,t. (26)
1}

The stream breaks into drops when the amplitude of &
becomes 1. Hence, the linear theory predicts the breakup
time to be

t,= L sinh™* {(Ay,/mAv). (27)
Yo
When this is normalized to jet velocity v, the so-called
“break off distance” is obtained as

Z,=uv,t, =v,/v, sinh™ (\y,/7Av). (28)

Note that in Eq. (26) when vy is large, the function
sinh y,t may be approximated by 3", which was used by
Sweet in his analysis [8], resulting in a logarithmic ex-
pression for 7, (Eq. 27).

Radially disturbed jet Drop formation can be accom-
plished by placing around a jet one or a series of equally
spaced rings which exert pulsating radial pressure or
axial forces on the stream. The forces may be electro-
static or magnetic in character. For the simplified analy-
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sis, this effect can be studied by assuming an infinite
number of rings. This makes the external pulsation travel
with the stream. Then the pressure term becomes

(B 028

) = +a — |+ p, +p, cos (2 A, 29
! a \am o Pyt D, (2 /) (29)

where p, is the pressure amplitude resulting from the ex-
ternal disturbance. The linearized equation of motion,
Eq. (20), is rewritten as

625 g2 gt
—+ g a_(z +d' g’ a—b;
ot am an

27"

=7%cos (2mn/\) = b, cos (2mm/N),  (30)
where
_ 2’ p,
Po=—5—.

AP
The solution is again in the form
8=A(t) cos (2mm/A), and
A(t) =—(p,/v,’) + C, cosh y,t + C, sinh vy, (31)

where

yie 277 (1 _ 4772(12)
¢ pa)\2 A
If the initial conditions are 8§ = 0 and 48 /4¢ = 0, then we
obtain

p.a(l — cosh ygt) cos (2an/M\)

8(1) = (32)
T(1—4xn"a"/)\)
The breakup time according to this linear theory is
)\2 2

t, =~ cosh™’ (1 +~’—’_§'°—>. (33)

Yo 2m P
If
N =\., =8n’a’ and v}, = T/8pd’, then

Zape m

By = T (1 —cosh y,, t) cos (2(1)% , and
! _(sp(ﬁ)% h(1+ ! ) (34)
b-opt T Ccos 2a[7(, . 3

Equations (27) and (33) allow comparison of breakup
efficiency for drop formation by different disturbances
when values of Av and p, can be estimated.

s Nonlinear analysis
The solution of the initial value problem has been de-
scribed above for the linearized one-dimensional hydro-
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dynamic equations. That solution, however, describes
the stream contour as a sinusoidal form, which is true
only during the early stages of the stream dynamics. In
the later stages, because the slope of the contour becomes
large, the linear analysis is no longer valid. Hence, more
realistic stream dynamics can only be studied through the
nonlinear equations such as Eqs. (16) and (17). Because
of the simplicity of those equations, their numerical diffi-
culty is minimal and they are easily adapted to a computer
program as we have done to obtain the following results.

We introduce the following dimensionless parameters:
8=r/a, w=ulu,z=mn/\ t=ug/\, H=a/\ and
Q=T/ (pauoz). Then the equations of stream dynamics
(9), (16) and (17) become

w__9 (’—”:r ) and (35)
at azv2 P

2
£= _9 (8®w); where 36)
ot 9z

) 0 [1 H*(3°8/97) J
p= 2 el e 2 _e | (37)
[1+H(38/02)"]2 |8 1+ H"(88/9z)
Note that in this formulation there are only two physical
parameters: H, the wave length parameter and Q, the sur-
face tension-disturbance parameter. The quantity u«, in
the parameter Q is any quantity with the dimensions of
velocity. In the following analysis, «, will denote the
velocity-disturbance modulation amplitude.

Numerical analysis An exact solution to Eqgs. (35)-(37)
is not known; however, this set of equations belongs to
the class of hyperbolic partial differential equations for
which numerical methods have been extensively studied.
Here, the Lax-Wendroff method [ 11] for finite difference
equations will be adopted. The variables chosen are s = §°
and m = 8'w. The quantity s represents the cross-sec-
tional area of the stream and m is proportional to the
momentum. Equations (35)-(37) become

2 _
f’_'f+i_(£"_)=_ﬁ, (38)
ot oz \s 9z
95 4 9M _ 0, and (39)
ot oz
p= -

[4s + H*(3s/92)%]?

{I_H[Zs(a s/ai)—(i?sz/aé) ]}. (40)

4s + H (ds/0z)

Then the following relationships are obtained (from
here on, 1, 2, and p will be denoted by ¢, z, and p, respec-
tively, for typographical convenience):
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6 Q=T/pau §=22000
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Figure 3 Typical nonlinear variation of stream contour as
time elapses from 1= 0 to breakup time, t=1t,. The result
shows that the satellite drop is 4% of the total drop volume
when Q = 22000 and H = 0.1.
sz, t+ At) = 5(z, 1) + At(as/at),,
AF
+5 (&s/af"),, + O(AF).

Substituting Eq. (39) for the time derivatives, we get

2
sz, t+At) & sz, t) — At (6_m> _Ar (_6_8_m)
4t

9z /,, 2 \9z ot
am AP (8T8 /m sdp
=s(z 1)~ &t (a)z,, S lelmE) —a;]};,, 1)
Similarly,
a (m 9
m(z, t +At) =m(z, t) — At [— (-m—> + a—p]
dz \a 0z

AP {a [ 2m<a (mz) ap)
2 loz s \0z \ s 0z
2
m_ dm] _ op dm ga_p}
] oz 9z | "oz atl,; (42)

Table 1 Satellite volumes and breakup time.*

From Eq. (40),
op _4Q (A, + H'B,— 3H'C,)

(43)
at [4s + H*(3s/32)' "
where
A,=4s(dm/3z),
m os o'm s am] (as 2 om
B, =2s|2s— ——————|+4 —) — ,and
v s[ g 92 0z 9 3t 0z dz/ 9z
2r a2 v4 3 2 2
cp=(ﬁ) [a_zirﬂjLQQJg_ﬂé_r;z]% dsdsdm
92/ Loz" dz 0z 0z a2 9z" 4z a2
.. ap . om ., da
1 - lacing — with ——
Similarly we can calculate P by replacing e ith P

in Eq. (43).

Equations (41)-(43) enable computation of the state
variables, m and s, at ¢ + At in terms of their respective
values at z. A successful computation depends on the
ability to control the numerical stability. In particular,
the grid size of At and Az is such that the predicted states
must be within the boundaries of characteristic lines [12].
Due to the nonlinear characteristics, this range varies
with time. Thus, a variation of the time interval Ar is
required. One scheme used here to insure a proper At is
to compare, at each step, two predicted state values, e.g.,
m,(z,t + 2At) based on m(z,t) and m, (z, r + 2At), which
was calculated from m(z, ¢ + At), which in turn had been
obtained from m(z, t). If the difference between m, and
m, falls within a specified limit, the size At is acceptable.
If the difference is too large, At is reduced until the re-
quired accuracy is obtained. The computation of stream
contour continues until a singularity occurs, signifying a
negative cross-sectional area. The final contour line is
taken to be that obtained just before the singularity.

Numerical results One simple problem to study is the
stream dynamics of a finite, quasi-stationary jet caused
by an initial disturbance with a periodic distribution. For
such a problem the solution is periodic; therefore, it is
necessary to examine only one wavelength. The bound-

N/ d(H) 4(H = 0.125) 5(0.1) 7(0.0714)

Q v,/ v, ;b (;bl) v,/ v, ;b (;bl) v,/ v, ;b (;bl)
300 0.0114 0.0626 (0.0717) 0.0432 0.057 (0.061) 0.1618 0.052 (0.052)
2000 0.0107 0.0319 (0.0355) 0.0405 0.0283 (0.0297) 0.1473 0.0256 (0.0266)
7000 0.0107 0.0198 (0.0217) 0.0400 0.0174 (0.0180) 0.142 0.0157 (0.0161)
30000 0.0107 0.0111 (0.012) 0.0405 0.0096 (0.00993) 0.1385 0.00865 (0.0884)
200000 0.0107 0.00509  (0.00542) 0.0405 0.00433 (0.00446) 0.136 0.0039 (0.00396)
700000 0.0107 0.00299  (0.00317) 0.0406 0.00254  (0.0026) 0.136 0.00227 (0.00231)

*u,/v, is the ratio of satellite volume to total drop volume; #,, breakup time; f,,, breakup time from linear theory.
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ary conditions were obtained from the conditions of
periodicity. For the solutions presented here, the wave-
length is divided into 20 segments and in the first set
s(z,0) =1 and m(z, 0) = —sin 27z,

A typical solution is plotted in Fig. 3. The curves map
the contours of a stream segment at various times. Only
half the wavelength is shown.

Since there are only two lumped parameters Q and H
involved in the model, it appeared to be of interest to
study their effects on drop formation, especially on the
secondary drop called the ‘“‘satellite” drop. For this pur-
pose the volume ratios of satellite and parental drops have
been computed for various combinations of Q and H. In
the range covered, satellites were always formed. As
seen from the table, satellite volumes are strongly in-
fluenced by A/d, but only weakly by Q, which is the
parameter involving surface tension and disturbance am-
plitude. The volume ratios and the breakup times are tab-
ulated in Table 1. For comparison, the times predicted by
linear theory, Eq. (27), are given in parentheses. The
breakup time from the linear theory agreed well with that
from the nonlinear solution.

Nonharmonic initial distributions, such as sawtooth
and rectangular functions, have been tried and have re-
sulted in little difference in satellite formation.
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