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Iterative-Interactive Technique for Logic Partitioning

Abstract: A method is developed for partitioning a computer logic design info subsets by combining a constructive method, used for
the .initial partition, with iterative improvement techniques. These iterative techniques are implemented in an interactive computing
environment, which further enhances their efficiency and usefulness. An overview of the system is presented, several algorithms dis-

cussed and experimental results given.

Introduction

Partitioning an entire computer logic design into pack-
ageable subsets is a fundamental problem in the design-
ing and building of computers. Even with the tendency
toward larger subpackage sizes in modern computer
design, partitioning continues to be a complex problem.
One may visualize future designs of an entire computer
on one chip, but even this version carries with it the need
to subdivide the chip into regions and allocate the ap-
propriate logic to these regions. Partitioning, then, will
continue to be an operation that must be performed some
time during the design and manufacture of logic systems.

Manual techniques for partitioning have inherent limi-
tations with regard to speed, capacity and accuracy.
Fully automatic partitioning methods overcome these lim-
itations but do not account for all constraints, such as
delay, testability, etc. It seems obvious that some combi-
nation of manual and automatic techniques and a man-
machine approach is needed. The difficulty lies in the
fact that these automatic techniques that construct a
completed partitioning do not lend themselves to manual
intervention.

The key to the success of our implementation of this
man-machine approach lies in our combination of (1) a
constructive method for the initial partitioning and (2)
iterative-improvement algorithms. The constructive ini-
tial phase is an automatic, batch-oriented program pre-
viously reported in [1], and the iterative-improvement
phase is the interactive computing portion of our system.
This implementation offers the designer a powerful and
easily controlled tool on a real-time basis.
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Although the iterative-improvement algorithms imple-
mented are not the most general (and possibly not the
most powerful) algorithms that might be derived [2],
they have shown that the overall system yields excellent
results and that the approach should be further de-
veloped.

Comparative analyses of heuristic algorithms are al-
ways difficult because no standard problems or solutions
are available. However, recently a problem and its
solution was published [3] with the hopes of establishing
this problem as a standard. We ran our algorithm on this
problem and also on another problem, about twice as
large as the problem in [3]. We compare our results to
those obtained with a previously published algorithm and
to a manually produced partition. In this paper we pre-
sent the results of these comparisons, after discussing
some historical background and the components of the
interactive system.

Background

Manual division of a computer logic design to subsets,
each fitting on a package (i.e., partitioning), has been
performed ever since computers have been designed and
built. It is relatively easy for a human being to accom-
plish this task if the amount of data that he has to handle
is small, say 500 logic gates. This problem size is within
the capability of the human memory system. Most of the
design can be ‘“viewed” and value judgments can be
made leading to a subdivision of the logic. Usually this
initial manual attempt does not satisfy all packaging con-
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straints, and rework of the original partition begins. Log-
ic is moved from one package to another, constraints
such as the number of I/O pins allowed on each pack-
age are changed, or more packages are used, and eventu-
ally the partition is completed. This process works but is
prone to error and requires lengthy effort, scrap and
rework.

The amount of time required for a successful manual
partitioning, the penalty to be paid for manual error, the
ever-increasing quantities of data to be handled, the in-
creasing complexities of partitioning (e.g., the more
stringent constraints due to large scale integration), and
many other factors contributed to the motivation for par-
titioning by some automatic method. Various program-
ming techniques have been tried. See, for example [4],
which discusses the partitioning problem and contains
an extensive reference list. Also, see [1] and [5] for
more references.

After a method is developed to automatically produce
a partition satisfying some global constraints, it becomes
evident that a technique is needed to permit some modi-
fication of this global result to account for specific con-
straints not easily handled. Recognizing this need, we
created two iterative improvement techniques which
work well at solving local constraints without destroying
the global constraints already satisfied.

The pieces fall into place both logically and chrono-
logically: manual partitioning, automatic partitioning,
partitioning improvement, and interactive computing.
The basic features of each of the components of the sys-
tem are discussed next.

Components of the system

The system is comprised of both hardware and software
components. We discuss the various software compo-
nents from the standpoint of operational descriptions
and then give a brief view of the hardware used to run
these software components.

It has been observed that in the case of heuristic algo-
rithms (in particular, placement algorithms) iterative-
improvement algorithms are more powerful, i.e., yield
better results, than constructive algorithms alone [6],
because an iterative heuristic can be used to improve
the results of constructive heuristics. This combination
guarantees finding a solution that is at least as good as
the constructive method alone. (The penalty one pays
for this added power is additional computation time.)
Therefore two basic components of our system are a
constructive algorithm and interactive-improvement al-
gorithms. For our constructive algorithm we chose
ALMS (Automated Logic Mapping System) [1, 7]
since it was a system which was readily available to us
and has proven to give good results.
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Figure 1 Structure of a logic design consisting of blocks inter-
connected by a physical network of electrical conductors. Com-
ponent labels indicate the terminology used in the text.

At this point some definitions are in order. A logic
design or logic graph is a structure consisting of blocks

| interconnected by nets, as indicated in Fig. 1. A block

may be a NOR gate, a wired OR (DOTOR), a storage ele-

' ment, a register, etc. A net is a representation of the

physical network of electrical conductors connecting
those terminals on a subset of blocks that are electrically
common. A module is a container that is capable of
holding blocks and has provision for making connections
from blocks contained on it to blocks contained on other
modules. An area attribute is associated with each block
and the capability of a module to hold blocks is measured
in terms of the area or the number of blocks it can hold.
The capacity for connecting nets among modules is
specified in terms of the numbef of pins on the module.

ALMS achieves logic mapping [8] by means of a set
of batch-oriented programs that accept as input a de-
scription of the computer logic represented as blocks
interconnected by nets. Two basic steps are accom-
plished by ALMS. First, the logic is compressed into
groups by the Group Generation Program (GGP).
Secondly, these groups are allocated to modules to satisfy
certain constraints by the Group Aliocation Program
(GAP).

For the purposes of this paper it is sufficient to know
what GGP does in general. Detailed understanding of its
operation can be found elsewhere [1, 7]. GGP groups
the logic by a backward trace procedure through the log-
ic structure. The groups formed may contain any num-
ber of blocks, which are associated with each other in
that they share some nets in common. This “functional”
grouping reduces the number of items to be considered
by eliminating all connections within groups and creating
a structure of connected groups with the nets defined
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Figure 2 A pin-vs-group growth curve for a single module dur-
ing the operation of the Group Allocation Program.

between the groups. Hence the original block graph is
transformed into a group graph where the groups are
superblocks containing one or more blocks.

The second part of ALMS is GAP, of which we give
only a brief overview. GAP accepts the group graph
output from GGP as input. Other input parameters are
the number of modules into which the logic should be
partitioned and, for each such module, characteristics
such as the maximum amount of area allowed and the
maximum number of pins to be used. At each step of the
GAP process, a group is assigned to the ““best” module
such that the maxima for that module are not exceeded.
The allocation process is started by “‘seeding” the mod-
ules. After seeding and after each allocation, a candidate
set of groups is generated by considering the connectivi-
ty of unallocated groups to groups already allocated. A
“cost’” (which is a function of pins and blocks) of as-
signing each group of the candidate set to each module is
computed, generating a matrix of costs. A heuristic rule
(which minimizes cost) is employed to determine which
group in the candidate set is assigned to which module.
The process terminates either when all groups have been
assigned to modules or when there is no group that can
be allocated to any module because it would cause the
module’s maxima to be exceeded. Multiple passes at a
solution may be made by allowing GAP to choose new
seeds automatically. We consider each pass of GAP as
having created a constructive partition and select the
result of one of a number of passes as our initial parti-
tion. Reference [7] gives a more detailed description of
GAP, including the concept of seeding and multiple
passes. It is important to note that although the modules
are filled in parallel, the groups are assigned to the mod-
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ules sequentially and that at no time during the alloca-
tion process are the module maxima exceeded. These
facts will be used during the iterative improvement
phase.

For the iterative improvement phase, the basic con-
cept is to start with a given partition (or a partial parti-
tion, i.e., one in which not all groups have been
allocated), remove a set of groups from one or more of
the modules, and reallocate these groups. Two rules,
namely, the rule for removing the groups and the rule for
reallocating the groups, specify the algorithm. Two spe-
cific versions of the removal rule given here are called
MULTIPLE and SINGLE. They rely heavily on the
characteristics of the allocation algorithm in GAP. In
addition the reallocation is done using GAP, i.e., the
ALMS allocation algorithm.

As previously mentioned, a characteristic behavior of
GAP is crucial in the operation of MULTIPLE; namely,
during the GAP allocation process, the pin count
never exceeds the maximum pins permissible (Ppax)
for any module. Hence, if we remove the last K groups
which were assigned to any module, the pin count on
that module must be less than or equal to Py, Also,
if the groups are removed in reverse order of allo-
cation, the pin count on any module must eventually
decrease to zero (although not monotonically) so that
on any given module enough groups can always be re-
moved to reach any pin count less than P,,,. Figure 2
illustrates the pin-vs-group growth of a module during
the GAP process. It is observed, in general, that the
removal of groups in reverse order reduces the pin count
for the module. The determination of how many groups
to remove is made easier by viewing such module
growth curves. An illustration of this technique appears
in the next section, “Use of the system.”

Input parameters to MULTIPLE control the extent
of removals and the reallocation. The parameters consist
of the number of modules to be changed and for each
module changed, the number of groups, blocks and used
pins to be removed [9]. These three removal parameters
may be used individually or in combination. For exam-
ple, if we request that five groups and 30 blocks be
removed from module 1 then at least five groups will be
removed. If after the removal of the five groups only 15
blocks have been taken out, then additional groups will
be removed until at least a total of 30 blocks are re-
moved. All removal requests for the module are thus
satisfied.

Additional rules control the reallocation of groups to
modules. For each module that is changed, an increase
or decrease is possible in the maximum number of
groups allowed (G ay), the maximum number of blocks
allowed (Bpax), and the maximum number of pins al-

. lowed (Ppay) -
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If the maxima for a module are decreased, enough
groups must be removed from that module such that the
value of each parameter changed is less than or equal to
the new maximum for that parameter before reallocation
starts. For example, if seven pins are removed from
module 1, decreasing the pin count on module 1 from 43
to 36, then P, for module 1 must not be set below 36.
Any, all, or none of the maxima may be changed on any
of the modules. There is no requirement that removals
must be made if maxima are changed for a given module
and, conversely, maxima may be changed without re-
moval so long as the condition stated immediately above
is satisfied.

The second of the improvement algorithms is SIN-
GLE. With this method groups are removed and realio-
cated, one at a time, in the same order as that of the
original allocation. As with the MULTIPLE algorithm,
there are control parameters which specify the removal
rule and the reallocation rule. A group is removed from
a module only if the resulting module satisfies the con-
straints specified by the control parameters. After a
group is removed it is reallocated using the GAP alloca-
tion process. The process continues by considering each
group in turn from the allocation list and terminates
when there are no groups that have moved after a com-
plete cycle through the allocation list. Typically the pro-
cess terminates after two or three cycles. The particular
implementation of the SINGLE algorithm chosen for
this system attempts, as a major factor, to make moves
based on pin requirements. Other parameters could be
used as well. The input parameters are:

1) The allowable change in the used pin count on the
module from which the group is being removed. If the
allowable change is greater than zero, the used pin count
is allowed to increase with a removal. If the allowable
change is equal to zero, only removals that do not in-
crease the used pin count are acceptable. If a negative
value is entered for the allowable change, then only
removals which in fact reduce the pin count are made.

2) The allowable change in P, for the module.

Although the order of allocation is identical to the
original partition, SINGLE vyields an improved partition
because the decision to assign a given group A to a giv-
en module B is now based on more complete informa-
tion. The cost of assigning a group to a module during
the original GAP allocation is a function of the groups
that have already been assigned. If group A were as-
signed early in the allocation process, only a small por-
tion of the total number of groups to be assigned would
have in fact been assigned. Therefore, during the original
GAP allocation, assignment was based upon the “‘best”
decision that could be made with the incomplete infor-
mation then available. In contrast to this assignment,
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Figure 3 System diagram for the logic partitioning scheme,
showing hardware and software components,

during a SINGLE reallocation all other groups have al-
ready been assigned to moduiles and group A may now
be reallocated taking this into account. Hence group A
may now be assigned to some module other than module
B, with a lower cost than the original cost of assigning it
to module B. This intuitive rationale for SINGLE may
also be applied in part to MULTIPLE.

Our experience indicates that SINGLE is not as ef-
fective as MULTIPLE; however, when used iteratively
with  MULTIPLE it can yield results better than
MULTIPLE used alone. Results presented later in this
paper bear out this statement.

The hardware used for this system is shown schemati-
cally in Fig. 3. The ALMS programs, GGP and GAP,
are operational on an IBM System/ 360, Model 91 run-
ning under OS. Our general version of these programs
require ~ 450k bytes of core storage. For further data
on core requirements see [7].

Batch execution is accomplished with an input deck
and the results are displayed on a batch output printer.
When a GAP result is chosen for improvement, this re-
sult is shipped via a communications link to an IBM
System /360, Model 67 running under TSS. (This sys-
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Table 1 Four-module partition obtained with ALMS and GAP
output. Constraints were 1000 blocks per module and 50 pins
per module.

Module No. Pins Blocks
Max. Used Max. Used
1 50 46 1000 239
2 50 50 1000 377
3 50 50 1000 223
4 50 50 1000 381
196 1220

tem was used because it was available to us at the time
we began our research. Obviously, the concepts dis-
cussed here can be used on any interactive system, such
as the VM /370).

The iterative improvement routines, MULTIPLE and
SINGLE, the allocation routines from GAP used to real-
locate removed groups, and other support software used
for interactive keyboard input/output and graphic alpha-
numeric output are resident in the IBM System/360,
Model 67. These also required ~ 450k bytes of core
storage. The terminal I/O device is an IBM 2741 and
the graphic character output is displayed on an IBM
2260. A history file is also maintained by the interactive
portion of the system so that if the user desires, an off-
line batch printout of his interactive session can be pro-
duced. '

Use of the system
The purpose of this section is to show the general as-
pects of the use of the system by a particular example.
The example logic graph contains 1220 gates and 72
primary I/ O connections, a “primary connection’ being
one that is required as input to the logic or as output
from the logic. There are 19 DOTOR connections in the
logic so that in the block representation of this logic
there are 1220 blocks of size 1 and 19 blocks of size 0.
Grouping was done by GGP using some manually gen-
erated groups. The result of the GGP run was a group
graph containing 304 groups that ranged in size from 1
to 77 blocks, with an average of about four blocks per
group. GAP was run attempting partitions at five mod-
ules with a maximum area (or size) of 350 blocks per
module and a maximum of 43 pins per module. We ob-
tained successful results and then further improved
them, concentrating on various specific improvement
criteria. These results are reported in the next section.
The question arises as to whether a four-module parti-
tion with the above constraints can be found. At a maxi-
mum of 350 blocks per module, a four-module partition
is the minimum possible. That is not to say that a four-

HANAN, MENNONE, AND WOLFF

module partition exists, because this lower bound
does not take pins into account. It is of interest to note
that a partition of this logic produced manually by the
designers of the logic required four 43-pin, 350-block
modules and three 23-pin, 350-block modules. Therefore
a four-module solution would eliminate the need for the
three 23-pin modules. We ran several passes of GAP in
the batch mode with the above constraints. No success-
ful partitions were obtained. Because a four-module par-
tition could not be obtained using ALMS alone, we de-
cided to try a different approach—to relax the con-
straints when running ALMS and then attempt to bring
the constraints down by using interactive partitioning.
First, we removed the 350-block constraint and retained
the 43-pin constraint but obtained no successful parti-
tions. We then decided to lift the block constraint com-
pletely by setting it arbitrarily high to 1000 and raised
the pin constraint until an allocation of all groups to four
modules resulted. This successful allocation occurred
with maximum settings of 1000 blocks per module and
50 pins per module and is shown in Table 1. The maxi-
mum used were 381 blocks and 50 pins. We then at-
tempted to improve this result, i.e., return to the original
physical constraints of 43 pins and 350 blocks, using our
improvement methods.

In this particular example we first illustrate the use of
MULTIPLE to attack the block-limit problem. Namely
we remove certain groups from some modules, lower the
block maximum to 350 on all modules and attempt re-
allocation under the new constraint. In this case we de-
cided to remove about 20% of the blocks from all of the
modules, since this brings the large modules (with re-
spect to blocks) close to their desired level of 350 and
provides maneuvering room on the other modules.

Table 2 shows that all groups have been reallocated to
modules and that the 350-block maximum constraint has
been satisfied. In general it is possible that all groups
may not be reallocated to modules, in which case one
would try to relax some constraint and reallocate
again. As illustrated in Table 2, not only has a successful
partition for the 350-block limit been obtained but also
the number of pins on the modules has been reduced.
This is fortuitous since we were not specifically attempt-
ing to lower the pin limit and, in fact, the original maxi-
mum of 50 pins had not been changed. However, since
we were so close to achieving a 43-pin partition, we at-
tempted another iteration of MULTIPLE but lowered
Prax-

It is useful at this point to make an observation about
the method by which groups are allocated during the
GAP execution. This observation was made previously
in the section on system components but it bears direct-
ly upon our next operation. Figure 1 illustrates the way
in which the number of pins for a single module grow
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Table 2 Use of MULTIPLE in the block limit problem. Block maximum is lowered to 350. Pin maximum is 50.

Blocks Pins
Module No. Original After Original After
ALMS partition MULTIPLE ALMS partition MULTIPLE
1 239 290 46 45
2 377 349 50 43
3 223 282 50 36
4 381 299 50 39
1220 1220 196 163
Table 3 Removal of groups from Module 2 to reach a local minimum with respect to the number of pins.
Removal # Module pin count Module block count Remove
1 43 348 YES
2 44 345 YES
3 45 344 YES
4 45 341 YES
S 45 338 YES
6 45 335 YES
7 45 332 YES
8 45 329 YES
9 44 326 YES
10 45 323 YES
11 46 315 YES
12 48 313 YES
13 36 301 YES
14 34 296 YES
15 34 293 YES
16 34 290 YES
17 33 287 YES
N
18 34 285 NO

with respect to each group allocated to that module.
Examination of this curve shows that there are several
local minimum points. By definition, if groups are re-
moved beyond a local minimum point, the pin count in-
creases. Hence our strategy is to remove groups in re-
verse order until we reach a local minimum on the pin
curve and have simultaneously removed a sufficient
number of pins, so that we are below the desired maxi-
mum. This removal technique is now employed in an
attempt to obtain an acceptable partition, i.e., no more
than 43 pins per module and 350 blocks per module.
Table 3 illustrates the removal of groups from module 2.
Note that the removal #18 will increase the pins on
module 2 so that a local minimum [ 10] on the pin count
is reached at removal #17, and hence removal #18 is
not accepted. This procedure is applied to all four mod-
ules in turn and, after the removals for a module are
complete, the pin maximum for the module is set to 43.
Reallocation then resulted in successful allocation of
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all groups to modules with the new constraint of 350
blocks and 43 pins on each. Table 4 shows the results.

At this point we have successfully satisfied our pri-
mary objective of creating a four-module partition with a
maximum of less than 350 blocks and 43 pins. A poten-
tial further reduction in total system pins is possible by
use of the SINGLE function. By applying SINGLE to
this problem and allowing groups only to move from one
module to another if they either preserve or reduce the
pins used on both modules, we can lower the total pins
required and still preserve the original maxima of 43 pins
and 350 blocks. A group is removed from a module if it
either decreases or preserves the pin count on that
module. The best module to which the group should
be allocated, i.e., the one resulting in lowest cost, is then
found. In some cases the best module is the module
from which the group was removed originally. In this
case the group is placed back in its original position.
This constitutes a valid removal but not a valid move.
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Table 4 Reallocation to reduce P, . to 43 pins.

Blocks Pins
After first After second After first After second
iteration iteration of iteration iteration of
Module no. of MULTIPLE MULTIPLE of MULTIPLE MULTIPLE
1 290 279 45 40
2 349 346 43 42
3 282 303 36 42
4 299 292 39 35
1220 1220 163 159
Table § Reallocation to reduce total number of pins using the SINGLE function.
Blocks Pins
After second After third After second After third
iteration of iteration iteration of iteration
Module no. MULTIPLE of SINGLE MULTIPLE of SINGLE
1 279 281 40 39
2 346 335 42 36
3 303 320 42 38
4 292 284 35 31
1220 1220 159 144
Table 6 Summary of example results.
Manual method Unimproved ALMS Final improvement
Chip no. Blocks Pins Blocks Pins Blocks Pins
1 147 21 239 46 281 39
2 260 23 377 50 335 36
3 131 23 223 50 320 38
4 188 37 381 _50 284 3
5 165 42 196 144
6 222 34
7 107 29
209

Table 7 Additional results of partitioning using iterative improvement methods. Details of the four improvement methods are given
in the text.

Initial partition Improvement (1) Improvement (2) Improvement (3) Improvement (4)

Module Blocks Pins Blocks Pins Blocks Pins Blocks Pins Blocks Pins
1 146 42 195 43 224 40 230 43 150 35
2 340 43 280 30 277 30 269 25 334 35
3 158 27 187 42 162 29 147 21 159 34
4 284 31 278 37 277 33 284 31 287 35
5 292 24 280 _27 280 23 290 23 290 23
Total pins 167 179 155 143 162

334
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On the other hand, a group may in fact move to a new
module, in which case it is both a valid removal and a
valid move.

In our example we applied SINGLE in the way men-
tioned above. Three cycles of SINGLE were required
before no further valid moves were possible. There were
29 valid removals and nine valid moves in cycle 1, 28
valid removals and two valid moves in cycle 2, and 27
valid removals and no valid moves in cycle 3. Table 5
illustrates the results of using SINGLE. We observe that
the total pins required has been reduced from 159 to
144.

These partitions satisfy our primary constraints of 43
pins and 350 blocks. We can save these results for subse-
quent improvement or for feeding into other programs.
The system has a history-keeping facility and we can
print this history offline for use at our desk. At some la-
ter date we may decide to make further modification to
these results and we use the saved result as a starting
point.

In summary, we have taken a section of computer log-
ic previously manually partitioned to seven chips, four
of which had 43 pins maximum and three of which had
23 pins maximum (both with a maximum of 350
blocks), and have created a four-chip partition with 43
pins and 350 blocks maximum. Hence we have elimi-
nated the three 23-pin chips completely. Various auto-
matic partitioning attempts had been made unsuccess-
fully with ALMS to solve this problem. The power of
such iterative-interactive techniques is apparent in the
results in Table 6. Compared with the manual partition,
three chips have been eliminated. Compared with auto-
matic partitioning without iterative improvement, an
unfeasible solution was made feasible. In addition, the
maximum pin count per module was brought to 39, which
is below the 43-pin maximum allowed, and the total
system pins were reduced from 196 to 144.

Additional results using iterative improvement
techniques
We show several other interesting results using the same
1220-block section of logic discussed in the previous
section. For these purposes we choose from among sev-
eral successful ALMS-produced five-module partitions at
350 blocks and 43 pins. The partition that has the least
number of total pins is chosen as best and the results
shown under the heading “Initial partition” in Table 7.
Our first objective was to reduce the number of blocks
on the densely populated modules, such as module 2,
while holding the number of modules constant at five.
The motivation for this is that, in general, the more
blocks on a module, the more difficult it is to wire that
module, assuming that all modules are the same physical
size. If the block count of the densely populated mod-
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ules can be reduced without increasing the number of
modules, then the probability of completing the wiring of
all the modules is increased.

By applying MULTIPLE to the initial partition, the
results shown in Table 7 under “Improvement (1) were
obtained. The maximum block count on any module has
been reduced from 340 to 280. This was accomplished
by removing approximately 20% of the blocks from each
of the modules, reducing all module block maxima to
280, and reallocating the removed groups.

Another objective was to reduce the total number of
pins over all modules. The partition shown as ‘“‘Improve-
ment (1)” in Table 7 was used as the starting point to
maintain our previously obtained maximum of 280
blocks per module. The method of attack was to use
MULTIPLE and SINGLE, iteratively and interactive-
ly. The intermediate results were used to determine the
next move. This user system interaction produced the
results shown in Table 7 as “Improvement (2),” the total
system pins being reduced from 179 to 155. A second
attempt at reducing total system pins starting with the
initial partition, i.e., permitting modules to grow to 350
blocks, and working interactively, produced “‘Improve-
ment (3).” In this case the number of pins was reduced
from 167 to 143.

Another parameter that may be attacked is the maxi-
mum number of pins used on any module. Reducing this
maximum below the allowable number leaves spare pins
on the modules. These spares may be used for test points
or for adding engineering changes to the chips at a later
date. Again starting with the initial partition and using
MULTIPLE and SINGLE interactively, the maximum
number of pins per module was reduced from 43 to 35,
leaving at least eight spare pins on each module. This re-
sult is shown as “Improvement (4)” in Table 7.

These techniques were also applied to the problem of
partitioning the logic graph presented in [3], where
Mennone and Russo present a series of partitions for a
graph containing 671 blocks, and 77 primary 1/ O pins.
This graph is to be used as a basis of comparison for
other partitioning techniques. Their data is the resuit of
repeated use of the batch-oriented ALMS program. Pre-
sented are the best results obtained for each data point.
Several of these data points were attacked from the posi-
tion that the maximum number of pins per module be
held constant. Our objective was to either lower the to-
tal number of pins required and/or the number of mod-
ules required. Table 8 shows the results of this effort. In
the cases of 18 pins per module and 48 pins per module,
interactive use of our technique yielded one fewer
module. In the other cases shown, we obtained a decrease
in total system pins required [11].

Another tack was taken using this same data—we held
the number of modules constant and attempted to lower
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Table 8 Partitions with lower requirement for total number of
pins and /or number of modules.

Total pins Modules used
Max pins [ module Previous New Previous New

18 697 689 40 39
44 381 361 9 9
48 359 328 8 7
52 349 323 7 7
56 302 295 6 6
60 291 281 5 5

Table 9 Partitions with lower requirement for maximum num-
ber of pins, and number of modules held constant.

Max pins [ module Total pins
Modules used Previous New Previous New
7 52 48 349 328
6 56 54 302 315
5 60 58 291 278
4 68 66 259 261

the maximum pins required over all modules. In Table 9
we see that, in the four cases tried, a two-to-four pin
reduction in the maximum allowable pins per module
was realized after interactive-iterative improvement.
Some cases yielded a slightly higher total pin count but
this is not surprising, since this parameter was not of
primary concern in this experiment. Again the trend is
clear and it is felt that similar reductions are possible
across the range of results presented in [3].

Computation time

The question of computation time arises whenever heu-
ristic solutions to complex problems are discussed. In
the case of our approach, three time factors are impor-
tant: 1) the CPU time required to execute the algo-
rithms, 2) the response time of the time sharing system,
and 3) the elapsed time required to obtain a solution.

In the case of MULTIPLE the amount of CPU time
required depends directly upon the number of groups to
be reallocated, since the removal process requires only a
small fraction of the total CPU time. To give the reader
an appreciation of these numbers, one pass of MULTI-
PLE, in which approximately 25% of 304 groups are
removed and reallocated, takes approximately 8-12 sec-
onds of CPU time on an IBM System/360, Model 67
running under TSS. One pass of SINGLE for the same
304 groups requires about 2-3 seconds of CPU time.
The CPU time and core storage of ALMS is discussed
in [7].
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The second factor is response time. Obviously in a
time-shared environment, response time is directly re-
lated to the load placed on the system by all active tasks.
Response time is therefore difficult to quote because of
the variability of the user environment on a minute-by-
minute basis. In the best case, when the system is lightly
loaded, the user may wait several seconds for each sec-
ond of CPU time. This response time is more than ade-
quate in that it is the user who slows down the time to
solution, because more speed is available than he can
comfortably and sensibly use. On the other hand, when
the system is heavily loaded, the user may wait as much
as one minute for each second of CPU time. This re-
sponse time is less than adequate, and the user senses
long periods of inactivity. It has been our experience
that during times of average system loading, response
time is adequate for a productive terminal session.

The elapsed time to solution is yet another factor. In
this regard the choice of an interactive implementation
makes the results of various runs available to the user in
minutes rather than hours. During one interactive ses-
sion of several hours the user may accomplish more
work than could be done over several days using the
same algorithm implemented in a batch environment.
There is no need to wait several hours for batch results
that will indicate the further batch runs that are to be
made. Also fewer runs are needed, since the user pur-
sues only those paths of investigation which look prom-
ising.

Extensions

It has been stated that constructive-initial placement fol-
lowed by an iterative-improvement algorithm is the best
approach to the placement problem [6]. We have now
extended this approach to a constructive starting solu-
tion followed by iterative improvement to the partition-
ing problem. Previous papers used either a constructive
method alone [1] or a random starting solution followed
by iterative improvement [5]. Other iterative improve-
ment techniques can be developed. Some possibilities
are described below.

It is possible to define other removal rules which do
not depend so heavily on the characteristics of the GAP
algorithm. For example, we can find sets of groups that
are highly interconnected and use these as candidates
for removal. The groups can be chosen by determining
their contribution to the total number of pins or the total
block count on the module.

A simpler method is the pairwise interchange algo-
rithm applied to the groups of a pair of modules. With
this method all possible exchange pairs are tried and if
the exchange results in an improvement the interchange
is accepted. A clever extension of pairwise interchange
is discussed in [5].
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Still another approach is to use a method similar to
Steinberg’s algorithms for the placement problem [12].
In this method a set of independent groups (i.e., groups
which are not connected to each other) are removed
from a set of modules, and the cost of assigning each
group to each module can be computed independently of
the cost of assigning all other groups in the set. The dif-
ference between this and the placement problem is that
we do not arrive at the standard assignment problem
because of the added constraints of maximum pins and
maximum circuits per module.

The intent of this paper is to show the advantages of
the combination of a constructive-initial partition with
an iterative-improvement algorithm, implemented in an
interactive mode, over previously developed algorithms.
Generalizations of the removal rule or the iterative-im-
provement algorithm, e.g., as discussed above, may lead
to even better results.

Summary
The results obtained and summarized in Table 5 show
success at creating a four-module, 350-block maximum,
43-pin maximum solution where one was not possible by
other techniques. The final result was a subsequent im-
provement, providing a maximum of only 335 biocks
and 39 pins, well below the required level. Tables 8 and
9 show improved results when the system was applied to
partitioning a computer logic graph that was established
expressly for comparing partitioning results. The mag-
nitude of the improvement in Tables 8 and 9 over the
partitioning reported in [3] is not as great as the improve-
ment shown in Table 5. This is to be expected, since the
original results in [3] had been achieved by numerous
repeated applications of the batch-oriented ALMS pro-
gram and hence were already “excellent’ partitions [ 13].
We have thus demonstrated that for the logic graphs
studied, with the combination of a constructive initial
partition and an iterative-improvement technique imple-
mented in an interactive mode, it is possible to achieve
better partitions more quickly than with other known
methods. We have shown the efficiency of the approach;
more research is necessary to find the best iterative-im-
provement algorithms.
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