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Iterative-Interactive  Technique  for  Logic  Partitioning 

Abstract: A method is developed  for  partitioning  a  computer  logic  design  into subsets by  combining a  constructive  method,  used  for 
the  initial  partition,  with  iterative  improvement  techniques. These iterative  techniques  are  implemented in  an interactive  computing 
environment,  which  further  enhances  their  efficiency  and usefulness. An  overview  of  the system is presented,  several  algorithms dis- 
cussed and  experimental results given. 

Introduction 
Partitioning an  entire  computer logic design into pack- 
ageable subsets is a fundamental  problem in the design- 
ing and building of computers.  Even with the  tendency 
toward larger  subpackage  sizes in modern  computer 
design,  partitioning continues  to  be a complex problem. 
One may visualize future  designs of an  entire  computer 
on  one  chip, but even this  version carries with it  the need 
to subdivide the chip into regions  and allocate  the  ap- 
propriate logic to  these regions.  Partitioning, then, will 
continue  to be an  operation  that must be performed some 
time  during the design and manufacture of logic systems. 

Manual techniques  for partitioning have  inherent limi- 
tations with  regard to  speed, capacity and  accuracy. 
Fully automatic partitioning methods  overcome  these lim- 
itations  but do  not  account  for all constraints,  such as 
delay, testability, etc. I t  seems  obvious  that some  combi- 
nation of manual and  automatic  techniques  and a man- 
machine approach is needed. The difficulty lies in the 
fact  that  these  automatic  techniques  that  construct a 
completed  partitioning do  not lend themselves  to manual 
intervention. 

The key to the  success of our implementation of this 
man-machine approach lies in our combination of ( 1) a 
constructive  method  for  the initial partitioning and (2) 
iterative-improvement  algorithms. The  constructive ini- 
tial phase is an  automatic, batch-oriented  program pre- 
viously reported in [ 11, and  the iterative-improvement 
phase is the  interactive computing  portion of our system. 
This implementation offers the designer a powerful and 
easily  controlled tool on a  real-time  basis. 328 
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Although the iterative-improvement  algorithms imple- 
mented  are  not  the  most general (and possibly not  the 
most powerful)  algorithms that might be  derived [21, 
they  have  shown  that  the  overall  system yields excellent 
results  and  that  the  approach should be  further  de- 
veloped. 

Comparative  analyses of heuristic  algorithms are al- 
ways difficult because  no  standard  problems  or solutions 
are available. However,  recently a  problem and  its 
solution was published [3] with the  hopes of establishing 
this  problem as a standard. We ran  our algorithm on  this 
problem and  also  on  another problem, about  twice  as 
large as  the problem  in [3]. We compare  our  results  to 
those obtained  with  a  previously  published  algorithm and 
to a manually  produced  partition. In this paper  we  pre- 
sent  the  results of these  comparisons,  after discussing 
some  historical  background and  the  components of the 
interactive system. 

Background 
Manual division of a computer logic design to subsets, 
each fitting on a  package (i.e., partitioning),  has been 
performed ever  since  computers  have been  designed and 
built. It  is relatively easy  for a human being to accom- 
plish this  task if the  amount of data  that  he  has  to handle 
is small,  say 500 logic gates.  This problem  size is within 
the capability of the  human memory system.  Most of the 
design can be  “viewed” and  value  judgments  can  be 
made leading to a subdivision of the logic. Usually this 
initial manual attempt  does  not satisfy all packaging con- 
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straints,  and  rework of the original partition begins. Log- 
ic is moved  from one package to  another,  constraints 
such  as  the  number of 1 / 0  pins allowed on  each pack- 
age are  changed,  or  more  packages  are  used, and eventu- 
ally the partition is completed. This  process  works but is 
prone  to  error  and  requires lengthy  effort, scrap  and 
rework. 

The  amount of time  required for a successful manual 
partitioning, the penalty to  be paid for manual error,  the 
ever-increasing  quantities of data  to be  handled, the in- 
creasing complexities of partitioning (e.g., the  more 
stringent constraints  due to large scale  integration),  and 
many other  factors  contributed  to  the motivation for par- 
titioning by some  automatic method. Various program- 
ming techniques  have been  tried. See,  for  example [ 41, 
which discusses  the partitioning  problem and  contains 
an  extensive  reference list. Also,  see [ 13 and [ 5 ]  for 
more  references. 

After a  method is developed to automatically produce 
a partition satisfying some global constraints,  it  becomes 
evident  that a technique is needed to permit some modi- 
fication of this global result to account  for specific con- 
straints not  easily  handled. Recognizing this need,  we 
created  two  iterative improvement techniques which 
work well at solving local constraints  without  destroying 
the global constraints already satisfied. 

The  pieces fall into place both logically and  chrono- 
logically: manual  partitioning, automatic partitioning, 
partitioning improvement,  and  interactive computing. 
The basic features of each of the  components of the  sys- 
tem are  discussed  next. 

Components of the system 
The  system is comprised of both  hardware  and software 
components. We discuss  the various software compo- 
nents  from  the  standpoint of operational  descriptions 
and  then give  a brief view of the  hardware used to run 
these  software  components. 

It  has been observed  that in the  case of heuristic algo- 
rithms  (in particular,  placement  algorithms)  iterative- 
improvement algorithms are more  powerful, i.e., yield 
better  results,  than  constructive algorithms alone [6], 
because  an  iterative heuristic  can  be  used to  improve 
the  results of constructive heuristics. This combination 
guarantees finding a solution that  is  at  least  as good as 
the  constructive method  alone. (The penalty one  pays 
for this added  power is additional computation time.) 
Therefore  two  basic  components of our  system  are a 
constructive algorithm  and  interactive-improvement al- 
gorithms. For  our  constructive algorithm we  chose 
ALMS  (Automated Logic  Mapping System) [ 1, 71 
since it was a system which was readily  available to  us 
and  has proven to give good results. 
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Figure 1 Structure of a logic  design  consisting of blocks  inter- 
connected by a physical  network of electrical  conductors.  Com- 
ponent  labels  indicate  the  terminology  used in  the text. 

At this  point  some definitions are in order. A logic 
design or logic graph is a structure consisting of blocks 

,' interconnected by nets,  as indicated in Fig. 1. A  block 
I may be a NOR gate, a wired OR (DOTOR), a storage ele- 

' ment, a register,  etc.  A net is a representation of the 
physical network of electrical conductors connecting 
those terminals on a subset of blocks that  are electrically 
common.  A  module is a container  that is capable of 
holding blocks and  has provision for making connections 
from  blocks  contained on it to blocks  contained on  other 
modules. An  area  attribute  is  associated with each block 
and the capability of a module to hold blocks is measured 
in terms of the  area  or  the number of blocks it can hold. 
The  capacity  for connecting nets  among modules is 
specified in terms of the number of pins on  the module. 

ALMS  achieves logic mapping [ 81 by means of a set 
of batch-oriented  programs that  accept  as  input a de- 
scription of the  computer logic represented  as blocks 
interconnected by nets.  Two basic steps  are  accom- 
plished by ALMS.  First,  the logic is compressed  into 
groups by the  Group  Generation Program (GGP) .  
Secondly, these  groups  are allocated to modules to satisfy 
certain  constraints by the  Group Allocation  Program 
(GAP) .  

For  the  purposes of this paper it is sufficient to know 
what G G P  does in general. Detailed understanding of its 
operation  can be  found elsewhere [ 1, 71. G G P  groups 
the logic by a backward trace  procedure through the log- 
ic  structure.  The  groups formed may contain any num- 
ber of blocks, which are  associated with each  other in 
that they share  some  nets in common. This "functional" 
grouping reduces  the  number of items to be considered 
by eliminating all connections within groups and  creating 
a structure of connected  groups with the  nets defined 
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Figure 2 A  pin-vs-group growth  curve for a single module  dur- 
ing the  operation of the Group Allocation  Program. 

between  the  groups.  Hence  the original block graph is 
transformed into a group graph where  the  groups  are 
superblocks containing one  or more  blocks. 

The  second  part of ALMS is GAP, of which we give 
only a brief overview. GAP accepts  the  group graph 
output from G G P  as input. Other  input  parameters  are 
the  number of modules into which the logic should  be 
partitioned and,  for  each  such module, characteristics 
such  as  the maximum amount of area allowed and  the 
maximum number of pins to be  used. At  each  step of the 
G A P  process, a group is assigned to  the  “best” module 
such  that  the maxima for  that module are not exceeded. 
The allocation process is started by “seeding” the mod- 
ules. After seeding and  after  each allocation, a candidate 
set of groups  is  generated by considering the connectivi- 
ty of unallocated groups  to  groups already  allocated.  A 
“cost”  (which is a  function of pins and blocks) of as- 
signing each  group of the  candidate  set  to  each module is 
computed, generating  a  matrix of costs. A  heuristic rule 
(which minimizes cost) is employed to  determine which 
group in the  candidate  set is assigned to which  module. 
The  process  terminates  either when all groups  have been 
assigned to modules or  when  there is no  group  that  can 
be  allocated to  any module because it would cause  the 
module’s maxima to be exceeded. Multiple passes  at a 
solution may be  made by allowing GAP  to choose new 
seeds automatically. We consider  each  pass of GAP  as  
having created a constructive partition and  select  the 
result of one of a number of passes  as  our initial parti- 
tion. Reference [7] gives  a more detailed  description of 
GAP, including the  concept of seeding and multiple 
passes.  It is important to note  that although the modules 
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ules sequentially and  that  at  no time  during the alloca- 
tion process  are  the module  maxima exceeded.  These 
facts will be  used  during the  iterative  improvement 
phase. 

For  the  iterative  improvement  phase,  the basic  con- 
cept is to  start with a given  partition (or a  partial  parti- 
tion, i.e., one in which not all groups  have been 
allocated),  remove a set of groups from one or more of 
the modules,  and  reallocate these  groups.  Two rules, 
namely, the rule for removing the  groups  and  the rule for 
reallocating the  groups, specify the algorithm. Two spe- 
cific versions of the removal  rule  given here  are called 
MULTIPLE  and  SINGLE.  They rely heavily on  the 
characteristics of the allocation  algorithm in GAP.  In 
addition the reallocation is done using GAP, i.e., the 
ALMS allocation  algorithm. 

As previously mentioned, a characteristic  behavior of 
GAP is crucial in the  operation of MULTIPLE; namely, 
during the GAP allocation process,  the pin count 
never  exceeds  the maximum  pins  permissible (P,,,) 
for any  module. Hence, if we  remove  the  last K groups 
which were assigned to any  module, the pin count  on 
that module  must  be less than or equal to P,,,. Also, 
if the  groups  are  removed in reverse  order of allo- 
cation,  the pin count on any  module  must  eventually 
decrease  to  zero  (although not  monotonically) so that 
on  any given  module  enough groups  can always  be  re- 
moved to  reach  any pin count less than p,,,. Figure 2 
illustrates the pin-vs-group growth of a module  during 
the GAP process.  It is observed, in general, that  the 
removal of groups in reverse  order  reduces  the pin count 
for  the module. The  determination of how  many groups 
to  remove  is  made  easier by viewing such module 
growth curves.  An illustration of this technique  appears 
in the  next  section,  “Use of the  system.” 

Input  parameters  to  MULTIPLE control the  extent 
of removals and  the reallocation. The  parameters  consist 
of the  number of modules to  be changed  and for  each 
module changed,  the  number of groups, blocks and used 
pins to be  removed [ 91. These  three removal parameters 
may be  used individually or in combination. For exam- 
ple, if we  request  that five groups  and 30 blocks be 
removed  from  module 1 then  at  least five groups will be 
removed. If after  the removal of the five groups only 15 
blocks have been taken  out, then  additional groups will 
be  removed until at  least a total of 30 blocks are  re- 
moved. All removal requests  for  the module are  thus 
satisfied. 

Additional  rules  control the reallocation of groups  to 
modules. For  each module that is changed,  an  increase 
or decrease is possible in the maximum number of 
groups allowed (G,,,) , the maximum number of blocks 
allowed (B,,,) , and  the maximum  number of pins al- 
lowed (P,,,) . 
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If the maxima for a  module are  decreased, enough 
groups must  be removed from that module such  that  the 
value of each  parameter changed is less than or  equal  to 
the new maximum for  that  parameter before  reallocation 
starts.  For example, if seven pins are  removed from 
module I ,  decreasing the pin count  on module 1 from 43 
to  36,  then P,,, for module 1 must not be set below  36. 
Any, all, or none of the maxima may be  changed on  any 
of the modules. There  is  no  requirement  that removals 
must be made if maxima are changed for a given  module 
and,  conversely, maxima  may  be  changed without re- 
moval so long as  the condition stated immediately above 
is satisfied. 

The  second of the  improvement algorithms is  SIN- 
GLE. With  this method  groups  are removed  and reallo- 
cated,  one  at a time, in the  same  order  as  that of the 
original allocation. As with the  MULTIPLE algorithm, 
there  are  control  parameters which  specify the removal 
rule and  the reallocation  rule.  A group is removed from 
a module  only if the resulting  module satisfies the con- 
straints specified by the  control  parameters.  After a 
group is removed it is reallocated using the G A P  alloca- 
tion process.  The  process  continues by considering each 
group in turn  from  the allocation list and  terminates 
when  there  are  no  groups  that  have moved after a com- 
plete cycle through the allocation  list.  Typically the pro- 
cess  terminates  after  two  or  three cycles. The particular 
implementation of the  SINGLE algorithm chosen  for 
this system  attempts,  as a  major factor,  to  make  moves 
based on pin requirements.  Other  parameters could  be 
used as well. The  input  parameters  are: 

1 )  The allowable change in the used pin count  on  the 
module  from which the group is being removed. If the 
allowable  change is greater  than  zero,  the used pin count 
is allowed to  increase with a  removal.  If the allowable 
change is equal to  zero, only  removals that  do  not in- 
crease  the used pin count  are  acceptable. If  a  negative 
value is entered  for  the allowable change, then  only 
removals which in fact  reduce  the pin count  are made. 
2 )  The allowable  change in P,,, for  the module. 

Although the  order of allocation is identical to  the 
original partition, SINGLE yields an improved  partition 
because  the decision to assign a  given group A to a giv- 
en module  B is now based on more complete informa- 
tion. The  cost of assigning a group  to a  module  during 
the original GAP allocation is a  function of the  groups 
that  have already  been  assigned.  If  group  A  were as- 
signed early in the allocation process, only a small por- 
tion of the total number of groups  to  be assigned would 
have in fact been  assigned. Therefore, during the original 
G A P  allocation,  assignment was based  upon the "best" 
decision that could be  made with the incomplete infor- 
mation then available. In  contrast  to this  assignment, 
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Figure 3 System diagram for the logic partitioning scheme, 
showing hardware  and software components. 

during a SINGLE reallocation all other  groups  have al- 
ready been  assigned to modules  and  group  A may now 
be  reallocated  taking  this into  account.  Hence  group A 
may now be  assigned to  some module other  than module 
B, with a lower  cost  than  the original cost of assigning it 
to module B.  This intuitive  rationale for SINGLE may 
also be applied in part  to  MULTIPLE. 

Our  experience indicates that SINGLE is not as ef- 
fective as  MULTIPLE;  however, when  used  iteratively 
with MULTIPLE it can yield results  better than 
MULTIPLE used  alone. Results  presented  later in  this 
paper  bear  out this statement. 

The  hardware used for this  system is  shown schemati- 
cally in Fig. 3. The  ALMS programs, G G P  and GAP, 
are operational on  an  IBM  Systeml360, Model 91 run- 
ning under OS. Our general  version of these programs 
require - 450k bytes of core storage. For further  data 
on  core  requirements  see [ 71. 

Batch execution is accomplished  with an input deck 
and  the  results  are displayed on a batch  output printer. 
When  a GAP result is chosen  for  improvement, this re- 
sult is shipped via a communications link to  an  IBM 
Systeml360, Model 67 running under  TSS.  (This sys- 
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Table 1 Four-module  partition obtained with ALMS and GAP 
output.  Constraints were 1000 blocks per module and 50 pins 
per  module. 

Module No.  Pins Blocks 
Max. Used Max.  Used 

1 50 46 1000 239 
2 50 50 1000 377 
3 50 50 1000 223 

196 1220 
4 50 3 1000 381 

tern was used because it was available to us at  the time 
we began our research. Obviously, the  concepts dis- 
cussed  here  can be used on  any  interactive  system,  such 
as  the  VM/370). 

The iterative  improvement  routines, MULTIPLE  and 
SINGLE,  the allocation routines from GAP used to real- 
locate removed  groups, and  other  support software  used 
for  interactive keyboard input/output and  graphic  alpha- 
numeric output  are resident in the  IBM  System/360, 
Model  67. These  also required - 450k bytes of core 
storage. The terminal I /  0 device is an  IBM 2741 and 
the graphic character  output is displayed on  an  IBM 
2260.  A  history file is  also maintained by the  interactive 
portion of the  system so that if the  user  desires,  an off- 
line batch  printout of his interactive  session  can be pro- 
duced. 

Use of the system 
The  purpose of this  section is to  show  the general as- 
pects of the  use of the  system by a  particular  example. 
The  example logic graph contains  1220  gates  and  72 
primary  I / 0 connections, a  “primary connection” being 
one  that is required as input to  the logic or as  output 
from the logic. There  are 19 DOTOR connections in the 
logic so that in the block representation of this logic 
there  are  1220 blocks of size 1 and 19 blocks of size 0. 
Grouping was done by G G P  using some manually gen- 
erated  groups.  The result of the G G P  run was a group 
graph  containing 304  groups  that ranged in size  from 1 
to  77 blocks,  with an  average of about  four blocks per 
group. GAP was run attempting partitions at five mod- 
ules with a maximum area  (or  size) of 350  blocks per 
module and a  maximum of 43 pins per module. We ob- 
tained  successful results  and  then  further improved 
them,  concentrating  on various specific improvement 
criteria. These  results  are  reported in the  next  section. 

The  question  arises  as  to  whether a  four-module  parti- 
tion  with the  above  constraints can be found. At a maxi- 
mum of 350  blocks per module, a four-module  partition 
is the minimum possible. That is not to say that a four- 
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module  partition exists,  because this  lower  bound 
does not  take pins into account. I t  is of interest  to  note 
that a partition of this logic produced manually by the 
designers of the logic required four 43-pin,  350-block 
modules and  three 23-pin, 350-block  modules. Therefore 
a  four-module  solution would eliminate the need for  the 
three 23-pin modules.  We  ran several  passes of GAP in 
the  batch mode  with the  above  constraints. No success- 
ful partitions were  obtained. Because a four-module  par- 
tition  could not  be obtained using ALMS  alone, we de- 
cided to try  a  different approach-to relax the con- 
straints when running ALMS  and then attempt  to bring 
the  constraints  down by using interactive partitioning. 
First,  we removed the 350-block constraint and  retained 
the 43-pin constraint but  obtained no successful  parti- 
tions. We then  decided to lift the block constraint com- 
pletely by setting it arbitrarily high to 1000 and raised 
the pin constraint until an allocation of all groups  to  four 
modules  resulted. This successful  allocation occurred 
with maximum  settings of 1000 blocks  per  module  and 
50 pins per module  and is shown in Table 1. The maxi- 
mum used were 381  blocks and  50 pins. We then  at- 
tempted  to  improve this result, i.e., return  to  the original 
physical constraints of 43 pins and 350 blocks, using our 
improvement methods. 

In this  particular example we first illustrate the use of 
MULTIPLE  to  attack  the block-limit problem. Namely 
we remove  certain  groups from some modules, lower  the 
block  maximum to  350  on all modules and  attempt  re- 
allocation under  the new constraint.  In this case  we  de- 
cided to  remove  about 20% of the blocks from all of the 
modules, since this  brings the large  modules (with re- 
spect  to  blocks)  close  to  their desired  level of 350  and 
provides  maneuvering  room on  the  other modules. 

Table 2 shows that all groups  have been  reallocated to 
modules and  that  the 350-block  maximum constraint  has 
been  satisfied. In general it is possible that all groups 
may not  be  reallocated to modules, in which case  one 
would try to  relax  some  constraint and  reallocate 
again. As illustrated in Table  2,  not only has a successful 
partition for  the 350-block limit been  obtained but  also 
the  number of pins on  the modules has been reduced. 
This is fortuitous  since we were  not specifically attempt- 
ing to lower the pin limit and, in fact,  the original maxi- 
mum of 50 pins had  not been  changed. However,  since 
we were so close to achieving  a  43-pin  partition, we at- 
tempted another iteration of MULTIPLE but  lowered 
prnax. 

It is useful at this  point to  make  an  observation  about 
the method by which groups  are allocated  during the 
GAP execution. This  observation was  made  previously 
in the section on system  components  but it bears  direct- 
ly upon our next operation. Figure 1 illustrates the way 
in which the  number of pins for a single module  grow 
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Table 2 Use of MULTIPLEin the block limit problem. Block maximum is lowered to 350. Pin maximum is 50. 

Blocks  Pins 
Module No .  Original  After  Ori,qinul  After 

A L M S  purrition M U L T I P L E   A L M S  purrition M U L T I P L E  

239 
377 
223 
38 1 

1220 

290 
349 
282 
299 

1220 

46 
50 
50 
50 

196 

45 
43 
36 
39 

163 

Table 3 Removal of groups from Module 2 to reach  a local minimum with respect  to  the number of pins. 

Removal  # Module  pin  count  Module  block  count  Remove 

1 43 348 
2 

YES 
44 345 

3 
YES 

45 344 
4 

YES 
45 34 1 

5 
YES 

45 338 YES 
6 45 335 
7 

YES 
45 332 YES 

8 45 329 YES 
9 44 326 

10 
YES 

45 
11 

323 YES 
46 315 YES 

12 48 313 YES 
13 36 30 1 YES 
14 34 296 YES 
15 34 293 
16 

YES 
34 290 YES 

17 33 287 YES 

18 34 285 NO 
+ 

with respect  to  each  group allocated to  that module. 
Examination of this curve  shows  that  there  are  several 
local minimum points. By definition, if groups  are re- 
moved  beyond a local minimum point, the pin count in- 
creases.  Hence our strategy is to  remove  groups in re- 
verse  order until we reach a local minimum on  the pin 
curve  and  have simultaneously  removed  a sufficient 
number of pins, so that we are below the desired maxi- 
mum. This removal  technique is now employed in an 
attempt to obtain an  acceptable partition, i.e., no  more 
than 43 pins per module  and  350  blocks  per  module. 
Table 3  illustrates the removal of groups from  module 2. 
Note  that  the removal #18 will increase  the pins on 
module 2 so that a local minimum [ 101 on  the pin count 
is  reached  at removal #17, and  hence removal #18 is 
not accepted.  This  procedure is applied to all four mod- 
ules in turn  and,  after  the removals for a  module are 
complete,  the pin maximum for the module is set  to 43. 
Reallocation  then  resulted in successful  allocation of 
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all groups  to modules  with the new constraint of 350 
blocks  and 43 pins on  each.  Table 4  shows the results. 

At this  point we have successfully satisfied our pri- 
mary  objective of creating  a  four-module  partition with a 
maximum of less  than 350 blocks and  43 pins. A  poten- 
tial further reduction in total  system  pins is possible by 
use of the SINGLE function. By applying SINGLE to 
this  problem  and allowing groups only to move from one 
module to  another if they either  preserve or reduce  the 
pins  used on  both modules, we can lower  the total pins 
required  and still preserve  the original maxima of 43 pins 
and  350  blocks.  A group is removed  from  a  module if it 
either  decreases  or  preserves  the pin count  on  that 
module. The  best module to which the group  should 
be allocated, i.e., the  one resulting in lowest cost, is then 
found.  In  some  cases  the  best module is the module 
from which the  group  was removed originally. In this 
case  the  group is placed back in its original position. 
This  constitutes a valid removal but not  a valid move. 3 
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Table 4 Reallocation to reduce P,,, to 43 pins. 
_________~ 

Blocks  Pins 
Af ter   jrs t  After  second Af ter j rs t  After  second 
iteration iteration of iteration iteration  of 

Module no. of MULTIPLE MULTIPLE of MULTIPLE MULTIPLE 

1 290 279 45 40 
2 349 3 46 43 42 
3 282 303 36 42 
4 299 292 39 35 

1220 1220 163 
- 
159 

Table 5 Reallocation to reduce total  number of pins using the SINGLE function. 

Blocks  Pins 
After  second  After third After  second  After  third 

iteration  of  iteration  iteration  of  iteration 
Module no. MULTIPLE of S I N G L E   M U L T I P L E  of S I N G L E  

1 279 28 1 40 39 
2  3  46 335 42 36 
3 303 320 42  38 
4 ~ 292 284 35 31 

1220 1220 159 144 
- 

Table 6 Summary of example results. 

Manual  method  Unimproved  ALMS  Final  improvement 
Chip no. Blocks  Pins  Blocks  Pins  Blocks  Pins 

1 147 21 239 46 ,281 39 
2 260 23 311 50 335 36 
3 13 1 23 223 50 3 20 38 
4 188 37  381 50 284 31 
5 165 42 196 144 

- 
6 222 34 
7 107 29 

209 

Table 7 Additional results of partitioning using iterative improvement methods. Details of the four improvement methods are given 
in the text. 

Initial  partition  Improvement ( 1 )  Improvement ( 2 )  Improvement ( 3 )  Improvement ( 4 )  
Module  Blocks  Pins  Blocks  Pins  Blocks  Pins  Blocks  Pins  Blocks  Pins 

1 146 42 195 43 224 40 230 43 150 35 
2 340 43 280 30 217 30 269 25 334 35 
3 158 2 1  181 42 162 29 147 21 159 34 
4 284 31 218 37 277 33 284 31 281 35 
5 292 24 280 2 280 23 290 23 290 23 

Total tins 161 179 143 162 155 
- - 

334 
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On  the  other  hand, a group may in fact move to a new 
module, in which case it is both  a valid removal and a 
valid move. 

In  our  example we applied SINGLE in the way men- 
tioned above.  Three cycles of SINGLE were  required 
before no  further valid moves were possible. There were 
29 valid removals and nine valid moves in cycle I ,  28 
valid removals and  two valid moves in cycle 2, and 27 
valid removals and  no valid moves in cycle 3. Table 5 
illustrates  the results of using SINGLE. We observe  that 
the total  pins  required has been  reduced  from  159 to 
144. 

These partitions  satisfy our primary constraints of 43 
pins and  350 blocks.  We  can save  these  results  for subse- 
quent  improvement or for feeding into  other programs. 
The  system  has a  history-keeping facility and we can 
print  this  history offline for  use at  our  desk.  At some la- 
ter  date we may decide  to  make  further modification to 
these  results and we use  the  saved result as a starting 
point. 

In  summary, we have taken  a  section of computer log- 
ic previously  manually  partitioned to  seven  chips,  four 
of which had 43 pins maximum and three of which  had 
23 pins maximum (both with a maximum of 350 
blocks),  and  have  created a four-chip  partition with 43 
pins and 350  blocks  maximum. Hence  we  have elimi- 
nated the  three 23-pin chips  completely. Various  auto- 
matic  partitioning attempts had been  made unsuccess- 
fully with ALMS  to solve  this  problem. The  power of 
such iterative-interactive  techniques is apparent in the 
results in Table 6. Compared with the manual partition, 
three chips have been  eliminated. Compared with auto- 
matic  partitioning  without  iterative  improvement, an 
unfeasible  solution was  made feasible. In addition, the 
maximum pin count  per module was brought to 39, which 
is below the 43-pin maximum allowed, and  the total 
system pins  were  reduced from 196 to 144. 

Additional results using iterative improvement 
techniques 
We show several other interesting results using the  same 
1220-block  section of logic discussed in the  previous 
section. For these  purposes we choose from  among  sev- 
eral  successful ALMS-produced five-module partitions at 
350 blocks  and 43 pins. The partition that  has  the  least 
number of total pins is chosen  as  best  and  the  results 
shown under  the heading  “Initial  partition” in Table 7. 

Our first objective was  to  reduce  the  number of blocks 
on  the densely  populated  modules, such  as module 2, 
while holding the  number of modules constant  at five. 
The motivation for this is that, in general, the more 
blocks on a  module, the more difficult it is to wire that 
module,  assuming that all modules are  the  same physical 
size. If the block count of the densely  populated  mod- 
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ules  can  be  reduced  without  increasing the  number of 
modules,  then the probability of completing the wiring of 
all the modules is increased. 

By applying MULTIPLE  to  the initial partition, the 
results shown in Table 7 under  “Improvement ( 1 ) ”  were 
obtained. The maximum block count  on  any module has 
been  reduced  from 340  to 280. This  was accomplished 
by  removing  approximately 20% of the blocks  from each 
of the modules,  reducing all module block maxima to 
280, and reallocating the removed groups. 

Another objective was  to  reduce  the total  number of 
pins over all modules. The partition  shown as “Improve- 
ment ( 1 ) ”  in Table 7 was used as  the starting point  to 
maintain our previously  obtained  maximum of 280 
blocks per module. The method of attack  was  to  use 
MULTIPLE and SINGLE, iteratively and interactive- 
ly. The intermediate results were  used to  determine  the 
next move. This  user  system interaction  produced the 
results shown in Table 7 as “Improvement  (2),”  the total 
system pins being reduced from 179 to 155.  A second 
attempt  at reducing  total  system  pins  starting with the 
initial partition, i.e., permitting  modules to grow to 350 
blocks,  and  working  interactively,  produced “Improve- 
ment  (3 ) .” In this case  the  number of pins was  reduced 
from 167 to 143. 

Another  parameter  that may be attacked is the maxi- 
mum number of pins  used on  any module. Reducing  this 
maximum below the allowable  number leaves  spare pins 
on  the modules. These  spares may be  used for  test points 
or for adding engineering changes  to  the  chips  at a later 
date. Again starting with the initial partition and using 
MULTIPLE  and  SINGLE interactively, the maximum 
number of pins per module was reduced from 43 to 35, 
leaving at  least eight spare pins on  each module. This re- 
sult is shown as  “Improvement  (4)” in Table 7. 

These techniques  were also applied to  the problem of 
partitioning the logic graph presented in [3],  where 
Mennone and Russo  present a  series of partitions for a 
graph  containing  671  blocks, and  77 primary 1 / 0  pins. 
This graph is to be  used as a basis of comparison for 
other partitioning  techniques. Their  data is the result of 
repeated use of the batch-oriented ALMS program.  Pre- 
sented  are  the  best  results obtained for  each  data point. 
Several of these  data points were  attacked  from  the posi- 
tion that  the maximum number of pins per module  be 
held constant. Our objective was  to  either lower the to- 
tal number of pins  required and/or  the  number of mod- 
ules required. Table 8 shows  the  results of this effort. In 
the  cases of 18 pins per module and  48 pins per module, 
interactive use of our technique yielded one  fewer 
module. In  the  other  cases  shown, we obtained a decrease 
in total system pins  required [ 111. 

Another tack was  taken using this same  data-  we held 
the  number of modules constant and attempted  to lower 3: 
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Table 8 Partitions with lower  requirement for total number of 
pins and/or  number of modules. 

Totul pins  Modules  used 
Max  pinslmodule  Previous N e w  Previous New 

18 697 689 40  39 
44 381 361 9  9 
48  359 328 8  7 
52  349 323 7 7 
56  302 29 5 6  6 
60 29 1 28 1 5 5 

Table 9 Partitions with lower  requirement for maximum num- 
ber of pins, and  number of modules held constant. 

Max  pins  /module Totul pins 
Modules used Previous N e w  Previous New 

7  52 48  349 328 
6 56 54 3  02 315 
5 60 58 29 1 278 
4  68 66  259 26 1 

the maximum pins required over all modules. In  Table 9 
we  see  that, in the  four  cases tried, a two-to-four pin 
reduction in the maximum allowable  pins per module 
was realized after interactive-iterative  improvement. 
Some  cases yielded a slightly higher  total pin count but 
this is not  surprising, since this parameter  was  not of 
primary concern in this experiment. Again the  trend is 
clear  and it is felt that similar reductions  are possible 
across  the range of results  presented in [ 31. 

Computation time 
The  question of computation time arises  whenever heu- 
ristic solutions to complex  problems are  discussed.  In 
the  case of our  approach,  three time factors  are impor- 
tant: 1 )  the CPU time  required to  execute  the algo- 
rithms, 2)  the  response time of the time  sharing system, 
and 3)  the  elapsed time required  to  obtain a solution. 

In  the  case of MULTIPLE  the  amount of CPU time 
required depends directly  upon the  number of groups  to 
be reallocated,  since  the removal process  requires only  a 
small fraction of the total CPU time. To  give the  reader 
an appreciation of these  numbers,  one  pass of MULTI- 
PLE, in  which  approximately 25% of 304  groups  are 
removed  and  reallocated, takes approximately 8- 12 sec- 
onds of CPU time on  an  IBM  System/360, Model 67 
running under  TSS.  One  pass of SINGLE  for  the  same 
304 groups  requires  about 2-3 seconds of CPU time. 
The  CPU time and  core storage of ALMS is discussed 

336 in [7]. 

The  second  factor is response time.  Obviously in a 
time-shared environment,  response time is directly  re- 
lated to  the load placed on  the  system by all active  tasks. 
Response time is therefore difficult to  quote  because of 
the variability of the  user  environment  on a minute-by- 
minute basis. In the  best  case,  when  the system is lightly 
loaded, the  user may wait several seconds for each  sec- 
ond of CPU time. This  response time is more  than  ade- 
quate in that it is the  user  who slows down  the time to 
solution, because  more  speed is available than  he can 
comfortably  and  sensibly  use. On  the  other  hand, when 
the  system is heavily loaded,  the  user may wait as  much 
as  one minute for  each second of CPU time. This re- 
sponse time is less  than  adequate,  and  the  user  senses 
long periods of inactivity. It  has been our  experience 
that during  times of average  system loading, response 
time is adequate  for a productive terminal session. 

The elapsed  time to solution is yet  another  factor.  In 
this regard the  choice of an interactive implementation 
makes  the  results of various runs available to the  user in 
minutes rather  than hours. During  one  interactive  ses- 
sion of several  hours  the  user may accomplish more 
work than could be  done  over  several  days using the 
same algorithm  implemented in a batch  environment. 
There  is  no need to wait several  hours  for  batch  results 
that will indicate the  further  batch  runs  that  are  to  be 
made. Also  fewer  runs  are  needed,  since  the  user pur- 
sues only those  paths of investigation which look prom- 
ising. 

Extensions 
It  has been stated  that constructive-initial  placement fol- 
lowed by an iterative-improvement  algorithm is  the  best 
approach  to  the placement  problem [6]. We have now 
extended this approach  to a constructive starting  solu- 
tion followed by iterative  improvement  to  the partition- 
ing problem. Previous  papers  used  either a constructive 
method alone [ 11 or a random starting  solution  followed 
by iterative  improvement [ 5 ] .  Other iterative  improve- 
ment techniques  can be developed.  Some possibilities 
are  described below. 

It  is possible to define other removal  rules  which do 
not depend so heavily on  the  characteristics of the GAP 
algorithm. For  example,  we  can find sets of groups  that 
are highly interconnected and use  these  as  candidates 
for removal. The  groups  can  be  chosen by determining 
their  contribution  to  the  total  number of pins or  the total 
block count  on  the module. 

A  simpler  method is the pairwise  interchange algo- 
rithm  applied to  the  groups of a pair of modules. With 
this method all possible exchange pairs are tried and if 
the  exchange  results in an  improvement  the interchange 
is accepted. A clever extension of pairwise  interchange 
is discussed in [ 5 ] .  
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Still another  approach is to use a method similar to 
Steinberg’s  algorithms for  the placement  problem [ 121. 
In this method a set of independent  groups (i.e., groups 
which are not connected  to  each  other) are removed 
from a set of modules, and  the  cost of assigning each 
group to  each module can  be  computed independently of 
the  cost of assigning all other  groups in the set. The dif- 
ference  between  this  and  the placement  problem is that 
we do  not  arrive  at  the  standard assignment  problem 
because of the  added  constraints of maximum  pins and 
maximum  circuits per module. 

The  intent of this paper is to  show  the  advantages of 
the combination of a constructive-initial  partition with 
an iterative-improvement  algorithm,  implemented in an 
interactive mode, over previously  developed  algorithms. 
Generalizations of the removal  rule or  the iterative-im- 
provement algorithm, e.g., as discussed  above, may lead 
to  even  better results. 

Summary 
The  results obtained and summarized in Table 5 show 
success at  creating  a  four-module,  350-block maximum, 
43-pin maximum solution where  one  was  not possible by 
other techniques. The final result  was a subsequent im- 
provement, providing a maximum of only 335 blocks 
and  39 pins, well below the required level. Tables 8 and 
9 show improved results when the  system was  applied to 
partitioning a computer logic graph that was  established 
expressly for  comparing  partitioning  results. The mag- 
nitude of the improvement in Tables 8 and 9 over  the 
partitioning  reported in [ 31 is not as great  as  the improve- 
ment shown in Table 5 .  This is to be expected, since the 
original results in [3] had been  achieved by numerous 
repeated applications of the  batch-oriented ALMS pro- 
gram  and hence  were already  “excellent”  partitions [ 131. 

We have  thus  demonstrated  that  for  the logic graphs 
studied, with the combination of a constructive initial 
partition  and an iterative-improvement technique imple- 
mented in an interactive  mode, it is possible to  achieve 
better partitions more quickly  than  with other known 
methods.  We have  shown  the efficiency of the  approach; 
more  research is necessary  to find the best  iterative-im- 
provement  algorithms. 
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