316

J. GECSEI

J. Gecsei

Determining Hit Ratios for Multilevel Hierarchies

Abstract: The applicability of stack processing for evaluation of storage hierarchies has been limited to two-level systems and to a
very special group of multilevel hierarchies. A generalization of stack processing, called joint stack processing, is introduced. This
technique makes possible the efficient determination of hit ratios for a class of multilevel hierarchies — staging hierarchies. These hier-
archies are rather realistic in the sense that they allow for multiple block sizes and multiple copies of data in the hierarchy. Properties
of storage management schemes that lend themselves to joint stack processing are studied, and the notion of distributed hierarchy

management is described and illustrated.

Introduction

As computing grows increasingly more data oriented,
the speed of data handling, and especially of storage
functions, becomes the limiting factor in the overall per-
formance of modern computers. Storage systems typi-
cally use several technologies, which are linked together
with the objective of effectively utilizing the advantages
of each technology (high speed, low cost).

Designing optimal storage hierarchies is rather com-
plicated, not only because of the high dimensionality of
the mathematical problems associated with optimization,
but also because of the ever changing technology and
workload environments. Information available on tech-
nology, costs, workload, and performance requirements
(the designer’s input) is often of limited accuracy and
representativeness.

For all these reasons, it is desirable to develop effi-
cient and easily automated storage system design
methods to allow the exploration of as many design
options as possible. Stack processing introduced by
Mattson, et al [1] has been frequently applied and has
also generated some theoretical interest, e.g., in the areas
of reference trace analysis and theory of replacement
algorithms.

This paper presents an outgrowth of standard stack
processing, extending its applicability to a realistic class
of storage hierarchies, called staging hierarchies by Slutz
and Traiger [2], who originally described them. Staging
hierarchies allow for an arbitrary number of memory
levels, using different block sizes at various levels, and
for multiple copies of the same block in the system.

This paper reviews some earlier results, presenting
them from a perspective intended to facilitate under-
standing of the new extensions to stack processing.
These new contributions include the following main re-
sults.

e An extension to stack processing, called joint stack
processing allows simultaneous (one-pass) determina-
tion of success functions for a staging hierarchy.

e Systems of replacement algorithms exist (called joint
stack algorithms, one for each hierarchy level) such
that the hit ratios for variable capacities at each level
can be obtained from the results of joint stack pro-
cessing.

¢ In a system of joint stack algorithms, the algorithm at
the first level (the *principal” algorithm 4,) may be
an arbitrarily chosen stack algorithm; algorithms at
lower levels are “driven” (uniquely determined) by A4,.

e If the principal algorithm is the least recently used
(LRU), then correct replacement decisions at each
level are entirely derivable from the history of that
level; no “broadcasting” of requests is necessary. This
leads to a view of the hierarchy as a collection of
memory devices with their associated autonomous
controliers.

Real hierarchies, of course, are not likely at the pres-
ent time to satisfy strictly the conditions set forth in
abstract hierarchy models. Replacement algorithms, for
example, are in practice designed as a compromise be-
tween their practicality and their ease and cost of imple-
mentation, as well as cleanness and compliance with
theory.

Stack processing

Stacks and stack processing are notions originally cre-
ated during the search for an efficient method to evaluate
various aspects of storage hierarchies. This section re-
views informally topics treated earlier by Mattson, et al
[1], emphasizing notions directly applicable to joint
stack processing and establishing notation used later in

IBM J. RES. DEVELOP.

the paper. (A summary of this notation is provided pre-
ceding the References).

Consider the two-level hierarchy in Fig. 1. In such a
configuration, level M, is often called the buffer and lev-
el M, the backing store. The totality of information con-
tained in this hierarchy is divided into blocks of equal
size (each block containing the same number B, of
bytes). The blocks are identified logically by their
names, independently of their physical locations in either
level. Only one copy of each block is kept in the system,
and all blocks are initially supposed to reside in the
backing store. The capacities of the levels are C, and C,
bytes, or equivalently D, and D, blocks. The D;=C,/B,
are assumed to be integers.

The hierarchy is always accessed at the upper level.
That is, when a particular byte is requested, the (unique)
block containing that byte must be either present in
the buffer or it must be brought in from the backing
store before the actual access can take place. If the
buffer is full at the time of the request, some block from
its current contents must be replaced (pushed out to
M,) to make space for the requested block. The rule for
selecting the block to be pushed out is called the re-
placement algorithm. Some common replacement algo-
rithms are FIFO (first-in, first-out), LRU (least re-
cently used out), LFU (least frequently used out), and
their variations.

A sequence of byte references is called the reference
string and is denoted as

Z=2z,2,""" 2,

where z, is the name of the byte referenced at time ¢, and
L is the length of the string. The block reference string
for given block size B, is

X)) =x,(0), x, (D), x, (i),

where x,(i) is the name of the block that contains z,. We
use the simpler notation X and x, when the block size is
implied by the context.

Block reference string X (i) is a string over the set M,
of blocks contained initially in the backing store. (The
symbol M, is used to denote both the ith level of a hier-
archy and the set of blocks contained in that level.) If
|X (i)| is the number of distinct blocks that occur in X (i),
the following relation holds:
|X ()| = M, =< D,.

Throughout this paper we assume that references are
satisfied by the hierarchy management in strict se-
quence: x, can be requested only after x,_, has been suc-
cessfully accessed. Thus, we do not consider overlapped
or out-of-order referencing.

A reference string represents the environment of the
hierarchy; the exact nature of the source of requests is
irrelevant for the internal operation of the hierarchy.

JULY 1974

CPU

Name Level Capacity Access
(bytes) time

Block
size 4
B (bytes)

M, Buffer M, C, T,

M,| Backing store M, Cy T,

Figure 1 Two-level hierarchy.

The requests may come from a single processor in single
or multiprogramming mode, from several processors, or
in general from any data processing subsystem that
needs access to a pool of data.

When a string of length L is applied to a two-level hi-
erarchy with a given buffer size D, and a given replace-
ment algorithm 4, some references result in Aits in the
buffer (no transfer from M, is necessary). References
that do require such a transfer are commonly called
misses. If the number of hits and misses are L, and L,,,
respectively, then the hit ratios p, and p, are defined as

p1=%,p2=TM= 1—p,
Thus, hit ratios express the fraction of all memory refer-
ences that result in accessing levels M, and M, of the
two-level hierarchy in Fig. 1. This notion of hit ratio is
meaningful also for properly defined n-level hierarchies.
We use the buffer-backing store concept only as a vehi-
cle for describing stacks and stack algorithms.

The most significant use of hit ratios for design and
analysis of computer systems with memory hierarchies
is as input values to various probabilistic models for
evaluating system performance. A simple, and perhaps
the first, application is the calculation of the expected
access time T to the hierarchy

T=pT,+p,T

o
(Time T, is the total time to access a block in M,, which
is not always equal to the device access time.) In more
sophisticated models {3] the CPU and individual memo-
ry levels become servers in a cyclic queuing system such
as the one in Fig. 2, where hit ratios are seen as proba-
bilities of an 1/0 request being directed to level 1 or 2.
The aim of such models is to calculate the CPU and
1/0 utilization factors and the throughput rates.

There are many possible uses and interpretations of
hit ratios. A common feature of all applications is that
p;’s provide a convenient link between some kind of ab-

MULTILEVEL HIERARCY

817

HIES

318

J. GECSEI

@

[)

Figure 2 Cyclic queuing system.

stract model and the actual workload on a computer sys-
tem. When using such methods, however, a complex
programming environment is represented by a few num-
bers, amounting to a considerable reduction of informa-
tion; thus results from such an analysis are necessarily
only approximate.

For a given block reference string X(1) and a given
replacement algorithm A, the hit ratio p, depends only
on the buffer capacity. This function is sometimes called
the success function p(C,). Knowledge of it permits op-
timization for various cost-performance combinations
when designing systems with memory hierarchies. This
is done by picking values of C, (which essentially gives
the cost of the hierarchy) and using the associated value
of p(C,;) for calculating performance.

Early ways of constructing success functions consist-
ed of a series of time-consuming simulation runs, each
for a different value of C,. In [1] a method called stack
processing is introduced, which accomplishes the whole
task of finding the success function in a single pass of
the block reference string (equivalent to little more than
one direct simulation run). Replacement algorithms suit-
able for stack processing are called srack algorithms.
Fortunately, most commonly used replacement algo-
rithms belong to this class. FIFO is an example of a
nonstack algorithm.

At this point it is clear that the set of blocks M,(D)
contained in a buffer of size D immediately before the
occurrence of request x, is determined by the block ref-
erence string and the replacement algorithm, Stack algo-
rithms meet the following conditions:

1. M(D) C M/(D + 1)

2. M, (D) =Mt(D)
Mt+1(D) = {Mt(D) —y,(D)} U x,

if x, € M,(D)
if x, & M,(D),

where y,(D) € M, (D) is the block selected for replace-
ment by A.

Both properties hold for 1=t=1L, 0=< D= |X] and
any string X. Condition 1) means that blocks contained
in a buffer of size D form a subset of the blocks present

Top of §, M(1) } M,(1)
M, (2)
M2) —M(1)
Bottom of 5, M(k) — Mk — 1)

Figure 3 Ordering of blocks in stack §,.

in a buffer of size D + 1. This is called the inclusion
property, and it induces a total ordering (list) over all k
distinct blocks that occur at least once in the trace up to
reference x,_,. (Only blocks already referenced can oc-
cur in a buffer of any size.) This ordering is called the
stack S, and is shown in Fig. 3.

According to this description then the block contents
of a buffer of size D at any time t are simply the top D
elements of the stack. We define the stack distance s,(E)
of a block E as its position relative to the top of §,. If
E is the top element, then s,(E) = 1. If E is not present
in §, we write symbolically s,(E) = c. This happens
when E has not yet been referenced.

Condition 2) states that precisely one block y,(D) is
replaced in a full buffer that does not contain x,; no
block is replaced otherwise. This amounts to “replace-
ment on demand” or demand paging.

Stack §,,, is obtained from §, according to the dia-
gram in Fig. 4. Block x, becomes the top element of S, ;
and no change in the stack is made below position s,(x,),
where x, is found in S, The diamonds represent deci-
sions about the occupancy of intermediate positions in
S,.,- Each decision Q(D) determines the occupant of
the Dth position of S, , by choosing between v (D —1)
and the block at the Dth position of S,.

The stack distance s,(x,) of the current reference indi-
cates the minimum size that the buffer must be to con-
tain x, at time ¢. If D, = 5,(x,), the reference results in a
hit. The success function can be obtained by developing
the cumulative distribution of the values of s,(x,), 1 =1,

-+, L. Thus, stack processing of a reference string con-

sists of finding the stack distance for the current reference
x,, building the new stack S, ,, finding the distance of x,,,
etc. The initial stack is assumed to be empty.

Seen from this perspective the replacement algorithm
appears as the source of decisions Q(D). A convenient
way of representing all such decisions is by introducing
priority lists, R, t=1,---, L— 1. List R, is similar in
structure to a stack, in that both are total orderings over
a set of blocks. List R, should contain (at least) those

IBM J. RES. DEVELOP.

Sit+1

S
l)’1(1)
I
Stack
<>

distance
Y, /(2)

<>

73

i

—

4 o4

¥, (4)

s, (x) =35 l Xy i
| Bottom IL

inigl

(a)

Figure 4 Stack updating scheme with (a) x, € S, and (b) x, & S,.

blocks that enter into decisions at time r. The position of
ablock E in R, is denoted r,(E). If two blocks E and F,
such that r,(E) < r,(F), enter in a decision Q (D) in the
course of constructing S,,, from §,, then y,(D) = F. Re-
stated for a particular buffer of size D, this means that
y,(D) is the block in the lowest position in R, among the
D blocks present in the buffer. Thus, knowledge of R/s
(or having a way to derive them) amounts essentially to
defining a stack algorithm.

Example 1 Figure 5 shows the processing of a reference
string by three representative stack algorithms, LRU,
LFU, and OPT, and the resulting success functions.
Successive times are indicated in the top row, and the
symbolic names of the pages referenced at each time are
given in the next row. The contents of stack S and of
priority list R for each reference appear in the rows be-
low, followed by the stack distances for each reference.
First references (s,(x,) =) are not used in the calcula-
tion of the numerical values of p,(C,). In LRU the
priority list R, is the order in which blocks occur when
scanning X backwards from x, (which is at the top of
R,). LRU is the only stack algorithm in which R, =§,_,,
which makes it important both theoretically and practi-
cally. The construction of S, , from S, is particularly
simple. It amounts to pushing down by one position

JULY 1974

S+
v (1)

o
100

y/(3)

(b)

each element is §, between the top and x,. Many actual
replacement schemes use LRU or its variants.

With LFU all priority lists are constant in time.
Blocks are ordered according to their frequency of oc-
currence in X, with the most frequently referenced block
on top. Thus, prior information about X is necessary. A
modified form of LLFU uses frequency counts from the
past part of X only. Then, of course, R,’s might change
in the course of processing.

OPT is an algorithm of theoretical interest requiring
knowledge of the future values in X. Priority list R, is
always the order in which blocks occur on scanning X
forward from x, (which is at the top of R,). OPT yields
the highest possible value of hit ratio for any given buffer
size and can be used as a yardstick for evaluating the
performance of other algorithms. Recent developments
[4] have shown a seemingly paradoxical result: It is
possible to find the success function for OPT without
information about the future of X. (But it is not possible
to make the actual correct replacement decisions).

An attempt was made in this section to review earlier
results informally, omitting some details not directly rel-
evant to joint stack processing; a rigorous treatment of
these topics is provided in [1].

As a final remark, stack algorithms and stack process-
ing can be seen heuristically as parts of a dynamic op-

MULTILEVEL HIERARCHI

31

;

w

320

J. GECSEI

t 1 2 3 4 5 6 7 8 9 10
x(i)- C D E D C A E B C E
CCD DE ED DC CA AE EB BC CE
C CD DE ED DC CA AE EB BC
SR, ~ C ¢CC CE ED DC CA AE EB
IS N W E ED DC CA AA
SR SR D DD DD
s{x) o ® P 2 3 @ 4 o« 4 3
cCcCC DC EC bC €CC AC EC BC CC
S R E E CE CE CE DE CE CE CE BE
oSt D D D DD ED ED ED AD ED ED
A A A A A A DA DA DA DA
B B B B B B B B AB AB
s (x) = e » 3 2 » 3 ® 2 3
CCD DE ED DC CA AE EB BC CE
S R D E CD DC EA EE EB AC EE E
6% —E C C CA CE DB CC CE C B
A A A E B C D D A A
B B B B D D D
s (x;) » © 2 3 ® 2 © 3 2
(a)
Figure 5

timization problem. Stack §, represents the state of a
system, and R, can be thought of as the system’s expec-
tations about its environment. (Actually, R, is its current
assumption about the immediate future of the reference
string). The goal of the system is to generate its next
state §,,,, matching the environment as well as possible.
The constraints in doing so are conditions 1) and 2),
which limit the possible amount of change in §,. By mod-
ifying 2) to allow for more than one block to be re-
placed at each reference, we effectively arrive at what is
known as “nondemand” or ‘“anticipatory’’ replacement
algorithms.

Staging hierarchies

A memory hierarchy may be thought of as the associa-
tion of hardware components (storage devices, data
transfer paths) and a set of rules that control the dy-
namics of data movement within the hierarchy. The
class of staging hierarchies is roughly delimited by the
following attributes:

¢ A staging hierarchy has two or more levels of memo-
ry, denoted M,, M,, ---, M, with capacities C, = C,
=.--= C,(bytes).

p(Cy)

1.0
0.8
0.6
04
0.2

1.0
0.8
0.6
04
02}

1.0}
0.8
0.6

OPT
0.4

02

Dy
(b)

Stack processing of a reference string (a) by three representatives algorithms and (b) the resulting success functions.

Information is moved between adjacent levels M, and
M,,, in blocks (pages) of size B, (bytes); B, = B, =
R BH—I'

Each block of size B, is composed of an integral num-
ber of blocks of size B, ,, called its descendants.
Thus, each block of size B, has a unique parent block
of size B,, which in turn has a unique parent of size
B,, etc.

A staging hierarchy is always accessed at the top (high-
est) level M.

Movement of information within the hierarchy follows
the staging rule: Whenever a block F’ is moved up-
ward into level M,, its parent block F is moved into
M,,, (if not already there), the parent of F into M, ,,
etc. In the case of demand staging, blocks are always
moved upward until M, is reached, but this happens
only on demand by a current reference. Thus, demand
staging is always accomplished by a sequence of block
transfers (one across each interface), starting at the
highest level where the required information exists
and ending at level M,. Downward movement of
blocks is the result of space limitations at one or more
levels above M,, and it occurs only when space is
needed for an upcoming block. Replacement algo-

IBM J. RES. DEVELOP.

rithms determine the block to be replaced (pushed
out) to a lower level, where it is returned to its par-
ent block. Hence the logical sequence of events on
each demand for staging is first to create space (if
necessary) by moving blocks downward and then to
stage upward. In an actual implementation, this se-
quence can be reversed by providing buffer space for
one block at each level. Demand staging is contrasted
with anticipatory staging, in which blocks may move
upwards prior to actual reference to their contents. In
this paper we deal with demand staging only.

o Initially all information resides at the lowest level of
the hierarchy. Later, several copies of each byte can
exist in the system, but only one at each level.

o The two-level hierarchy described previously is a
staging hierarchy in which H = 2,

Figure 6 shows a four-level hierarchy and the process
of staging a block from M, to M,.

These general features of staging hierarchies appear to
be reasonable in the light of the following facts about
storage technology and common data accessing patterns.
The decreasing capacities and block sizes usually used
toward the top level of memory hierarchies are motivat-
ed by typically higher cost and lower access time of de-
vices at the upper levels. The concept of staging is effec-
tive due to the locality of reference that is characteristic
of most data processing environments: data requests to
blocks or their groups tend to be repetitious; hence it
“pays” (from the standpoint of average access time to
the hierarchy) to stage a referenced block into a
higher —and faster —level.

Hierarchy management

The definition of staging hierarchies in the preceding
section is clearly insufficient for a precise description of
the movement of blocks between levels. What is needed
is the specification of replacement algorithms 4, -+,
A,_,. By replacement algorithm 4, we mean the rule that
determines the block to be replaced in level M, when
space is required for a new block. Generally, 4, may
depend on all 4; and Cj, i>].

The collection of replacement algorithms in a given
staging hierarchy is called the hierarchy management.
Within the scope of demand staging, we investigate sys-
tems of replacement algorithms that facilitate the deter-
mination of hit ratios p,,- -, p,. Each hit ratio p, is the
fraction of all references to the hierarchy for which in-
formation has to be staged from level M,.

As shown previously, the hit ratios for a two-level hi-
erarchy depend (for fixed X, B,, and 4,) on C; p, =
p(C,). This function was termed the success function. In
the case of multilevel hierarchies, p, in general depends
on C, C, ., - C, (X, all B; and 4, fixed). Thus, no

JULY 1974

] Block Capacity Level
x, size (bytes)
C, M,

o . O

Cy M,
1,(2) 5,]
C3 M;
BNZ
%,(3) (B,
C, M,

Figure 6 Four-level staging hierarchy.

direct analogy with stack processing exists, and the only
apparent way to determine the hit ratios is through di-
rect simulations, one for each combination of capacities.
This approach turns out to be uneconomical and some-
times unmanageable, even for two-level hierarchies, and
clearly gets quickly out of bounds with the growing di-
mensionality of the problem.

Our aim is to find a framework for using success func-
tions (i.e., results of two-level simulations or stack pro-
cessing) for ascertaining hit ratios in H-level staging hi-
erarchies.

The following properties of hierarchy management
(which may or may not hold in a given staging hierarchy)
are of interest:

Property 1 All replacement algorithms A4, (i.e., the re-
placement decisions taken by A.'s) are independent of
C;, i > j. An equivalent way of expressing this is that the
block contents of all levels M, at any time and for any
reference string are independent of the capacities of high-
er levels. In [2] this is called the “two-level property”;
each level M, can be seen as the upper level of a hypo-
thetical two-level hierarchy, the lower level of which con-
sists of all levels below M,. Levels above M, are trans-
parent to M, since Cj can be assumed to be zero.

Property 2 The presence of a block in M, implies the
presence of its parent block in M, ,i=1,--» H— 1.
This is called the “‘nesting property” in [2]. It means
that no block may be removed from M, before all its
descendants have been returned from A, (Note that
this property implies a dependence of 4, on 4;,i > j.)
Suppose now that success functions p(C,), -+,
p(C,_,) are formed by processing block traces X (1), -+,
X(H — 1) with replacement algorithms 4,,- -, 4,_,. If
Property 1 holds, then p(C;) can be interpreted as the
fraction of all references to a staging hierarchy such that

MULTILEVEL HIERARCHIES

322

J. GECSEI

P(Cl) W
p(Cy)
¢ p(C3)

C

My
(&

o]] o]

(b)

Figure 7 Hierarchy properties include (a) four-level hierarchy
and the required hit ratios and (b) success functions and hypo-
thetical two-level hierarchies.

a copy of the referenced byte is found at level M,. Clear-
ly, the p(C;) are not equivalent to the hit ratios p,, since
x, may be present also in some higher level and, thus,
staging from M; may not result.

However, if Property 2 holds too, then references that
are found in M, are also found in all levels below M,.
This provides for a simple way to calculate p,’s, summa-
rized in the following theorem originally proved in [2].

Theorem I 1n a staging hierarchy with block sizes B,
and level capacities C;, and with hierarchy management
such that Properties 1 and 2 hold at all times, the hit ra-
tios are determined by

P,-=P(C,-)_P(Ci_1)»i=la"',Ha (1)

where p(C,) = 0 and p(C,,) = 1. Figures 7 and 8 illus-
trate the above result and its informal proof.

The significance of Theorem 1 is that it may be used
for calculating p, for a range of capacities at all levels
from a single set of success functions.

Another result shown in [2] is that if the capacities
satisfy the constraint

D,<D,<---<D,_,

where D, = C,/B, are integers, and if all replacement
algorithms are LRU, then Properties 1 and 2 hold and
hence Eq. (1) is valid. In the next section this result is
generalized for algorithms other than LRU.

Joint stack algorithms
Hierarchy management has thus far been treated as a
collection of independent replacement algorithms, It was
shown that if all algorithms are defined to be LRU, then
the hit ratios can be obtained from Eq. (1).

Now we take a different approach, in that the replace-
ment algorithms are viewed as dependent upon the algo-
rithm A, at the highest level. The nature of this depen-

. —
]
i=1 = _
i=2
i=3 P3
143 !
- -
131
) : :
& L 1 A—]
I
\. & —
C; s

Figure 8 Relationship between hit ratios and success func-
tions.

dence should be such that Properties 1 and 2 hold at all
times. Thus, A4, appears to be driven by 4, 4, driven by
A,, etc., rather than each algorithm operating autonom-
ously. This view of hierarchy management is quite natu-
ral because the dependence of 4, on A4,_, is inherent in
Property 2.

The result to be shown in this section is that 4, may
be an arbitrarily chosen stack algorithm. However, if
Properties 1 and 2 are to hold, then the remaining algo-
rithms A4,, - -+, A,_, are uniquely determined by 4,. In
the next section an extension of stack processing is out-
lined for determining the success functions p(C,) simul-
taneously fori=1,---, H — 1.

We assume that all replacement algorithms in a de-
mand staging hierarchy are stack algorithms. If each 4,
is applied to its corresponding block trace X (i), i = 1,

-+, H—1, a sequence of stacks results for each A,
We denote S,(i) as the stack of 4, immediately before
the reference to block x,(i). It follows from Theorem 1
that, as long as Properties 1 and 2 hold, the upper D,
entries in S,(i) represent the block contents of level M,
of a staging hierarchy. As explained earlier, a priority
list R, (i) is used by each A4, to obtain S, (i). It is known
that if 4, is LRU, then R, (i) = S, (i).

t+1

Definition 1. The parent stack P,(i) of S,(i — 1) is a
stack that contains exactly those blocks (of size B))
whose descendants occur in S,(i — 1). The stack dis-
tances from the top of P,(i) of any two blocks F and G
are ordered in the same way as are the distances of the
highest (closest to the top) descendants of F and G in
S,(i—1).

Lemma 1 If F' is a descendant block of F, p,(F) the
stack distance of F in P,(i), and s5,(F’) the distance of F’
in §,(i—1), then

p(F) = s,(F").

IBM J. RES. DEVELOP.

Proof The proof is evident from Definition 1.

Example 2 Suppose that:
a,, a,, a, are descendants of block A,
b,, b,, b, are descendants of block B,
C,» C,, €, are descendants of block C.

If S,(i — 1) = b,, then P,(i) = B

b, A
a, C
bS

c 1

a2

a

1

Definition 2 A block that is present in level M, of a stag-
ing hierarchy is said to be free if none of its descendants
is present in M, ,. All blocks in M, are free. If a block is
not free, it is bound.

Lemma 2 Property 2 of hierarchy management holds if
only free blocks are selected for replacement by all re-
placement algorithms 4, i=1,- - -, H — 1, at all times.

Proof 1t follows from the staging rule that immediately
after a block F’ is staged up to M,, M, contains its par-
ent block F, M, the parent of F, etc., down to M, If
subsequently only free blocks are removed from each
level, no hole in the sequence of parent blocks down the
hierarchy can ever occur.

Lemma 3 (a) If the capacity of level M,_, is D,_, biocks
(of size B,_,), then any block F € P,(i) such that

p(F)>D,,

is free. (b) If F € P,(i) is free and G € P,(i) is bound,
then P,(F) > P,(G).

Proof (a) Level M, , contains the top D, , blocks of
§,(i—1). According to Lemma 1 no parent of these
blocks can be lower than the D, th position in P,(i).
(b) The proof is evident from the proof of (a) and from
Definition 1.

Definition 3 Stack algorithms A4, ---, A, | constitute a
system of joint algorithms if

R()=P, (i),i=2,H—1,1=1,-L.

Algorithm A, is an arbitrarily chosen stack algorithm,
and it is called the principal algorithm.

Thus, A, can use arbitrarily ordered priority lists for
updating its stack. The priority lists for subsequent lev-
els are the parent stacks derived from the immediately
higher level. We observe that R,(i) always contains ex-
actly the same blocks as §,(i).

The stacks in a system of joint algorithms are updated
as follows: Starting with all stacks given at time ¢, S,, (1)

JULY 1974

xt(l) xr+1(1)
Level 1 R,(1) 1 Rep (1) 8
P Y NS
2 9
P,+1(2) Pt+2(2)
3 10
11(2) X;+1(2) u
Level2 R,(2) 4 Ry 1(2)) = §,45(2) ete.
St(z) \ S,+1(2) +
5
Piy1(3)
6
x(3)
Level 3 RGN T LS N 85,03
§,3)

Figure 9 Updating stacks in a system of joint algorithms.

is obtained on each new reference first, then P, (2),
which in turn is used as the priority list to obtain §,,,(2),
etc. This sequence is illustrated in Figure 9.

It can be seen that the replacement process starts at
the highest level so that a block freed at a level may be
considered for replacement out of that level at the same
time ¢.

Lemma 4 Consider level M, of a staging hierarchy with
joint replacement algorithms. The capacity of M, is D,
blocks. Suppose that M, is full°and the current reference
x,(i)¢ M,; therefore A; must make a replacement deci-
sion. Denote y € M, the block selected for replacement
and r,(y) the position (distance) of y in the priority list
R,(i). Then

r(y) > D,

Proof We recall from Definition 3 that R,(i) = P, (i).
Thus x,(i)¢& M, is the top element of R, (i), r,(x,(i)) = 1.
Observe now that block y, selected by A, for removal

from among D, blocks, must always be the one with dis-
tance

r(y) = max (r(F,)), k:F, € M,

This follows from the way R, (i) is used for replacement
decisions.

Therefore, there must be at least D; — 1 distinct blocks
F, € M, such that

2=r(F,) <r).

This directly implies

r(y) > D, 3

MULTILEVEL HIERARCH

R3

IES

324

J. GECSEI

11 1 23 456 7 89 10111213 141516 17
x (1) ay byag ey bycpdyczagby e by ¢ 2y by ez d,

ay by ag ¢y by ey dj ey ay
ayp by aycy byeyepcy
a) by ay a3 23 a3 ¢3
aj by by by by by etc.
4y a; a; ay a;

8, (1)

by by by
d; 4
St © w @ w e 2 o » 3 4 stack distancesin S (1)
ABACBCDCA
P (2)= ABACBCAC
B AAABB
R () BDD
% (2) ABACBCDCABEBCABTCD
ACBCDCA
S, (2) - ABACBCDC
BAAAAD
B BB
A w w 2 » 3 2 « 2 3 4 gtack distancesin S (2)

Figure 10 Joint stack processing.

Now we are ready to formulate and prove the following
theorem.

Theorem 2 Assume an H-level staging hierarchy, G,
H = 2, with block sizes B,,- -, B,_, and capacities C,,
*+, Cp_, such that

D,=D,<--<D,_,.

If the hierarchy management consists of a system of
joint algorithms A,,---, A,_,, then properties 1 and 2 of
hierarchy management hoid.

Proof of Property 1 It is observed from Definition 3 that
the stack updating (i.e., replacement) decisions made at
time ¢ by A, are uniquely determined by x,,,(i) and
Sa(i—1).i=2,-H—1. ButS, (i—1)isastack and
hence independent of C; ,. By the same argument the
decisions made by 4, | are independent of C,_,, etc. As
a result, S, (i) and A, are independent of C,_,, C
-+ C, as required by Property 1.

-1 “iog
Proof of Property 2 From Lemma 4 and Definition 3 we
have

P,y =r(y)>D,
Substituting D, | = D, yields

-1

Pt+1(y) > Di-—l‘

According to Lemma 3, then, block y (selected by 4, for
replacement from M,) is free. Finally, from Lemma 2
and from observing that the above reasoning is valid for
al A4, i=2,--,H—1,and forall ¢, t=1,--+, L, we
conclude that Property 2 holds.

Corollary 1 The hit ratios for a hierarchy G with joint
stack algorithms are

pi=p(ci)—p(ci_1)’i=1""5”9 (1)

where p(C,) =0 and p(C,) = 1.
This follows directly from Theorems 1 and 2.

Joint stack processing

The success functions p(C,) used in Eq. (1) can be ob-
tained by means of a procedure that is an extension of
the standard stack processing technique. This extended
procedure is called joint stack processing, and it uses the
dependence of §,(i) on §,,,(i — 1) as described in Defi-
nition 3 and Fig. 9. Joint stack processing with 4, =
OPT, H=3,and B,= 3B, is shown in Fig. 10.

Given the principal algorithm A4, and block sizes B,
4, By_,, all H — 1 stacks are maintained and updated
after each reference. Stack distance statistics are kept
for each stack individually exactly as in standard stack
processing. Thus joint stack processing is a one-pass
procedure. It appears to be similar to a method de-
scribed in [5] for 4, = LRU.

The following two sections describe an application of
joint stack processing to the design of storage hierarchies.

Implementation of hierarchy management

It is important to distinguish the notion of joint stack
processing from the process of actual management of a
given staging hierarchy. The former is a procedure for
determining p(C,), i=1,---, H — 1, for the entire range
of C,, while the latter is the real-time processing of a
string of memory requests by a hierarchy with fixed
capacities C,.

As indicated in the preceding section, joint stack pro-
cessing requires updating of each stack at the time of
each reference. In the real-time environment it appears
to be necessary to maintain H — 2 stacks. However,
these stacks serve not for gathering distance statistics
but to make actual replacement decisions: Stack §,,, (i)
is used to generate the priority list R for level M, ,. The
block selected for replacement (if any) in M,,, is the
one in the lowest position in R,(i + 1) among blocks
currently present at M, .

With these thoughts in mind, we can visualize two
ways of implementing hierarchy management, as shown
in Fig. 11.

In Fig. 11(a) the hierarchy management is centralized
in a single module (hardware, software, or a combina-
tion), which receives all requests from the reference
string, contains all stacks, and controls data transfers
between adjacent levels. In Fig. 11(b) hierarchy man-
agement is distributed among individual control modules,
each associated with a level in the hierarchy, e.g., they
could be part of the device control units. Using this

iBM J. RES. DEVELOP.

Reference string
x/(1

Transfer
commands

2_5

S(n) S(2)

[

Hicrarchy
management

M,

(a)

Reference string
x (1)

Control
M, ‘—————| s[4
x,(1)
not found.
R(2) Search in M,
M, 4-——' s |3 |——
R,(3) Broz'\dcast
line

w —{_+—

o

(b)

Figure 11 Hierarchy management with (a) centralized control and with (b) distributed control with broadcasting.

modular approach, it is conceivable to easily construct
or change hierarchies, with little or no impact on the
remaining part of the system. In order to work properly,
however, these control modules must be interconnected,
and to update the stacks they must receive information
at the time of each reference. Reference x, is received
via a broadcast line and the priority lists by connection
from the adjacent level. This implies a serious disad-
vantage of the otherwise attractive idea of distributed
hierarchy management: a lower level (e.g., archive man-
agement) must be capable of high speed, since it has to
process all references from a string, including those that
cause no actual data transfer in or out of that level.

In the next section we show that, if the principal algo-
rithm is LRU, distributed hierarchy management is pos-
sible without broadcasting references and priority lists
to all levels. This means that stacks S,(i) do not have to
be updated on each reférence. In fact, only a small part
of each stack has to be maintained to make the correct
LRU decisions.

Distributed hierarchy management with LRU

Follow first in detail the general (not necessarily LRU)
interaction between the controls of two levels M, , and
M, to determine the block to be replaced (deleted) from

JULY 1974

M,. We assume that reference x, has to be staged from
below M, and that M, is full at ¢. The interaction evolves
in time as follows:

1. Determine stack S,,,(i—1).

2. Determine the parent stack P, (i) and the priority
list R, (i) for level M,. By definition R, (i) = P,,, (i).

3. Determine block y to be replaced from M, as r(y)
= max (r(F,)), k: F €M,

In words, y is the block having the lowest priority
among those present in M,. From the proof of Theo-
rem 2 we know that y is always free.

4. Construct stack S, (i).

Note that step 4 is needed only to create R,(i + 1), not
for making the replacement decision in M,!

Now assume that the principal algorithm A4, is LRU.
Then all algorithms [2] will be LRU, and all stacks will
become LRU stacks (with block size B, at each level).
It will be shown that in this case y can be found by a
procedure much simpler than steps 1-4. First we notice
that except for x,(i), which is at the top of R,(i), the
LRU stack §,(i) and the priority list R,(i) induce identi-
cal orderings over all blocks of size B,. Therefore, y can
also be determined from §,(i):

25

MULTILEVEL HIERARCHIES

326

J. GECSEI

Reference string

M, [-__'_I

x(1)
not found.
Search in M,

=

[

LRF stack

M, IEI/ Control

M jf_ |

Figure 12 Staging hierarchy constructed of autonomous mod-
ules without broadcasting.

s,(y) = max (s,(F.)), k: (F, € M, F, is free.)

In words, y is the lowest free block in S,(i) among all
blocks present in M.

The following Lemma makes it possible to determine
this lowest free block from the time order in which
blocks became free (i.e., the time their last descendants
were released from M,_)).

Lemma 5 Let F € M, and G € M, be two free blocks in
the LRU stack S,(i), let n, and n; be the respective
times when they were last referenced, and let m; and m,
be the respective times when they last became free; ng,
ng, Mg, mg < t. If A, = A4, =LRU and m, < m,, then
ne < ng.

Proof Consider the priority list R,, (i) for m, = ' < m,,.
From Lemma 3 and Definition 3 we have

ry_(F) > r._(G).
But for LRU R,_, (i) = §,(i) for all t; therefore
5, (F) > 5,(G).

Since n, < m, = ' < t (else F would not be free at time
t) and observing that the order of any two blocks in an
LRU stack cannot change unless one of them is refer-
enced, it follows that

5,(F) > s5,(G).

This in combination with the definition of LRU stacks
finally implies
Ry < g

Loosely speaking, Lemma 5 asserts that the time or-
der in which blocks in M, become free is the same as
their order in the LRU stack. Thus, keeping track of this
time order alleviates the need to maintain full stacks. A
partial LRU stack containing only the free blocks in M,
can be easily maintained in the control module of every
level. The block to be replaced is always the “longest
time free,” or ““least recently freed,” LRF.

We can summarize the action of each control module:

1. When a block becomes free, put it on the top of a
LREF stack.

2. When a block becomes bound, remove it from the
stack.

3. When replacement is required, select the bottom ele-
ment of the stack, and remove it from the stack.

4. A directory of the current contents of the level must
exist in the control module for search procedures, but
this is a quite separate issue. For replacement deci-
sians, only steps 1-3 have to be done.

The potential of this scheme is that replacement deci-
sions are dependent only on information local to a mem-
ory level, i.e., on previous block transfers in and out of
that level. No broadcasting of references is required, and
interaction between controllers of adjacent levels is lim-
ited to times when actual data transfers take place be-
tween these levels. Still, the sequence of replacements
thus generated is exactly the same as in the system with
broadcasting. Figure 12 shows this type of configuration.

In conclusion, localized hierarchy management is an
architectural feature of its own, not limited to the con-
text of LRU. Any other local algorithm may be used. If
the replacement decisions are for free blocks only, then
Property 2 still holds, Property 1, possibly not. Evalua-
tion pased on joint stack processing then becomes a
moire'or less good approximation to the true values of hit
ratios.

Summary of notation

A, Replacement algorithm operating at ith level
of hierarchy

B, Block size (bytes) at ith level

C, Capacity (bytes)

D, D Capacity (blocks)

M, ith level of hierarchy, set of blocks contained
in that level

M,(D) Set of blocks in buffer of size D, before refer-
ence to x,

p; Hit ratio at ith level

Success function

i

IBM J. RES. DEVELOP.

P.(i) Parent stack (before reference to x,, block size
B)

p.E) Distance of block E from the top of P (i)

R, (i) Priority list

r,(E) Distance of biock E from the top of R,(i)

S,(i) Stack (before reference to x,, block size B,)

s5,(E) Distance of block E from the top of S,(i)

Q(D) Decision at level D of a stack

T, Access time to ith level

x,(i), x, Block (size B;) referenced at time ¢

X (i), X Reference string (block size B)

v,(D),y Block replaced from buffer (size D) at time ¢

Acknowledgment
The author is grateful for the constructive remarks made
by one of the referees concerning Lemma 5.

JuLy 1974

References

1. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “E-
valuation Techniques for Storage Hierarchies,” IBM Sys-
tems Journal 9,718 (1970).

2. D. R. Slutz and I. L. Traiger, Determination of Hit Ratios
Jor a Class of Staging Hierarchies, IBM Research Report
RJ 1044, San Jose, California, May 1972. :

3. G.S. Shedler, 4 Cyclic Queue Model of a Paging Machine,
IBM Research Report RC 2814, Yorktown Heights, New
York, March 25, 1970.

4. L. A. Belady and F. P. Palermo, “On-line Measurement of
Paging Behavior by the Multivalued MIN Algorithm,” /BM
J. Res. Develop. 18,2 (1974).

5. I. L. Traiger and D. R. Slutz, One-pass Technique for the
Evaluation of Memory Hierarchies, Research Report RJ
892, July 1971.

Received December 10, 1973, revised March 1, 1974

The author is located at IBM Canada, 5 Place Ville
Marie, Montreal, Canada.

MULTILEVEL HIERARCH

327

IES

