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management is described and illustrated. 

Introduction 
As computing  grows  increasingly more  data  oriented, 
the  speed of data handling, and especially of storage 
functions,  becomes  the limiting factor in the overall per- 
formance of modern computers.  Storage  systems typi- 
cally use several technologies, which are linked together 
with the objective of effectively utilizing the  advantages 
of each technology  (high speed, low cost). 

Designing  optimal storage hierarchies is rather com- 
plicated,  not  only because of the high dimensionality of 
the mathematical  problems associated with  optimization, 
but  also  because of the  ever changing technology and 
workload environments. Information  available on  tech- 
nology, costs, workload, and performance requirements 
(the designer’s input) is often of limited accuracy and 
representativeness. 

For all these  reasons, it is desirable to  develop effi- 
cient  and  easily automated  storage  system design 
methods  to allow the exploration of as many  design 
options  as possible. Stack processing  introduced by 
Mattson,  et a1 [ 11 has been  frequently  applied and  has 
also  generated  some theoretical interest, e.g., in the  areas 
of reference  trace analysis and  theory of replacement 
algorithms. 

This  paper  presents  an outgrowth of standard  stack 
processing,  extending its applicability to a realistic class 
of storage  hierarchies, called staging hierarchies by Slutz 
and  Traiger [ 2 ] ,  who originally described them.  Staging 
hierarchies allow for  an  arbitrary  number of memory 
levels, using different block sizes at various  levels, and 
for multiple copies of the  same block in the  system. 

This  paper reviews some earlier results, presenting 
them  from a perspective intended to facilitate  under- 
standing of the new extensions to stack processing. 
These new contributions include the following main re- 
sults. 

Abstract: The applicability of stack processing for evaluation of storage hierarchies has been limited to two-level  systems and to a 
very special group of multilevel hierarchies. A generalization of stack processing, called joint stack processing, is introduced. This 
technique makes possible the efficient determination of hit ratios for a class  of multilevel hierarchies - staging hierarchies. These hier- 
archies are  rather realistic in the sense that they allow for multiple block sizes and  multiple copies  of data in the hierarchy. Properties 
of storage management schemes that  lend themselves to ioint stack processing are studied, and  the notion of distributed  hierarchy 

An  extension  to  stack processing, called joint  stack 
processing  allows  simultaneous (one-pass) determina- 
tion of success  functions  for a staging hierarchy. 
Systems of replacement algorithms exist (called joint 
stack algorithms, one  for  each hierarchy level)  such 
that  the hit ratios  for variable capacities  at  each level 
can  be obtained from  the  results of joint  stack pro- 
cessing. 
In a system of joint stack  algorithms, the algorithm at 
the first level (the “principal” algorithm A , )  may be 
an arbitrarily chosen  stack algorithm;  algorithms at 
lower levels are “driven”  (uniquely determined) by A, .  
If the principal algorithm is the  least recently  used 
(LRU) ,  then correct  replacement  decisions  at  each 
level are entirely derivable  from  the history of that 
level; no  “broadcasting” of requests is necessary.  This 
leads to a view of the hierarchy as a collection of 
memory devices with their  associated  autonomous 
controllers. 

Real  hierarchies, of course,  are  not likely at  the pres- 
ent time to satisfy  strictly the conditions set  forth in 
abstract hierarchy models. Replacement algorithms, for 
example,  are ip practice designed as a compromise be- 
tween their practicality and  their  ease  and  cost of imple- 
mentation,  as well as  cleanness  and compliance with 
theory. 

Stack processing 
Stacks  and stack  processing are  notions originally cre- 
ated during the  search  for  an efficient method to  evaluate 
various aspects of storage hierarchies. This  section re- 
views informally topics treated earlier  by Mattson,  et al 
[ 1 1, emphasizing  notions  directly  applicable to  joint 
stack  processing  and  establishing  notation  used later in 
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the  paper. (A summary of this  notation is provided  pre- 
ceding the  References). 

Consider  the two-level hierarchy in Fig. 1. In  such a 
configuration,  level M ,  is often  called the bufler and lev- 
el M ,  the backing  store. The totality of information  con- 
tained in this hierarchy is divided into blocks of equal 
size  (each block  containing the  same  number B ,  of 
bytes).  The blocks are identified logically by their 
names, independently of their physical locations in either 
level. Only  one  copy of each block is kept in the  system, 
and all blocks are initially supposed  to  reside in the 
backing  store. The  capacities of the levels are C, and C, 
bytes, or equivalently Dl and D, blocks. The Di = C i / B ,  
are  assumed  to  be integers. 

The hierarchy is  always  accessed  at  the  upper level. 
That is,  when a particular  byte is requested,  the  (unique) 
block containing that byte must be either  present in 
the buffer or  it  must be  brought in from the backing 
store before the  actual  access  can  take place. If the 
buffer is full at the time of the  request,  some block  from 
its  current  contents must be replaced (pushed  out  to 
M , )  to make space  for  the  requested block. The rule for 
selecting the block to  be  pushed  out is called the re- 
placement  algorithm. Some common replacement algo- 
rithms  are FIFO (first-in, first-out),  LRU  (least re- 
cently  used out), LFU (least  frequently  used  out),  and 
their variations. 

A sequence of byte  references is called the reference 
string and is denoted  as 

z = z,, 2,; . ., ZL, 
where zt is  the  name of the  byte referenced at time t ,  and 
L is the length of the string. The block  reference  string 
for given block size Bi is 

X ( i )  = x , ( i ) ,  x , ( i ) ; .  ., x L ( i ) ,  

where x , ( i )  is  the  name of the block that  contains zt. We 
use  the simpler  notation X and xt when the block size is 
implied by the  context. 

Block reference string X ( i )  is a  string over  the  set M ,  
of blocks  contained initially in the backing store.  (The 
symbol M i  is used to  denote  both  the ith level of a hier- 
archy  and  the  set of blocks contained in that level.) If 
IX(i)l is the  number of distinct  blocks that  occur in X ( i ) ,  
the following relation holds: 

IX(i)l 5 IM,I 5 D,. 
Throughout this paper we assume  that  references  are 

satisfied by the hierarchy  management in strict  se- 
quence: xt  can  be  requested only after xt-, has been  suc- 
cessfully accessed.  Thus, we do  not consider overlapped 
or out-of-order  referencing. 

A reference string represents  the  environment of the 
hierarchy;  the  exact  nature of the  source of requests  is 
irrelevant  for  the internal operation of the hierarchy. 
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The  requests may come  from a single processor in single 
or multiprogramming mode, from several  processors, or 
in general from any data processing subsystem  that 
needs  access to a  pool of data. 

When a string of length  L is applied to a two-level hi- 
erarchy with a given buffer size Dl and a given  replace- 
ment algorithm A , ,  some  references result in hits in the 
buffer (no  transfer from M ,  is necessary).  References 
that do require  such a transfer  are commonly called 
misses. If the  number of hits and misses are L, and LM, 
respectively, then  the hit ratios p1 and p ,  are defined as 

Thus, hit ratios  express  the  fraction of all memory  refer- 
ences  that result in accessing levels M ,  and M ,  of the 
two-level hierarchy in Fig. 1. This notion of hit ratio  is 
meaningful also  for properly defined n-level hierarchies. 
We  use the buffer-backing store  concept only as a  vehi- 
cle for describing stacks  and  stack algorithms. 

The most significant use of hit ratios  for design and 
analysis of computer  systems with memory hierarchies 
is as input  values to various  probabilistic  models for 
evaluating system performance. A simple, and  perhaps 
the first,  application is the calculation of the  expected 
access time T to  the  hierarchy 

(Time T ,  is the total  time to  access a  block in M,, which 
is not  always  equal  to  the  device  access  time.)  In more 
sophisticated  models [3]  the  CPU  and individual memo- 
ry  levels become  servers in a  cyclic  queuing system  such 
as  the  one in Fig. 2 ,  where hit ratios  are  seen  as proba- 
bilities of an 1 / 0  request being directed  to level 1 or 2. 
The aim of such models is  to calculate the  CPU  and 
I /O utilization factors and the throughput rates. 

There  are many  possible uses and interpretations of 
hit  ratios. A common feature of all applications is that 
pi's provide a convenient link between  some kind of ab- 
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stract model  and the actual workload on a computer sys- 
tem. When  using such methods, however, a complex 
programming environment is represented by a few  num- 
bers, amounting to a considerable reduction of informa- 
tion; thus results from such an analysis are necessarily 
only approximate. 

For a given  block reference string X (  1 ) and a given 
replacement algorithm A , ,  the hit ratio p ,  depends only 
on the buffer capacity. This function is sometimes called 
the success  function p ( C , ) .  Knowledge of it permits op- 
timization for various cost-performance combinations 
when  designing systems with  memory hierarchies. This 
is done by  picking  values of C,  (which essentially gives 
the cost of the hierarchy) and  using the associated value 
of p ( Ci) for calculating performance. 

Early ways of constructing success functions consist- 
ed of a series of time-consuming  simulation runs, each 
for a different value of C,.  In [ 11 a method  called stack 
processing is introduced, which accomplishes the whole 
task of finding the success function in a single pass of 
the block reference string (equivalent to little  more than 
one direct simulation run). Replacement algorithms suit- 
able for stack processing are called stack  algorithms. 
Fortunately, most  commonly  used replacement algo- 
rithms belong to this class. FIFO is an example of a 
nonstack algorithm. 

At this point it is clear that the set of blocks M,(D) 
contained in a buffer of size D immediately before the 
occurrence of request X, is determined by the block  ref- 
erence string and the replacement algorithm. Stack algo- 
rithms meet the following conditions: 

1. M,(D) C M,(D + 1)  
2.  M,+,(D) = M,(D) if x, E Mt(D) 

M,+,(D) = {M,(D) - y , ( D ) )  u x1 ifx, M,(D), 

where y , (D)  E M,(D) is the block selected for replace- 
ment by A .  

Both properties hold for 1 5 t 5 L, 0 5 D 5 1x1 and 
any  string X .  Condition 1) means that blocks contained 
in a buffer of size D form a subset of the blocks present 

. . 
Bottom of SI p K G G - 1  
Figure 3 Ordering of blocks in  stack S,. 

in a buffer of size D 3- 1. This is  called the inclusion 
property, and  it induces a total ordering (list)  over all k 
distinct blocks that occur at least once in the  trace up to 
reference X,-,. (Only blocks already referenced can oc- 
cur in a buffer of any size.) This ordering is called the 
stack S, and is shown  in Fig. 3. 

According to this description then the block contents 
of a buffer of size D at any  time  t are simply the top D 
elements of the stack. We define the stack distance s,(E) 
of a block E as its position relative to the top of S,. If 
E is the top element, then st(E) = 1. If E is not present 
in St, we write symbolically s,(E) = a. This happens 
when E has not yet been referenced. 

Condition 2 )  states that precisely one block y,(D) is 
replaced in a full  buffer that does not contain x,; no 
block is replaced otherwise. This amounts to “replace- 
ment on demand” or demand  paging. 

Stack St+, is obtained from S, according to the dia- 
gram in Fig. 4. Block x, becomes the top element ofst+,  
and no change in the stack is made  below  position s,(x,), 
where X, is  found in S,. The diamonds represent deci- 
sions about the occupancy of intermediate positions in 
S,,,. Each decision Q ( D )  determines the occupant of 
the Dth position of St+l by choosing between y,(D - 1) 
and the block at the Dth position of S,. 

The stack distance st (x,) of the current reference indi- 
cates the minimum size that the buffer must be  to  con- 
tain x, at time t .  If Dl I s , ( ~ ~ ) ,  the reference results in a 
hit. The success function can be obtained by developing 
the cumulative distribution of the values of s,(x,), t = 1 ,  
. ’ ., L. Thus, stack processing of a reference string  con- 
sists of  finding the stack distance for the current reference 
xt ,  building the new stack St+,,  finding the distance of 
etc. The initial  stack  is assumed to be empty. 

Seen from  this perspective the replacement algorithm 
appears as the source of decisions Q (D) . A convenient 
way  of representing all such decisions is  by introducing 
priority  lists, R,, t = 1, . . ., L - 1. List R ,  is  similar in 
structure to a stack, in that both are total orderings over 
a set of blocks. List R,  should contain (at  least) those 
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Figure 4 Stack updating scheme with (a) xt  E S,  and (b) .xf S,. 

blocks that  enter  into decisions at time t .  The position of 
a block E in R ,  is denoted r,(E). If two blocks E and F, 
such  that r,( E) < r,( F ) ,  enter in a decision Q (D) in the 
course of constructing SI+, from SI,  then y , (D)  = F. Re- 
stated  for a  particular buffer of size D, this means  that 
y , (D)  is the block in the lowest  position in R ,  among the 
D blocks present in the buffer. Thus, knowledge of R,'s 
(or having  a way to  derive  them)  amounts essentially to 
defining a  stack  algorithm. 

Example I Figure 5 shows  the processing of a reference 
string  by three  representative  stack algorithms, LRU, 
LFU,  and  OPT,  and  the resulting success functions. 
Successive times are indicated in the  top  row,  and  the 
symbolic  names of the pages  referenced at  each time are 
given in the  next  row.  The  contents of stack S and of 
priority list R for  each  reference  appear in the  rows be- 
low, followed by the  stack  distances  for  each reference. 
First  references (s,(x,) = m )  are not  used in the calcula- 
tion of the numerical  values of p 1  ( C , ) .  In  LRU  the 
priority  list R,  is the  order in which  blocks occur when 
scanning X backwards from xf  (which is at  the  top of 
Rf). LRU is the only stack algorithm in which R,  = St+,, 
which makes it important both  theoretically and practi- 
cally. The  construction of SI+, from S, is particularly 
simple. It  amounts  to pushing down by one position 
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each  element is S, between  the  top  and xt. Many  actual 
replacement  schemes  use  LRU or its variants. 

With LFU all priority  lists are  constant in time. 
Blocks are  ordered  according  to  their  frequency of oc- 
currence in X ,  with the  most  frequently  referenced block 
on  top.  Thus, prior  information about X is necessary. A 
modified form of LFU uses  frequency  counts  from  the 
past part of X only. Then, of course, R,'s might change 
in the  course of processing. 

OPT is an algorithm of theoretical interest requiring 
knowledge of the  future values in X .  Priority  list R ,  is 
always  the  order in which  blocks occur  on scanning X 
forward  from xt (which is at  the  top of R , ) .  OPT yields 
the highest  possible  value of hit ratio  for  any given buffer 
size  and can be  used as a yardstick for evaluating the 
performance of other algorithms. Recent  developments 
[4] have  shown  a seemingly paradoxical  result: It is 
possible to find the  success function for OPT without 
information about  the  future of X .  (But  it is not possible 
to  make  the  actual  correct  replacement  decisions). 

An  attempt  was made in this  section to review  earlier 
results informally,  omitting some details not directly rel- 
evant  to  joint  stack  processing; a rigorous treatment of 
these topics is provided  in [ 1 3. 

As a final remark,  stack algorithms and  stack  process- 
ing can be seen heuristically as  parts of a dynamic  op- 3 
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Figure 5 Stack  processing  of  a  reference  string (a) by three  representatives  algorithms and (b) the  resulting success functions. 

timization  problem. Stack S, represents  the  state of a 
system,  and R,  can be thought of as  the system’s expec- 
tations  about  its  environment.  (Actually, R, is  its  current 
assumption  about  the immediate future of the  reference 
string).  The goal of the  system is to  generate its next 
state S,,,, matching the  environment  as well as possible. 
The  constraints in  doing so are conditions 1) and 2), 
which limit the possible amount of change in S,. By mod- 
ifying 2) to allow for  more  than  one block to  be  re- 
placed at  each  reference, we effectively arrive  at  what  is 
known as  “nondemand”  or “anticipatory” replacement 
algorithms. 

Staging hierarchies 
A memory hierarchy may be thought of as  the  associa- 
tion of hardware  components  (storage  devices,  data 
transfer  paths)  and a set of rules  that control the dy- 
namics of data  movement within the hierarchy. The 
class of staging  hierarchies is roughly delimited by the 
following attributes: 

A staging hierarchy has  two  or  more levels of memo- 
ry,  denoted M,,   M, ,  . . ., M,, with capacities C ,  5 C ,  
5 . . .5 C,( bytes). 

Information is moved  between  adjacent levels Mi and 
Mi+, in blocks (pages) of size B ,  (bytes); B ,  5 B ,  5 
. . .4  B,-,. 
Each block of size Bi is composed of an integral  num- 
ber of blocks of size Bi-l, called its descendants. 
Thus,  each block of size B ,  has a unique parent block 
of size B,, which in turn  has a unique  parent of size 
B,, etc. 
A staging hierarchy is always  accessed  at  the  top (high- 
est) level M,. 
Movement of information within the hierarchy  follows 
the staging rule: Whenever a block F‘ is moved  up- 
ward  into level Mi, its parent block F is moved into 
Mi+, (if not  already  there),  the  parent of F into Mi+,, 
etc.  In  the  case of demand  staging, blocks are  always 
moved  upward until M ,  is reached,  but this happens 
only on  demand by  a current  reference.  Thus,  demand 
staging is always accomplished  by a sequence of block 
transfers  (one  across  each  interface), starting at  the 
highest  level where  the required  information exists 
and ending at level M , .  Downward  movement of 
blocks is the  result of space limitations at  one  or  more 
levels above M,, and it occurs only when  space is 
needed for  an upcoming  block. Replacement algo- 
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rithms determine  the block to be  replaced (pushed 
out)  to a lower level, where it is  returned  to its par- 
ent block. Hence  the logical sequence of events  on 
each  demand  for staging is jirst to  create  space (if 
necessary) by moving blocks downward  and then to 
stage  upward.  In  an  actual implementation,  this  se- 
quence can  be reversed by  providing buffer space  for 
one block at  each level. Demand staging is contrasted 
with  anticipatory staging, in which  blocks may move 
upwards prior to  actual  reference  to their contents.  In 
this paper  we deal  with  demand staging only. 

Initially all information resides  at  the  lowest level of 
the hierarchy. Later, several copies of each  byte  can 
exist in the  system,  but only one  at  each level. 

The two-level hierarchy described previously is a 
staging hierarchy in which H = 2. 

Figure 6 shows a four-level hierarchy and the  process 
of staging a block from M ,  to M , .  

These general features of staging  hierarchies appear to 
be reasonable in the light of the following facts  about 
storage technology and common data accessing patterns. 
The decreasing capacities  and block  sizes  usually  used 
toward  the  top level of memory  hierarchies are motivat- 
ed by  typically  higher cost  and  lower  access time of de- 
vices at  the  upper levels. The  concept of staging is effec- 
tive due  to  the locality of reference  that is characteristic 
of most data processing  environments: data  requests  to 
blocks or  their  groups tend to  be  repetitious;  hence it 
“pays”  (from  the  standpoint of average  access time to 
the  hierarchy)  to  stage a referenced block into a 
higher-and faster-level. 

Hierarchy management 
The definition of staging hierarchies in the preceding 
section  is clearly insufficient for a  precise  description of 
the movement of blocks  between  levels. What is needed 
is the specification of replacement algorithms A , ,  . . ., 
AH-, .  By replacement algorithm Ai we mean the rule that 
determines  the block to be replaced in level M i  when 
space is required for a new block. Generally, Ai may 
depend  on all A j  and Cj, i > j .  

The collection of replacement algorithms in a given 
staging hierarchy is called the hierarchy  management. 
Within the  scope of demand staging, we investigate sys- 
tems of replacement  algorithms that facilitate the  deter- 
mination of hit ratios pl,.  . ., pH. Each hit ratio pi  is the 
fraction of all references  to  the  hierarchy  for which in- 
formation has  to be  staged from level Mi. 

As  shown previously, the hit ratios  for a two-level hi- 
erarchy  depend  (for fixed X ,  B , ,  and A , )  on C,; p ,  = 
p ( C , ) .  This function was  termed  the  success function. In 
the  case of multilevel hierarchies, pi in general depends 
on Ci, Ci-], ..., C, ( X ,  all Bi and A i  fixed). Thus,  no 
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Figure 6 Four-level  staging  hierarchy. 

direct analogy with stack processing exists,  and  the only 
apparent way to  determine  the hit ratios  is through di- 
rect simulations, one  for  each combination of capacities. 
This  approach  turns  out  to be  uneconomical and some- 
times  unmanageable, even  for two-level  hierarchies, and 
clearly gets quickly out of bounds with the growing di- 
mensionality of the problem. 

Our aim is  to find a framework for using success func- 
tions (i.e., results of two-level  simulations or stack  pro- 
cessing)  for ascertaining hit ratios in H-level staging hi- 
erarchies. 

The following properties of hierarchy  management 
(which may or may not hold in a  given staging hierarchy) 
are of interest: 

Property 1 All replacement  algorithms Ai  (i.e., the re- 
placement  decisions  taken by Ai’ s )  are independent of 
Cj, i > j .  An equivalent way of expressing  this is  that  the 
block contents of all levels M i  at  any time  and for  any 
reference string are independent of the capacities of high- 
er levels. In [ 2 ]  this is called the “two-level property”; 
each level M i  can  be seen as  the  upper level of a  hypo- 
thetical two-level hierarchy,  the lower level of which con- 
sists of  all levels  below M i .  Levels  above Mi are  trans- 
parent  to M i ,  since Cj  can be  assumed to be  zero. 

Property 2 The  presence of a block in M i  implies the 
presence of its parent block in M i + l ,  i = 1, . . ., H - 1 .  
This is called the “nesting property” in [2]. It  means 
that no block may be removed  from Mi+l before all its 
descendants  have been returned  from Mi. (Note  that 
this property implies a dependence of Ai  on Aj ,  i > j . )  

Suppose now that  success  functions p ( C , )  , . . ., 
p(C,-,) are formed by processing block traces X (1); . ., 
X ( H  - 1 )  with replacement algorithms A , ,  ..., A H - ] .  If 
Property 1 holds,  then p (  Ci)  can  be interpreted  as  the 
fraction of all references  to a staging hierarchy  such  that 
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Figure 7 Hierarchy  properties  include (a) four-level  hierarchy 
and the  required  hit  ratios and (b)  success  functions and hypo- 
thetical  two-level  hierarchies. 

a copy of the referenced byte  is found at level Mi.  Clear- 
ly, the p ( C i )  are not  equivalent to  the hit ratios pi, since 
X, may be  present  also in some higher level and,  thus, 
staging from Mi may not  result. 

However, if Property 2 holds too,  then  references  that 
are found in Mi are  also found in all levels  below Mi. 
This provides for a simple way to calculate pi’s, summa- 
rized in the following theorem originally proved in [ 21. 

Theorem I In a staging hierarchy with block  sizes B i  
and level capacities Ci, and with  hierarchy  management 
such  that  Properties 1 and 2 hold at all times,  the hit ra- 
tios are  determined by 

p i = p ( C i )  -p(Ci-,) ,  i =  I , . . . ,  H ,  ( 1 )  

where p(C,) = 0 and p (C,) = 1. Figures 7 and 8 illus- 
trate  the  above result and  its informal proof. 

The significance of Theorem 1 is that  it may be  used 
for calculating pi  for a range of capacities at all levels 
from a single set of success functions. 

Another result  shown in [2] is that if the capacities 
satisfy the  constraint 

D , 5  D , 5 . . . i  D,-,, 

where Di = C i / B i  are integers,  and if all replacement 
algorithms are  LRU,  then  Properties 1 and 2 hold and 
hence  Eq. ( 1  ) is valid. In  the  next section  this  result is 
generalized for algorithms other  than  LRU. 

Joint stack algorithms 
Hierarchy management has  thus  far been treated  as a 
collection of independent  replacement algorithms. I t  was 
shown  that if all algorithms are dejined to  be  LRU,  then 
the hit ratios can  be  obtained  from Eq. ( 1 ). 

Now we take a different approach, in that  the replace- 
ment algorithms are viewed as dependent upon the algo- 
rithm A ,  at  the highest  level. The  nature of this depen- 

1 

” 

4 
2 

Figure 8 Relationship  between  hit  ratios and success  func- 
tions. 

dence should  be such  that  Properties 1 and 2 hold at all 
times. Thus, A ,  appears  to be driven by A , ,  A, driven by 
A,, etc.,  rather than each algorithm operating autonom- 
ously. This view of hierarchy  management is quite natu- 
ral because  the  dependence of Ai  on Ai-, is inherent in 
Property 2. 

The result to be  shown in this  section is that A ,  may 
be an arbitrarily chosen stack algorithm. However, if 
Properties 1 and 2 are to hold, then  the remaining algo- 
rithms A, ,  . . ., AH-, are uniquely determined by A , .  In 
the  next section an extension of stack  processing is out- 
lined for determining the  success functions p(C , )  simul- 
taneously f o r i =  l ; . . ,  H - 1. 

We assume  that all replacement algorithms in a de- 
mand staging  hierarchy are  stack algorithms.  If each Ai 
is applied to  its corresponding  block trace X ( i ) ,  i = 1, 
. . ., H - I ,  a sequence of stacks  results  for  each Ai .  
We denote S , ( i )  as  the  stack of A i  immediately before 
the  reference  to block x , ( i ) .  It follows  from Theorem 1 
that,  as long as  Properties 1 and 2 hold, the  upper Di 
entries in S,(i) represent  the block contents of level M i  
of a staging hierarchy. As explained earlier, a priority 
list R , ( i )  is used  by each Ai  to  obtain St+, ( i ) .  It  is known 
that  ifA, is LRU,  then R, ( i )  = S , + , ( i ) .  

Definition 1. The parent stack Pi ( i )  of S i (  i - 1 ) is a 
stack  that  contains  exactly  those blocks (of size B i )  
whose  descendants  occur in S,( i  - 1 ). The  stack dis- 
tances  from  the  top of P , ( i )  of any  two blocks F and G 
are  ordered in the  same way as  are  the  distances of the 
highest (closest  to  the  top)  descendants of F and G in 
S,(i - 1 ) .  

Lemma 1 If F’ is a descendant block of F, p,(F) the 
stack distance of F in P , ( i ) ,  and  s,(F’)  the  distance of F’ 
in S , ( i -  l ) ,  then 

P,(F) 5 st@‘). 
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Proof The proof is evident  from Definition 1 .  

Example 2 Suppose that: 
a,, a,, a, are  descendants of block A, 
b,, b,,  b, are  descendants of block B,  
c,, c,, c, are  descendants of block C. 
If S , ( i  - 1 )  = b,, then P,( i )  = B 

bl A 
a3 C 
b3 
C l  

a, 
a1 

Definition 2 A  block that is present in level Mi of a stag- 
ing hierarchy  is said to be free if none of its  descendants 
is present in Mi-, .  All blocks  in M ,  are  free. If  a block is 
not free, it is bound. 

Lemma 2 Property 2 of hierarchy  management  holds if 
only free blocks are selected for  replacement by all re- 
placement algorithms Ai, i = 1; . ., H - 1 ,  at all times. 

Proof It  follows from  the staging rule that immediately 
after a block F' is staged  up to M I ,   M ,  contains  its par- 
ent block F, M ,  the  parent of F,  etc., down  to M,. If 
subsequently  only free blocks are removed from  each 
level, no hole in the  sequence of parent blocks down  the 
hierarchy can ever  occur. 

Lemma 3 ( a )  If the capacity of level Mi- ,  is Di-, blocks 
(of size Bi-,), then any block F E P , ( i )  such  that 

P,(F) > Di-, 

is free. ( b )  If F E P,( i )  is free  and G E P , ( i )  is bound, 
thenP,(F) > P , ( G ) .  

Proof (a) Level Mi- ,  contains  the  top Di-,  blocks of 
S,(i - 1 ) .  According  to  Lemma 1 no  parent of these 
blocks can be lower than the  Di_,th position in f , ( i ) .  
( b )  The proof is evident from the proof of ( a )  and  from 
Definition 1 .  

Definition 3 Stack  algorithms A , ,  ' . ., A H - ,  constitute a 
system ofjoint algorithms if 

R , ( i ) = P , , , ( i ) , i = 2 ; ~ ~ , H - l 1 , t = 1 ; ~ ~ , L .  

Algorithm A ,  is an arbitrarily chosen  stack algorithm, 
and it is called the principal  algorithm. 

Thus, A ,  can  use  arbitrarily ordered priority  lists for 
updating  its stack.  The priority  lists for  subsequent lev- 
els  are  the parent stacks derived  from the immediately 
higher level. We observe  that R, ( i )  always contains ex- 
actly  the  same blocks as S , ( i ) .  

The  stacks in a system of joint algorithms are updated 
as follows:  Starting with all stacks given at time t ,  St+,(  1 )  
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is obtained on  each new reference first,  then P,+, ( 2 ) ,  
which in turn is used as  the priority list  to  obtain St+, (2) ,  
etc. This  sequence  is illustrated in Figure 9. 

I t  can be  seen  that  the  replacement  process  starts  at 
the highest level so that a block  freed at a level may be 
considered for  replacement  out of that level at the  same 
time t .  

Lemma 4 Consider level M i  of a staging hierarchy with 
joint replacement  algorithms. The  capacity of M i  is Di 
blocks. Suppose  that M i  is full-and the  current  reference 
x , ( i ) $  M i ;  therefore Ai  must  make a replacement deci- 
sion. Denote y E M i  the block  selected for  replacement 
and r , (y )  the position (distance) of y in the priority  list 
R ,  ( i )  . Then 

r , ( y )  > Di. 

Proof We recall from Definition 3 that R , ( i )  = P, , ,  (i). 
Thus x , ( i ) $  M i  is the  top element of R , ( i ) ,   r , ( x , ( i ) )  = 1 .  
Observe now that block y ,  selected by A i  for removal 
from among Di blocks,  must  always  be the  one with dis- 
tance 

r , ( y )  = max (r,(F,)), k:F,  E M i .  

This follows from  the way R , ( i )  is used for replacement 
decisions. 

Therefore,  there must  be at  least Di - 1 distinct  blocks 
Fk E M i  such  that 

2 5  r,(Fk) < r,(Y).  

This directly implies 

r , ( y )  > Di. 
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St m m m m m 2 m m 3 4 stack distancesins (1) 

p ,  ( 2 )  = 
A B A C B C D C A  

A B A C B C A C  
R,-1(2) B A A A B B  

B D D  

x1 ( 2 )  A B A C B C D C A B E B C A B C D  

s, (2) - A B A C B C D C  
A B A C B C D C A  

B A A A A D  
B B B  

SI m m 2 * 3 2 m 2 3 4 stack distances in S ( 2 )  

Figure 10 Joint stack processing. 

Now  we  are  ready  to  formulate  and  prove  the following 
theorem. 

Joint stack processing 
The  success functions p ( C i )  used in Eq. ( 1 )  can be ob- 
tained  by means of a procedure  that is an  extension of 
the  standard  stack processing  technique. This  extended 
procedure  is called joint stack processing, and it  uses  the 
dependence of S , ( i )  on S,+,( i  - 1 )  as  described in Defi- 
nition 3 and Fig. 9. Joint stack  processing with A ,  = 

OPT, H = 3,  and B ,  = 3B, is  shown in Fig. 10. 
Given  the principal algorithm A ,  and block sizes B, ,  

. . ., BH-, ,  all H - 1 stacks  are maintained and  updated 
after  each reference. Stack  distance  statistics  are  kept 
for  each  stack individually exactly  as in standard  stack 
processing. Thus  joint  stack processing is a one-pass 
procedure. It  appears  to be  similar to a method  de- 
scribed in [5] for A ,  = LRU. 

The following two  sections  describe  an application of 
joint  stack processing to  the design of storage hierarchies. 

Theorem 2 Assume  an H-level staging hierarchy, G ,  
H 1 2, with block sizes B, ,  . . ., BH-,  and  capacities C, ,  

Implementation of hierarchy management 
It  is important to distinguish the notion of joint stack 

given  staging  hierarchy. The  former is a procedure  for 
. . .  , CH- ,  such  that processing  from the  process of actual management of a 

D 1 5  D , 5 . . . 5  DH-,. determining p ( Ci) , i = 1 , .  . ., H - 1 ,  for  the  entire  range 

If the hierarchy  management consists of a system of 
joint algorithms A,, . . ., AH-,, then  properties 1 and 2 of 
hierarchy management hold. 

Proof  of  Property 1 It  is observed  from Definition 3 that 
the  stack updating (i.e., replacement)  decisions  made  at 
time t by Ai are uniquely determined by x t+ , ( i )  and 
S,+,(i-l),i=2,~~~,H-l.ButS,+,(i-l)isastackand 
hence  independent of Ci-,. By the  same  argument  the 
decisions  made by Ai-, are  independent of Ci-,, etc. As 
a result, S t + , ( i )  and Ai  are  independent of Ci-,, Ci-,, 
. . ., C ,  as required  by Property 1 .  

Proof  of  Property 2 From  Lemma 4 and Definition 3 we 
have 

of C,, while the  latter  is  the real-time  processing of a 
string of memory requests by a hierarchy with fixed 
capacities Ci. 

As indicated  in the preceding section,  joint  stack pro- 
cessing requires updating of each  stack  at  the time of 
each reference. In  the real-time environment  it  appears 
to be necessary  to maintain H - 2 stacks.  However, 
these  stacks  serve  not  for gathering distance  statistics 
but  to  make  actual  replacement decisions: Stack St+, ( i )  
is used to generate  the priority  list R for level Mi+,. The 
block selected  for  replacement (if any) in Mi+, is the 
one in the  lowest position in R , ( i  + 1 )  among  blocks 
currently present at Mi+, .  

With these  thoughts in mind, we can  visualize two 
ways of implementing hierarchy management, as  shown 
in Fig. 1 1 .  

Substituting Di-, 5 Di yields In Fig. 1 1  (a)  the  hierarchy management is centralized 
in a single module (hardware,  software,  or a combina- 
tion), which receives all requests  from  the  reference 

According to Lemma 3,  then, block y (selected by Ai for string, contains all stacks,  and  controls  data  transfers 
replacement from M i )  is free.  Finally,  from Lemma 2 between  adjacent levels. In Fig. 1 1  (b) hierarchy man- 
and from  observing that  the  above reasoning is valid for  agement is distributed among individual control  modules, 
all Ai, i = 2 ,  . . ., H - 1 ,  and  for all t ,  t = 1 , .  . ., L,  we each  associated with a level in the hierarchy, e.g., they 

324 conclude  that  Property 2 holds.  could be  part of the  device  control units.  Using  this 

P,+,(Y) > Di-1. 
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x , ( l )  
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( a )  

Figure 11 Hierarchy management with (a) centralized control and 

modular  approach, it is conceivable to easily construct 
or  change hierarchies, with little or  no  impact  on  the 
remaining part of the system. In  order  to work properly, 
however,  these control  modules  must  be interconnected, 
and  to  update  the  stacks they must receive  information 
at  the time of each reference. Reference X, is received 
via a broadcast line and  the priority  lists by connection 
from the  adjacent level. This implies a serious disad- 
vantage of the  otherwise  attractive idea of distributed 
hierarchy management: a lower level (e.g., archive man- 
agement) must be  capable of higH speed,  since it has  to 
process all references from a string, including those  that 
cause  no  actual  data  transfer in or  out of that level. 

In  the  next section we show  that, if the principal algo- 
rithm is  LRU,  distributed  hierarchy manageinent is pos- 
sible without broadcasting references and  priority  lists 
to ali levels. This  means  that  stacks S,(i) do not have  to 
be  updated on each  regrence.  In  fact, only a small part 
of each stack has  to  be maintained to make the  correct 
LRU decisions. 

Distributed hierarchy  management with LRU 
Follow first in detail the general (not necessarily LRU) 
interaction  between  the  controls of two levels Mi-, and 
Mi to  determine  the block to be  replaced (deleted) from 
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not  found. 
Search in M 2  

Broadcas 
line + +  

~~ , (b)  

with (b) distributed  control with broadcasting. 

Mi. We  assume  that  reference X, has  to  be staged from 
below Mi and that Mi is full at t .  The interaction evolves 
in time as follows: 

1. Determine  stack St+, ( i  - 1 ). 
2. Determine  the  parent  stack P,,, ( i )  and the priority 

list R,(i) for level Mi. By definition R,(i)  = Pt+, ( i ) .  
3. Determine block y to  be replaced  from Mi as r , ( y )  

= max ( r,( F,) ) , k:  F, E Mi. 

In  words, y is the block having the lowest  priority 
among those  present in Mi. From  the proof of Theo- 
rem 2 we know  that y is always  free. 

4. Construct  stack St+, ( i ) .  

Note  that  step 4 is needed  only to  create R,(i  + 1 ), not 
for making the  replacement decision in M i !  

Now  assume  that  the principal  algorithm A ,  is  LRU. 
Then all algorithms [ 2 ]  will be LRU, and all stacks will 
become LRU stacks  (with block  size Bi at  each  level). 
It will be shown  that in this case y can be found by a 
procedure much simpler than  steps 1-4. First we notice 
that  except  for x , ( i )  , which is at  the  top of R,( i )  , the 
LRU stack S , ( i )  and  the priority  list R, ( i )  induce identi- 
cal  orderings over all blocks of size Bi. Therefore, y can 
also be determined from S, ( i )  : 
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Figure 12 Staging  hierarchy  constructed of autonomous  mod- 
ules without  broadcasting. 

s , ( y )  = mfx (s,(F,)), k :  (F, E Mi,  F, is  free.) 

In  words, y is the lowest  free block in S,(i) among all 
blocks present in Mi.  

The following Lemma  makes  it possible to determine 
this lowest  free block from  the time  order in which 
blocks became  free (i.e., the time their  last  descendants 
were released from M i - l ) .  

Lemma 5 Let F E M i  and G E M i  be  two  free blocks in 
the  LRU  stack St(i), let nF and n, be the  respective 
times  when they  were  last  referenced,  and let mF and mG 
be the  respective times when  they  last  became  free; nF, 
nG, mF, rn, < t .  If A ,  = A i  = LRU and mF < rn,, then 
nF < nG. 

Proof Consider  the priority list R , , ( i )  for mF 5 t’ < m,. 
From  Lemma 3 and  Definition 3 we  have 

r,t-l(F) > r , , - , ( G ) .  

But for  LRU R,-, (i) = S,(i) for all t ;  therefore 

st,@) > s , , ( G ) .  

Since nF < mF 5 t’ < t (else F would not be free  at time 
t )  and observing that  the  order of any two blocks in an 
LRU stack  cannot change unless  one of them is refer- 
enced, it follows that 

s,(F) > s , ( G ) .  

This in combination with the definition of LRU stacks 
finally implies 
nF < n,. 

Loosely speaking, Lemma 5 asserts  that  the time or- 
der in which  blocks  in Mi become  free is the  same  as 
their  order in the  LRU  stack.  Thus, keeping track of this 
time order alleviates the need to maintain full stacks. A 
partial LRU stack containing  only the  free blocks in Mi 
can be easily  maintained in the  control module of every 
level. The block to  be replaced is always the “longest 
time free,”  or “least  recently freed,”  LRF. 

We can summarize the action of each control  module: 

1. When a block becomes  free,  put  it  on  the  top of a 
LRF stack. 

2.  When a block becomes  bound,  remove it from  the 
stack. 

3. When replacement is required,  select  the  bottom ele- 
ment of the  stack,  and  remove  it  from  the  stack. 

4. A directory of the  current  contents of the level must 
exist in the  control module for  search  procedures,  but 
this is a quite  separate issue. For  replacement deci- 
sions, only steps 1-3 have  to  be  done. 

The potential of this  scheme is that  replacement deci- 
sions are  dependent only on information local to a mem- 
ory  level, i.e., on previous  block transfers in and  out of 
that level. No broadcasting of references  is  required,  and 
interaction  between  controllers of adjacent levels is lim- 
ited to times when  actual  data  transfers  take  place be- 
tween  these levels.  Still, the  sequence of replacements 
thus  generated is exactly  the  same  as in the  system with 
broadcasting. Figure 12 shows this type of configuration. 

In conclusion,  localized hierarchy management is  an 
architectural  feature of its  own,  not limited to  the con- 
text of LRU.  Any  other local  algorithm may be  used. If 
the  replacement  decisions  are  for  free blocks only,  then 
Property 2 still holds,  Property 1, possibly  not.  Evalua- 
tion based on  joint stack  processing then  becomes a 
more‘or  less good approximation to  the  true  values of hit 
ratios. 

Summary of notation 

of hierarchy 
Ai Replacement algorithm  operating at ith level 

Bi Block size (bytes)  at ith level 
Ci Capacity  (bytes) 
Di,  D Capacity  (blocks) 
Mi ith  level of hierarchy,  set of blocks contained 

in that level 
M , ( D )  Set of blocks in buffer of size D,  before  refer- 

ence  to X, 
Pi Hit ratio at ith level 
P ( Ci )  Success function 
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Parent stack (before reference to x,, block  size 

Distance of block E from  the top of P,(i) 
Priority list 
Distance of block E from the top of R , ( i )  
Stack (before reference to xt, block  size B i )  
Distance of  block E from the top of S , ( i )  
Decision at level D of a stack 
Access time to ith level 
Block (size B i )  referenced at time t 
Reference string (block size B i )  
Block replaced  from  buffer (size D )  at time t 

B , )  
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