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Storage  System 

Abstract: Capacity demands for computer memory  are increasing. A multilevel storage system provides an economically feasible 
solution without seriously affecting the total response time. An M-level storage system is considered in this paper. The capability of a 
digital computer with a multilexel storage system is best enhanced in a multiprogramming environment. In a high level storage system, 
determination of a best task switching policy becomes an important consideration. In this paper a queuing network is introduced to de- 
scribe distribution and flow of tasks in the system. An optimal switching policy is determined in  relation to the system’s overhead 
time. It is shown that  in heavily CPU-limited cases the determination becomes a very simple one; namely, the best policy is given as the 
threshold level at which the accumulation of the average access time exceeds the overhead time. 

introduction 
The trend  in the design of computer  storage  systems  is 
toward multilevel storage hierarchies. The first level or 
cache  has a small capacity  but a very  low access time, 
which can be  realized  with expensive technology. Stor- 
age devices  at  the  lower levels are realized with slower 
and  less  expensive technology and  have larger  capacities. 

Our basic assumption, in this paper, is that with the 
development of new technologies we may reach a  situa- 
tion for which the  CPU might become  the  bottleneck of 
the system. In  such a case,  an optimal  task  switching 
policy is needed to  obtain maximum  throughput. 

We  assume  that only one switching policy exists in a 
two-level storage  system  and  that  there  are  two policies 
in a three-level storage  system:  The  execution will be 
switched  to  another task  only  when 1 )  there is a page 
fault in the first  level or 2)  the referenced  page is not 
found in either  the first or  the  second level.  We call the 
former  the first policy and  the  latter  the  second policy. 
In  the  past,  attention  has  been limited to  the first policy 
only. Let us consider  an M-level storage  system  as  shown 
in Fig. 1. There  are M - 1 task  switching  policies in 
general. The mth policy in an  M-level’storage  system is 
defined as follows: The  present task is  executed without 
interruption as long as  the  CPU  references pages that 
are found within the first m levels, and  the  execution is 
switched to  the  next  task only if the CPU requests a 
page that  is found in one of the remaining  M - m levels. 

The  purpose of this paper  is  to  analyze an M-level 
storage  system in a multiprogramming environment  and 
to  search  for  an optimal  task switching policy related to 

the system’s overhead time. We will consider a multi- 
level  linear storage  system in which data  transfers  take 
place  only between  adjacent levels as indicated  by the 
arrows in Fig. 1, although other  types of data  transfer 
are conceivable [ 1 3. 

Each level is usually  divided into a set of smaller units 
called “pages” or “page frames” [2, 31; a page is also a 
unit of data  transferred  from  one level to  the  next level. 
Careful consideration is needed in order  to  determine 
the suitable  page  size at  each level [2].  Here  we  assume 
that  the page size at  each level is already  determined and 
that  its effect is included in the  access times {ti}. The hit 
ratio or the probability that a  referenced page is found in 
level i is assumed  to be  given as {pi}, where i =  1, 2; . ., 
M [3, 41. 

In  the  past,  performance evaluation for a multipro- 
gramming environment  has been carried  out mostly for 
a two-level storage  system [5, 61. Quite recently there 
have  appeared  several  works  on  the design of multilevel 
storage  systems [ 3, 4, 7 - 91 that investigate  technologies 
and  capacities  at  each level of the  storage hierarchy. To  
the  best of the author’s  knowledge, however,  there  is  no 
work which pays specific attention  to a task switching 
policy for a multilevel storage system. 

System overhead time 
In  the determination of an optimal  task switching policy, 
the  system  overhead time  plays  a  major role. Lewis  and 
Shedler [ I O ]  studied the effect of the  overhead in a two- 
level storage system. They pointed out  four  services  as 
system  overhead functions: 1 ) service  for picking up the 
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next program for processing and restoring the machine 
state; 2 )  service for saving the machine state of the 
(present) program relinquishing the  CPU, executing the 
replacement algorithm, constructing  the channel control 
program for  the  required page, and placing an  entry  into 
the paging queue; 3)  service for picking up the  next page 
request  and executing the channel control program; and 
4) service  for placing a new entry in the CPU queue. 
The first and  second  are  concerned with service  between 
the  CPU and the first level of storage,  and  the  last  two 
are  concerned with  service between  the first and  the 
second levels. The major overhead activity is represented 
by the  second service. 

In a multilevel storage  system with more  than  two 
levels,  additional services  are  needed, e.g., the adminis- 
tration of page directories (if a page replacement algo- 
rithm such  as  the "least recently  used" is invoked) and 
of the  queues  that  transfer  the  data  from  one level to an- 
other. Comparing the mth and  (m + 1 )th policies in an 
"level storage system, the  number of page directories 
is M for  both  but  the number of transferring queues is 
decreased by one  for  the latter. 

When the  CPU  is used to  govern all the  services, a 
very  complex problem arises in establishing the  CPU's 
priority  rules [IO].  Since  we  analyze a relatively high 
level storage  system  (say  more than four  levels), we 
assume  here  that  dedicated special hardware  is employed 
to  carry  out most of the  services, so that  the  services 
assigned to  the  CPU  are minimal. 

Let us denote by B,, the  average  overhead time in an 
"level storage  system when the mth  task switching 
policy is used. Our problem is  to  determine  the optimal 
policy under given overhead times {B i ,M}  and a fixed 
number of programs in an "level storage system char- 
acterized with access times {ti} and hit ratios {pi}. The 
criterion for optimality  considered here is to  increase  the 
throughput or the  number of useful instructions  executed 
per unit of time. 

Queuing model 
In  order  to  derive  the  expression  for throughput we em- 
ploy a queuing network model [3, 10- 1 2 1 .  To apply a 
queuing network model to  an "level storage  system, 
the following assumptions  are made; 

1 .  The priority  rule for service to  the  queue is First- 

2.  The probability  distribution for  the  service time at 
Come-First-Served (FCFS).  

each  server  is negative  exponential, i.e. 

P(Y < Yo) = 1 - exp ( -Yo/t) ,  ( 1 )  

where t is the  average  service time. 
3. The pages at  each level are  referenced  independently; 

p i  is the probability that a referenced page will be 
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Figure 1 An "level storage system. 

found in the ith level; every program is of an identical 
class. Note  that p i  = 1 .  

4. The  data  transfer  from  the i + 1 level to  the i level de- 
pends on the availability of a  vacant slot. If there  is 
no vacant  slot in the ith  level, a page is removed  from 
it under  the invoked  page replacement algorithm. 

5 .  When an mth  task  switching policy is employed in an 
M-level system, a  task that is found at  one of the 
( M  - m) slower  levels  migrates to  the m + 1 level, 
then  further  to  the m  level, and eventually to  the first 
level. When  such a transfer  is taking place at  one of 
the  faster m  levels, there  is a chance of a conflict be- 
tween the CPU requests  and  the task migration. In 
such a case  the priority is given to  the  CPU.  The re- 
sultant additional  delay  time to  the task is ignored, 
however,  because  the probability of such a conflict is 
small and  because  the delay  time is insignificant com- 
pared with the long waiting time at the CPU  server in 
a CPU-limited system. (The term  "CPU-limited" is 
explained in the following section.)  The  average  trans- 
fer time  from the  mth level to  the first is  denoted by 
e,,. We  have, in general, 

c,, = t ,  + f ,  +. . . + tm. ( 2  1 
Under  the  above  assumptions we first obtain  a  queuing 

network for  the mth  task switching policy in an "level 
storage  system ( 1 5 m 5 M - 1) and then derive  an 
expression  for  the throughput by using Gordon  and 
Newell's result [ 1 2 1 .  

Since  there is no task switching as long as  the  CPU 
requests page.s within the  faster m  levels, there  are  no 
queues  for them. Therefore  it is convenient  to combine 
them  into one  server which we call the CPU server.  Now 
let us compute  its  average service time. 3 
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Figure 2 A queuing model for an M-level  storage  system  when the mth  task  switching  policy  is  used. 

By T ,  we  denote  the  access time from  the CPU to  the 
ith level. Therefore  we  have 

i 

T ,  = to + 2 r j ,  
j=1  

where to is  the  average  execution time at  the CPU. The 
probability that  the CPU will call the first  level k,  times, 
the second k, times; . ., and  the mth  level k ,  times before 
switching to another  task  due to a page  fault in the first 
m  levels is 

x ( l - p l - p , - * ~ ~ - P m ~ .  (4) 

The  average  service time is 
m m 

After  considerable algebraic  manipulation we obtain 

s,, = 
PITl + P2T, + * . . + P,T, 

l - p l - p , - " " p ,  . 

The queuing  network model used  in our investigation 
is shown in Fig. 2. We define the  state of the queuing 
network as  the number of tasks in the  queues  at  the serv- 
ers, namely (no, n,, . . ., n,) where J = M - m and no is 
the number of tasks  at  the CPU server  and n,(i P 1 )  is 
that  at  the m + i level. From  Gordon  and Newell's  pa- 

per  we  obtain  the probability of the  state (no,   nl ,  ., 

( 6 )  

where 

j=k+m r k = r f o r 2 S  k 5  J , a n d  

x pj 
j=m+l  

n o + x  J n j = N .  

j = 1  

The normalization factor G,, is calculated as 

k#j 

The probability that  the CPU is idle is 

( 9 )  
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The throughput is 

The  derivations of ( 8 )  and (9) are omitted here,  but we 
check  their validity by obtaining G,,3 and e,,,: 
G - dl l -d ,N+’  d ,  1 -dZN+I 

dl - d, 1 - dl  d,  - dl 1 - d, +- ’ ( 1 1 )  

rm+l M 1-1 

r m  M 1 - 1  

The polarity depends  upon 

The  correctness of the  above  two  results  can be checked 
by  calculating  them  directly from (6).  

Comparison of task switching policies 
We  have calculated the  throughput  for  an “level storage 
system. Therefore,  comparison  can be  readily carried 
out by  evaluating the  expression  for a given hit ratio { p i } ,  
access or service  time { t i } ,  CPU overhead time { B k M } ,  
and  number of tasks N .  When dk in (7 )  is less  than unity 
for  every k ,  a long waiting line will probably be formed 
at  the  CPU  server  and we will say  that  the  system is 
“CPU-limited.” If dk is larger than unity for  some k ,  a 
long waiting line is formed at  the rn + k level and  the 
system is said to be “storage-limited’’ (or the rn + k level 
is the  “bottleneck”).  Since in a storage-limited system 
the  throughput  is mostly determined by the flow rate in 
the  storage  hierarchy, little effect on throughput is ex- 
pected with different  task  switching policies. In  other 
words,  the  study of optimal  task  switching policies is 
meaningful only for a CPU-limited system. Therefore, 
we  are  concerned only with this  case. 

Sekino [ 61, Wallace  and Mason [ 131, as well as  others, 
have studied the effect that  the number of tasks  has  on 
the  throughput in a two-level storage  system. A  large N 
will cause  an undesirably long delay in program  comple- 
tion; moreover,  the number of pages in the first level 
allotted to a particular  program decreases  as N increases. 
Therefore,  the hit ratio p 1  is a decreasing  function of N .  
Since ( 1  - Q m M )  is an increasing  function in N ,  there is 
an optimal N that  produces  the maximum throughput. In 
this  paper, we assume  that a reasonably large N is chosen 
so that  the approximation Q,, << 1 holds  reasonably 
well. 

Using (10) and  the approximation e,,<< 1 ,  the dif- 
ference in the  throughput  between  the rnth and ( r n  + 1)th 
task switching policy is 

JULY 1974 

M M 

M M 

where BiM = B + bhw In general an optimal rn is found 
by computing’the  above.  However, if bi,M<< B for  every 
i (i.e., the  overhead time is nearly constant),  the polarity 
depends only upon ( B  - Tm+,)  . Therefore, if we define 
an rn’ such  that 

then we have 

R , ,  < . . . < Rmt-1,M ‘m#,M ’ R m g + l , M  >.. .  R M - I W  

(16) 

Therefore  the optimal  task  switching is the rn‘th policy. 

Discussion 
Let  us  assume  that we investigate the  case  where M may 
have  the value four, five or six. In this case  the  choice 
of a task switching policy is generally between  the first 
and  the second. We will investigate these  two specifically. 

Assuming no  change in the  overhead time with the 
two task switching policies, we know  that  the optimal 
switching policy is the first one if the  average  overhead 
time B is less than T,. When B = T,,  the  two policies 
yield the  same throughput.  If B is increased further,  the 
second will yield a  larger  throughput.  When B = T,, we 
have  the relationship 

Since usually T , / T 3  << 1 and p 1 T , /  ( 1 - p 1 ) T 3  << 1, 
( 1 7 )  becomes 

which can  be  close  to 1 .  In  other  words a  wrong  switch- 
ing policy can  reduce  the  throughput significantly. 

One may be very eager  to  pay  attention  onlyto  the first 
task switching policy because  it  is  the simplest. In this 
case  the paging overhead time  should be  less  than  the 
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access time to  the second level. If this is impossible, the 
use of the  second  task switching policy is advisable. 

Example 
As  an  example, we take a four-level  storage system speci- 
fied by t ,  = O.O5ps, t ,  = lps, t ,  = 15ps, t ,  = loops, p1 = 

0.9, p ,  = 0.09, p3 = 0.009, p4 = 0.00 1 .  For  convenience 
we set to = 0. We study the  system  performance  for  the 
fixed overhead time B = Sps, although it may be arti- 
ficially large. By applying the first switching  policy, we 
can compute  the  average  service time for  the  CPU  server 
from (5 ). That  is, 

The values of dis which are significant in determining 
the  asymptotic  system performance are  computed 
from (7) :  

dl = -. 1 
5 + 0.45’ 

0 1 x 1 5  1.5 
dz=---”-“ - 

5.45 5.45 ’ 

d3 = 
0.01 x 100 10 

54.5 54.5 
- 

Since dl, d, and d3 are in such a range that d;, d t  and 
d: are by far  less than  unity for reasonably  large N ,  the 
system is heavily CPU-limited.  The  asymptotic through- 
put is obtained  from ( 10) by setting Q,, = 0: 

1 
R1,4 = ( 1  - 0.9) ( 5  + 0.45) x IO6 

- -- x lo‘ instructions/ second. 
5.45 

When  the  second switching policy is applied, we have 

s 2 , 4  = 
0.9 x .OS + 0.09 x 1.05 P s  = , 3.95Ps, 

1 - 0.9 - 0.09 

and 

16  10 
5 + 13.95 5 + 13.95 ‘ 

dl = ; d, = 

Again dl and d, are  less than  unity. The  asymptotic 
throughput is given by 

1 
R2,4= 0.01 X (5 + 13.95) x lo6 

- -- 
1.895 ’ X IO7 instructions/second. 

In  case  the third  switching policy is applied, we have 

s3,4 = 
0.9 X 0.05 + 0.09 X 1.05 + 0.009 X 16.05 

1 - 0.9 - 0.09 - 0.009 
= 2 8 4 ~ s ;  

d, =- 116 
5 + 284 ’ 

Again d, is less  than unity. The  asymptotic  throughput  is 

4 4  = 
1 

0.001 X ( 5  + 284) 
x lo6 

= 1 x 10‘ instructions/second. 
2.89 

As  expected,  the  second switching policy yields the max- 
imum throughput,  approximately  three times more  than 
the first policy and 50 percent  more than the third policy. 

Comments 
Some  comments  are in order concerning the  drawbacks 
of the model employed in the  determination of an optimal 
switching policy for a multilevel storage  system in a mul- 
tiprogramming  environment. As stated  at  the beginning, 
it was  assumed  that  the  references  made by the  CPU  are 
independent,  stationary,  and of one class. The  stationary 
assumption  is a necessary  one  for  such statistical  anal- 
ysis. Regarding  program classes,  the choice of a task 
switching policy is independent of the hit ratios {pi} as 
long as  the  overhead time does  not differ much for dif- 
ferent switching policies. It may be  conjectured  that  the 
result of this paper would be valid for a mixture of dif- 
ferent program  classes. The  independence  property 
might be replaced  by  introducing a Markovian depen- 
dency  as  presented by Shedler and Tung [ 141. The first- 
order  Markov  dependence implies that  the  address  at 
time n depends only upon  the  address of the call at  its 
prior  time n - 1 .  This  assumption will be more  realistic 
but the analysis will be  more complex. 

The negative  exponential assumption  is  another  draw- 
back of the  present model. The  assumption  is relatively 
good for  random  access storage devices  but  is not ac- 
ceptable  for sequential accesses. A departure  from  the 
negative  exponential  assumption will make  the  analysis 
very difficult. 

In conclusion, we feel that in spite of the simple model 
used, the  results obtained in this paper  provide a meaning- 
ful basis for choosing an optimal switching policy in a 
multiprogrammed multilevel storage system. 
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