310

T. KANEKO

T. Kaneko

Optimal Task Switching Policy for a Multilevel

Storage System

Abstract:

Capacity demands for computer memory are increasing. A multilevel storage system provides an economically feasible

solution without seriously affecting the total response time. An M-level storage system is considered in this paper. The capability of a
digital computer with a multilevel storage system is best enhanced in a multiprogramming environment. In a high level storage system,
determination of a best task switching policy becomes an important consideration. In this paper a queuing network is introduced to de-
scribe distribution and flow of tasks in the system. An optimal switching policy is determined in relation to the system’s overhead
time. It is shown that in heavily CPU-limited cases the determination becomes a very simple one; namely, the best policy is given as the
threshold level at which the accumulation of the average access time exceeds the overhead time.

Introduction

The trend in the design of computer storage systems is
toward multilevel storage hierarchies. The first level or
cache has a small capacity but a very low access time,
which can be realized with expensive technology. Stor-
age devices at the lower levels are realized with slower
and less expensive technology and have larger capacities.

Our basic assumption, in this paper, is that with the
development of new technologies we may reach a situa-
tion for which the CPU might become the bottleneck of
the system. In such a case, an optimal task switching
policy is needed to obtain maximum throughput.

We assume that only one switching policy exists in a
two-level storage system and that there are two policies
in a three-level storage system: The execution will be
switched to another task only when 1) there is a page
fault in the first level or 2) the referenced page is not
found in either the first or the second level. We call the
former the first policy and the latter the second policy.
In the past, attention has been limitgd to the first policy
only. Let us consider an M-level storage system as shown
in Fig. 1. There are M — 1 task switching policies in
general. The mth policy in an M-level storage system is
defined as follows: The present task is executed without
interruption as long as the CPU references pages that
are found within the first m levels, and the execution is
switched to the next task only if the CPU requests a
page that is found in one of the remaining M — m levels.

The purpose of this paper is to analyze an M-level
storage system in a multiprogramming environment and
to search for an optimal task §witching policy related to

the system’s overhead time. We will consider a multi-
level linear storage system in which data transfers take
place only between adjacent levels as indicated by the
arrows in Fig. 1, although other types of data transfer
are conceivable [1].

Each level is usually divided into a set of smaller units
called “‘pages” or “page frames’ [2, 3]; a page is also a
unit of data transferred from one level to the next level.
Careful consideration is needed in order to determine
the suitable page size at each level [2]. Here we assume
that the page size at each level is already determined and
that its effect is included in the access times {z,}. The hit
ratio or the probability that a referenced page is found in
level i is assumed to be given as {p,}, where i=1, 2, -,
M [3, 4].

In the past, performance evaluation for a multipro-
gramming environment has been carried out mostly for
a two-level storage system [5, 6]. Quite recently there
have appeared several works on the design of multilevel
storage systems [3, 4, 7—-9] that investigate technologies
and capacities at each level of the storage hierarchy. To
the best of the author’s knowledge, however, there is no
work which pays specific attention to a task switching
policy for a multilevel storage system.

System overhead time

In the determination of an optimal task switching policy,
the system overhead time plays a major role. Lewis and
Shedler [10] studied the effect of the overhead in a two-
level storage system. They pointed out four services as
system overhead functions: 1) service for picking up the

IBM J. RES. DEVELOP.

next program for processing and restoring the machine
state; 2) service for saving the machine state of the
(present) program relinquishing the CPU, executing the
replacement algorithm, constructing the channel control
program for the required page, and placing an entry into
the paging queue; 3) service for picking up the next page
request and executing the channel control program; and
4) service for placing a new entry in the CPU queue.
The first and second are concerned with service between
the CPU and the first level of storage, and the last two
are concerned with service between the first and the
second levels. The major overhead activity is represented
by the second service.

In a multilevel storage system with more than two
levels, additional services are needed, e.g., the adminis-
tration of page directories (if a page replacement algo-
rithm such as the “least recently used” is invoked) and
of the queues that transfer the data from one level to an-
other. Comparing the mth and (m + 1)th policies in an
M-level storage system, the number of page directories
is M for both but the number of transferring queues is
decreased by one for the latter.

When the CPU is used to govern all the services, a
very complex problem arises in establishing the CPU’s
priority rules [10]. Since we analyze a relatively high
level storage system (say more than four levels), we
assume here that dedicated special hardware is employed
to carry out most of the services, so that the services
assigned to the CPU are minimal.

Let us denote by B, ,, the average overhead time in an
M-level storage system when the mth task switching
policy is used. Our problem is to determine the optimal
policy under given overhead times {BLM} and a fixed
number of programs in an M-level storage system char-
acterized with access times {r;} and hit ratios {p,}. The
criterion for optimality considered here is to increase the
throughput or the number of useful instructions executed
per unit of time.

Queuing model

In order to derive the expression for throughput we em-
ploy a queuing network model [3, 10-12]. To apply a
queuing network model to an M-level storage system,
the following assumptions are made;

1. The priority rule for service to the queue is First-
Come-First-Served (FCFS).

2. The probability distribution for the service time at
each server is negative exponential, i.e.

P(y <y, =1—exp (—y,/1), (1)

where ¢ is the average service time.
3. The pages at each level are referenced independently;
p; is the probability that a referenced page will be

JUuLy 1974

CPU

PlItl

First level

Pzi’z

Second level

i

pM"M

Mth level

Figure 1 An M-level storage system.

found in the ith level; every program is of an identical
class. Note that 3 p,= 1.

4. The data transfer from the i + 1 level to the i level de-
pends on the availability of a vacant slot. If there is
no vacant slot in the ith level, a page is removed from
it under the invoked page replacement algorithm.

5. When an mth task switching policy is employed in an
M-level system, a task that is found at one of the
(M — m) slower levels migrates to the m + 1 level,
then further to the m level, and eventually to the first
level. When such a transfer is taking place at one of
the faster m levels, there is a chance of a conflict be-
tween the CPU requests and the task migration. In
such a case the priority is given to the CPU. The re-
sultant additional delay time to the task is ignored,
however, because the probability of such a conflict is
small and because the delay time is insignificant com-
pared with the long waiting time at the CPU server in
a CPU-limited system. (The term “CPU-limited” is
explained in the following section.) The average trans-
fer time from the mth level to the first is denoted by
C,.» We have, in general,

Couy=t,tt,+ -+t (2)

Under the above assumptions we first obtain a queuing
network for the mth task switching policy in an M-level
storage system (1 = m = M — 1) and then derive an
expression for the throughput by using Gordon and
Newell’s result [12].

Since there is no task switching as long as the CPU
requests pages within the faster m levels, there are no
queues for them. Therefore it is convenient to combine
them into one server which we call the CPU server. Now
let us compute its average service time.

OPTIMAL TASK SWITCHIN

31

@

312

T. KANEKO

g

CPU +
m levels

Sm. M

Overhead
B m, M

y

(m+1)th

s _pTi+ppTo+ 49y Ty
mM 1= pi =P~ ~Pm

@ = Pi+m
f = —
Pmt1t *Dm

tn + 1

(m+2)th
Im+2

M ~m

IM~m M th

M

Figure 2 A queuing model for an M-level storage system when the mth task switching policy is used.

By T, we denote the access time from the CPU to the
ithlevel. Therefore we have

T,=t,+>t, (3)
j=t

where ¢, is the average execution time at the CPU. The
probability that the CPU will call the first level &, times,
the second k, times,- - -, and the mth level k,, times before
switching to another task due to a page fault in the first
mlevels is

(ke k!
kMK k!

K,k k
P, Py 2 P, ™

Pn)- (4)

The average service time is

x(l_pl_pz_..._

S”"M= 2 2 (k1T1+"‘+kam)f-

k1=0 km=0
After considerable algebraic manipulation we obtain
- pI, +pT 4+ p,T
l_pl_pz_"'_pm

S =, (5)

m,M

The queuing network model used in our investigation
is shown in Fig. 2. We define the state of the queuing
network as the number of tasks in the queues at the serv-
ers, namely (n,, n,, -+, n,) whereJ =M — m and n, is
the number of tasks at the CPU server and n,(i = 1) is
that at the m + i level. From Gordon and Newell’s pa-

per we obtain the probability of the state (n,, n, -,
n,) as

P(ng,n,--+n,)= d1"1d2"2. .. dJ"J/Gm,M, 6)
where
d J— tm+1 + CmM

' Byt San

r.t
d =_k.!_f__.___.’
k BoutSuu

M
> P

_ j=k+m
™

2 P

j=m+1

for2<k=J,and (7)

d’™ (1 - dj”“). ®)

The probability that the CPU is idle is

1 J djN+J—1 (
Ouu= . . 9)
mM Gm,M]=21 ﬁ (d —d)
4] k
k=1
=k

iBM J. RES. DEVELOP.

The throughput is

= (1 - i pj)_l (ﬁ?ﬁ’;) (10)

The derivations of (8) and (9) are omitted here, but we
check their validity by obtaining G, ,and @, ,:

‘11 1 _ d1N+1 ‘12 1 _ d2N+1
G,,= + ; (11)
g d—d, 1—d d,—d, 1-—d,
_L(le +i__) (12
Qz,a B Gz,a dl - dz dz - dl ')

The correctness of the above two results can be checked
by calculating them directly from (6).

Comparison of task switching policies

We have calculated the throughput for an M-level storage
system. Therefore, comparison can be readily carried
out by evaluating the expression for a given hit ratio {p,},
access or service time {r,}, CPU overhead time {Biut>
and number of tasks N. When d, in (7) is less than unity
for every k, a long waiting line will probably be formed
at the CPU server and we will say that the system is
“CPU-limited.” If d, is larger than unity for some &, a
long waiting line is formed at the m + k level and the
system is said to be *“‘storage-limited” (or the m + k level
is the “bottleneck™). Since in a storage-limited system
the throughput is mostly determined by the flow rate in
the storage hierarchy, little effect on throughput is ex-
pected with different task switching policies. In other
words, the study of optimal task switching policies is
meaningful only for a CPU-limited system. Therefore,
we are concerned only with this case.

Sekino [6], Wallace and Mason [13], as well as others,
have studied the effect that the number of tasks has on
the throughput in a two-level storage system. A large N
will cause an undesirably long delay in program comple-
tion; moreover, the number of pages in the first level
allotted to a particular program decreases as N increases.
Therefore, the hit ratio p, is a decreasing function of N.
Since (1 — o,) 18 an increasing function in N, there is
an optimal N that produces the maximum throughput. In
this paper, we assume that a reasonably large N is chosen
so that the approximation @, , < 1 holds reasonably
well.

Using (10) and the approximation Q0,1 << 1, the dif-
ference in the throughput between the mthand (m+ 1)th
task switching policy is

RMM ~ R, = [(1— :;i: p,.)(B,,,+1,M + sm+l,M)}—1
R R

or

JULY 1974

m+1 1
Ryiiu— Rypu= [z pT,+B, \u 2 p]

i=1 j=m+2
-1
[ZpT + B,y E p].] . (13
Jj=m+1
The polarity depends upon
m m+1 m
A=3>pT,+B,, 2 P—EP Bpu 2 P
i=1 Jj=m+1 j=m+2
M
=Bm,M E p] BmHM E p pm+1 m+1
J=m+1 Jj=m+2
M
=pm+1 (B Tm+1 m,M 2 P m+1M E p]’
j=m+1 j+m+2

where B, = B + b, . In general an optimal m is found
by computing the above. However, if b,.’ uw<< B for every
i (i.e., the overhead time is nearly constant), the polarity
depends only upon (B — T, _,). Therefore, if we define
an m’ such that

m+1

T,<B<T (15)

m’'+1°

then we have

R <“.<Rm'—

LM

<R',M>Rm >R

M-1,M

(16)

Therefore the optimal task switching is the m’th policy.

Discussion
Let us assume that we investigate the case where M may
have the value four, five or six. In this case the choice
of a task switching policy is generally between the first
and the second. We will investigate these two specifically.
Assuming no change in the overhead time with the
two task switching policies, we know that the optimal
switching policy is the first one if the average overhead
time B is less than T,. When B = T,, the two policies
yield the same throughput. If B is increased further, the
second will yield a larger throughput. When B = T,, we
have the relationship

RZ,M_RI,M_ pz(Ts_Tz)

(17)

R2,M (l—pl)T3+p1T1'
Since usually T,/T, << 1 and p,T,/(1 — p)T, < 1,
(17) becomes
R,,—R TN
R b (1 B LY B
%M 1—-p, l—-p, T, 1—p,

which can be close to 1. In other words a wrong switch-
ing policy can reduce the throughput significantly.

One may be very eager to pay attention only’to the first
task switching policy because it is the simplest. In this
case the paging overhead time should be less than the

OPTIMAL TASK SWITCHING

314

T. KANEKO

access time to the second level. If this is impossible, the
use of the second task switching policy is advisable.

Example

As an example, we take a four-level storage system speci-
fied by 7, = 0.05us, 1, = lus, 1,= 15us, t, = 100us, p, =
0.9, p,=0.09, p, = 0.009, p,= 0.001. For convenience
we set t,= 0. We study the system performance for the
fixed overhead time B = Sus, although it may be arti-
ficially large. By applying the first switching policy, we
can compute the average service time for the CPU server
from (5). That is,

0.9 X 0.05
S1,4 = (

=00)[LS= 0.45 us.

The values of d,’s which are significant in determining
the asymptotic system performance are computed
from (7):

1

4 =33645

L 0IX1S_ 1S
2= 545 5.45°
4 0.01x 100 _ 10
3= 545 545"

Since d,, d, and d, are in such a range that d,", d," and
dsN are by far less than unity for reasonably large N, the
system is heavily CPU-limited. The asymptotic through-
put is obtained from (10) by setting Q.u=0

R x 10°

_ 1
47 (1—0.9)(5 + 0.45)

1 7 . .
—_— ——— >< .
= 5.45 10 ll'lStI'llCthﬂS/ second

When the second switching policy is applied, we have

_0.9x.05+0.09 X 1.05

$04= 1 —0.9—0.09

us = 13.95us,

and

__ 16 ., __ 10
1541395 5+ 13.95°

Again d, and d, are less than unity. The asymptotic
throughput is given by
1

— 6
24~ 00T X 5+ 1395 < 10

R
=1 107 .
=713895 % 10" instructions/second.

In case the third switching policy is applied, we have

_0.9Xx0.05+0.09 X 1.05 +0.009 X 16.05
3,4 1—0.9—-0.09 — 0.009

= 284us;

N

__116
175+ 284"

Again d, is less than unity. The asymptotic throughput is

%40.001 x (5 + 284)

=L
2.89

R 10°

% 107 instructions/ second.

As expected, the second switching policy yields the max-
imum throughput, approximately three times more than
the first policy and 50 percent more than the third policy.

Comments

Some comments are in order concerning the drawbacks
of the model employed in the determination of an optimal
switching policy for a multilevel storage system in a mul-
tiprogramming environment. As stated at the beginning,
it was assumed that the references made by the CPU are
independent, stationary, and of one class. The stationary
assumption is a necessary one for such statistical anal-
ysis. Regarding program classes, the choice of a task
switching policy is independent of the hit ratios {p;} as
long as the overhead time does not differ much for dif-
ferent switching policies. It may be conjectured that the
result of this paper would be valid for a mixture of dif-
ferent program classes. The independence property
might be replaced by introducing a Markovian depen-
dency as presented by Shedler and Tung [14]. The first-
order Markov dependence implies that the address at
time n depends only upon the address of the call at its
prior time n — 1. This assumption will be more realistic
but the analysis will be more complex.

The negative exponential assumption is another draw-
back of the present model. The assumption is relatively
good for random access storage devices but is not ac-
ceptable for sequential accesses. A departure from the
negative exponential assumption will make the analysis
very difficult.

In conclusion, we feel that in spite of the simple model
used, the results obtained in this paper provide a meaning-
ful basis for choosing an optimal switching policy in a
multiprogrammed multilevel storage system.

Acknowledgment

The author thanks C. K. Chow for suggesting the investi-
gation of multilevel storage systems and W. D. Frazer
for his valuable comments.

References
1. E. Morenoff and J. B. McLean, “Application of Level
Changing to a Multilevel Storage Organization,” Comm.
ACM 10, 149 (1967).
2. P. J. Denning, “Virtual Memory,” Computing Surveys 2,
153 (1970).

IBM J. RES. DEVELOP.

. I. L. Traiger and R. L. Mattson, “The Evaluation and Selec-
tion of Technologies for Computer Storage Systems,” Re-
search Report RI967. IBM Research Laboratory, Monterey
and Cottle Roads, San Jose, California, February 1972.

. R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM
Systems Journal 9,78 (1970).

. J. L. Smith, “Muitiprogramming under a Page on Demand
Strategy,” Comm. ACM 10,636 (1967).

. A. Sekino, “Performance Evaluation of Multiprogrammed
Time-shared Computer Systems,’”” Massachusetts Institute
of Technology, Project MAC, TR-103, Cambridge, Sept.
1972.

. Y. S. Lin and R. L. Mattson, “Cost-Performance Evalua-
tion of Memory Hierarchies,” Research Report RC3781,
IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y. 10598, March 1972.

. C. V. Ramamoorthy and K. M. Chandy, ‘‘Optimization of
Memory Hierarchies in Multiprogramming,” J. ACM 17,
426 (1970).

. C. K. Chow, “Optimization of Storage Hierarchies,” IBM
J. Res. Develop. 18, 194 (1974).

JULY 1974

10.

11.
12.
13.

14.

P. A. W. Lewis and G. S. Shelder, “A Cyclic-Queue Model
of System Overhead in Muitiprogrammed Computer Sys-
tems,”J. ACM 18,199 (1971).

D. P. Gaver, “Probability Models for Multiprogramming
Computer Systems,”J. ACM 14,423 (1967).

W. J. Gordon and G. F. Newell, “Closed Queueing Sys-
tems with Exponential Servers,” Oper. Res. 15,254 (1967).
V. L. Wallace and D. L. Mason, “Degree of Multiprogram-
ming in Page-on-Demand Systems,” Comm. ACM 12, 305,
318 (1969).

G. S. Shedler and C. Tung, “Locality in Page Reference
Strings,” Research Report RJ932, IBM Research Labora-
tory, Monterey and Cottle Roads, San Jose, California,
October 1971.)

Received March 6, 1974

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

OPTIMAL TASK SWITCHI]

15

NG

