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Optimal  Pricing  for  an  Unbounded  Queue 

Abstract: The maximization of  expected reward is  considered for an M , / M / s  queuing system with unlimited queue  capacity.  The 
system  is controlled by dynamically changing the price charged for the facility’s  service in order to discourage or encourage the arrival 
of  customers. For the finite queue  capacity problem, it has  been  shown that  all optimal policies  possess a certain monotonicity property, 
namely, that the optimal price to advertise is a non-decreasing function of the number of  customers in the system.  The main result pre- 
sented here is that for the unlimited capacity problem, there exist optimal stationary policies at least  one  of which is  monotone. Also, an 
algorithm is  presented, with numerical results,  which will produce an c-optimal policy for any e > 0, and an optimal policy if a simple 
condition  is satisfied. 

Introduction 
The  control of the  operations of service  facilities in order 
to maximize some  economic gain function has been the 
subject of a  considerable number of papers in the  recent 
literature. The arrival process [ 1-81 and  the  service 
mechanism [7, 9- 151, are  the two  general areas of con- 
trol  which are usually considered,  and  since  the  latter is 
often more amenable  to  control, it has been the  subject 
of most of the published  work. 

It  appears  that  the optimal  control of a service facility 
in an  open  market  has received somewhat  less  attention. 
By open  market, we mean to  describe a  situation in 
which  potential customers  are  free  to  take  their business 
to  any  one of a  number of competitors.  One  approach  to 
modeling such a system  is  to allow an arriving customer 
to change  his mind and leave if too many customers  are 
already waiting for service [ I ,  2 ,  4, 6, 8, IO].  An alter- 
nate  approach,  more closely  related to classical  supply- 
demand relationships, is to allow the potential customer 
to  choose  whether or not to patronize the facility based 
on  the  current  advertised price. It is not unreasonable 
to  assume  that  the higher the  price,  the  less likely it is 
that a given individual will buy the facility’s service. This 
assumption  can  be implemented by requiring the mean 
customer arrival rate (a reflection of demand)  to be  a 
decreasing  function of price. The model is completed by 
the addition of a (possibly  non-linear) holding cost 
which  penalizes the facility for keeping its  customers 
waiting. 

Motivation for this approach is supplied by Leeman 
[ 161, who discusses  the  concept of controlling queues 
through the  use of price and  cites several  examples: 

“When an  analyst in operations  research  encounters 
a queue,  he seldom, if ever,  looks  into  the  alternative of 
introducing or changing a price in order  to  shorten  or 
eliminate the  queue.  In  practice, of course, prices  often 
are used to  reduce  queues;  examples  are peak-load 
charges  for electricity,  higher daytime prices for parking, 
and  higher Saturday prices for haircuts. But casual  ob- 
servation suggests that  there  are  many unexplored, yet 
promising,  possibilities of queue reduction  through the 
use of price.” 

Two of the “possibilities” given in [ 161 are  the  use of 
price to “. . . reduce  queues  on congested  highways and 
urban streets,” and the  introduction of take-off and land- 
ing charges to  reduce  queues of aircraft waiting to  take 
off or waiting (stacked)  to land. One of the  advantages 
Leeman  cites  for  the price approach is an improvement 
in the allocation of existing service facilities: 

“Those who value  services  at particular points in 
space  and time bid them away from others  who value 
them less, so that  scarce spatial-temporal bottlenecks 
are allocated to  those  who value  them highly rather than 
on a  first-come,  first-served  basis or  on  the basis of cen- 
trally  established  priorities.” 

One of the  important applications of queuing theory 
today is in modeling and controlling the  behavior of vir- 
tual memory  computing systems.  Here,  an arriving  cus- 
tomer  represents a request  for  system  resources (CPU 
time or space, 1 /0  facilities, etc.)  and a service comple- 
tion represents  the partial or complete satisfaction of 
that  request. A major  problem area in the operation of a 
virtual system is the  fact  that  user  loads  are often  grossly 
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unbalanced over a day's time. When such a  situation 
arises,  the portion of time the  system  spends managing 
the  queue  (as  opposed  to doing  useful work)  increases 
drastically. This phenomenon is commonly  known as 
"thrashing." 

A  potentially  valuable approach  to this load balancing 
problem is to  set prices  for services which are  based,  at 
least in part,  on  the level of congestion, i.e., the length 
of the  request  queue. Such  a policy would charge higher 
prices during  peak load intervals, thus encouraging users 
to  take  advantage of the lower rates charged  during  low 
usage  periods. 

Our objective is not simply the control of queues, but 
rather  the maximization of reward  through queue con- 
trols. The manager, in our model,  must  carefully  balance 
the  consequences of a price  change. For example, if he 
increases  the  price  at  some point, the arrival rate of new 
customers is reduced  but,  on  the positive  side, the hold- 
ing costs tend to  decrease  and, of course,  each arriving 
customer  pays more. 

Situations  where  the  present model has some  relevance 
are  those in which the  customer's primary  motivation for 
selecting the given facility is price,  not queue size (al- 
though  price does give the informed customer a limited 
amount of queue size information).  This  preference  for 
the price  criterion over  that of expected waiting time may 
come  about in various  ways: (a)  the  customer may be 
ignorant of the  queue  size; (b) he may be indifferent to 
the length of his expected  wait;  (c)  he may have made 
significant personal or economic commitments before he 
discovers  the length of the  queue; or (d)  he may be per- 
suaded to remain in spite of the  queue length. 

Examples might include cases  where  (a) a surrogate 
(an employee, a written purchase  order,  an application 
for a bank loan,  a request  for time or space in a virtual 
computer  system,  etc.) is sent  to  the facility  instead of 
the  actual  customer; (b) the  value of the  customer's time 
is small compared  to  that of the  service being purchased; 
(c)  the  customer hired a babysitter, paid a  parking fee, 
walked  several  blocks and up three flights of stairs in 
order  to  get  to  the facility; and (d) the facility's holding 
cost is disbursed (in whole or in part)  to  the arriving cus- 
tomer as compensation for  the  inconvenience or expense' 
of his expected wait. 

The  purpose of this paper is two-fold: first, to quantify 
the trade-offs mentioned above by means of a  mathe- 
matical model, in order  to obtain dynamic pricing policies 
which are optimal (or near  optimal) ; and second,  to  as- 
certain  the form of optimal policies. 

Underlying  queuing  optimization is the  more  general 
theory of Markov  and Semi-Markov Decision  Processes. 
Our work  leans heavily on  results of Fox [ 171, Lippman 
[ 181, and Ross [ 191 for  the method  used to  prove  the 
existence of optimal stationary policies. In  the develop- 
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ment of our algorithm, the method of Ross [ 191 and 
Derman [ 201 is invaluable. 

The physical  system can be  described as  an unbounded 
M , / M / s  queue with variable  arrival  rate. The arrival 
process is Poisson with rate A, a  strictly  decreasing  func- 
tion of the  currently  advertised price p .  The  service 
times for  the s servers  are  independent, exponentially 
distributed random variables with mean 1 / p .  Control 
of the  system is effected by increasing or decreasing the 
price p in order  to  discourage or encourage  the arrival 
of customers. At each transition (customer arrival or 
service  completion),  the manager of the facility must 
choose  one of a finite number of prices to  advertise until 
the  next transition. 

Definitions and system operation 
The queuing  reward system  described  above  can  be 
modeled as a Semi-Markov  Decision  Process  (SMDP) 
with action  space P given by P = {pl, 1 . ., p K } ,  where 
0 i p1 < p2  <. . . < p K  < m, K < m, and  state  space 1 = 
(0 ,  1, .  . .}. Here, K is the number of prices available to 
the manager of the facility. The number of servers in the 
system is denoted by s. If the manager choses  action 
p E P when the system is in state i, the transition proba- 
bilities are given by 

4 i , i + l ( ~ )  = A,/ [ (i A + A,], (1 )  

4 i + l , i ( P )  = 1 - 4i+l,i+z ( P I ,  i = 0, 1, .  . ., ( 2 )  

where 0 < A <. . ' < A < sp, and  where (i  A s)  de- 
notes  the minimum of i and s. The  net reward  received 
immediately following a customer arrival  when there  are 
i customers in the system is p - ci; p is the  currently ad- 
vertised  price and ci represents a holding cost.  The as- 
sumption that A,, < sp ensures  that all states  are posi- 
tive recurrent. 

The  assumption  that  the holding cost ci is a  lump sum 
(associated with an arriving customer) is made  for com- 
putational  convenience. It is innocuous since the long 
range average  rate of return  per unit  time will not  be in- 
fluenced by when  (during  the  customer's stay in the sys- 
tem) this cost is assessed.  The holding cost function 
c : 1 + 9 is assumed to satisfy 

P& PI 

0 5  c O = c 1 = " ' =  c,-l 5 c, i ' . ' < pr (3 1 

The equalities above  are  reasonable  since all customers 
who arrive  when  there is at  least  one  server  free  have  the 
same  expected time in the  system, namely, 1 / p .  We  re- 
quire the costs  to be  bounded by p K  in order  to  ensure 
the possibility of a  positive  reward for  each arriving  cus- 
tomer. There is no  cost  or reward associated with a de- 
parture  (service  completion).  If, when in state i, action i 
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p is chosen,  then  the time until the  next transition is an 
exponentially distributed  random variable  with  mean 
l / [ ( i A s ) ~ + f , I .  

A policy A is a sequence'A,, A,; . . of decision  rules, 
where  the  nth decision  rule An tells how to  select  an ac- 
tion in P after completion of the  (n - 1)th transition 
(note  that transition zero  occurs  at time zero). A  sta- 
tionary policy A is a map from  the  state  space I = (0 ,  
1, . . .} to  the  action  space P ;  i.e., a stationary policy A 
= (a,, a,, . . .) always  chooses  action ai whenever  the 
system is in state i. 

For convenience, we summarize  the  system  operation: 
When in state i, the facility advertises a  price p E P for 
its services. The arrival process  is then Poisson with rate 
A,. When a potential customer  arrives  at  the facility, he 
pays  the facility p units. He is then served by any non- 
busy  server.  If all servers  are busy (s i i ) ,  he  joins  the 
queue. When the facility accepts a customer,  it is as- 
sessed a cost ci. The  queue is emptied on a first-come, 
first-served  basis  with no priorities,  and the  system is 
reviewed when a  new customer is accepted  and when  a 
service is completed. At  the time of each  review, a new 
price  can be  selected. 

Criteria for optimality 
We  choose  the  expected  average  rate of return  over  an 
infinite time  horizon as our measure of performance. Let 
A be any pricing policy (not necessarily stationary),  and 
let R ( t )  denote  the total  reward earned by time t .  Also, 
let d,  be  the reward earned during the  nth transition in- 
terval.  Define 

+ ' ( A )  ( i )  = lim  inf E, [ R j t )  ~ I X ,  = i], and 
r+m 

r n  1 

E,[? dj I x 0  = iJ 

.,[x ' j  I x, = il ' 
+ ' ( ~ ) ( i )  =Iim inf j n  ( 5 )  

n- 

j=l 

where X j - ,  is a random variable  representing the  state 
of the  system  just before the j th transition,  and tj  is the 
time  interval between  the ( j  - 1)th  and  jth transition. 
We will demonstrate  the  existence of a stationary policy 
which is optimal (maximizes 4' and 4' over  the  set of all 
policies). 

We  obtain two main results. The first of these  shows 
that  the model with infinite queue  capacity is essentially 
a limiting case of the model with finite queue  capacity. 
In particular, we  show  that 

where g* and g,* denote  the optimal expected  rates of 
return  for  the problems of size M = 00 and M < 00 and, 

consequently,  that  there is an optimal stationary policy A * 
which satisfies the monotonicity property a,* f a,* 5 .  . .. 

The second  result is an algorithm  which for any E > 0 
determines  an &-optimal policy in a finite number of steps. 
Also, a finite algorithm is developed for finding optimal 
solutions under  the  added condition that ci = ci+' for i 
sufficiently large. Finally, we  demonstrate  that  every 
optimal stationary policy is monotone if the  above con- 
dition does not  hold, whereas if this  condition does hold, 
we give an  example of an optimal stationary policy which 
is not  monotone. 

Existence of an optimal  stationary policy 
For  the  case M < [23] we  were  able  to employ the re- 
sults of Fox [ 171, Lippman [ 181, and Ross [21]  to es- 
tablish the  existence of a stationary policy A* which 
simultaneously  maximized +' ( A  ) and 4' ( A  ) . Our princi- 
pal objective in this  section is to establish  the  same result 
when M = a. 

We begin now by showing that  the optimal rate of re- 
turn  for  the model with M < 00 converges  to  the optimal 
rate of return  for  the model with M = 00. 

Let R , ( A  ) be the  expected reward earned  under  the 
stationary policy A ,  starting  from state 0, until the first 
return  to  state 0, and let T , ( A  ) be  the  expected  elapsed 
time for  this event. This yields 

and 

and so, using a  result of John's  and Miller [22]  and 
Lipman [ 181, we have 

and 

where A is the  set of all stationary policies. 

Theorem 1. Let g,* be the maximum expected  rate of 
return for a model of size M < 00, then g* = lim gu*. 

Proof. We assume  (without  loss of generality)  that 
M > s. Let A* = (a,, a,; ..) be a policy such  that g *  = 
4' ( A  *). Such a policy exists  since g* = sup 4' ( A )  and 
Lippman [ 181 proves  that  under  conditiork satisfied by 
our model, there  exists a 4'-optimal policy which is sta- 
tionary. Thus, 

" t m  
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m . i  

< - 

We now  show that F is bounded and  that h is linearly 
bounded. 

Lemma 1. There  exists a constant B < m such  that 
0 5  F( i )  5 B , i = O ,  l ; . .  . 
Proof. We first show that F is non-negative. Let i E I be 
fixed. Since F (i, g )  is continuous in g ,  g* = lim k w *  by 

Theorem 1 and  since in [23] it  was  shown  that F (i, g M * )  
> 0 for all M > i, we  can conclude that 

F (i) = F (i, g*) = lim F (i, g M * )  1 0 .  (17) 

We now show  that F is bounded above.  Denote by ai 
the maximizing price in ( 14) and let p i  = A / p  for i = 

0, 1; . .. If we solve  for a,, a,; . ., we obtain 

M" 

M-m 

' i  

where p' = min h , / p ,  and p" = max h a / p .  Thus, g* - 
UEP UEP 

gM * <  - bxM+',withO < b < mando < x  < 1 .  
Now let AM* = (a,, a,, . . ., a M )  be an optimal policy for 

the finite model of size M .  The  existence  ofAM* is guar- 
anteed by the  results of Low [23]. Using  a similar 
analysis, we then have 

gn* - g* I 

Thus, gM* - g * - < bxM+', which implies 1g* - gM*l i 
bxM+', with 0 < b < 00, 0 < x < 1,  and both b and  x in- 
dependent of M .  This  completes  the proof.  Q.E.D. 

Define the  functions F : {-I ,  0, 1 , .  . .} + 9 and h : 
{-1, 0, l ; . . }  + 9 by 

F ( i ) = m a x  [ u - c i - - +  g* ( I F ( i -  I)}, 
UEP ha A, 

h(-1) = 0, and 

h(i + 1 )  = h(i) - F (i), i = -1 ,  0, 1;. .. (16) 
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Using g* 2 +'(a, ,  a,, . . .) and  considerable algebraic 
manipulation, we obtain 

x (t) [ I  + j = i + l  i k = i + l  r i  ( 3 1  

i - 1  j 

j = O  k=O 

where  we  have  assumed  (without loss of generality) 
that i > s. Now, aj 2 cj for all j E I ,  for if not, we would 
have 
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Hence, 

1 

where we have used p” to indicate XpI Ip .  This  completes 
the proof. 

Lemma 2. For any i E I ,  h satisfies 

and 

Ih(i)I 5 B i. 

Proof. By definition, we have 

h ( i +  l ) = h ( i ) - m a x  a - c  -- 8* 
UEP { ‘ A a  

+- ( i  A S I P  [ h ( i -  1 )  - h ( i ) ] ] ,  (24) 
’ a  

which implies 

h ( i )  [ l  +-I E u - c c , - -  8* 
’ a   ’ a  

f-” ( i  A ’)’ h( i  - 1) + h( i  + 1 )  (25) 
’ a  

for all a E P ,  with  equality for a = ai. Therefore, 

h ( i )  E ’ a  

( i  A s)p + A, [ a - c i + h ( i +  l ) ]  

for all a E P ,  with  equality for a = a,, which implies the 
first result. Equation  (23) follows  immediately from 
Lemma 1 and  equations ( 18) and  (22). 

Lemma 3.  If X ,  is  the  state of the system after n tran- 
itions, then for  each i E 1 there is a constant mi such  that 

sup  sup E,[Ih(X,)I : X , = i ]  5 mi < 03. (27) 
n A  

Proof. In view of (23), it is clearly sufficient to  show  that 
for  each i E I there  exists a positive number mi such  that 

sup  sup E , [ X ,  : X ,  = i] 5 mi < 03. (28) 

It  is  apparent  that  the  stochastic  process { X ,  : A ,  X ,  = i} 
is a  (possibly non-stationary)  random walk over  the non- 
negative  integers  with a reflecting barrier  at  the origin. 
If ai, E P is the price  selected by A when in state i ,  just 
after  the  nth transition, then  the probability&, = Pr{X,+, 
= j  + 1 : X ,  = j }  is given by ( fon = 1) 

n A  

Consider a sequence U,,   U, ,  . . . of random variables 
drawn from the uniform distribution over (0 ,  1).  Let 
X,‘ = i ,  and 

X,,,’ = X,’ + Y,’, n = 0,  1 , .  . . (30) 

where 

Y,’ = { 1 if U ,  > 1 - rx 
-1 otherwise. 

It is clear  that {X,’ : A ,  X,’ = i} has  the  same finite di- 
mensional  distributions as { X ,  : A ,  X ,  = i}. Now define 
X ,  = i and 

X,,, = X ,  + Y,, n = 0, 1,. . ., (32) 

where 

1 if U ,  > ~ 

P 

P + ’ P I  
yn = {-1 otherwise. (33) 

By construction, Y ,  P Y,’, n = 0, 1; . ., so that X ,  1 X,’. 
Consequently,  we need  only consider  the  process { X ,  : 
X ,  = i } ,  where 

j =  1 ,  2;.., (34) 

and 

because 

E , [ X ,  : A ,  X ,  = i ]  5 E [ X ,  : X ,  = i]. 
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Kac [24; pp.  378-3911 has derived the probability mass 
function for X,, given X, = i. It is not difficult to show 
that this  distribution  has a finite mean for  each i ,  which 
completes  the proof. Q.E.D. 

We can now assert  the  existence of an optimal  station- 
ary policy which is determined by (22).  

Theorem 2.  For  each i E I ,  

g* = + ' ( (A* ) ( i )  =sup  + ' ( A ) ( i )  = sup + ' ( A ) ( i )  
A A 

= + ' ( A * )   ( i ) ,  (36) 

where A * is any policy which, for  each i E I ,  maximizes 
the right hand side of (22),  or, equivalently, ( 14). 

Proof. Combining Lemmas 2 and  3 with Ross [21 
(Theorem 7.7, p 163)] obtain the second  equality. The 
other equalities follow from ( lo),  Ross [ 2 1 ] (Theorem 
7.6  p 162), and  the  existence of a  stationary +'-optimal 
policy. Q.E.D. 

We complete this  section  with  a theorem which, in 
conjunction  with Theorem 2, demonstrates  that a  sta- 
tionary policy A is optimal if and  only if it solves ( 14). 

Theorem 3 .  Suppose +'(A) = g* for some  stationary 
policy A = (ao,  a,, . . .). Then ai must maximize the right 
hand side of (14). 

Proof. Suppose  for  some io E I that 

for 6 > 0. Then,  fori > io, equation ( 18) gives us 

which implies 
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(37) 

(38) 

Since  both  sides of this  inequality are  bounded, we may 
pass to the limit. This yields 

which implies 

g* 2 + ' ( A )  + 

which contradicts  our hypothesis. Q.E.D. 

Monotonicity of A* 
We are now in a  position to  present  our main result for 
the infinite queue capacity model: namely,  ao* 5 al* 5 . . . 
for some  optimal  stationary policy. For  the  purpose of 
this  section we need some additional  notation. Let ai* ( M )  
be an optimal  price for  state i in the finite problem of 
size M ,  and define 

A,* ( i )  = [ u , * ( M ) ,  a l * ( M ) ; . . ,  u i * ( M ) ]  (41) 

for i < M .  We  formalize the monotonicity  result  in the 
following theorem. 

Theorem 4 .  There is an optimal policy A* which is mono- 
tone;  moreover,  there is an integer r such  that 

a,* 5 a,* 5 . . .5 a,* = a,+]* =. . .. (42) 

Proof. Fix i E I ,  and  consider  the  sequence (A,* ( i )  ). 
Since there  are  but Ki+' < m possible values  for  each 
vector A,* ( i )  in our  sequence,  there is a subsequence 
(Mj) for which A,,* ( i )  is constant. Also, Theorem 1 and 
the continuity of 'F ( k ,  g)  with respect  to g imply that 

F ( k )  = lim F ( k ,  g,,*), k = -1 ,  0,. . ., i .  (43 1 

Consequently, if follows  from these  two  facts  that if 
price ak* (Mj) is chosen  at  state k ,  then 

J+W J 

a 
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Hence, we can conclude from Theorem 2 that a , * ( M , )  
is an optimal price  for state k,  k = 0,l; . .,j. Since  it  was 
shown in [23] that a k * ( M , )  5 a,+ ,*(M,) ,  k - 0, ..., 
i - 1 ,  we  have 

a,* 5 a,* 5 . . .  i ai* (45) 

for  each i E 1. Q.E.D. 

Finding &-optimal policies (E > 0) 
We now show  that an e-optimal policy can be determined 
for any I > 0 in a finite number of steps. Define 2, as 
the expected rate of return  for  the infinite model when 
the policy 
- 

A ,  = (a,, a,, . . *f a",' PK' P K ' .  . (46) 

is used, where ( a o , .  * ., a,-,) is optimal for  the problem 
of size M .  Also define e, by 

L EM = P ( P , - C o ) ( $ ) ( 1  -q($M+l (47) 

P" 1" 
S 

where p' = min A,/p and p" = max Aa/p .  

Theorem 5 .  Let E > 0 be given. Then  there is  an M < m 

such  that A", is e-optimal. 

Proof. We know g* - g,* 5 E, by Theorem 1 .  Simi- 
larly,  it is easy  to show that g,* - 8, 5 E,. Therefore, 

g* - 8, = (g* - g,*) + (g,* - 8,) 5 cy + E, (48) 

aEP  aEP 

= 2EM Q.E.D. 

Thus, for any e > 0, an e-optimal policy can be found 
by first using equation (47) to determine a sufficiently 
large M ,  and  then using the results of [23] to solve a finite 
problem of size M .  

We conclude  this  section by showing how a sequence 
of policies may be generated which converges to  an op- 
timal policy. The convergence is, of course, not uniform. 

Theorem 6 .  Let e ,  = 1 / n ,  and suppose (2 ) is a se- 
quence of &,-optimal policies. Then  for  each i E I ,  there 
exists  an N i  < m such that for every n > N i ,  a i ( M , )  E 
Q i ,  where Qi P is the  set of optimal prices for  state i, 
i.e., maximizers of (14). In particular, if ai* is unique, 
then a, ( M , )  ."* ai* as n "+ m. 

Proof. Suppose for some i E I ,  that  no  such N i  exists. 
Then there  must  exist  a subsequence ( n j )  for which 
a i ( M  ) is not a  member of Q,. Further, since P is finite, 
there must exist a subsequence ( n j k )  over which a i ( M , ,  ) 

is constant. But by Theorem 1 and  the proof of Thtorem 
4, this implies that this constant maximizes (14), and by 
Theorem 2, any  such price  must be optimal. Q.E.D. 

,n 

5 
Ik 

Finding optimal policies 
We now treat  the  more difficult computational  problem 
that  arises when c = 0. We will use  the following condi- 
tion: 

C1. c = c,,+, =. . . for some k ,  E I ,  with k ,  1 s. 

As in the finite queue capacity case [23], we extend  the 
domain of the function F defined in ( 13) and ( 14) to 
{-1, 0, 1 , .  * .} X W as follows: 

F (-1, e )  = 0, (49) 

k0 

and 

(50)  

for  i E I ,  and g E 9. Clearly, F ( a ,  g*) = F ( 0 ) .  

We show that  under condition C1, an optimal policy 
A* can  be obtained in a finite number of steps.  Theorem 
4 guarantees  the  existence of an optimal  stationary pol- 
icy of the form 

a,* 5 a,* 5 * * *5  a,-,* 5 a,* = a,+,* =. . * (51)  

for some r E I .  Define am* by 

am* = a,* = a,+,* =. 1 .. (52) 

Our first goal is to  determine this price. Toward this  end 
we prove in Lemma 4 that lim F ( i )  exists; in Theorem 7 

we characterize  the form of this limit and show how it  is 
useful in finding am*. 

Lemma 4 .  Let r be  the smallest  index ( r  1 s) such  that 

i-,m 

a,* = a,+,* =. . . . Then F ( i )  1 F ( i  - 1 )  for all i 1 r. 

Proof. We define the difference Ai by 

A i = F ( i )  - F ( i -  l ) ,  (53) 

and we denote A by Am, and A, /p  by p,. Fix i E r. 
Since ai* = ai+,* =. . = am*, we have 

F ( i ) = a m * - c i - - + - F ( i - l ) ,  g* sp (54) 

and 

4 

Am  Am 

Subtracting, we get 

A,+, = -(c,+, - ci)  + - Ai. SP ( 5 6 )  
A m  

By iterating this procedure we obtain 
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Ai, for t = 0 ,  l ; . .  . (57) 

Multiplying both  sides  by ( P , / s ) ~  yields 

By Lemma 1, IAi+tl 5 B < ~0 for  some  number B and all 
t = 0 ,   l ; . .  . 
Thus, 

so that 
j - i + l  

Ai = (cj+' - c j ) ($)  
j=i 

which is non-negative  by  the  montonicity of the  cost func- 
tion c. Q.E.D. 

We  know by Lemmas 1 and 4 that  the  sequence ( F (i) ) 
has a  unique limit point which we denote by F (m)  . Also, 
denote  the unique limit of (ci) by c,. The  next  theorem 
characterizes F ' (  m )  . 
Theorem 7. The  number F (m) satisfies 

Furthermore, am* can be chosen  to  be  the smallest of the 
prices solving (61),  and  one of the following must hold: 

a. If cw > ci for all i E I ,  then am* is unique, or 
b. If CI holds,  then a_* can be  chosen  to be  any  price 

minimizing (6  1 ) . 
Proof. From  equation ( 14) and the definition of Ai, we 
obtain  (fori 1 s) 

- - A i ] .  SP 

' a  

i Thus, 

for all a E P ,  with  equality for a = ai*. This leads to 
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By Theorem 4, we know that  there  exists r E I such  that 
a,* is optimal for all i 1 r 1 s. Thus, 

for all i sufficiently large. As i approaches infinity, the 
first term  on  the right is independent of i, and  the  second 
term  approaches zero. By taking the limit, we  see  that 
F (m) has  the required form,  and  that am* solves (61) .  
To prove  the  second  assertion, we write 

F ( m ) = m a x { [ a - c i - - + - F ( i - l )  aEP 8* SP 
' a   ' a  1 

- (c, - ci) +- [ F  (00) - F (i- l ) ]  . (66) 

If cm > ci for all i E I ,  then F ( a )  is strictly  increasing 
for sufficiently large i by (61).  Now  suppose a' E P mini- 
mizes (6 1 ). Then a' ? ai* for all i E r ,  which implies 
a' ? am*. The  reason  for this is  that  the maximand above 
is the  sum of the maximand of F (i)  and a function  strictly 
increasing in a. By the  same line of reasoning, ai+l* P ai* 
for i sufficiently large,  which implies am* must  be  unique. 

If C1 holds, then F (i) = F (00) for all i  sufficiently 
large, and it is clear  that  any price minimizing (6  1 ) will 
maximize ( 14). Q.E.D. 

We now prove two necessary and sufficient conditions 
for g to equal g*.  These will be  used later in the develop- 
ment of a finite algorithm. 

Theorem 8. Let g E 9 be given. Then  the following 
three  statements  are equivalent: 

a. g = g * ,  
b. g =  + ' ( A ( g ) ) ,  and 
c. lim F (i, g)  exists. 

Moreover, if A is a given stationary policy, then A is  op- 
timal if and  only if 2 = A (4' (2 ) ) , where A (. ) represents 
a policy generafed by F (i, - )  fori  = 0, 1; . .. 

Proof. 

a b. If g = g* ,  then 

SCL 

' a  I 

1-m 

+ ' ( A ( g ) )  =4'(A(g*))  = + ' ( A * )  = g *  = g .  (67) 

b 3 a. Suppose g = +'(A ( g ) )  for  some g. Then, using 
the  representation of F given in the proof of Lemma 1 ,  
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and assuming (without loss of generality)  that i > s, we 
can write c 

x [+][I+ j=i+l i k=i+l  I? ( 3 1  
j=i+l k=i+l  

Again, we  have  written ai for a i (g ) ,  and  pi  for Aai/p. 
I fg=g* ,wearedone . I fg  > g*,then+'(A(g)) > g * ,  

which is impossible. Suppose  then  that g < g*. Since 
g* = lim g,*, we must have g < g,* for all sufficiently 

large M. Thus, by the  results of the finite queue  case  [23], 
a, ( g )  5 a, ( g )  5 .  . ., which implies that  for  some finite 
r > s, a,(g) = a,+,(g) =. . .. Call  this common value am. 
Then  fori sufficiently large, we  have 

Since  the maximand above  has a limit as i approaches 
infinity, and  since (a,,. . ., a i )  achieves  the maximum for 
each i ,  it  must be true  that A ( g )  = (a,; ..) achieves  the 
maximum in the limit. That is, 

for all stationary policies A .  But this implies that 
4' ( A  ( g )  1 +' ( A  ) for all stationary A ,  which means 
+ ' ( A ( g ) )  = g * ,  and thus, by statement b, that g = g*. 

a 3  c. 

If g = g*, then 

lim F (i, g )  = lim F ( i )  = F (m) ,  

which is finite by Lemmas 1 and 4. 

c 3  a 

If g = g* + E, then 

r+m I" 

E 
- - 5 F ( O ) - - .  E 

A,  A, 

Continuing in this manner,  we  get 

Clearly,  the right hand  side is unbounded below, so that 
F ( i , g )  +--masi+-m. 

If g = g* - E, then a similar analysis yields 

where  pk*  denotes A,z/p. Since  the right  hand  side is un- 
bounded  above,  we  see  that F (i, g )  + UJ as i + 00. This 
completes  the proof of the  equivalence of a, 6 ,  and c. 

If A = A *, then we  have 

A(+ ' (A))   =A(+ ' (A*))  = A ( g * )  =A*=A.  

IfA=A(+'(A)),thensetg=+'(A).ThiSgives 

A ( g )  = A ( + ' ( & )  = A ,  

so 

+ ' ( A ( g ) )  = + l ( A )  = g .  (77) 

Thus, since ( b )  ( a ) ,  g = g* ,  so A = A*.  Q.E.D. 
We now extend  the definition of F (m).  Define F (00, e )  : 

9 - + 9 b y  
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Note  that F (w) = F (00, g * ) .  In  Theorem 9, we  show 
how this  function can  be useful in testing for optimality. 

Theorem 9 Suppose C l  holds. Then for each i 1 k ,  and 
each g E 9, both of the following statements  are true: 

a. F ( i ,  g )  > (=) [<] F ( i  - f, g )  implies g < (=) [> ]g* ,  

b. F ( i , g )  > (=)[<IF (m,g) impliesg < (=) [> ]g* .  

Proof. We first prove  statement a. If,  for S > 0, 

F (i, g)  = F ( i -  I ,  g )  + 6, then, (79) 

and 

F ( i +  1 , g ) = m a x  a - c  - -+ -F( i -  1,g) 
g SP 

aEP A, A, 

+*sJ 
’ a  

1 m a x  a -  - - + - F ( i -  1 , g )  g SCL 

UEP [ “ 0  A, A, 

+ l + -  6, [ 1fI 
where p” = max A, /p .  Consequently, we have 

a€P 

+...+ ($6 

fort  = 0, 1; . .. Thus, by Theorem 8 and its proof, g < g*. 
If 

F ( i ,  g) = F ( i  - 1, g ) ,  then (82) 

F ( i + r , g ) = F ( i - l , g ) f o r t = O , l ; . . ,  (83)  

which implies that lim F ( j ,  g)  exists,  and thus, by Theo- 
rem 8, that g = g*. 

The proof for F ( i ,  g )  < F ( i  - 1, g )  is  essentially the 
same  as for >. This completes the proof of a. 

Now  suppose F ( i ,  g )  = F (00, g) + S for  some 6 > 0. 
Then, 

F ( i + I , g ) = m a x  a - c  - -+ -F(m,g )+-S)  R SCL SP 
a€P A, A, A, 

F ( i + f , g ) ? F ( m , g ) + ( ~ ) l S ,   t = 0 , 1 , . * . .  (85)  

Thus, by Theorem 8, g < g*. 
The proofs  for (=) and [<] are essentially the  same 

as  the proofs  above. Q.E.D. 

We now summarize in Lemma 5 some  properties of 
F (m, g) which we require  for  the algorithm. 

Lemma 5. The function F (m, a )  is strictly  increasing, 
piecewise  linear,  concave,  and  unbounded above and 
below. Moreover,  the interior of each linear  segment  cor- 
responds  to  one and  only one price. 

Proof. Let 6 > 0. That F (m, g )  is strictly increasing can 
be seen immediately from 

Also, the equation above  shows  that  the minimizing price 
is a  nondecreasing  function of g, since the minimand for 
g + S is the sum of the minimand for g and a function  de- 
creasing in a. Thus, since P is finite, and F (CQ, g )  is  con- 
tinuous in g, F (m, g )  is piecewise linear. Let (gl, 8,) be 
the interior of a linear  segment of F (CQ, g )  . In (gl, g,) the 
slope of the segment is 1 / [sp - A, ( g ) ] ,  which corre- 
sponds to exactly one price. It is cLar  that F (m, g )  is 
concave since the slopes of the linear segments decrease 
as a _ ( g )  increases. It is  obvious that F (m, g) is un- 
bounded above and below. Q.E.D. 

A finite algorithm 
Define the function 9 by 

9 ( g )  = F ( k o ,  g)  - F (m, g)  (87)  

for g E 9, where k o  is defined in C1. It is not difficult 
to show that 9 is piecewise  linear,  strictly  decreasing, 
and convex.  Using Theorem 9, we can show  that 9 has 
the unique root g*. 

For any g E 9, we define G(g)  to  be  the g-intercept 
of that line segment of 9 lying directly above  g; if there 
are two such segments, pick the rightmost one. The algo- 
rithm is outlined below. 

I Let g E 95’ be given. 
I1 Compute 9 ( g )  and A (g) by performing the ( k ,  + 2 )  

sequential  maximizations  indicated by equations (49, 
50 and 78). 

I11  If 9 ( g )  = 0, then g = g* ,  A (g) = A * ,  and the pro- 
cess terminates. If not,  then  replace g with G(g), 
and return  to  step 11. The algorithm is finite by the 
properties of 9 outlined  above. 
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each i = 1 ,  2, . . ., k,, and  that am (8) is nondecreasing. 
Also, the algorithm produces  an increasing sequence g ,  < 
g, <. . . < g, = gL+] = g * .  We wish now to find an  upper 
bound i on  the  number of iterations required to  reach 
optimality. 

Definesi  to  be  the largest  maximizer of ( a  - ci)A,. It 
can be shown (see [23]) that ci <ai 5 ai*  for all i E I ,  
and  also  thats, 5sl 5 . . X = * . .. Since  the algorithm 
produces a  decreasing sequence [a,(g,), . . ., a k o ( g l )  I > 
[a,(g,), . . ., a k o ( g , ) ]  >. . . and  an increasing sequence 
am ( g , )  5 am ( g , )  5 . . ., we can  compute a value for i. 

L = K k  + 1 +x ( K - K i ) ,  
i = O  

where  Ki is the index in P ofzi. 
We  prove  one interesting  result which may not  be ob- 

vious from the  geometric  interpretation given above.  De- 
fine the policy ( g )  by 

q g )  = [ a , ( g )  for i = 0,. . ., k,, and 
a m ( g )  for i > k,, (89) 

where a i ( g )  is any maximizer of F ( i ,  g ) ,  and a,(g) is 
any minimizer of F (m, g) . For fixed g, we denote ai (g) 
by ai, a ,k )  by am, Aai/p by pi,  and Anm/p  by P,. 

Theorem IO. Suppose C1 holds. Then, G ( g )  = 4' ( A ( g ) ) .  

P rooj. Using equations ( 18) and (6  1 ) , we  obtain 
BO 

(ao  - c,) + (ai - C i )  n - 
9 ( g )  = PPO i=l j=l ( j  A s) 

ko-1 Pj 
ppko ( S A  ( j +  1 ) )  

-i" ~ q ,  
" (a_  - c,) -E 

1" 

which,  ubon solving for  the  g-intercept, yields 

G (8) = @Po 

which is  just 4' ( A  ( g )  ) . Q.E.D. 

In this section,  we  examine a  sample  problem. The algo- 
rithm defined above was coded by the  author in APL/360 
[26]. A problem is completely defined by specifying s, 
p , c , P , a n d A . L e t s = 2 , p = 1 2 , c = ( 1 0 , 1 0 , 1 5 , 2 5 , 4 0 ,  
40;~~),P=(l,2;~~,99),andA,=lO.l-O.lp. 

We begin by setting go = 4' (A), which  yields 

A_ = (55, 55,  58, 63,  70, 70;. .) 

and 

go = 205.1521962. 

The  results  are summarized  below. 

j Kj A (Kj) 9 ( g j )  

[O] 205.1521962 56  56 60 67  94  73 73 73".  40.76173377 
[ I ]  205,1854732 56  56  60  67 83 73  73 7 3 . . .  18.74884642 
[2]  205.2248295 56  56 60  66 75 73 73  73 . . .  3.92947009 
[3] 205.2370933 56  56  60  66  73  73  73 73".  0.1 19821 1141 
[4] 205.2374961 56  56 60  66 73 73 73 73".  1.498956514E-1 I 

Thus, g* = 205.2374961 and 

A* = (56,  56,  60,  66,  73,  73,. . .). 

A sufficient condition for monotonicity 
In  Theorem 4, we showed that  there  is always an optimal 
stationary policy which is  monotone.  In this section  we 
show  that if condition C1 I's not satisfied, i.e., if c_ > ci 
for all i E I ,  then  every optimal stationary policy is mon- 
tone.  We begin with an  example of an optimal stationary 
policy which is not monotone. Let 

s = 1 , p = 6 , c 0 = c l = ~ * ~ = 2 ,  

P = ( 3 ,  5 ) ,  A, = 3, and A, = 1 .  

It is easy  to  show  that g *  = 3 ,  and  that F (i) = O.for all 
i E I .  Thus 

F ( i ) = m a x [ 3 - 2 - 3 3 / 3 , 5 - 2 - 3 / 1 ]  

= max [O, 01 = 0, 

and by Theorem 2, ai* may be  chosen  to be either 3 or 5 
for i = 0, 1 , .  . .. Therefore,  every  stationary policy is op- 
timal, including the non-montone policy ( 5 ,  3,  5, . . .). 
Lemma 6. The following four  statements  are equivalent: 

a. F (0) = 0, 
b. F (i) = 0 for all i E I ,  
c. g* = max [ ( a  - co)An], and 

d. cm = c,. 

Proof. 

c 3 a. 

UEP 
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Suppose c holds. Then, 

i (a  - c,)A, - max [ (u'  - c,)ha,] 
U'EP 

0 5 F (0) = max 
UEP ha 

a .$ c. If a  holds, we have 

(93 1 

which implies g* 1 (a  - co)h,  for all a E P ,  with equality 
for  at  least  one a E P .  

c * d. 
Suppose c holds, but that cm > c,. Let i P 1 be the small- 
est index such  that c,  > c,. Then, 

F (i) = - (ci - c,)  + max 
REP 

(94) 

By the first part of this  proof, we know that F (0) = 0, 
and  since, by assumption, co =. . . = ci-l < ci, we have 

which is impossible by Lemma 1.  

d.$ c. 
Let g = max {(a  - c,)!,} and  suppose cm = c,,. Then, 

F ( i ,  g )  = 0 for all i E I since 

a n d i f F ( i -   l , g ) = O , w e h a v e  

F (i, g )  = max 
UEP 

Thus, l,im F ( i ,  g )  = 0, and by Theorem 8, this implies 
I'm 

g = g * .  

a 3  b. 
Since a and d are equivalent,  and since b is implied by 
a and d, b is implied by a. 

b 3 a. Trivial. Q.E.D. 

Lemma 7. If ai* > a,+,*, then 
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F ( i )  < 

and 

F (i) 5 F ( i  - 1 ) .  

8* 
(s A ( i +  1 ) ) ~  

(99)  

Proof. The proof is identical to  the proof of Lemma 5 of 
[23] with g = g * .  Q. E. D. 

Theorem 1 I. Suppose cm > c,  for all i E I ,  and let A * = 

(a,*, a,*, . . .) be any optimal stationary policy. Then 
a,* 5 a,* 5 . .  .. 
Proof. In view of Theorem 3, we need  only consider 
policies which maximize the right hand side of ( 14). Sup- 
pose a,* < a,*. Then by Lemma 7 ,  F ( 0 )  4 F (-1 ) = 0, 
which implies F (0) = 0 by Lemma 1,  which, in turn, 
implies cm = c, by Lemma 6. Thus, a,* 4 a,*. 

Now  suppose ai+,* < ai* for 1 5 i 5 s - 1. It follows 
from  Lemma 7 that 

( i - l ) 4 F ( i - I ) f o r a l l a E P .  

(100) 

In particular, for a = ai-,*, we  have 

a i - , * - c 0 - - + -  
g* ( i -  I ) P  

A 
F ( i -  211 

"i -1 ' a .  1-1 

or, equivalently, 

F ( i - l ) 5 T F ( i - 2 ) 4 F ( i - 2 ) .  

By iterating  this  inequality, we obtain 

F ( i ) 4 F ( i - I ) ~ . . . 5 F ( O ) 5 F ( - I ) = O ,  (103) 

which, by Lemmas 1 and 6, implies cm = c,,. This com- 
pletes the proof for 0 5 i 5 s - I .  

If  a,+,* < ai* for i P s, we have F ( i )  5 F (i - 1 ) by 
Lemma 7. Thus, 

( i -  1 )  
I 

(102) 

( c i + , - c i ) + - [ F ' ( i - l ) - F ( i ) ]  SP 
Au:y 

It I 

+ [ a i , , * - c i - - X + - F ( i -  1 )  
S P  

A :I: 

% + I   % + I  

Iterating  this  inequality, we obtain 
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F ( i )  2 F ( i  + 1 )  1 . .  ., 

but this is impossible by Lemma 4 and Eq. (60). This 
completes  the proof. Q.E.D. 

Special case: constant  cost 
Consider  the situation where  the  cost function is constant 
over all states.  This would be  the  case,  for  example, if 
the  number of servers  was infinite. Theorem 12 shows 
that, in this case,  an optimal policy can be found analyti- 
cally. 

Theorem 12. If cm = co, then  the policy A_ = (go, go, a,, 
. e )  is optimal, where 3 is  the largest  maximizer of ( a  - 
co)Aa. 

Proof. By Lemma 6, g* = (s - co)h  and F(i) = 0 for 
all i E 1. Thus, 

3 3  

F ( i )  = max 

which implies _ao is optimal for  each i E I by Theorem 2. 
Q.E.D. 

[ ( a  - co)’a - g* ]  aEP ’ a  
= 0, (105) 
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