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Optimal Pricing for an Unbounded Queue

Abstract:

The maximization of expected reward is considered for an Mp /M /s queuing system with unlimited queue capacity. The

system is controlled by dynamically changing the price charged for the facility’s service in order to discourage or encourage the arrival
of customers. For the finite queue capacity problem, it has been shown that all optimal policies possess a certain monotonicity property,
namely, that the optimal price to advertise is a non-decreasing function of the number of customers in the system. The main result pre-
sented here is that for the unlimited capacity problem, there exist optimal stationary policies at least one of which is monotone. Also, an
algorithm is presented, with numerical results, which will produce an g-optimal policy for any £ > 0, and an optimal policy if a simple

condition is satisfied.

Introduction _
The control of the operations of service facilities in order
to maximize some economic gain function has been the
subject of a considerable number of papers in the recent
literature. The arrival process [1-8] and the service
mechanism [7, 9-15], are the two general areas of con-
trol which are usually considered, and since the latter is
often more amenable to control, it has been the subject
of most of the published work.

It appears that the optimal control of a service facility
in an open market has received somewhat less attention.
By open market, we mean to describe a situation in
which potential customers are free to take their business
to any one of a number of competitors. One approach to
modeling such a system is to allow an arriving customer
to change his mind and leave if too many customers are
already waiting for service [1, 2, 4, 6, 8, 10]. An alter-
nate approach, more closely related to classical supply-
demand relationships, is to allow the potential customer
to choose whether or not to patronize the facility based
on the current advertised price. It is not unreasonable
to assume that the higher the price, the less likely it is
that a given individual will buy the facility’s service. This
assumption can be implemented by requiring the mean
customer arrival rate (a reflection of demand) to be a
decreasing function of price. The model is completed by
the addition of a (possibly non-linear) holding cost
which penalizes the facility for keeping its customers
waiting.

Motivation for this approach is supplied by Leeman
[16], who discusses the concept of controlling queues
through the use of price and cites several examples:

“When an analyst in operations research encounters
a queue, he seldom, if ever, looks into the alternative of
introducing or changing a price in order to shorten or
eliminate the queue. In practice, of course, prices often
are used to reduce queues; examples are peak-load
charges for electricity, higher daytime prices for parking,
and higher Saturday prices for haircuts. But casual ob-
servation suggests that there are many unexplored, yet
promising, possibilities of queue reduction through the
use of price.”

Two of the “possibilities” given in [16] are the use of
price to ‘. . . reduce queues on congested highways and
urban streets,”” and the introduction of take-off and land-
ing charges to reduce queues of aircraft waiting to take
off or waiting (stacked) to land. One of the advantages
Leeman cites for the price approach is an improvement
in the allocation of existing service facilities:

“Those who value services at particular points in
space and time bid them away from others who value
them less, so that scarce spatial-temporal bottlenecks
are allocated to those who value them highly rather than

" on a first-come, first-served basis or on the basis of cen-

trally established priorities.”

One of the important applications of queuing theory
today is in modeling and controlling the behavior of vir-
tual memory computing systems. Here, an arriving cus-
tomer represents a request for system resources (CPU
time or space, I /O facilities, etc.) and a service comple-
tion represents the partial or complete satisfaction of
that request. A major problem area in the operation of a
virtual system is the fact that user loads are often grossly
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unbalanced over a day’s time. When such a situation
arises, the portion of time the system spends managing
the queue (as opposed to doing useful work) increases
drastically. This phenomenon is commonly known as
“thrashing.”

A potentially valuable approach to this load balancing
problem is to set prices for services which are based, at
least in part, on the level of congestion, i.e., the length
of the request queue. Such a policy would charge higher
prices during peak load intervals, thus encouraging users
to take advantage of the lower rates charged during low
usage periods.

Our objective is not simply the control of queues, but
rather the maximization of reward through queue con-
trols. The manager, in our model, must carefully balance
the consequences of a price change. For example, if he
increases the price at some point, the arrival rate of new
customers is reduced but, on the positive side, the hold-
ing costs tend to decrease and, of course, each arriving
customer pays more.

Situations where the present model has some relevance
are those in which the customer’s primary motivation for
selecting the given facility is price, not queue size (al-
though price does give the informed customer a limited
amount of queue size information). This preference for
the price criterion over that of expected waiting time may
come about in various ways: (a) the customer may be
ignorant of the queue size; (b) he may be indifferent to
the length of his expected wait; (c) he may have made
significant personal or economic commitments before he
discovers the length of the queue; or (d) he may be per-
suaded to remain in spite of the queue length.

Examples might include cases where (a) a surrogate
(an employee, a written purchase order, an application
for a bank loan, a request for time or space in a virtual
computer system, etc.) is sent to the facility instead of
the actual customer; (b) the value of the customer’s time
is small compared to that of the service being purchased;
(c) the customer hired a babysitter, paid a parking fee,
walked several blocks and up three flights of stairs in
order to get to the facility; and (d) the facility’s holding
cost is disbursed (in whole or in part) to the arriving cus-

tomer as compensation for the inconvenience or expense”

of his expected wait.

The purpose of this paper is two-fold: first, to quantify
the trade-offs mentioned above by means of a mathe-
matical model, in order to obtain dynamic pricing policies
which are optimal (or near optimal); and second, to as-
certain the form of optimal policies.

Underlying queuing optimization is the more general
theory of Markov and Semi-Markov Decision Processes.
Our work leans heavily on results of Fox [17], Lippman
[18], and Ross [19] for the method used to prove the
existence of optimal stationary policies. In the develop-
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ment of our algorithm, the method of Ross [19] and
Derman [20] is invaluable.

The physical system can be described as an unbounded
M,/M /s queue with variable arrival rate. The arrival
process is Poisson with rate A, a strictly decreasing func-
tion of the currently advertised price p. The service
times for the s servers are independent, exponentially
distributed random variables with mean 1/u. Control
of the system is effected by increasing or decreasing the
price p in order to discourage or encourage the arrival
of customers. At each transition (customer arrival or
service completion), the manager of the facility must
choose one of a finite number of prices to advertise until
the next transition.

Definitions and system operation

The queuing reward system described above can be
modeled as a Semi-Markov Decision Process (SMDP)
with action space P given by P={p,, -, p,}, where
0=p <p, << p,<» K <x and state space [ =
{0, 1,---}. Here, K is the number of prices available to
the manager of the facility. The number of servers in the
system is denoted by s. If the manager choses action
P € P when the system is in state i, the transition proba-
bilities are given by

Qs (P) = N/ LG A S+ A, (1)

Gisr,iP) = 1= G410, (P)s =0, 1,0 (2)
where 0 < A”K < e < )\pl < su, and where (i A s) de-
notes the minimum of ; and s. The net reward received
immediately following a customer arrival when there are
i customers in the system is p — c; p is the currently ad-
vertised price and c, represents a holding cost. The as-
sumption that )\pl < su ensures that all states are posi-
tive recurrent.

The assumption that the holding cost ¢, is a lump sum
(associated with an arriving customer) is made for com-
putational convenience. It is innocuous since the long
range average rate of return per unit time will not be in-
fluenced by when (during the customer’s stay in the sys-
tem) this cost is assessed. The holding cost function
¢ : 1l — % is assumed to satisfy
0=<c¢

0

=c¢c='=c_, == <p. (3)

The equalities above are reasonable since all customers
who arrive when there is at least one server free have the
same expected time in the system, namely, 1/u. We re-
quire the costs to be bounded by p, in order to ensure
the possibility of a positive reward for each arriving cus-
tomer. There is no cost or reward associated with a de-
parture (service completion). If, when in state i, action
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p is chosen, then the time until the next transition is an
exponentially distributed random variable with mean
/LA s+ 2] .

A policy A4 is a sequence A4, 4,,- - - of decision rules,
where the nth decision rule 4, tells how to select an ac-
tion in P after completion of the (n — 1)th transition
(note that transition zero occurs at time zero). A sta-
tionary policy 4 is a map from the state space I = {0,
1,--} to the action space P; i.e., a stationary policy 4
= (a,, a,," ") always chooses action g, whenever the
system is in state i.

For convenience, we summarize the system operation:
When in state i, the facility advertises a price p € P for
its services. The arrival process is then Poisson with rate
A, When a potential customer arrives at the facility, he
pays the facility p units. He is then served by any non-
busy server. If all servers are busy (s =< i), he joins the
queue. When the facility accepts a customer, it is as-
sessed a cost c,. The queue is emptied on a first-come,
first-served basis with no priorities, and the system is
reviewed when a new customer is accepted and when a
service is completed. At the time of each review, a new
price can be selected.

Criteria for optimality

We choose the expected average rate of return over an
infinite time horizon as our measure of performance. Let
A be any pricing policy (not necessarily stationary), and
let R(t) denote the total reward earned by time ¢. Also,
let d, be the reward earned during the nth transition in-
terval. Define

¢1(A)(i)=lir}LinfEA[@’X0=i_,and 4)

¢*(A) (i) =lim inf —=2 =, (5)

where X i1 is a random variable representing the state
of the system just before the jth transition, and ¢ is the
time interval between the (j — 1)th and jth transition.
We will demonstrate the existence of a stationary policy
which is optimal (maximizes ¢' and ¢° over the set of all
policies).

We obtain two main results. The first of these shows
that the model with infinite queue capacity is essentially
a limiting case of the model with finite queue capacity.
In particular, we show that
g* = lim g%, (6)
where g* and g, * denote the optimal expected rates of
return for the problems of size M = © and M < « and,

consequently, that there is an optimal stationary policy 4*
which satisfies the monotonicity property a,* < a,* =-- -,

The second result is an algorithm which for any € > 0
determines an e-optimal policy in a finite number of steps.
Also, a finite algorithm is developed for finding optimal
solutions under the added condition that ¢;= ¢,,, for i
sufficiently large. Finally, we demonstrate that every
optimal stationary policy is monotone if the above con-
dition does not hold, whereas if this condition does hold,
we give an example of an optimal stationary policy which
is not monotone.

Existence of an optimal stationary policy

For the case M < = [23] we were able to employ the re-
sults of Fox [17], Lippman [18], and Ross [21] to es-
tablish the existence of a stationary policy 4* which
simultaneously maximized ¢'(A4) and ¢°(A4). Our princi-
pal objective in this section is to establish the same result
when M = o,

We begin now by showing that the optimal rate of re-
turn for the model with M < « converges to the optimal
rate of return for the model with M = o,

Let R,(4) be the expected reward earned under the
stationary policy A, starting from state 0, until the first
return to state 0, and let T,(A4) be the expected elapsed
time for this event. This yields

© i p
R (A) = — L —C, —l
oA) = (a, co)+;(a, C'),Hl(j/\S) (7)
and
I U PR R
Totd) upo[‘+§,g<sA<j+1>>]’ ®)

and so, using a result of John’s and Miller [22] and
Lipman [ 18], we have

R,(4)
ToA)

¢'(4) = 9)

and

g* =sup¢'(4) = sup ¢'(4), (10)
A A€A

where A is the set of all stationary policies.

Theorem 1. Let g,,* be the maximum expected rate of
return for a model of size M < «, then g* =1Limm g

Proof. We assume (without loss of generality) that
M > 5. Let A* = (a,, a,," - *) be a policy such that g* =
¢'(4*). Such a policy exists since g* = sup ¢'(4) and
Lippman [18] proves that under conditions satisfied by
our model, there exists a ¢'-optimal policy which is sta-
tionary. Thus,
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0)+E (a—C)H(J/\g)

1+§,ﬂ,<sA(1+1>) ]

0 Co) F E(H—C)HW

+,§U(m(;+1))

g* — gy = o,

(a, —

— P,

.U«Po_z (a,— C)H(J/\s)

”ZU GRGTD

1
1Po Py — ) 2 glgis H Py

IA

where p’ =min A\ /u, and p”" = max A /u. Thus, g* —
aeP acp

gyt = bx"™', with0 < b < 2and0 < x < 1.

Now let 4,* = (a,, a,," -, a,,) be an optimal policy for
the finite model of size M. The existence of 4,,* is guar-
anteed by the results of Low [23]. Using a similar
analysis, we then have

— (S (1 =2
wo, =) )(1 >(p_> S

¥ __ g% <<
gn 8" = ”

Thus, g,* —g* =< bx"**, which implies |g* —g,*| =
bx™*', with 0 < b < o, 0 < x < 1, and both b and x in-
dependent of M. This completes the proof. Q.E.D.

Define the functions F : {—1,0,1,--} > Z and h :
{~1,0,1,--} > Zby

F(-1) =0, (13)

i=0,1,-- (14)
h(—=1) =0, and (15)
hi+1)=h(i))—F (@), i=-1,0,1,-- (16)
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We now show that F is bounded and that 4 is linearly
bounded.

Lemma 1. There exists a constant B < o« such that
0<F()=B,i=0,1,--

Proof. We first show that F is non-negative. Let i € I be
fixed. Since F (i, g) is continuous in g, g* = lim g,* by
Moo

Theorem 1 and since in [23] it was shown that F (i, g,,*)
> 0 forall M > i, we can conclude that

F{)=F(, g*)=A14imF(i, gn*) = 0. 17)
We now show that F is bounded above. Denote by g,

the maximizing price in (14) and let p,= A, /u for i=
1
0,1, .- If we solve for a, a,, - -, we obtain

(ao—co)-l—z (a;— ;) H(I(P%)—
F(i) = {up, —= = —g*

i-1

J
;H s/\(k+1))

k=0

; H A (k+ 1)
X . (18)
. o
“pig(s/\(k+1))

Using g* = ¢'(a, a,, ---) and considerable algebraic
manipulation, we obtain

F(i) = {[(ao— Co)py T+ Poé (a;,—¢) kljl (kP/;\c s)]

<G+ 301 6

Jj=i+1 k=i+1

5o )

j=i+1 k=i+1

<[+ 3 1 i)

Jj=0 k=0

x 1 , (19)

+,§H TNCERIN

where we have assumed (without loss of generality)
that i > s. Now, a; = ¢ for all j € I, for if not, we would
have

g UASIk g
)\+ Y F(i—1)

4

< (j/\S)MF)Ej—l)—g*

4

< UASpF(j—1)—g*
}\Pk 2

05F(j)=aj—cj——

%G
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< (p—cy) B WA p (1)< F(p.

A A
p P,
e (3 (20)
Hence,
—c,) + a,—c
< Po (4~ <) ,; (4, f’kEl (k As)
F@)=— -
$ 1+ i f] S —
Sizo A+ 1))
«© pII J
<[1+3 (5]
<& .
_P
S| (1 s) 21
where we have used p" to indicate )\pl / w. This completes
the proof.
Lemma 2. For any i € I, h satisfies
h . Aa h .
@ _Te‘;x{(‘i/\ SIEEY la—c,+h(i+1)]
(As)w . g* }
GAs)m+A, hi=1 =57 s+ A (22)
and
k()| = B i. (23)

Proof. By definition, we have

: . g*
h(i+ 1)=h(1)—rzleapx {a—ci—)\—

a

+(i/;\—s)"[h(i— 1)—h(i)]}’ (24)

a

which implies

h(i) [l+£iAAs)—M:|2a—ci—i—*

a a

+i%§)—“h(i— D+hi+1) @25

a

for all a € P, with equality for a = a,. Therefore,

h(i) Em [a—ci—i- h(i+ 1)]
(iAs)u T g*
(As)m+A, U Rl A, (26)

for all a € P, with equality for a = a,, which implies the
first result. Equation (23) follows immediately from
Lemma 1 and equations (18) and (22).

Lemma 3. If X, is the state of the system after » tran-
294 sitions, then for each i € I there is a constant m, such that
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sup sup E,[|h(X,)] : X,=i]< m, < . (27)
n A

Proof. In view of (23), it is clearly sufficient to show that
for each i € I there exists a positive number m; such that

supsup E,[X, : X, =i]= m, <, (28)
n A

It is apparent that the stochastic process {X, : 4,X,= i}

is a (possibly non-stationary) random walk over the non-

negative integers with a reflecting barrier at the origin.

If a,, € P is the price selected by 4 when in state i, just

after the nth transition, then the i)robability Jjn =Pr{X,,,

=j+1:X,=j}tisgivenby (f,, = 1)

f~ = }\am < )\pl for {J=0’ 1"“’

in (j/\s)/-L“‘)\a._'u'—i_)\p’ n=0,1,--
Jan 1

(29)

Consider a sequence U, U,, --- of random variables
drawn from the uniform distribution over (0, 1). Let
X, =i, and

X,/ =X'+Y/!, n=01," (30)
where
Y’={1 ifUn>.1—an

n —1 otherwise. (31)

It is clear that {X,' : 4, X' =i} has the same finite di-
mensional distributions as {X, : 4, X,=1i}. Now define
X,=iand

X, ,=X,+tY, n=01,"" (32)
where
. ®
>
v 1ifU, M+}\p1
» 7 |—1 otherwise. (33)

By construction, Y, = Y, ', n=10,1,- -+, sothatX, = X, .
Consequently, we need only consider the process {X, :
X,=i}, where

. . 1ifj=0
fu=PriX,, =j+1:X,=j}=| "’ N
_ Py
rF= ’
,u.+}\p1
Jj=1,2,-+, (34)
and
. 0ifj=0
qj"=Pr{X"+1=J—l:Xn=}={q=l_r’
Jj=12,--, (35)

because

E[X,: A, X,=i]<E[X, : X,=il.
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Kac [24; pp. 378-391] has derived the probability mass
function for X, given X, = i. It is not difficult to show
that this distribution has a finite mean for each i, which
completes the proof. Q.E.D.

We can now assert the existence of an optimal station-
ary policy which is determined by (22).

Theorem 2. For each i € I,
g% = ¢"(A4%) (i) = sup ¢ (4) (i) = sup ¢' (4) (i)
=¢'(4%)(), (36)

where A* is any policy which, for each i € I, maximizes
the right hand side of (22), or, equivalently, (14).

Proof. Combining Lemmas 2 and 3 with Ross [21
(Theorem 7.7, p 163)] obtain the second equality. The
other equalities follow from (10), Ross [21] (Theorem
7.6 p 162), and the existence of a stationary ¢1-optimal
policy. Q.E.D.

We complete this section with a theorem which, in
conjunction with Theorem 2, demonstrates that a sta-
tionary policy A is optimal if and only if it solves (14).

Theorem 3. Suppose ¢'(A) = g* for some stationary
policy A = (a,, a,," - -). Then a; must maximize the right
hand side of (14).

Proof. Suppose for some ij € I that

o—co——+(l s)“F(

K} o

F(i,) = q, —-1)+8

for 8 > 0. Then, fori > i, equation (18) gives us

(ao—c0)+i (a c) H (k/\s)
F (i) = pp, e

Py
“”",Eo A K+1))

J pk
I | browwyaney

”pIH(s/\(k+1)

+

5, (37)

ol
HII S
—_
>~
>
%)
~—

MP'H(S/\(k—Fl))

which implies
i—t
Py ,
[”‘”i,ﬂ, G FO

i i op,
o= Co) +j; (aq,—¢) kI;[l (k/\s)]

= upy| (@
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-

e[ fentem] k)
(38)

Since both sides of this inequality are bounded, we may
pass to the limit. This yields

—4 ﬁ (k/\s)]
-g*[”é}l(M(’Z‘H»] [H @)

0= MPO[(GO 2

(39)
which implies
g* = ¢'(A) + . H k » S) 3, (40)
> 3 | ey
which contradicts our hypothesis. Q.E.D.

Monotonicity of A*

We are now in a position to present our main result for
the infinite queue capacity model: namely, a,* = a,* =---
for some optimal stationary policy. For the purpose of
this section we need some additional notation. Let a;* (M)
be an optimal price for state i in the finite problem of
size M, and define

Ay () = [a* (M), a,* (M), -, a* (M) ] (41)

for i < M. We formalize the monotonicity result in the
following theorem.

Theorem 4. There is an optimal policy 4* which is mono-
tone; moreover, there is an integer r such that

ko< o, L=< f J— o
a*<a*=---=g*=a, =" (42)

Proof. Fix i €1, and consider the sequence (A4,*(i)).
Since there are but K**' < « possible values for each
vector A,*(i) in our sequence, there is a subsequence
(M) for which 4, * (i) is constant. Also, Theorem 1 and
the continuity of F (k, g) with respect to g imply that

F (k) =lm F (k, gMj*), k=-1,0,-+1i. (43)
joeo

Consequently, if follows from these two facts that if
price a, * (Mj) is chosen at state k, then

*

F (k) —llm [ak*(M) — ck——i——l—

a,\ (M)
(k (kAs)p ]
F(k—1, *
A af ot ( Euy )
* o
—ar M) —c, — = BNy,
)\a;f (Ml) a;“f (Ml)

(44)

2
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Hence, we can conclude from Theorem 2 that a,* (M)
is an optimal price for state k, k = 0,1,- - -, j. Since it was
shown in [23] that ¢, *(M,) < a4, ,*(M,), k— 0,
i— 1, we have

a,” = a,” = = a

(45)

foreachi € 1. Q.E.D.
Finding ¢-optimal policies (¢ > 0)

We now show that an e-optimal policy can be determined
for any £ > 0 in a finite number of steps. Define g,, as
the expected rate of return for the infinite model when

the policy )
(46)

AM = (ao, A5 Ay 45 Pys Py ™ ° )

is used, where (ag, -, a,,_,) is optimal for the problem
of size M. Also define ¢,, by

N

_ “(pk—c")(j!l)(l’%) <p_")”“

(47)

M 1" s

p

! —_ T A " = .
where p 1:161;1 o/ mwandp max A,/
Theorem 5. Let € > 0 be given. Then thereisan M < «

such that 4, is e-optimal.

Proof. We know g* —g,* =< ¢, by Theorem 1. Simi-
larly, it is easy to show that g,,* — g, = ¢,,. Therefore,

(48)
Q.E.D.

g =8y =(g"—8,) + (8" —2,) =¢,tey,
= 2¢,,.

Thus, for any € > 0, an £-optimal policy can be found
by first using equation (47) to determine a sufficiently
large M, and then using the results of [23] to solve a finite
probiem of size M.

We conclude this section by showing how a sequence
of policies may be generated which converges to an op-
timal policy. The convergence is, of course, not uniform.

Theorem 6. Let €, = 1/n, and suppose (ZMn) is a se-
quence of ¢, -optimal policies. Then for each i € I, there
exists an N; < « such that for every n > N, q,(M,) €
Q,, where Q, C P is the set of optimal prices for state i,
i.e., maximizers of (14). In particular, if ¢* is unique,
thena,(M,) — a* asn — .

Proof. Suppose for some i € I, that no such N, exists.
Then there must exist a subsequence (n;) for which
a,(M, ) is not a member of Q,. Further, since P is finite,
there must exist a subsequence <nfk> over which a,(M ”jk)

is constant. But by Theorem 1 and the proof of Théorem
4, this implies that this constant maximizes (14), and by
Theorem 2, any such price must be optimal. Q.E.D.

Finding optimal policies

We now treat the more difficult computational problem
that arises when £ = 0. We will use the following condi-
tion:

Cl ¢ = Cepua=""" for some k, € I, with k, = 5.
As in the finite queue capacity case [23], we extend the

domain of the function F defined in (13) and (14) to
{—1,0, 1, -} X # as follows:

F(-1,-)=0, (49)

and

F(i,g)=r1;éllg( [a—ci—)\£+(il;\‘g¢12‘(i_l’g):|
(50)

a a

fori € I,and g € #. Clearly, F (-, g*) =F (-).

We show that under condition C1, an optimal policy
A* can be obtained in a finite number of steps. Theorem
4 guarantees the existence of an optimal stationary pol-
icy of the form :

a*=a*=-=a, *=ar*=a, *= (s1)
for some r € 1. Define a_* by
a*=agq*=a *= (52)

Our first goal is to determine this price. Toward this end
we prove in Lemma 4 that lim F (i) exists; in Theorem 7
)

we characterize the form of this limit and show how it is
useful in finding a_*.

Lemma 4. Let r be the smallest index (r = s) such that
a*=aq, *=-+- Then F(i)ZF(i—1) for all i=r
Proof. We define the difference A, by
A=F(i)—F(i—1), (53)

and we denote A x by A_, and A_/u by p_. Fixi=r.

Since a* = a, * =---=a_*, we have
*

Fl)=a*—c,~5 4B FG—1), (54)

=) 1 Aw Aw
and

sk
F(i+l)=ax*—ci+l—§—+i—“F(i). (55)
Subtracting, we get
s

Ay =—(e— ) + )\_IL A (56)

®

By iterating this procedure we obtain
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A= _[ (Cire ™ Cinpet)
si

G =) )+ =0 ()]

t
+ (i—“—) A, fort=0,1, - (57)

Multiplying both sides by (p_/s)" yields
2
A= [(Ci+1 - Ci)<&n> +oot (e, — Ci+t—l)<2m> ]
S S
o t
+ (—;) A (58)

By Lemma 1, |A,, | = B < « for some number B and all
t=0,1, -

Thus,
‘ oy
im () 8..,=0, (59)
so that
© p Jj—i+1
A= 2 (¢, =€) (—;) , (60)
Jj=t

which is non-negative by the montonicity of the cost func-
tion c. Q.E.D.

We know by Lemmas 1 and 4 that the sequence (F (i))
has a unique limit point which we denote by F(«). Also,
denote the unique limit of (c;} by c_. The next theorem
characterizes F'().

Theorem 7. The number F () satisfies

g* — (a— C:x:)}\a}' 61)

F(Oo)=Telll}{ Sp— A

Furthermore, a_* can be chosen to be the smallest of the
prices solving (61), and one of the following must hold:

a. Ifc_ > c,foralli € I, then a_* is unique, or
b. If CI holds, then a_* can be chosen to be any price
minimizing (61).

Proof. From equation (14) and the definition of A, we
obtain (fori = s)

N = e & Sk _
F (i) = max [a c, A, + A, F () +(c,6—c)
Sp
s A,.]. (62)
Thus,
. g | sk . Sp
>g—c -2 42E —¢) — == A,
F()za—c, X + X, F i)+ (c,—¢) x, A

(63)

for all @ € P, with equality for a = a,*. This leads to
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= {c,—¢;) %‘3
J. (64)

[P
5

F @) = mip

A,
gt —(a—c A, N '
S A,

By Theorem 4, we know that there exists r € I such that
a_*is optimal foralli = r = 5. Thus,

A—(c,—¢cy) P
ey S (65)

| _Pa
S

F ()= g¥—(a *—c A

Sp— A

for all ; sufficiently large. As i/ approaches infinity, the
first term on the right is independent of i, and the second
term approaches zero. By taking the limit, we see that
F () has the required form, and that a_* solves (61).
To prove the second assertion, we write

F () = max {[a—ci-§i+%‘iF(z‘— 1)]

a a

—(e,—e)+EFE@-FG-11}  (66)

a
If ¢, > c, forall i € I, then F (-) is strictly increasing
for sufficiently large i by (61). Now suppose a’ € P mini-
mizes (61). Then a' = a* for all i = r, which implies
a' =z a_*. The reason for this is that the maximand above
is the sum of the maximand of F (i) and a function strictly
increasing in a. By the same line of reasoning, a, ,* = a,*
for i sufficiently large, which implies a_* must be unique.
If C1 holds, then F (i) = F () for all i sufficiently
large, and it is clear that any price minimizing (61) will
maximize (14). Q.ED.
We now prove two necessary and sufficient conditions
for g to equal g*. These will be used later in the develop-

ment of a finite algorithm.

Theorem 8. Let g € # be given. Then the following
three statements are equivalent:

a. g=g*,
b. g=¢'(A4(g)), and
c. lim F (i, g) exists.

Moreover, if A is a given stationary policy, then A is op-
timal if and only if 4 = 4 (¢'(4)), where A (-) represents
a policy generaged by F(i,-)fori=0,1, -

Proof.
a>b. If g=g*, then
' (A(g)) = d'(A(g*)) =¢'(A*) =g* =¢. (67)

b= a. Suppose g= ¢'(A4(g)) for some g. Then, using
the representation of F given in the proof of Lemma 1,
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and assuming (w1thout loss of generality) that i > s, we
can write

max
(ag " a,)

+p02(a ﬁ

r j
<[l 2 <”—)J
LS Jj= 1+1 k= i+1 s

Fli,g) = [1a0—co)p0

X . (68)
Py :

‘+EH( Akt 1))

Again, we have written a, for a,(g), and p, for A, / p.

If g = g*, we are done. If g > g*,then &' (A (g)) > g%,
which is impossible. Suppose then that g < g*. Since
g*=Ilim g,*, we must have g < g, * for all sufficiently

large M. Thus, by the results of the finite queue case [23],
a,(g) = a,(g) =---, which implies that for some finite
r>s,a(g)=a,,(g) =" Call this common value a_.
Then for i sufficiently large, we have

Fi,g)=
_(a c)+i(a—c)lj_[ P
max |py|_° O H T VS kAs)
(ag," a) | s 5 Py
1+E,g,(sA(k+1))
aw _ ® szvhl
l—& J%lCi(s)
O N
_Pe § ST Py
! s 1+]§0k1:[0(s/\(k+1))
1+ _ 69
[ JZO,H)(S/\(k+1))]] (69)

Since the maximand above has a limit as i approaches
infinity, and since (a,,- * -, a;) achieves the maximum for
each i, it must be true that 4(g) = (a,," - ) achieves the
maximum in the limit. That is,

(a,—c,) P=
A

' Ue) _ .

. $'(4)
s"’(”%) <1—ps—°°)

for all stationary policies 4. But this implies that
¢'(4(g) = ¢'(4) for all stationary A, which means
¢'(4(g)) = g*, and thus, by statement b, that g = g*,

a= c.

(a,— cw)eE
E (70)

If g = g*, then
lim F (i, g) = lim F (i) = F (), (71)
which is finite by Lemmas 1 and 4.
c>a
If g = g* + &, then
- e & &l &
F (0, g) = max {a T, Aa}—“" TN
_t _£
}\O_F(O) % (72)
Continuing in this manner, we get
S T
~ AL (sA(k+1
F(i,g)fF(i)—E =0 520 ( )),iEI.
u l-’I Py
Poll A s) (73)

Clearly, the right hand side is unbounded below, so that
F(i,g) >—wasi— e,
If g = g* — €, then a similar analysis yields

*

1+1§,!_Io(s/\(k+1)

F(,g)=ZF i)+

(74)

* s

0 ].Ul(k/\s

where p, * denotes A x/p. Since the right hand side is un-

bounded above, we see that F (i, g) — « as i — «, This

completes the proof of the equivalence of a, b, and c.
If A = A*, then we have

AP (A)) =A(p' (4%)) =A(g*) =A*=A. (75)
IfA=A(¢'(A)),thenset g= ¢'(A). This gives

A(g) =A(d'(A)) =4, (76)

SO

$'(A(g)) =¢'(4) =¢. (77

Thus, since (b) > (a),g=g*, 504 = A*. Q.E.D.

We now extend the definition of F (). Define F (¢, ") :
R > R by
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g— (a—cm))\a] (78)

F(°°,g)=g1elp [ Y
Note that F («) = F (=, g*). In Theorem 9, we show
how this function can be useful in testing for optimality.

Theorem 9 Suppose C1 holds. Then for each i = &, and
each g € %, both of the following statements are true:

a. F(i,g) > =)[<]F (i— 1, g) implies g < (=)[>1g*,
and
b. F (i,g) > (=)[<]F (e, g) implies g < (=)[>]g*.

Proof. We first prove statement a. If, for 8 > 0,

F (i,g)=F (i—1,g) + 8, then, (79)
: - . 8 SR
F(z-+-1,g)—~rgg,x[a C, Aa+)\aF(l 1, 2)
Sp
+__.
ol

g Su
> — —_—— _ § —
= max [a Ck, N + A, F(i—1, g)]

=Fl,g)+>86=F(i—1,g)
p

+ [1 +ﬁ;] 5, (80)

where p" = max A,/ . Consequently, we have
al

F(i+t,g)2F(i—l,g)+[1+<§)+<ﬁ>2

+-~-+<,%>t]a (81)

fort =0, 1, - - Thus, by Theorem 8 and its proof, g < g*.
If

F(,g)=F(i—1,g), then (82)
FGi+t,g)=F(i—1,g)fort=0,1, -, (83)

which implies that lim F (j, g) exists, and thus, by Theo-
rem 8, that g = g*.

The proof for F (i, g) < F (i — 1, g) is essentially the
same as for >. This completes the proof of a.

Now suppose F (i, g) = F («, g) + & for some & > 0.
Then,

; - —e, =B it
F+ g =max{ac,—+ 1 F o) +35 0]
2F(°°,g)+<*s;)3, (84)
o

and, consequently,
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t
Fli+1g) =F (e, g)+(-§;> 5, 1=0,1,---. (85)

Thus, by Theorem 8, g < g*.
The proofs for (=) and [<] are essentially the same
as the proofs above. Q.E.D.

We now summarize in Lemma 5 some properties of
F (o, g) which we require for the algorithm.

Lemma 5. The function F (%, +) is strictly increasing,
piecewise linear, concave, and unbounded above and
below. Moreover, the interior of each linear segment cor-
responds to one and only one price.

Proof. Let 8§ > (. That F (=, g) is strictly increasing can
be seen immediately from

g—(a—cw))\a+ ) ]

o, g+ 8)= i l:
Fi=e ) ggp S A, sp— A,

3
= -
—F(w’g)+su—)\

Py

>F (=, g). (86)

Also, the equation above shows that the minimizing price
is a nondecreasing function of g, since the minimand for
g + 8 is the sum of the minimand for ¢ and a function de-
creasing in a. Thus, since P is finite, and F (e, g) is con-
tinuous in g, F' (%, g) is piecewise linear. Let (g,, g,) be
the interior of a linear segment of F (», g).In (g,, g,) the
slope of the segment is 1/[sw — A, (g)], which corre-
sponds to exactly one price. It is clear that F (», g) is
concave since the slopes of the linear segments decrease
as a_(g) increases. It is obvious that F (%, g) is un-

bounded above and below. Q.E.D.
A finite algorithm

Define the function &# by

F(g)=F (k,g) —F (», g) (87)

for g € R, where k, is defined in C1. It is not difficult
to show that & is piecewise linear, strictly decreasing,
and convex. Using Theorem 9, we can show that & has
the unique root g*.

For any g € %, we define G (g) to be the g-intercept
of that line segment of # lying directly above g; if there
are two such segments, pick the rightmost one. The algo-
rithm is outlined below.

I Let g € # be given.
II Compute & (g) and A (g) by performing the (k, + 2)
sequential maximizations indicated by equations (49,
50 and 78).

III If #(g) =0, then g =g*, A(g) = A*, and the pro-
cess terminates. If not, then replace g with G (g),
and return to step II. The algorithm is finite by the
properties of % outlined above.
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It is easy to show that a,(g) is nonincreasing in g for
eachi=1, 2, k,, and that a_(g) is nondecreasing.
Also, the algorithm produces an increasing sequence g, <
g < -<g =g, =g" We wish now to find an upper
bound L on the number of iterations required to reach
optimality.

Define g, to be the largest maximizer of (a — c,)A,. It
can be shown (see [23]) that ¢; < @, = a,* foralli € 1,

andalsothata, < a, =---=a, = Smce the algorithm
produces a decreasmg sequence [a (g, ako(gl)] >
[a (g2 th A (gz)] >--- and an increasing sequence

a (g)=a (gz) =<---, we can compute a value for .

ko
L=K,+1+3 (K—=K),

i=0

(88)

where K, is the index in P of g,.

We prove one interesting result which may not be ob-
vious from the geometric interpretation given above. De-
fine the policy 4 (g) by

a,(g) = {ai(g) fori=0,--, ky and

a, (g) fori >k, (89)

where a,(g) is any maximizer of F (i, g), and a_(g) is
any minimizer of F (», g). For fixed g, we denote a,(g)
bya,a (g)bya,\,/ubyp,andd, /ubyp,.

Theorem 10. Suppose C1holds. Then, G (g) = ¢' (A (g)).

Proof. Using equations (18) and (61), we obtain
— N

i (ao—co)-f-z(a C)H(J/\s)

F(g) = up, ko "

we, I1 (s/\<,+1))

ko-1
1+ e
., lEOJHO(s/\(J-H))
8 ko—1

| 40 ] Il R GTD)

=

si—(a —cx)B—
- | 2E =, (90)

which, upon solving for the g-intercept, yields

G(g) = up,
(=) +S (a—c) [[=Let S (0, =) [T—Le
0 0 iszl a;— ¢ JII(J/\‘Y) 1%1 a,—c¢ 111(]/\5)
X . , . (91)
R Ga Gt %ﬂﬂ,(mwm
which is just ¢' (A4 (g)). Q.E.D.

Numerical exampie
In this section, we examine a sample problem. The algo-
rithm defined above was coded by the authorin APL /360
[26]. A problem is completely defined by specifying s,
u,c, P,and N Let s =2, u=12, ¢ = (10, 10, 15, 25, 40,
40, -}, P=(1,2,--+,99),and A ;)= 10.1—0.1p.

We begin by setting g, = ¢' (4), which yields

= (55, 55, 58, 63, 70, 70, )
and

g,=205.1521962.

The results are summarized below.

J 8; A(g) F(gy)
[0] 205.1521962 56 56 60 67 9473 73 73--- 40.76173377
[1] 205.1854732 56 56 60 67 83 73 73 73--- 18.74884642
[2] 205.2248295 56 56 60 66 75 73 73 73--- 3.92947009
[3] 205.2370933 56 56 60 66 73 73 73 73+ 0.1198211141

[4] 205.2374961 56 56 60 66 73 7373 73--- 1.498956514E" 11

Thus, g* = 205.2374961 and
A* = (56, 56, 60, 66, 73, 73, ).

A sufficient condition for monotonicity

In Theorem 4, we showed that there is always an optimal
stationary policy which is monotone. In this section we
show that if condition C1 is not satisfied, i.e., if ¢ > c,
for all i € I, then every optimal stationary policy is mon-
tone. We begin with an example of an optimal stationary
policy which is not monotone. Let

s=l,u=6,c,=c,="=2
P=1(3,5), ),

It is easy to show that g* = 3, and that F ({) = 0 for all
i€ l. Thus

F(()=max [3—2—3/3,5—2-3/1]
= thax [0, 0] =0

=3,and A, = 1.

and by Theorem 2, a;* may be chosen to be either 3 or 5
for i =0, 1,- - -. Therefore, every stationary policy is op-
timal, including the non-montone policy (5, 3, 5, ).

Lemma 6. The following four statements are equivalent:

a. F(0)=0,

b. F(i)=0foralli€l,

c. gt= max [(a—cy)A,], and
d. ¢ =c,

Proof.

c>a.
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Suppose ¢ holds. Then,

(@ = cg)h, — max [(a" = cy)A, ]
05F(0)=max[ }SO

usP Aa
(92)
a = c. If a holds, we have
—_ A — Ed
max [<a__c>_g] —o, 93)
aEP A

a

which implies g* = (a — c,)A, foralla € P, with equality
for at least one a € P.

c>d.
Suppose c holds, but that ¢_ > ¢,. Let i = 1 be the small-
est index such that ¢; > c,. Then,

F (i) =— (c,— c,) + max [L”A;g_

a€P >\n
(iAs)u J
x F(i—1)
AN
< max {MF(I'— 1)}
a€P )\a
[ A
<Urwm ey, (94)
A
by
By the first part of this proof, we know that F (0) =0,
and since, by assumption, ¢,=:--=¢, , < ¢;, we have
}\P
0=F(©0)=-=F(i—1)>—2—F (i), (95)
(iAs)u

which is impossible by Lemma 1.
d=>c.
Let g=max {(a— c,)\,} and suppose c_=c, Then,

F (i,g) =0foralli € I since

E;Qﬂ] —o. (96)

F (0, g) = max [
a€P A

a

andif F (i — 1,g) = 0, we have

W]z 0. 97)

Fli,g)=
6 = e [Z=5

Thus, lim F (i, g) = 0, and by Theorem 8, this implies
g=2g"
a= b.

Since a and d are equivalent, and since b is implied by
a and d, b is implied by a.

b = a. Trivial. Q.E.D.

* then

*
Lemma 7. If a;* > a, %,
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g*

F (i) < m 98)
and
FHSFG—1). (99)

Proof. The proof is identical to the proof of Lemma 5 of
[23] with g = g*. Q.E.D.

Theorem 11. Suppose ¢, > c;foralli € I, and let 4* =
(a,*, a,*,---) be any optimal stationary policy. Then
a*=a*=---

Proof. In view of Theorem 3, we need only consider
policies which maximize the right hand side of (14). Sup-
pose a,* < a,*. Then by Lemma7,F (0) = F (—1) =0,
which implies F (0) =0 by Lemma 1, which, in turn,
implies ¢ = ¢, by Lemma 6. Thus, a,* = a,*.

Now suppose 4, ,
from Lemma 7 that

*<a*for1=i=s— 1 It follows

.
a_co_i_"‘lﬁl‘"(i"‘l)EF(i—l)forallaEP.

a }\a
(100)
In particular, for a = a,_ *, we have
. gt (i—Dpu
F(i—1)= [ai_l*‘co_)\w +T‘F(l—2)]
i—1 i—1
i (i—1
LY Ul D P
A }‘a’»"
i—1 i—1
—F -1+ 2 [F(i—l)
“?—1
—(’—_illF(i—z)], (101)
or, equivalently,
. (i—-1 _ . .
F(l—l)ffF(t—Z)EF(l—-Z). (102)

By iterating this inequality, we obtain
FO=F(i—-1)=--<=F)=<F(-1)=0, (103)

which, by Lemmas 1 and 6, implies c¢_ = c¢,. This com-
pletes the proof for0 < i< s — 1.

If a,,* < a* fori>s, we have F (HHY=F(i—1)by
Lemma 7. Thus,

FG+1) =—{(cm—ci) + -1 —F (i)]}
g* Sp .
+ [aHl* — Ci—)\u:;;l + )\a;kﬂ F({i— 1)]
=F (i). (104)

Iterating this inequality, we obtain
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FH)zF(i+1)=--,

but this is impossible by Lemma 4 and Eq. (60). This
completes the proof. Q.E.D.

Special case: constant cost

Consider the situation where the cost function is constant
over all states. This would be the case, for example, if
the number of servers was infinite. Theorem 12 shows
that, in this case, an optimal policy can be found analyti-
cally.

Theorem 12. If c_= c,, then the policy 4 = (g,, 4, 4,
-*) is optimal, where g, is the largest maximizer of (a —
CoA

a

Proof. By Lemma 6, g* = (a,— Co))‘g(, and F(i) = 0 for
alli € I. Thus,

{(a =)\, — g*]
A

a

F (i) = max
aeP

=0, (105)

which implies a, is optimal for each i € I by Theorem 2.
Q.E.D.
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