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Channel Equalization Using a Kalman Filter

for Fast Data Transmission

Abstract: This paper shows how a Kalman filter may be applied to the problem of setting the tap gains of transversal equalizers to
minimize mean-square distortion. In the presence of noise and without prior knowledge about the channel, the filter algorithm leads to
faster convergence than other methods, its speed of convergence depending only on the number of taps. Theoretical results are given
and computer simulation is used to corroborate the theory and to compare the algorithm with the classical steepest descent method.

introduction

Data transmission systems generally use voiceband com-
munication channels. These are characterized by a rela-
tively narrow bandwidth (300 to 3000 Hz), a high signal-
to-noise ratio (about 20 to 30 dB), and amplitude and
phase distortion slowly varying in time. High speed data
transmission then requires equalization. Many presently
used modem receivers are equipped with a matched filter
to maximize the signal-to-noise ratio and an equalizer to
minimize the inter-symbol interference due to distortion.
Equalizers usually are of the transversal filter type
(tapped delay line filter) with tap gains adjusted to min-
imize some error criterion. An automatic equalization
process requires an initial training period during which
the equalizer reduces the error. In “‘preset equalization,”
isolated pulses are transmitted prior to data transmission,
and the derived tap-gain settings are kept constant during
the data transmission itself. Periodically, a short training
period may be entered to update the tap gains.

A second kind of equalization process is known as
“adaptive equalization.” Here the equalizer settings are
derived from the received signal. During the training
period, the equalizer continuously seeks to minimize the
deviation of its sampled output signal from an ideal ref-
erence signal generated internally in proper synchronism
in the receiver. When the residual distortion is small
enough, actual data may be transmitted. The equalizer is
then switched into the ‘‘decision-directed mode,” using
as reference a reconstructed signal obtained by threshold-
ing the output signal of the equalizer. Adaptive equaliza-
tion has many advantages over preset equalization,
among them being the ability to adapt to changes in chan-
nel characteristics during the transmission.
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Clearly, there is a delay in data transmission propor-
tional to the length of the training period, and a decrease
in this delay is desirable. Many adjustment algorithms
[1-11] have been described in the literature, often em-
phasizing the speed of convergence. For the well-known
mean-square algorithm Gersho [4] showed that the speed
of convergence is largely determined by the maximum
and minimum values of the power spectrum of the un-
equalized signal. Similar results for more sophisticated
algorithms have been reported by Chang [5] and
Kobayashi [6]. To achieve fast equalization, a new equal-
izer structure has been developed by Sha and Tang [11],
although their theory can fail for large distortion. Devieux
and Pickholtz [7] studied adaptive equalization with a
second-order gradient algorithm, but that algorithm re-
quires computation of the covariance matrix of the
sampled received signal. More recently, Ungerboeck
[8] showed that, in the speed of convergence of the
mean-square algorithm, the influence of the number of
taps usually dominates. He gave a new criterion for con-
vergence and an optimal step size parameter in the ad-
justment loops.

In this paper, a new algorithm, based on Kalman filter-
ing theory [12,13] is proposed for obtaining fast con-
vergence of the tap gains of transversal equalizers to
their optimal settings. A Kalman filter had previously
been applied to channel equalization by Lawrence and
Kaufman [15] but in a quite different way, since in their
study the equalizer is replaced by the filter.

It is shown here that the convergence of mean-square
distortion is obtained, under noisy conditions, within a
number of iterations determined only by the number of
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taps, without prior information about the channel. First,
fundamentals of Kalman’s theory are reviewed. Then we
show how to apply the Kalman filter to the equalizer and
derive an expression for the speed of convergence.
Finally, computer simulations are used to check the
validity of the theory and to compare the proposed al-
gorithm with the steepest descent method. Comparison
is also made with other sophisticated algorithms.

Kalman-Bucy filtering theory

Over a decade ago, with publication of now classical
papers, Kalman [12] and Kalman and Bucy [13] de-
fined a recursive method and deeply transformed filtering
and predicting theories.

Application of the Kalman filter supposes the studied
system to be described by a set of linear difference equa-
tions, in the case of discrete systems that are of interest
in this study. Let x, be, at the kth sampling instant, the
N-dimensional vector of the N state variables [14] of a
system modeled as follows:

X, =®k k- 1)x,_, + W, (1)
Z=Hx +V, (2)

where ®(k, k — 1) is the N X N state transition matrix;
Z,, the M-dimensional measurement vector; H,, the
M X N measurement matrix; and W, and V,, respective-
ly, N- and M-dimensional vectors of white noise pro-
cesses of zero mean. Later we use the covariance ma-
trices Q, and R, of W, and V,. It is assumed that the
noise processes W and V are statistically independent;
i.e., if E denotes expectation, then

E[W,V,/1=0, & j=1,2,"-

Throughout the paper, a prime (') denotes matrix trans-
position.

Assume we know at the (k — 1)th sampling instant an
estimate %, of the actual state vector x,_, and the error
covariance matrix

P, =E[(x_, —%_)(x_, —%_)'] (3)

It is possible to derive from (1) a predicted value of the
state at the kth sampling instant,

Koo = Pk, k— )%, _, (4)
and a predicted error covariance matrix defined by

P =Bl =%, )(x— %, )] (5)
It can be shown that

P =@k k—1)P_ @ (k,k—1)+Q,. (6)
A predicted measurement 7 . is derived from (2):

A

Z,=HX,, . (7)

The deviation of the predicted measurement from the
actual measurement Z, is used to define a new estimate
of the state vector as

%, =%, +K, (2, — 7). (8)

The N X M correction matrix K, is computed in order to
minimize the trace of the error covariance matrix P,.
Then it can be shown that K, and P, are given by

K, =P, H' (HP,_H, + Rk)—l 9)
and
P.=P,,—~KHP,, . (10)

Application of the Kalman filter requires an estimate
x(0) of the initial state vector and computation of the
corresponding error covariance matrix P,. Usually x(0)
is chosen as the mean value of x(0). Then it can be shown
that the subsequent estimates are unbiased.

The Kalman filter defined by recursive formulas (4)
through (10) leads to minimization of the trace of the
error covariance matrix. More generally, if A is a sym-
metric positive definite matrix, minimization of the pro-
duct (x, — %,)'A(x, — %,) is obtained.

Application of a Kalman filter to equalizers

For simplicity we limit ourselves to a pulse-amplitude-
modulated (PAM) baseband system. The equalizer is
an N-tap delay line filter. The input signal of the equalizer
is the PAM baseband signal

Ut)y= Y ah(t—kT)+ v(1),

k=—x

(11)

where {a,}.is the sequence of quantized pulses to be
transmitted, A4 (¢) is the channel response, T is the inter-
symbol separation (or baud interval), and v(¢) is the
additive noise. Both sequence {a,}.and noise v(¢) are
stationary. Let u, be the vector of tap output signals and
¢, be the vector of tap gains of the equalizer, both at the
kth sampling instant. These two vectors are N-dimen-
sional. The output signal of the equalizer is

s, =u'c, (12)
and we define the error signal as
e, =a,— s, (13)

We choose as the error criterion the minimization of the

expected mean-square distortion,
#*=E[e’]. (14)

With sequence {a,} and noise v(z) being assumed sta-
tionary, & does not depend on k for a given tap-gain
setting.
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It can be shown [4] that the optimal tap gains ¢, are
given by

Coe=AT'b, (15)
where A is the N X N symmetric positive definite matrix
A=E[uu'], (16)
and b is the N-dimensional vector

b= E[a,u,]. (17)

When ¢, is chosen equal to ¢, the mean-square distor-
tion assumes its minimum value &_,. Even if no noise is
present, -, is not zero because of the finiteness of the
number of taps. Let ¢, be the error signal with the

optimal adjustment of the tap gains. Then we have

a =w'c e o (18)
with
gf)m= E[eiom]' (19)

During the equalization process, the expected mean-
square distortion at the kth sampling instant is, using
(18)’

gk2 = E[{uk, (copt - ck) + € opt}Z]' (20)
It is well known [3] that
Ele, opt1;] = 0, (21)

so the variables u,' (¢, — ¢,) and e, , are uncorrelated
and (20) may be rewritten as

c‘fk2=E[(c —c,c)]%-ép2

opt*

opt — ) B (€ (22)

As in [4] and [8] we assume that the dependence be-
tween u, and ¢, may be neglected. Denoting by P, the
covariance matrix,

P, =El (e — ) (e —¢,)' ] (23)

and using (16), the expected mean-square distortion at
the kth sampling instant is given by

& =trace PA + & (24)

opt*

Since A is a symmetric positive definite matrix, minimi-
zation of (24) is done by the algorithm by choosing the
tap gains as state variables. To simplify the theory we
assume the channel characteristics to be stationary over
the training period, so that the optimum tap-gain values
are constant during the settling time of the equalizer.
This is not a severe assumption since, for normal trans-
mission speeds, the equalizer settles in a few milliseconds.

The problem is now stated: One wants to identify the
optimal equalizer characterized by the constant state
variables ¢, knowing that the output signal u,’c, sat-
isfies

opt’
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G =w'Cop € o (18)

Referring to the general state equations (1) and (2), one
sees that the state transition matrix is here the identity
matrix and that (18) is the measurement equation, ¢,
appearing as the measurement noise. Clearly, sequence
{a,} and noise v(#) being of zero mean, ¢, is a random
variable of zero mean. To apply the Kalman-filter ap-
proach, we assume that e, . may be considered as a
white noise process of zero mean and variance &, .
This seems to be a reasonable approximation because
the optimal mean-square distortion is usually small, in-
cluding intersymbol interference still present at the out-
put of the optimal equalizers, so that the correlation be-
tween successive samples of the noise may be neglected.
However, this assumption is not necessary for the con-
vergence of the algorithm.

Let us assume we know at the (k — 1)th sampling in-
stant an estimate c,_, of the state vector and the error
covariance matrix P,_,. Obviously, since the state transi-
tion matrix is the identity matrix, the predicted state vec-
tor ¢, ,_, is equal to ¢,_,, and the predicted matrix P, , _,
is equal to P, _,. The predicted measurement is

L. !
Sp = W Gy

and the new estimate ¢, is given by

¢, =c¢._, +K.(a —s,), (25)
with
K, =P, u(wP,_u+& )" (26)
and
P.=P _,—Ku'P,_,. 27

Computation of the Kalman gain K,, here reduced to an
N-dimensional vector, involves only inversion of a scalar
quantity, but requires prior knowledge of the optimal
mean-square distortion. Clearly, ﬁm cannot be known
a priori. Usually, after equalization, the signal-to-noise
ratio at the output of the equalizer is between 20 and 30
dB, so that to compute the Kalman gain one can use an
estimated value Z;im of the optimal mean-square distor-
tion included between 0.01 and 0.001. Later we show
that the estimated value of &, has no influence on the
successive estimates of the tap gains.

As initial estimate c, of the tap gains, we choose ¢, = 0.
The optimal tap gains being assumed to be uniformly
distributed between plus and minus 1.5, the initial co-

variance matrix P is the matrix with elements
(Po)ij= 0758, ij=1,"" N,

8;; being the Kronecker function. The off-diagonal terms
of the matrix are zero, to reflect the statistical indepen-
dence of the initial estimates.
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® Speed of convergence
Equation (26) may be rewritten as

K%

(I— K/ )P,_u = opt? (26")
where I is the N X N identity matrix. Multiplying (27)

on the right by u, and using (26'), we obtain

Pu, =K& .

or

K,=Pu, /& . (28)
Eliminating K, from (27), we obtain
P,=P,_,—Pun'P,_ /& . (27")

The P, matrix, being a covariance matrix, is positive defi-
nite and has an inverse. Thus multiplication of (27') on
the left by P, " and on the right by P, _, " leads to

Pl;1 = Pk-;l + uu, /gim (29)

From (29) we derive

opt( om 0 + E ulul )

After a few 1terat10ns, %’im usuajly being smaller than

0.01, the diagonal matrix &2 P, may be neglected in
(30) so that P, becomes

1

(30)

k -1
gim <E “i“/) ) (31)
i=1
and (28) becomes
k -1
K, = <2 uiui’> u,, (32)
i=1

showing that the dependence between the Kalman gains
and £°_ may be neglected for usual values of 2 .

Clearly, the matrix k_l(E;"=1 wu,') converges to the A
matrix when k goes to infinity. Nevertheless, one can
estimate that after 30 or 40 iterations it is possible to
write

trace LAR & Nk (33)

Then, from (24), if the optimal mean-square distortion
is known a priori, we derive

&~ E

opt

(1+ Nk™), (34)

which means that convergence can theoretically be ob-
tained within less than 2N steps.

o Further analysis of the algorithm
It has been seen that the algorithm can be applied to the
identification of the optimal equalizer if the optimal er-
ror e, ... may be considered as white noise. We now show
that this assumption is not necessary.

Denote by S, the N X N matrix defined by

S, =P,/&.,, k=0,1,2, - (35)
Then (26) and (27) become

K,=S, ,u/(0+w’'S,_u)and (36)
S, =S, —Kuw'S, . (37)

It is easy to verify that equations (28) and (29) may be
rewritten as

K, = S,u, and (38)

S, ' =8, +uu/, or (39)
k -1

S, = (s(;1 +3 uiui’> (40)
i=1

Substituting (38) into (25) we obtain

¢, =¢,_, +Suwa, —Suu’c . (41)

Substituting S, ' — S, _,”* from (39) for w,u,’ and multi-
plying both sides of (41) by S, ™', we have

S ‘¢, =S, 6, +au,. (42)
With ¢, = 0, (42) may be rewritten as
k
cIc = Sk E azut
i=1
or, using (40),
k -1 k
c= <So_1 +2 “i“i') > o, (43)
i=1 i=1

For sufficiently large k, such as £ = N, the diagonal
matrix So_1 may be neglected in (43), so that the kth es-
timate of the tap gains is given by

& 1k
G = (E uiui’) 2 au, (44)
=1 =

and is independent of the previous estimates if the initial
estimate of ¢ is 0.

From (44) it is obvious that the kth estimate ¢, is the
optimal one for the received sequence up to the kth
sampling instant. For example, if the pseudorandom
sequence used during the training mode is periodic, send-
ing only one period of the sequence is sufficient. The
algorithm must give good results even if the signal-to-
noise ratio is small, since the algorithm builds up the in-
verse of the correlation matrix of the sampied received
signal, which is corrupted by noise. The assumption that
€, oot 15 @ White noise process is necessary only to express
the P, matrix as the error covariance matrix of the tap
gains.

o Adaptation to slowly varying channels
The optimal tap-gain values are time varying as a conse-
quence of the amplitude and phase characteristics of real
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channels being not stationary. From (31) and (32) the
P, matrix elements and the Kalman gain K, converge to

zero when £ goes to infinity, so the equalizer cannot adapt-

itself to changes in channel characteristics during the
transmission. Nevertheless, one can easily derive adap-
tive techniques from previous theory:

1. One can assume that the optimal tap-gain values are
randomly varying about a mean value. This leads to
the state equation

ot = €y om T BC, (45)

where Ac, is considered as a white noise process.
Then one has to calculate the correlation matrix

Q = E[Ac,Ac,’]

and, at each step from (6), the predicted error co-
variance matrix

P =P, +Q

Although Eq. (45) does not describe the true situa-
tion, it .could give good results in the case of rapidly
varying channels.

2. One can freeze the P, matrix after, say, 5N sampling
intervals. The Kalman gain stays sufficiently large to
ensure adaptation. (This procedure may be compared
with the one used by Chang [5] when his prefixed
wéighting matrix is not perfectly suited to the A ma-
trix.)

3. When the equalizer is switched into the decision-
directed mode, the P, matrix is restated and fixed to a
diagonal matrix with elements (P), ;= agf)ptﬁij, where

a is the step-size parameter usually used in the sto-

chastic gradient method [8]. It is easy to verify, re-

ferring to (28) and (25), that in this case the equaliza-
tion process becomes the same as in the steepest
descent method, which gives good enough results
when the equalizer has only to track slow changes in
channe] characteristics during data transmission.

This procedure would be attractive in a signal proces-
sor in which a large part of the computation power could
be used during a brief portion of the start-up phase to
achieve a fast reduction of mean-square distortion.

Computer simulation

During the equalization process, the expected mean-
square distortion at the kth sampling instant is approxi-
mately given by '

gl=&  (1+Nk"), (34)

opt

showing that convergence must be obtained within less
than 2N steps, and that the speed of convergence does
not depend on the characteristics of the channel. Com-
puter simulation has been used to check the validity of
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these assertions and to compare the speed of convergence
of the proposed algorithm with that in the steepest de-
scent method, where estimates of the tap gains are itera-
tively given by

Cpv1 = G T 1€,

In addition, the influence of the estimated value % of
the optimal mean-square distortion was investigated. As
step-size parameter we chose the optimal one defined by

Ungerboeck [8]:
w=1/N?),

where (u’) denotes the energy of the unequalized signal.

The algorithms have been tested with three channels:

Channel 1 Moderate amplitude and phase distortion

Channel 2 Heavy amplitude distortion, no phase dis-
tortion

Channel 3 Heavy amplitude and phase distortion.

For Channels 2 and 3 a large spread of the eigenvalues
of the A matrix occurs, leading to slow convergence with
the steepest descent method.

Two programs have been written. The first one, for a
given voiceband communications channel, determines
A, b, ¢, and & . The second program generates a
random sequence of bipolar signals (a, = *1), simulates
the channel, adds white Gaussian noise, and simulates
the equalizer. A signal-to-noise ratio of 30 dB is assumed
at the input of the equalizer. At each sampling instant the

mean-square distortion (ek2> is computed from
<ek2> = (ck - copt)A(ck - copt) + gipt

for various estimates of the optimal mean-square dis-
tortion.

The results of the simulation are presented in Figs. 1
and 2. From them we draw the following conclusions:

1. The speed of convergence of (ekz) does not depend on

the choice of &, provided that the value chosen is
reasonably small but not zero. A zero value would
mean that no noise is present and that the equalizer
is of infinite length. For a given channel, three com-
puter runs with %;im= 0.1, 0.001, and 0.0001 gave
identical results for the same sequence {a,} and the
same sequence of noise samples v(kT).

2. The speed of convergence is independent of the char-
acteristics of the channel. A large spread of the eigen-
values of the A matrix, as is the case for Channels 2
and 3, leads to a slow convergence with the steepest
descent method but has no effect on the speed of con-
vergence obtained through our algorithm.

3. Good agreement of the expected mean-square distor-
tion theoretically predicted by (34) and ( ekg) ob-
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Figure 1 Results of the computer simulation of the Kalman-
filter algorithm with three test channels: (a) Channel 1-moder-
ate amplitude and phase distortion; (b) Channel 2-heavy am-
plitude distortion, no phase distortion; and (c) Channel 3 —heavy
amplitude and phase distortion.
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Figure 2 Results of simulation with Channel 2 to test the as-
sumption of statistical independence of ¢, and u,.

tained by simulation may be observed in spite of the
various approximations that were made, among them
being the statistical independence of ¢, and u,.

To investigate the influence of this assumption, a com-
puter run was made with five baud intervals introduced
between sampling instants when tap-gain corrections are
made. As a consequence the successive tap output sig-
nals are forced to be quasi-statistically independent of
one another and the noise ¢, ., at the output of the opti-
mal equalizer is white noise. It can be seen in Fig. 2 that,
without counting the additional baud intervals, the speed
of convergence is unchanged.

All simulations showed that convergence towards
& .+ 3 dB was obtained within less than 2N steps. The
equalizer may be switched into the decision-directed
mode after about 2N sampling intervals. With an N of
15 and a transmission speed of 2400 bauds, the settling
time of the equalizer is aboiit 12 ms.

It would be interesting to compare these results with
those of Chang [5] and Sha and Tang [11]. Their struc-
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tures, however, use equally spaced, isolated test pulses
during the training period. For a given distortion smaller
than one, the Sha and Tang equalizer is optimally settled
when it has received, on the average, four or five isolated
pulses. Thus the settling time is at least 4N or 5N sam-
pling intervals. When the A matrix is perfectly known and
under noise-free conditions, the Chang equalizer fequires
only one training pulse. But when the A matrix is not
precisely known and with a high signal-to-noise ratio,
the settling time is again about 4N or 5N sampling in-
tervals.

Assume now that the equalizer using the Kalman
filter algorithm receives one isolated test pulse and that
no noise is present. If the diagonal elements of the P,
matrix, or of the S, matrix, are chosen large enough, Eq.
(44) holds and the equalizer is optimally settled when
one test pulse has been received, without prior knowl-
edge about the channel characteristics. The algorithm
then leads to the optimal speed of convergence, but it
requires a larger amount of computation than other
methods.

We also made a computer run with the P, matrix re-
duced to its nine main diagonals, its other elements being
zero. This resulted for Channel 3 in only a small degrada-
tion of the speed of convergence, since convergence
below & + 3 dB was obtained within about 60 sam-
pling intervals, while halving the required amount of com-
putation.
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