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Abstract: This  paper  shows how  a Kalman filter may be applied to  the problem of setting the  tap gains of transversal equalizers  to 
minimize mean-square distortion.  In  the  presence of noise and without prior knowledge about the  channel,  the filter algorithm leads  to 
faster  convergence than other methods,  its  speed of convergence depending  only on  the  number of taps.  Theoretical  results  are given 
and  computer simulation is used to  corroborate  the theory and  to  compare  the algorithm with the classical steepest  descent  method. 

Introduction 
Data transmission systems generally use voiceband com- 
munication  channels. These  are  characterized by a rela- 
tively narrow bandwidth (300 to 3000 Hz) ,  a high signal- 
to-noi’se ratio (about 20 to 30 dB) ,  and amplitude and 
phase  distortion slowly varying in time. High speed data 
transmission then  requires equalization.  Many presently 
used  modem receivers  are equipped with a matched filter 
to maximize the signal-to-noise ratio  and an equalizer to 
minimize the inter-symbol interference  due  to  distortion. 
Equalizers usually are of the  transversal filter type 
(tapped  delay line filter)  with tap gains adjusted  to min- 
imize some  error criterion. An  automatic equalization 
process  requires  an initial training period  during  which 
the equalizer reduces  the  error.  In  “preset equalization,” 
isolated pulses  are transmitted  prior to  data transmission, 
and  the  derived tap-gain settings are  kept  constant during 
the  data transmission  itself.  Periodically, a short training 
period may be entered  to  update  the  tap gains. 

A second kind of equalization process is known as 
“adaptive equalization.” Here  the  equalizer settings are 
derived  from the received signal. During  the training 
period, the equalizer  continuously seeks  to minimize the 
deviation of its sampled output signal from an ideal ref- 
erence signal generated internally in proper synchronism 
in the receiver.  When the residual  distortion is small 
enough, actual  data may be  transmitted. The  equalizer  is 
then switched  into the “decision-directed  mode,” using 
as reference a reconstructed signal obtained by threshold- 
ing the  output signal of the equalizer. Adaptive equaliza- 
tion has many advantages  over  preset equalization, 
among  them being the ability to  adapt  to  changes in chan- 
nel characteristics during the transmission. 

Clearly,  there is a delay in data transmission  propor- 
tional to  the length of the training  period, and a decrease 
in this  delay is desirable. Many adjustment algorithms 
[ 1 - 1  13  have been described in the  literature,  often em- 
phasizing the  speed of convergence.  For  the well-known 
mean-square  algorithm Gersho [4] showed that  the  speed 
of convergence  is largely determined by the maximum 
and minimum values of the  power  spectrum of the un- 
equalized signal. Similar results  for more  sophisticated 
algorithms have been reported by Chang [5] and 
Kobayashi [6]. To achieve  fast equalization, a new equal- 
izer  structure  has been developed by Sha  and  Tang [ 1 1 ], 
although their  theory  can fail for large  distortion. Devieux 
and Pickholtz [7] studied adaptive equalization with a 
second-order  gradient algorithm,  but that algorithm  re- 
quires computation of the  covariance matrix of the 
sampled  received signal. More recently,  Ungerboeck 
[8] showed that, in the  speed of convergence of the 
mean-square  algorithm, the influence of the  number of 
taps usually  dominates. He  gave a new criterion for con- 
vergence  and an optimal step size parameter in the ad- 
justment loops. 

In this paper, a new algorithm,  based on Kalman filter- 
ing theory [ 12, 131 is proposed for obtaining fast con- 
vergence of the  tap gains of transversal equalizers  to 
their optimal  settings.  A Kalman filter had previously 
been applied to  channel equalization by Lawrence  and 
Kaufman [ 151 but in a quite  different  way, since in their 
study  the  equalizer is replaced by the filter. 

I t  is shown here  that  the  convergence of mean-square 
distortion is obtained,  under noisy  conditions, within a 
number of iterations  determined only by the  number of 267 
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taps,  without prior  information about  the channel. First, 
fundamentals of Kalman's theory  are reviewed. Then we 
show how to apply the Kalman filter to  the equalizer and 
derive  an  expression  for  the  speed of convergence. 
Finally,  computer simulations are used to  check  the 
validity of the  theory  and  to  compare  the proposed al- 
gorithm  with the  steepest  descent method. Comparison 
is also  made with other sophisticated  algorithms. 

Kalman-Bucy filtering theory 
Over a decade ago,  with  publication of now  classical 
papers, Kalman [ 1 2 1  and Kalman and Bucy [ 1 3 1  de- 
fined a recursive method  and  deeply  transformed filtering 
and predicting theories. 

Application of the Kalman filter supposes  the studied 
system  to be described by a set of linear  difference  equa- 
tions, in the  case of discrete  systems  that  are of interest 
in this  study. Let x, be,  at  the kth sampling instant,  the 
N-dimensional vector of the N state variables [ 141 of a 
system modeled as follows: 

x,=Q,(k, k -  l ) ~ , - ~  + W,, ( 1 )  

Z, = H,x, + V,, (2  1 

where Q, (k, k - 1 ) is  the N X N state transition matrix; 
Z,, the M-dimensional measurement  vector; H,, the 
M X N measurement  matrix;  and W, and V,, respective- 
ly, N- and "dimensional vectors of white noise pro- 
cesses of zero mean. Later  we  use  the  covariance ma- 
trices Q, and R, of w, and V,. It is assumed  that  the 
noise processes W and V are statistically independent; 
i.e., if E denotes  expectation, then 

E[W,Vj'] = 0 ,  k, j =  1 ,  2; . .  . 
Throughout  the  paper, a  prime ( ' )  denotes matrix trans- 
position. 

Assume  we know at  the (k - 1)  th sampling instant  an 
estimate kk-l of the  actual  state  vector  and  the  error 
covariance matrix 

'k-1 = - i k - l )  (xk- l  - i k - l ) ' l '  (3) 

It is possible to  derive  from ( 1 )  a predicted value of the 
state at  the kth sampling instant, 

ik,k-l  = (k, k - 1 )k , - l ,  (4) 

and a predicted error  covariance matrix defined by 

',,,-I = - ',,,-1) - 'k,k-l)']. ( 5  1 
I t  can  be  shown  that 

pk,&l = Q , ( k  k - 1 )pk-l@' (k, k - 1 i- Q,. ( 6 )  

A  predicted measurement Z, is derived  from (2) : 

z k  = Hkkk,fi-l' ( 7 )  

The  deviation of the  predicted  measurement from the 
actual  measurement Z, is used to define a new estimate 
of the  state  vector  as 

The N X M correction matrix K, is computed in order  to 
minimize the  trace of the  error  covariance matrix P,. 
Then it can  be  shown  that K, and P, are given by 

and 

' k  = 'k,k-l - KkHkpk,k-l' (10) 

Application of the Kalman filter requires  an  estimate 
1 ( 0 )  of the initial state  vector  and  computation of the 
corresponding error  covariance  matrix Po. Usually '(0) 
is chosen as  the  mean value of x(0).  Then  it  can be shown 
that  the  subsequent  estimates  are unbiased. 

The Kalman filter defined by recursive  formulas (4) 
through ( 1 0 )  leads  to minimization of the  trace of the 
error  covariance matrix. More generally, if A is a sym- 
metric positive  definite  matrix, minimization of the pro- 
duct (x, - kk)'A(xk - 3 )  is obtained. 

Application of a Kalman filter to equalizers 
For simplicity we limit ourselves  to a pulse-amplitude- 
modulated (PAM) baseband  system.  The  equalizer is 
an  N-tap delay line filter. The input signal of the equalizer 
is the  PAM  baseband signal 

where {a,} ,is  the  sequence of quantized  pulses  to  be 
transmitted, h ( t )  is the channel response, T is  the inter- 
symbol separation  (or baud interval),  and u ( t )  is the 
additive noise. Both sequence {a,} ,and noise v ( t )  are 
stationary.  Let uk be the  vector of tap  output signals and 
c, be the  vector of tap gains of the equalizer, both  at  the 
kth sampling instant.  These  two  vectors  are N-dimen- 
sional. The  output signal of the equalizer is 

s, = u,' c,, ( 1 2 )  

and  we define the  error signal as 

e, = a, - s,. ( 1 3 )  

We choose  as  the  error criterion the minimization of the 
expected  mean-square  distortion, 

With  sequence {a,} and noise u ( t )  being assumed  sta- 
tionary, g does  not  depend  on k for a  given tap-gain 
setting. 
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It  can be shown [ 
given by 

cOpt = A"b, 

41 that  the optimal tap gains cOpt are 

(15) 

where A is the N X N symmetric  positive  definite matrix 

A = E[u,u,'], (16) 

and b is the N-dimensional vector 

b = E[a,u,]. (17) 

When c, is chosen  equal  to cOPt, the  mean-square  distor- 
tion assumes  its minimum value qpt' Even if no noise is 
present, gpt is not  zero  because of the finiteness of the 
number of taps.  Let e, be  the  error signal with the 
optimal adjustment of the  tap gains. Then we have 

' k  = 'ktCoPt + opt) (18) 

with 

During the equalization process,  the  expected mean- 
square distortion at  the kth sampling instant is, using 
(181, 

8; = E[{Uk'(Copt-  c k )  + e, (20 1 
It is well known [3]  that 

optu,] = O 3  (21) 

so the variables u,' (cOpt - c,) and e, are uncorrelated 
and (20 )  may be  rewritten as 

'; = E[ (Copt - ck)'ukuk' (Copt - c k )  1 + ept' ( 2 2 )  

As in [4] and  [8] we assume  that  the  dependence be- 
tween ut and ck may be neglected. Denoting by P, the 
covariance  matrix, 

P k = E [ ( C o p t - C k ) ( C o p t - C k ) ' l ~  (23) 

and using (16), the  expected  mean-square distortion at 
the kth sampling instant is given by 

'i = trace P,A + cpt' (24) 

Since A is a symmetric positive  definite  matrix, minimi- 
zation of (24) is  done by the algorithm by choosing the 
tap gains as  state variables. To  simplify the  theory  we 
assume  the channel characteristics  to be stationary  over 
the training  period, so that  the optimum tap-gain values 
are  constant during the settling time of the equalizer. 
This is not a severe  assumption since, for normal trans- 
mission speeds, the  equalizer  settles in a  few milliseconds. 

The problem is now stated:  One  wants  to identify the 
optimal equalizer  characterized by the  constant  state 
variables copt, knowing that  the  output signal uA'copt sat- 
isfies 
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' k  = Uk'Copt + opt' (18) 

Referring to the general state  equations (1)  and ( 2 ) ,  one 
sees  that  the  state transition  matrix is here  the identity 
matrix  and  that (18) is the  measurement  equation, e, 
appearing  as  the  measurement noise. Clearly,  sequence 
{ a,} and noise u ( t )  being of zero  mean, e, is a random 
variable of zero mean. To  apply the Kalman-filter ap- 
proach, we assume  that ek may be  considered as a 
white  noise process of zero mean  and variance gpt. 
This  seems  to be a reasonable approximation because 
the optimal mean-square  distortion  is usually small, in- 
cluding intersymbol interference still present  at  the out- 
put of the optimal equalizers, so that  the  correlation be- 
tween successive samples of the noise may be  neglected. 
However, this assumption is not  necessary  for  the con- 
vergence of the algorithm. 

Let us assume we know at  the ( k  - 1)  th sampling in- 
stant  an  estimate ck-l of the  state  vector  and  the  error 
covariance matrix Pk-,. Obviously, since the  state transi- 
tion  matrix is the identity  matrix, the predicted state vec- 
tor ck,k-l  is equal to c , -~ ,  and the predicted  matrix Pk,k-l 
is equal  to Pk-l. The predicted measurement is 

6 = uk'ck-1, 

and  the new estimate ck is given by 

ck = ck-l + K k  (a, - ';,I 9 ( 2 5 )  

with 

K k  = pk-luk(uk'pk-luk + ept)" ( 2 6 )  

and 

pk = 'k-1 - Kkuk'P&l. (27)  

Computation of the Kalman gain K,, here reduced to  an 
N-dimensional vector, involves  only  inversion of a  scalar 
quantity, but requires prior  knowledge of the optimal 
mean-square  distortion. Clearly, gpt cannot be  known 
a priori. Usually,  after equalization, the signal-to-noise 
ratio at  the  output of the equalizer is between 20 and 30 
dB, so that  to  compute  the Kalman gain one  can  use  an 
estimated value e',,, of the optimal mean-square  distor- 
tion included between 0.01 and 0.001. Later we show 
that  the estimated  value of cp, has  no influence on  the 
successive  estimates of the  tap gains. 

As initial estimate co of the  tap gains, we choose co = 0. 
The optimal tap gains being assumed  to be uniformly 
distributed  between plus and minus 1.5, the initial co- 
variance matrix Po is the matrix  with elements 

(Po),j=0.75 6,,, i, j =  l;.., N ,  

6ij being the  Kronecker function. The off-diagonal terms 
of the matrix are  zero,  to reflect the statistical  indepen- 
dence of the initial estimates. 269 
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Speed of convergence 
Equation (26) may be  rewritten as 

(1 - K k u k ' ) P k - l u k  = K k g p t '  ( 26' 1 

where I is the N X N identity  matrix. Multiplying (27) 
on  the right by uk and using (26'),  we obtain 

' k U k  = Kk%j20Pt' 

or 

K k  = 'kUk / (28) 

Eliminating K, from (27),  we obtain 

pk = pk-] - Pkukuk'Pk-l /e",,,' (27') 

The Pk matrix, being a covariance matrix, is positive defi- 
nite and  has  an inverse. Thus multiplication of (27') on 
the left by P," and  on  the right by Pk-l-l leads  to 

Pk-I = Pk-l-l + ukuk'/ePt.  (29) 

P, = got ePtP"" + UiUi' . 

From (29) we  derive 

( 1-l (30) 

P, = gpt (ill upi' r1 1 ( 3 1 )  

k 

After a few iterations, epi usually being smaller  than 
0.01, the diagonal matrix ~ , , t P , "  may be  neglected in 
(30) so that P, becomes 

i = l  

and (28) becomes 

showing that  the  dependence  between  the Kalman  gains 
and e",,, may be  neglected for usual  values of e",,,. 

Clearly,  the matrix k-'(Z;=, uiui') converges  to  the A 
matrix  when k goes  to infinity. Nevertheless,  one  can 
estimate  that  after 30 or 40 iterations it is possible to 
write 

trace PkA W ep,Nk". ( 3 3 )  

Then, from (24),  if the optimal mean-square  distortion 
is known a priori, we  derive 

gt M gpt( 1 + Nk-'), (34) 

which means  that  convergence  can theoretically  be  ob- 
tained within less than 2N steps. 

Further analysis of the  algorithm 
It  has been  seen that  the algorithm can be  applied to  the 
identification of the optimal equalizer if the optimal er- 
ror ek may be  considered as white  noise. We now show 
that this assumption  is  not  necessary. 

Denote by S, the N x N matrix defined by 

Then (26) and (27) become 

K, = Sku, and 

s,-' = s,:: + ukukt, or 

Substituting (38) into ( 2 5 )  weobtain 

c, = C k - ]  + S,u,a, - s,u,u,'c,~,. (41 1 
Substituting S," - Sk-l from (39) for ukuk' and multi- 
plying both sides of (4 1) by Sk-', we  have 

-1 

Sk"C, = SkWl CkW1 + a,u,. -1 (42 1 
With co = 0, (42) may be rewritten  as 

ck = S, aiui 

or, using (40), 

k 

i= 1 

k 

i = l  i= 1 
(43) 

For sufficiently large k ,  such  as k 2 N, the diagonal 
matrix So-' may  be  neglected in (43), so that  the kth es- 
timate of the  tap gains is given by 

(44 1 

and is independent of the  previous  estimates if the initial 
estimate of co is 0. 

From (44) it is obvious  that  the kth estimate c, is the 
optimal one  for  the received sequence up to  the kth 
sampling instant. For  example, if the  pseudorandom 
sequence used  during the training  mode is periodic,  send- 
ing only one period of the  sequence  is sufficient. The 
algorithm must give good results  even if the signal-to- 
noise ratio is small,  since the algorithm builds up the in- 
verse of the  correlation  matrix of the sampled  received 
signal, which is  corrupted by noise. The  assumption  that 
e, is a white  noise process  is  necessary only to  express 
the Pk matrix as  the  error  covariance matrix of the  tap 
gains. 

Adaptation  to slowly  varying channels 
The optimal tap-gain values  are time  varying as a conse- 
quence of the amplitude and  phase  characteristics of real 
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channels being not stationary.  From  (31) and (32) the 
P, matrix  elements  and  the Kalman gain K, converge  to 
zero when k goes  to infinity, so the  equalizer  cannot  adapt 
itself to changes in channel  characteristics during the 
transmission. Nevertheless,  one  can easily derive  adap- 
tive techniques from previous  theory: 

1. One  can  assume  that  the optimal tap-gain values are 
randomly  varying about a  mean  value. This  leads  to 
the  state  equation 

c k  opt - ‘(k-I ) opt + “k 9 

- (45) 

where Ack i s  considered  as a white  noise process. 
Then  one  has  to  calculate  the  correlation matrix 

Q = E[AckAc,‘] 

and,  at  each  step from ( 6 ) ,  the predicted error  co- 
variance matrix 

’k ,k-]  = p k - ]  + Q .  
Although Eq. (45) does  not  describe  the  true situa- 
tion, it could  give good results in the  case of rapidly 
varying  channels. 

2. One  can  freeze  the Pk matrix  after,  say, 5 N  sampling 
intervals. The Kalman  gain stays sufficiently large to 
ensure  adaptation.  (This  procedure may be  compared 
with the  one used  by Chang  [5]  when his prefixed 
weighting matrix is not perfectly  suited to  the A ma- 
trix.) 

3. When the  equalizer is switched into  the decision- 
directed  mode,  the Pk matrix is restated  and fixed to a 
diagonal  matrix with elements ( P ) i j  = aePtaij, where 
a is  the step-size parameter usually used  in the sto- 
chastic  gradient method [8]. It is easy  to verify,  re- 
ferring to (28) and (25),  that in this  case  the equaliza- 
tion process  becomes  the  same  as in the  steepest 
descent  method, which gives good enough results 
when the  equalizer  has only to track  slow changes in 
channel  characteristics during data transmission. 

This  procedure would be  attractive in 3 signal proces- 
sor in  which a large part of the  computation  power could 
be  used  during a brief portion of the  start-up  phase  to 
achieve a fast reduction of mean-square distortion. 

Computer simulation 
During  the equalization process,  the  expected mean- 
square  distortion  at  the kth sampling instant is approxi- 
mately  given by 

g; = gpt( 1 + N k ” ) ,  (34) 

showing that  convergence  must be  obtained within less 
than 2N steps,  and  that  the speed of convergepce  does 
not  depend  on  the  characteristics of the channel. Com- 
puter simulation has been  used to  check  the validity of 
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these  assertions  and  to  compare  the speed of convergence 
of the proposed  algorithm  with that in the  steepest  de- 
scent  method,  where  estimates of the  tap  gains  are itera- 
tively given by 

‘k+ l  ‘k + p e k u k .  

In  addition,  the influence of the estimated  value e”,,, of 
the optimal mean-square distortion was investigated. As 
step-size parameter  we  chose  the optimal one defined by 
Ungerboeck [SI: 

P = 1 / N ( u ’ ) ,  

where (u’) denotes  the energy of the unequalized signal. 

The algorithms have been tested with three  channels: 

Channel I Moderate  amplitude  and  phase  distortion 
Channel 2 Heavy amplitude distortion,  no  phase dis- 

Channel 3 Heavy amplitude and  phase distortion. 

For  Channels 2 and 3 a  large spread of the eigenvalues 
of the A matrix occurs, leading to slow convergence with 
the  steepest  descent  method. 

Two programs have been  written. The first one,  for a 
given  voiceband communications  channel,  determines 
A, b, cOPt, and iFtp,. The second  program generates a 
random sequence of bipolar signals (a,  = k 1 )  , simulates 
the  channel,  adds white Gaussian noise, and simulates 
the equalizer. A signal-to-noise ratio of 30 dB is assumed 
at  the input of the equalizer. At  each sampling instant  the 
mean-square distortion (e:)  is computed from 

tortion 

( e k 2 )  = (‘k - c , )p , )A(ck  - ‘opt) + gp, 
for various estimates of the optimal mean-square dis- 
tortion. 

The  results of the simulation are  presented in Figs. 1 
and 2. From them we draw  the following conclusions: 

1. The speed of convergence of (e : )  does  not  depend  on 
the choice of e”,,,, provided that  the value chosen is 
reasonably small but  not  zero. A zero  value would 
mean that  no noise is present  and  that  the  equalizer 
is of infinite length. For a  given channel,  three corn- 
puter  runs with e”,,, = 0.1, 0.001, and 0.0001 gave 
identical results  for  the  same  sequence {a , }  ,and the 
same  sequence of noise samples u ( k T ) .  

2. The  speed of convergence is independent of the  char- 
acteristics of the channel. A large  spread of the eigen- 
values of the A matrix,  as is the  case  for  Channels 2 
and  3, leads to a slow convergence with the  steepest 
descent method but  has  no effect on  the speed of con- 
vergence  obtained  through our algorithm. 

3. Good  agreement of the  expected  mean-square  distor- 
tion theoretically  predicted by (34) and (e:) ob- 271 
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Figure 1 Results of the computer simulation of the  Kalman- 
filter algorithm with three  test  channels:  (a)  Channel 1 -moder- 
ate amplitude and  phase  distortion; (b)  Channel  2-heavy  am- 
plitude distortion, no phase  distortion;  and (c) Channel 3 - heavy 
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Figure 2 Results of simulation  with Channel 2 to  test the as- 
sumption of statistical independence of ck and ut. 

tained  by  simulation may be observed in spite of the 
various approximations  that were made,  among  them 
being the statistical independence of ck and uk. 

To investigate the influence of this assumption, a com- 
puter  run  was  made with five baud intervals introduced 
between sampling instants  when tap-gain corrections  are 
made. As a consequence  the  successive  tap  output sig- 
nals are  forced to be  quasi-statistically independent of 
one  another and the noise ek at  the  output of the opti- 
mal equalizer is white noise. It  can be seen in Fig. 2 that, 
without counting the additional  baud intervals,  the  speed 
of convergence is unchanged. 

All simulations  showed that  convergence  towards 
g,,, + 3 dB  was obtained  within less  than 2N steps.  The 
equalizer may be switched into  the decision-directed 
mode after  about 2N sampling  intervals.  With an N of 
15 and a  transmission  speed of 2400 bauds,  the settling 
time of the  equalizer  is  about 12 ms. 

It would be interesting to  compare  these  results with 
those of Chang [ 5 ]  and  Sha  and  Tang [ 111. Their struc- 

IBM J. RES. DEVELOP. 



tures,  however,  use equally spaced, isolated test  pulses 
during the training period. For a given  distortion  smaller 
than one,  the  Sha  and  Tang  equalizer is optimally settled 
when it has  received,  on  the  average,  four or five isolated 
pulses. Thus  the settling time is at least 4N or 5N sam- 
pling intervals.  When the A matrix is perfectly known’and 
under noise-free conditions,  the  Chang equalizer requires 
only one training pulse. But when the A matrix  is  not 
precisely  known and with a high signal-to-noise ratio, 
the settling  time is again about 4N or 5N sampling in- 
tervals. 

Assume now that  the equalizer using the Kalman 
filter algorithm receives  one isolated test pulse and  that 
no noise is present. If the diagonal elements ok the Po 
matrix, or of the So matrix, are  chosen large enough,  Eq. 
(44) holds and  the  equalizer is optimally settled  when 
one  test pulse has been received, without  prior  knowl- 
edge about  the  channel  characteristics.  The algorithm 
then leads  to  the optimal  speed of convergence,  but  it 
requires a larger amount of computation  than  other 
methods. 

We also made  a computer run  with the Pk matrix re- 
duced  to  its nine  main  diagonals, its  other  elements being 
zero. This resulted for  Channel 3 in only a small degrada- 
tion of the speed of convergence, since convergence 
below cpt + 3 dB  was obtained within about 60 sam- 
pling intervals, while halving the  required  amount of com- 
putation. 
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