
A. Birman

On Proving Correctness of Microprograms

Abstract: This paper describes the results of an investigation in proving the correctness of microprograms. The vehicle used is the S-
machine, which is a very simple “paper” computer. The approach to the proof of correctness is based on formally defining the machine-
instruction level and the microprogramming level of the given machine, and then showing that these “interfaces” are equivalent through
the use of a concept called algebraic simulation.

Introduction
This paper presents the results of an investigation [1 1
into proving the correctness of microprograms. The ve-
hicle chosen for this investigation is the S-machine, a
variation on a computer described by Gear [2] for which
a simulation package is available [3]. This very simple
computer is being used for teaching microprogramming in
the Education Department at IBM Poughkeepsie.

The question of whether a microprogram is correct
leads to another question: “What is the microprogram
supposed to do?” In trying to answer the latter question
we realize that the functions of a microprogram are re-
lated to the operation of other parts of the computer:
control store, registers, etc. Therefore the microprogram
together with other parts of the computer constitute an
“interface” or a “level” of the system. The concept of
interface is an old and natural one. When designing a
computer we start by specifying the machine at the high-
est interface. As more decisions are made on how to im-
plement this level, a new and more detailed interface is
drawn up. For example, the documentation for the S-
machine consists of

1. a description of the machine-instruction level, the

2. a description of the microinstruction level, or the
so-called “principles of operation” manual, and

“microprogramming manual.”

The language used in descriptions of this kind is in-
formal; the English language description is complemented
by graphic illustrations. When considering the problem
of correctness, however, we have to formalize our defini-
tion in a way that will enable us to prove whatever we

250 claim to be correct. If we want to describe an interface

of a given system together with all the data structures and
processes related to this interface, the formal counter-
part of the usual English-language description can be an
abstract machine.

The concept of an abstract machine was first formu-
lated in the field of programming language semantics
[4-91. An abstract machine which interprets a program
in a given language is considered as one way of specify-
ing the semantics of that language. Ouruse of the concept
of abstract machine is similar to that of Lee [lo] . Work
in formalization of system definitions can also be found
in Falkoff [111, Bell and Newel1 [121, and others.

A language that has been used in defining abstract
machines is the Vienna Definition Language (VDL) [7-9,
13-15]. In order to have a useful definition language for
machine interfaces we had to supplement the VDL with
basic operators and predicates. Since we are dealing with
objects like registers, flip-flop circuits, memories, etc.,
which are represented by binary vectors and arrays, we
selected as basic operators a small number of APL opera-
tors. Using this VDL/APL language we define two ab-
stract machines: abstract machine S, which relates to
the machine instruction interface, and abstract machine
pS, for the microinstruction level (The abstract machine
S is not to be confused with the “S-machine” which is
the name of our computer.). The microprogram itself is
part of pS.

The abstract machine pS is in some sense equivalent
to S. This kind of equivalence is found in the concept
called “algebraic simulation of one program by another,”
described by Milner [161 ; abstract machines are them-
selves programs or, more precisely, “abstract programs.”

A. BIRMAN IBM J. RES. DEVELOP.

The essence of the idea of simulation can be informally
described as follows. A simulation of P by P’ implies that
anything computed by P can be computed by P’. The
simulation should have certain properties: 1) For any
program P there should exist a simulation of P by P , and
2) if there exists a simulation of P by P , and also a simu-
lation of P I by P, , then there should exist a simulation
of P by P,. We display such a concept and prove that it
has these properties.

In this paper we develop an approach to proving the
correctness of microprograms and we apply it to the S-
machine. The proof of correctness for the S-machine
implementation consists of the following steps:

1. Definition of abstract machine S corresponding to the

2. Definition of abstract machine pS for the microin-

3. Determining the desired simulation relation R .
4. Proving that pS simulates S with respect to R .

machine-instruction level.

struction level.

The paper is organized as follows. The second sec-
tion contains a brief description of the S-machine. For
further details the reader is referred to [2,3]. In the third
section we introduce the VDL/APL language used in de-
fining abstract machines, and we present the definition
of the abstract machine S which is discussed through ex-
amples; the complete definitions of S and pS are found in
Appendixes A and B, respectively. References [7-9, 13,
151 provide further details on VDL and [171 on APL. In
the fourth section the concept of simulation is defined.
An example is given to illustiate how one proves simula-
tion. In the fifth section the simulation relation for (S,
pS) is postulated and the proof of simulation which in-
volves the method of inductive assertions [181 is given.
Appendix C contains the microcode. Summary, discus-
sions and directions for further research are the subject
of the last section.

Notation
Given two sets D and D‘ , R is a relation if R D X D’.
An element of R is denoted by (d , d‘) E R or d 3 d’.
The inverse of R is R-’: R” = { (d’, d) I (d , d ’) E R } . The
relation R is a (partial) function if for each d E D there
is at most one d’ E D’ such that (d , d’) E R ; in this case
we also write R : D + D‘ , and R (d) = d‘ or R d = d’
for (d , d’) E R . If R is a function and for d E D there
exists d’ such that R d = d’ we say that R is defined at d
and write (R d) . Let F : D + D be a function from D
to D and let d E D ; Fid is defined by

a. F’d = d ;
b. Fid = F (F”’d) if (F i - ’ d) ;

= undefined otherwise.

MAY 1974

A straight line program T = (J , I , 0) over a set of
variables Z and a set of operators + = { f , g ; . .} consists
of a sequence J of assignment statements, a set of input
variables I , and a set of output variables 0. Aho and
Ullman [191 use a directed acyclic graph (dug) to repre-
sent straight line programs. We use an equivalent nota-
tion in the form of a sequence of assignments. Without
giving a formal definition for our notation we illustrate
it by an example.

Let T = (J, I , 0) be a straight line program over + =

{ f , g , h } and Z = { X , Y , A } where I = 0 = {X, Y } and J
is the following sequence of statements:

A + f W , Y)
Y e g (A , A)
X+- h (A , Y)

The dug [191 corresponding to T is

X I \ Y

The circled nodes represent the most recent definitions
of the output variables. Let X, = {s,, sZ; . .} be a sequence
of new variables such that Z n Z, = 4. We represent
the same program as

s, : f(X, Y)
Y + s* : g(s,, S I)

x s3 : h (SI’ sz)

Here the most recent definition of the output variables
X, Y are indicated by the arrow. Details on the subject
of equivalence of straight line programs are contained
in [191.

Brief description of the S-machine
The S-machine is a stack oriented machine. The stack
stores a variable number of words; at any time, only the
word stored at the top level of the stack is accessible. A
new. word can be stored in the stack by “pushing” the
stack, that is, by creating a new level on top of the stack.
If the stack is “popped,” the word at the top of the stack
is discarded and the word on the next level becomes the
top of the stack. Part of the S-machine instructions ma-
nipulate the stack in various ways, as can be seen from
Table 1 . For example, the LOAD instruction will push the
stack one level and place on the top of the stack a word

Table 1 The S-machine instruction set.

One-address instructions

op-code instruction stk change action
0
1
2
3

5 TMI 0
6
7 TNZ 0 Transfers control if top of stack is nonzero
8 ENTER -1 Enter a subroutine by placing CC on top of the stack and transferring control
9

10 LDXI 0 Load X immediate, i.e., the address of this instruction
11 LOOP 0 Increment X by 1 and transfer control if it is nonzero.
12 LS 0 Left-shift N places, where N is the address
13 RS 0 Right-shift N places

LOAD -1 Load stack from memory location
LDI
STORE
TRA 0 Transfers control to specified location

-1 Load immediate (Loads top of stack with address)
+1 Stores top of stack in memory

4 TPL 0 Transfers control if top of stack is non-negative
Transfers control if top of stack is negative

TZE 0 Transfers control if top of stack is zero

LDX 0 Load X with contents of memory location.

Zero-address instructions

op-code instruction stk change action
32 ADD +1
33 SUB +1
34 AND +1
35 OR +1
36 EOR +1
37 NOT 0
38 XTS -1
39 STX +1
40 ADX +1
41 SBX +1
42 RET +1
43
44

Add top two levels of stack
Subtract top two levels of stack
AND top two levels of stack
OR top two levels of stack
EXCLUSIVE OR top two levels of stack
Complement top level of stack
Index to stack (Puts contents of X on top of stack)
Stack to index (Removes top of stack and places it in X)
Adds top of stack to X
Subtracts top of stack from X
Transfers to address contained in top of stack

POP Discards top level of stack
STOP Stops the machine by setting SW to zero

taken from a specified memory location. The STORE in-
struction will place the top of the stack in a main memory
location and pop the stack.

The basic data element in the S-machine is the 32-bit
word. (This is a variation on the machine described by
Gear [2], which is byte oriented. 1 The main memory
contains zz4 words with addresses from 0 to 224 - 1. All
S-machine instructions take exactly one word; the in-
struction format is given in Fig. 1. As can be seen from
the figure, both indexing (with respect to the index regis-
ter X) and indirect addressing are possible in calculation
of addresses.

Table 1 lists the S-machine instructions together with
the values of their op-code fields, their effects on the
stack, and their functions. There are two types of in-
structions: those which only manipulate the stack with-
out using their address fields (or the indexing and indirect
facilities) and are grouped under “zero-address instruc-
tions”; and “one-address instructions.” The effect of an
instruction on the stack is represented by the change it

252 causes on the pointer to the top of the stack. The stack

A. BIRMAN

consists of a stack pointer, stored in the reserved register
STK and a (variable) storage area in the higher-address
region of the main memory. Initially the stack pointer
has the value 224, i.e., it points to the bottom of the stack.
The stack is pushed by decrementing the stack register
by one, and popped by incrementing it by one.

The S-machine data flow is shown in Fig. 2. The
machine operation can be described in the following
manner.

The value of the IN1 bus is gated into the left side of
the Arithmetic and Logic Unit ALU, while the value of
IN2 is gated into the right side of the ALU. Both of these
buses are 32 bits wide. One of eight different functions
(addition, subtraction, etc.) can be performed in the
ALU on the two input operands. The result is gated via
the OUT bus into one of the eight registers shown. In
addition, an optional memory reference, read or write,
can occur. A read causes the 32-bit word addressed by
the current content of the Memory Address Register
(MAR) to be placed into the Memory Data Register
(MDR). A write will cause the content of the MDR to

IBM J. RES. DEVELOP.

0 1 2 I 8 31

I1

I A A t Address

Op-code

Indexing

Indirect addressing

Figure 1 The S-machine instruction format.

be stored in the location addressed by the MAR. This
whole sequence of events is known as the machine cycle.
As mentioned before, STK contains the stack pointer;
X is the index register; IR is used to store the op-code
during instruction execution. A and B are general work-
ing registers; and CC is used to store the pointer to the
current instruction in main memory.

The sequencing of data through the data flow is de-
termined by the control which is microprogrammed (Fig.
3). The microprogram resides in the Control Store (CS).
The operation of the control can be described as follows.

A word in CS, called a microinstruction, is placed in
the Control Store Data Register (CSDR). Decoding of
the various fields of the microinstruction takes place, the
output of the decoders being connected to gates in the
data flow. The boxes labeled "Test logic" and "+1
Adder" determine the address of the next microinstruc-
tion; the resulting address is placed in the Control Store
Address Register (CSAR).

As illustrated in Fig. 4, the 16-bit microinstruction can
have one of two possible formats. 1) When the value of
bit zero is zero, indicating that the microinstruction con-
trols the data flow, the fields of the microinstruction deal
with various parts of the data flow. The memory field
(bits 1, 2) , for example, determines whether a read, a
write or no memory reference occurs. Similarly, the func-
tion field (bits 9, 10, 11) determines the function to be
performed by the ALU. 2) When the value of bit zero is
one, indicating that the microinstruction controls the
sequencing of the microprogram, the test condition field
(bits 1, 2, 3) determines the test condition to be per-
formed for branching. In the microprogram shown in
Appendix C the microinstructions have their fields speci-
fied by a mnemonic code, instead of the binary code. For
example, microinstruction

10 D D M ZERO, B , M A R , R

specifies that IN1 bus takes value zero, IN2 bus takes
the value of register B, the ALU performs the operation

MAY 1974

I

Y

t ' - 1

IN2
bus
- 0 0 31

MDR +- zZ4-1

IN 1 0 31
bus

X
A

0-
B

4 I -

STK

cc
-1 -

0 31 0 31

0 31
LATCH

OUT bus

Figure 2 The S-machine data flow.

MDR and IR bits

Gate signals
to data flow

n +1 ADDER

Test Logic

r.
, .,""""""""""""I
; %.
i,,.,' I I -

Figure 3 The microprogrammed control.

of addition, and the result goes to MAR. In addition, a
read is started in main memory. The encoding of various
fields and other details on the S-machine may be found
in [2,3]. 253

CORRECTNESS OF MICROPROGRAMS

The following is a list of properties of the S-machine where is-bit is a basic predicate and the others have to
which in various ways point to limitation of our results be further defined.
on correctness: In defining S and pS we made use of the VDL as a defini-

1 . The microprogramming in the S-machine is “vertical.”
2. There are no I /O instructions.
3 . References to memory (both main store and control

store) involve no delay; i.e., we have instantaneous
read-out.

4. An arbitrary limitation of at most one level of indirect

tional system. We supplied the elementary objects for
our particular application together with the basic func-
tions and predicates which operate on those objects. The
abstract machines we define are similar in structure, in
that they are characterized by a state, also a VDL object,
with the following components:

addressing was imposed on the original S-machine. 1 . Control;

no’multiply or divide instruction. 3 . Data.
5 . The instruction set is limited; for instance, there is 2. Macrolibrary;

Definition language
The language used to define the abstract machines S and
pS is based on the VDL language and makes use of the
VDL data structures. We have two classes of data ob-
jects - elementary and composite. The composite ob-
jects have a set of components that may be selected by
unique selectors. The following tree representation of
such an object i shows that i has four components id, ix,
op; and ad, which can be addressed by using the respec-
tive selector. Names associated with the branches of
the tree identify the- unique selectors. .The leaves (termi-
nal nodes) of the tree are formed by the components.

For example, s-id(i) = id. The object i may be con-
structed by using the construction operator p, as follows:

i : po((s-id : i d) , (s-ix : ix), (s-op : op) , (s-ad : a d))

The object i appears in the abstract machine S and repre-
sents an S-machine instruction. The components of i cor-
respond to the instruction fields: indirect addressing bit,
indexing bit, op-code field, address field.

For manipulation of VDL objects the operator p is avail-
able in the language; however, the need for it does not
arise in the definitions of S an4 pS. Often we have to test,
given a VDL object, whether it belongs to a certain class
of objects. This is done in the VDL through the use of
predicates. For example a predicate is-inst defining the
set of all S-machine instruction may be written as

is-inst = ((s-id : is-bit),
(s-ix : is-bit),
(s-op : is-opjield),
(s-ad : is-adjield))

The control, represented by a tree, is built from VDL in-
structions. Given a control tree, the leaves of this tree
are candidates for processing in the next step; any of
those instructions can be picked. The instructions are
of two types:

Macroinstructions Processing consists of replacing the
vertex they occupy in the control tree by a subtree of
instructions, without modifying any other component.

Elementary instructions Execution usually produces as-
signments to various components and returns values up
the control tree [131. At termination the vertex is deleted
from the control tree.
’ A macroinstruction has the following format:

macro1 (param,; . ., param,) =
cond, + c-tree,
cond, + c-tree,

cond, + c-tree,

One of the control trees c-tree, is selected during the
macro-expansion to replace the vertex labeled macro 1 ac-
cording to which predicate cond, returns the value true.
The elementary instruction has the format

eleml (param,;. ., param,) =
p A s s : e ,
s-scl: e,

s-scm: e,,

where the e, are expressions which may make use of
basic functions and predicates. (For convenience, the
body of an instruction may appear instead of a control
tree c-tree, in a macroinstruction; in this case the instruc-
tion may use all the parameters of the macroinstruction.)
Both macroinstructions and elementary instructions have
their definitions in the macrolibrary. The basic functions
and predicates are a subset of APL. A list of those actually
used i s given in Table 2. Not shown in the table are predi-

IBM J . RES. DEVELOP.

cates that characterize the elementary objects is-bit, is-
binvector, and is-binmatrix. Some changes to the VDL are
adopted for convenience:

1. The list facility for constructing objects in the VDL and
its related function length are not being used. Instead,
the APL vector and matrix facilities are employed.

2. Predicates are treated as functions with domain (0, 1 }.
If a predicate appears on the left side of a macroex-
pansion, then it must have a definition in the library
which is evaluated in the normal fashion.

3. If x is a selector operating on state S, we may write x
instead of x (S) , if S is determined by the context.

Abstract machine S
The definition of S is given in Appendix A; it consists of
three parts:

1. Predicate is-S (for abstract syntax of S) ,
2. Initial state;
3. Macrolibrary.

The predicate is-S identifies those components of the
S-machine which are known at this interface- main store
mem, stack register stk, index register x , instruction
counter cc and the machine-on-off bit sw.

The initial state specifies the value of stk and the con-
trol tree s-control (S); all other components have arbi-
trary values.

The macrolibrary component of the state contains
definitions of VDL instructions; the main macrodefinition
is exec-pgm:

exec-pgm =
is-run (S) + exec-pgm

exec-inst (i)
i: fetch-inst

else + 0
This macro calls itself recursively until the predicate
is-run takes the value 0 (or false) which happens when
bit sw is turned off, as can be seen for the definition of
is-run. Each of these calls executes one machine in-
struction.

The cycle has two parts: instruction fetch by macro
fetch-inst and instruction execution by exec-inst. As a fur-
ther example, consider the execution of a LOAD instruc-
tion; the part of the macrodefinition exec-inst relevant for
this case is
is-load + load-stk (a)

a: fetch-word(b)

b: calc-addr(i)

adv-ctr
Here i is the parameter passed to exec-inst and is the ob-
ject representing the instruction executed. The macro
adv-ctr increments cc by one for the next instruction

i ,l 2,3 5 , 6 8,Y 11, 1; 15,

output

Branch address

Test condition

Figure 4 Microinstruction formats.

Table 2 Basic (APL) functions in the definition language.

Function Dejinition or example*

Binary arithmetic functions
Binary relations on scalars
Boolean functions
Size ofY; p2 3 1 5 = 4
Reshape Y to size X 3pO = 0 0 0
IndexXbyY;23 15 [23] = 1 5
First A integers; ~3 = 0 1 2
Representation of A in system with radii X
Value of representation Y in radix A

2 2 2 T 5 = 1 0 1
211 1 0 = 6

Catenation; 1 3 5, 6 3 = 1 3 5 6 3
A-residue of B ; 417 = 3

*A, B are integers; X, Y are vectors

address. As the tree structure of a macrodefinition is
represented by indentation [131, it is seen that after the
macro-expansion of exec-inst the control tree has two
leaves: adv-ctr and calc-addr(i). The choice of the next
step is, however, irrelevant if the definition is consistent;
that is, the machine S is determinate. We choose to exe-
cute adv-ctr first. The execution of LOAD is completed by
the sequence of macros: calc-addr which computes the
address of the word to be loaded on top of the stack;
fetch- word which fetches that word; and finally load-stack,
which loads the word on the stack. 256

CORRECTNESS OF MICROPROGRAhqS MAY 1974

The abstract machine pS is similarly defined; its defini-
tion is given in Appendix B.

Simulation of one program by another
In this section we present a concept of simulation slightly
different from Milner's [161 and illustrate a proof of sim-
ulation in an example.

Definition I An abstract program is a triple P= (D, Do,
F) where D is a set called the domain of P; Do c D is a
Set of initial values; and F: D + D is a partial function. A
computation is a sequence (do, dl, d,, . . .) in which
do E Do, di+l = Fdi, i = 1,2; . ..

Consider, for example, the class of flowchart pro-
grams. These can be regarded as abstract programs hav-
ing domain D M X E , where M is the set of nodes in
the program graph and E is the set of state-vector values.
For recursive programs, M could be the infinite set of
states of a pushdown stack.

Assume we have a flowchart program and we define
D M X E . With each flowchart we can associate a func-
tion advance which takes s E M X E as argument and
returns a value also in M X E after executing one instruc-
tion. Assume further that we have an edge in the flow-
chart from node n' to node nj and labeled by the assign-
ment xk + f (x , , . . ., xn); let (x,, . . ., xn) E E . Then
mdvunce (n i , x,,. . ., x n)

Now define a function advance' as follows:
advance' (s) = s if s E D

The function advance' returns the first value in D en-
countered by repetitive applications of advance. Finally,
F (d) = advance' (advance (d)) if d E D and

(advance' (advance (d l))

BY specifying D we have essentially determined F ; F is
obtained by use of the functions advance, advance' or
some similar device. Often d E D is given as an expres-
sion containing free variables. Calculating F d amounts
to "symbolic execution" of a path. Then we may want to
use, instead of the expression Fd, the path that gives rise
to Fd.

Definition 2 Let P = (D, Do, F) and P' = (D', Dor, F')
be two programs. A relation R c D X D' is a strong simu-
lation (or simply, simulation) of P by P' if

C1. v (d , d ') E R (F d) iff(F'd')andifbotharedefined

C2. vd, E Do 3 do' E Do' (do, do') E R
C3. vd,' E Do' 3 do E Do (do, dor) E R
C4. Vd E D Vd' E D' (d, d') E R implies:

= (nj~x,,"',xk_,,f(x,,'..,x,),x~+,,'..,x,).

= advance' (udvance(s)) if s $ D.

= undefined otherwise.

then (Fd, F 'd ') E R.

[Vd, E D if (dl, d') E R then dl = dl

Condition C 1 , which is called weak simulation, means
that the following diagram commutes:

F F'

t t
Fd -F'd'

R

This can be also stated as: R is a weak homomorphism
between the algebraic structures (D , F) , (D', F').

Condition C2 asserts that R is total on Do; Condition
C3 asserts that R-l is total on Do'; Condition C4 means
that R" is single-valued. If R is a strong simulation of P
byP 'wewri tes im(P,R,P ') .

If R is a strong simulation of P by P', P' can compute
anything computed by P and this is shown in the follow-
ing theorem.

Theorem 1 Let P = (D, Do, F) and P' = (Dl, Do' , F') be
two programs and let R D X D' be such that sim (P, R ,
P') . Then

Vd, E D,Vdo' E Do' (do, do) E R implies
(F'd,) iff (F t i do'), i = 1, 2;",
and if both are defined, then F 'do = R" [F lido']

Proof The proof is by induction on i. Assume i = 1.
From C 1 of Definition 2 it follows that: (Fd,) iff (F'd,')
and if both are defined (Fd,, F'd,,') E R . Since R" is
single-valued Fd, = R"[F'd,']. Assume the theorem is
true for i < n. Then (Fi"do) iff (Fti-'d(); if both are de-
fined then @do) iff (F"d,,') according to C1 of Definition
2. The rest of the theorem follows by an induction step.

Theorem 1 states that if (do, d;) E R and we apply F
and F ' , respectively, to the states of P and P' any number
of times, then all pairs of states obtained in this manner
are in R . Moreover, the state in P is retrievable from the
state of P' due to the single-valued nature of R". There-
fore, for any computation in P from do E Do to d E D , we
can use R to obtain the same result as follows. Take do'
such that (do, do') E R; the existence of do' is guaranteed
by C2 of Definition 2 . Then use P' to compute d' E D'
such that (d, d') E R . Finally take d= R" (8).

As mentioned in the introduction, a reasonable con-
cept of simulation should have the following property:
For any program P there should exist a simulation of P by
P. If there exists a simulation of P by P, and also a simu-
lation of P, by P,, then there should exist a simulation of
P by P,. Definition 3 and Theorem 2 show these proper-
ties for our simulation concept as given by Definition 2.

IBM J . RES. DEVELOP.

Dejinition 3 Let P , P‘ be two programs. We define the re-
lation < between two programs by P < P‘ if there exists
R such that sim (P, R , P’).

Theorem 2 The relation < over the class of programs is
reflexive and transitive.

Proof First we show that for any program P 3 R such
that s im(P, R , P) . Let P = (D , Do, F) , R = { (d, d) l
d E D } , i.e., R is the identity relation on D. Using Defini-
tion 2 it is easy to check that s im(P, R , P) . It remains to
be shown that < is transitive. Let P = (D , Do, F) , P’ =

(D’, D;, F ’) and PI’= (D’, Dof’, F ”) be programsand let
R , R‘ be such that s im(P, R , P ’) and sim(P’, R ’ , P ”) ;
then P < P‘, P‘ < P“. Let Q = RR’ = { (d , d”) Id E D ,
d” E D ” , 3 d‘ E D ’ (d , d‘) E R and (d’, d ”) E R ’ } . Using
Definition 2 we check that s im(P, Q, P“).

The following example indicates how one proves simu-
lation of one program by another and illustrates in a sim-
plified way some features of the proof for the S-machine.

Example
Consider the programs P , P‘ (Fig. 5) . In P , x is an integer
and y is a 32-bit binary vector; a left shift is performed
iteratively by executing a one-bit left shift each iteration.
The set of integers is denoted by N . We define

E = I (x , y) IX E N , y E
M = { l , 2 , 3 } .

Then P is represented in our formalism by

D = M X E
D o = ((1 , e) l e E E } .

For P’ we define

E’ = { (X ! , y r , z ’ , A lx’, Z’ E N , y’ E io, 1}Y A E 7 v 4 }

” = { 1,2 , 3)
D‘ = { (m’, e ’) Im’ E { 1, 3}, e’ E E ’ }

U { (2, e ’) le’ E E’ , z’ = 1}
Do’ = { (1, e ’) le’ E E’} .

We postulate the following simulation R:

R = R , , U R,, U R,,
R 1 , = { (d , d ’) l r n = r n ’ = 1 , x = x ‘ , y = y ‘ }
R,, = { (d , d ‘) Im = m‘ = 2 , x = x’, y = y ’ ,

R 3 3 = { (d , d ‘) l m = m ’ = 3 , x = x ’ , y = y ’ } .

Then we show that sim (P, R , PI) .

A = (0 1 2 3) , 2’ = 1)

Proof We show that Conditions C1 through C4 in
Definition 2 are satisfied for the R defined above.

Condition C1 is proved by cases. The cases are enu-
merated 1.1 through 1.4.

P : to

t o
I x‘+a I

Figure 5 The programs P and P’ (True * 1 , False * 0) .

1.1 Let (d , d‘) E R, , ; i.e., m = m’ = 1. The symbolic
execution of F d , F‘d’ corresponds to the following
straight line programs (we use begin, end as delimiters
for straight line programs) :

P begin (m = 1) P’ begin (m’ = 1)

”

x - p l : a x’ + q l : a

y +- p 2 : h y ’ + q 2 : h
P A (m = 2) z ’ + q3: 1

A c q 4 : (0 1 2 3)
P’ end (m’ = 2)

To verify that (F d , F ‘ d ‘) E R,,, from the above it can
be shown that at node 2 the following relations hold:

a. z = 1
b. x = x’
c. y = y’
d. A = (0 1 2 3).

1.2 Let (d , d‘) E R,, such that x = 0.

P begin (m = 2) P’ begin (m = 2)
P A (m = 3) P’ end (m = 3)

237

CORRECTNESS OF MICROPROGRAMS MAY 1974

Verify (Fd, F ' d ') E R33:

a. x = x'
b. y = y ' .

1.3 Let (d , d') E R,, and x # 0.

P begin P' begin
T -

x - p l : x - 1 q l : 2' + 1
Y +- P 2 : L S (Y) x' + q2: x' - 1

q3: ql + 1
y' + q4: L S (y ')

q5: q3 + 1
zr +- g6: qs + 1

P' end

Verify (Fd, F ' d ') E R,, by:

a. x = x'
b. y = y'
c. A = (0 1 2 3)
d. z' = 1.

I .4 Let (d , d') E Rz3. Both Fd, F'd' are undefined.

The outlines of proof for C2, C3, and C4 are as follows
C2 Show "do E Do 3 do' E Do' (do, dor) E R. We
have do = (1 , e) for some e E E ; let do' - (1 , e ') , where
e' E E' such that x = x', y = y ' . The above statement fol-
lows.
C3 Show Vd,' E Do' 3 do E Do (do, do') E R. Let
d,' = ,(i, e'), for some e' E E ' ; let do = (1, e) such that
x = x ' , and y = y' . By direct substitution one can verify
that (do, do') E R.
C4 Show R" is single-valued. Let d' = (2 , e ') , e' E E ' ;
suppose 3d,dlED,d=(2,e) ,andd,=(2,e ,)suchthat
(d , d') E R, (d l , d') E R . Then x = x ' , y = y ' , x, - x' ,
y , = y' and therefore e, = (x , , y ,) = (x , y)' = e. Similarly
ford'= (1 , e ') brd'=(3,e ') .

Simulation of S by pS
Before we can define a relation R and prove that it is in-
deed a simulation of S by pS, we have to bring the ab-
stract machines S and pS to the form of abstract pro-
grams. We define an abstract prpgram S = (D , Do, F ,)
where

D = {alis-S(a), s-control(a)
= exec-pgm v s-control(a) - g}

Do = {ala E D , s t k (a) = (3 2 ~ 2) T 2*24? s-control(a)
= exec-pgm}.

Let us assume that we have a function advance which
accepts one argument, a state of any VDL machine, and

258 performs one elementary step, either a basic operation or

a macro-expansion. Moreover, advance (a) is undefined
if s-controf(a) = a. Then let ad-S and F , be defined by

ad-S(a) = a if a E D ,
= ad-S(advance(a)) if a # D ;

F,(a) - ad-S (advance(a)) if a E D and
(ad-S(advance(a))) ,

= undefined otherwise.

The function ad-S takes as argument a state of S and
by using advance repeatedly, produces the first state of S,
which is also in D. The possibility exists that a d 4 is un-
defined because the computation dpes not terminate. The
function F , accepts a state in D q d returns the next
state in D.

Similarly, pS = (D', Do', F M) :

q0' = {PIP E D', s tk(p) = (32p2)T2-~24, cs@)
= MCODEl, s-control(P) - exec-ppgm};

ad-pS(p) = p ifp E a',
= ad-pS (udvance(p)) if p # D' ;

F,,(p) pd-pS (advance(p)) if p E D' and
(ad-@ (advance(p) 1),

= undefined otherwise.

LetR = p , U R,; '

R, = {(a, 6)la E D , /3 E D', mem(cu) = m e m (p) ,
$k(a) = s tk(P) , cc (a) = C C (P) , x (a) ? X (@) ,
s w (a) = s w (p) , s-control(a) = exec-pgm,
s-control(p) = exec-ppgm);

R, = {(a, P) l a E D, E D', m e m (a) = rnem(p),
s t k (a) = s t k (f i) , c c (a) = c c (p) , x (a) = x (P) ,
s w (a) = s w (p) , s-contral(a) - R,
s-control(p) =,a}.

The proof that R is indeed a strong simulation of S by
pS follows the same pattern as the exampIe in the pre-
vious section.

Proof of simulation
Condition C 1 of Definition 2 is proved by cases.

1.1 Let (a, p) E R , and sw = 0. By applying F s to a
and F?, to p we get the sequences:

S-begin [a] ;
- S-end [F, (a)] where s-control (F , (a)) = R;

&end [F , , (p)] where S-control (F N S (p)] = R.

Using the values of F,(a) and F p S (P) from above we
verify that (F s (a) , F f i s (p)) E R,.

Ps-begin [PI ;

A. BIRMAN IBM J. RES. DEVELOP.

1.2 Let (a , p) E R , and P-LOAD-00, where the predi-
cate P-LOAD-00 is defined by

P-LOAD-00 = (sw = 1) A (0 = 2 ls -op (b i))
A (0 = s- id (b i)) A (0 = s- ix (b i)) .

The VDL object bi is defined in Table 3 by a straight line
program. The following sequences are then obtained for
F s (a) , F,s(P):

S-begin
cc s l : (3 2 ~ 2) ~ (2 * 3 2) 11 + 21cc

~2 : 2 1 ~ ~ - 0 0 [8 + ~ 2 4 1
s3 : mem[s2;]

s.5 : 21s4[8 + ~ 2 4 1
stk + s4 : (3 2 ~ 2) T (2 ~ 3 2) 1-1 + 2 l s t k

mem[sS;] +- s6 : s3
S-end
pS-begin

cc + m l : (32p2)T(2*32)11 + 21cc
m2 : 8p0, mi[2 + ~ 2 4 1
m3 : ma-00[8 + ~ 2 4 1
m4 : m e m [2 ~ r n 3 ;]

m6 : m5[8 + ~ 2 4 1
stk + m5 : (3 2 ~ 2) T (2.32) 1-1 + 21stk

m e m [2 l m 6 ;] +- mi' : m4
pS-end

Weverify (Fs(a),F,s(P)) E R1by

a. s l = m l ;
b. s4 = m5;
c. s5 = 21m6;
d. s6 = mi'.

Other cases are handled similarly. Most of these sym-
bolic executions induce to straight line paths and pose no
special problems. In two cases, however, we obtain a
loop in pS; those paths correspond to left-shift and right-
shift instructions. The equivalence of the looping path in
pS with the straight line path in S is shown through the
method of inductive assertions [181.

Conditions C2, C3 and C 4 are proved asfollows:

C2 We show Va, E Do 3 p, E Do' (ao, Po) E R. As-
sume a. is given; let p, E D' be such that s-control(p,) =

exec-ppgm, mern(a,) = mem(Po), stk(Po) = (32p2)T
2*24, cc(ao) = cc(po) , cs (po) = MCODEl, x@,) =

x (a o) , sw(ao) = sw(po) . From the above it follows
(a,, Po) E R, .

C3 We show Vp, E Do' 3 a, E Do (ao, Po) E R . The
proof is similar to the one above.

C4 To show that R-l is single-valued, assume that
a,, a2 E D such that (al , p) E R, (a2, p) E R . It follows
that a1 = az.

Table 3 Some expressions used in the abstract machines.

Machine S

a l : 21cc [8 + L 241
si: mem[al;]

a2: s i [8 + L 241
a3: si[2 + L 61
a4: s i [1 3
a.5: si[O]
bi: po((s-id:a5),

(s-ix:a4),
(s-op:a3),
(s-ada2))

ac: (32p2)T(2*32) I 1 + 21cc
~ ~ - 0 0 : 8 ~ 0 , s-ad(bi)
sa-01: (32p2)T(2*32) I (2l.x) + 2ls-ad(bi)

a6: mem[2ls-ad(bi);]

a7: mern[2lsa-01[8 + L 24j;]
~ ~ - 1 0 : 8 ~ 0 , a6[8 + ~241

sa-11: 8p0 , a7 [8 + L 241

Machine pS

b l : cc[8 + L 241
mi: rnem[21bl;]
62: mi[&], 24pO

ii: b2 [4 + LS]
ma-00: 8 p 0 , mi[8 + ~241
ma-01: (3 2 ~ 2) T (2*32) 1(2 I x) + 2 lma-00

ma-IO: 8p0 , mem[21b3; 8 + ~241

ma-11: 8 p 0 , mem [2164; 8 + ~241

b3: ma-00 [S + L 241

b4: ma-01 [8 + ~241

Summary and discussion
At the start of our investigation a complete, indepen-
dently written microprogram for the S-machine was
available. In the course of the simulation proof three
errors were discovered in the microprogram (the cor-
rected microprogram is found in Appendix C .) :

1 . One error involved the left-shift (LS) and right-shift
(RS) instructions. The instructions were executed
correctly only if the address field (holding the number
of bits to be shifted) was not zero. If the address field
was zero the microprogram entered a loop which
counted down zz4 - 1 one-bit shifts.

2. Another error concerned the instructions stack-ta-
index (STX), add-stack-to-index (ADX) , and subtract-
stack-from-index (SBX). For any of these instructions
STX was executed.

3. A third error was found in the instruction-fetch part
of the microcode. If the address field of the instruc-
tion interpreted was less then zz3 there was no ill ef-
fect; if, however, the address was larger than or equal
to 223, no instruction was executed correctly, not even
the STOP instruction. Moreover, unlike the two pre-
vious errors, which could have been found using the
simulator package [3] , this error could not be found

CORRECTNESS

259

~

IF MICROPROGRAM^

because the main memory in the simulator was, for 1. Applying our approach to a more realistic computer.
convenience, only 100 words in size. I / 0 facilities, “Horizontal” microprogramming, more

In this paper we have introduced an approach to prov-
ing correctness of micrdprograms and we illustrated it
by showing the correctness of the S-machine. At first,
we defined abstract machines S and pS corresponding
to two interfaces- the machine-instruction level and the
microinstruction level.

Defining S and pS is an iterative process, involving
several passes, for the following reasons:

1. The original definition of S , although otherwise ac-
ceptable, might pose unnecessary restrictions on the
implementation; we remove those restrictions by
changing S .

2. A change in S might make pS easier to understand.
3. We want to change S because we found a “mistake”.

This is to be expected since defining pS involves, in
a sense, redefining S and sometimes discovering that
things are not as were intended in the first place.

Defining an interface in a precise language seems to be
of value even if we are not concerned with proving cor-
rectness. The precise definition removes the ambiguities
of the natural language and provides the means for good
documentation against which any inconsistencies that
might arise in implementation can be checked. It is true
that for an uninitiated person it is harder to read a docu-
ment written in the definition language than a manual
written in English, but the effort required to learn the
definition language will pay off. Another advantage of a
precise definition: An interpreter for the definition lan-
guage can be written which will give the designer the
possibility to “run” the abstract machine and thus gain a
better understanding of the design. And finally, when the
problem of proving correctness of implementation comes
up, the abstract machine is an essential starting point.

One of the things we learned from this work concerns
the mechanization of the correctness proof. Because our
proof was carried out by hand, it became clear that for
practical applications the proof has to be mechanized to
a large extent. Most of the difficulty in carrying out the
proof by hand was not in the complexity of the proof,
but mainly in the large amount of detail one has to keep
track of in such a proof. Specifically, one has to cope with
the large number of paths to be compared, the symbolic
execution of those paths, and proofs of equivalence of
expressions involving APL operators. It is encouraging
that most of the correctness proof for the S-machine
seems amenable to automation. The approach to correct-
ness developed in the course of our experiment could be
used in practical applications, especially for hardware/

realistic timing constraints could be included.
Investigating simulation of parallel programs. In our
experiment we reduced whatever parallelism appeared
in S and pS to a sequential case. In a more general
case one has to cope with the problem of determinacy
even before attacking the problem of correctness.
Designing an experimental interactive system which
will mechanize the proof procedure.

Appendix A: Definition of S

Abstract syntax of S
i s4 = ((mern : is-mem),

(stk : is-reg),
(x: is-reg),
(cc: is-reg),
(sw: is-bit),
(s-control: is-control),
(s-lib: is-lib))

9 Initial state

stk: (32p2)T2*24
s-control(S) : exec-pgm

9 Macro library

1. exec-pgm =

is-run(S) + exec-pgm
exec-inst (i)

i: fetch-inst
else +

2. fetch-inst =

PASS: build-inst (a) -~
a: fetch-word (cc)

3 . fetch-word (t) =

PASS: mern [m ;]
m: 2 I t [8 + L 241

4. build-inst (t) =

PASS: po((s-id:id), (s-ix:ix),
(S - O P : O P) , (s-ad:ad))

id: t[O]
ix: t [1 3

op: t [2 + 661
ad: t [8 + ~241

5 . exec-inst (i) =

is-load (i) + load-stk (a)

a: fetch-word (b)
b: calc-addr (i)

adv-ctr
firmware design. The work presented here could be ex- is-ldi(i) + load-stk (8 ~ 0 , s-ad (i))
tended in the following directions: adv-ctr

IBM J. RES. DEVELOP.

is-store(i) + store-word (a , b)
a: pop-stk

b: calc-addr (i)
adv-ctr

is-branch (i) + cond (i) + cc: calc-addr (i)
else -+ adv-ctr

is-enter (i) + cc: calc-addr (i)
load-stk (C C)

adv-ctr
is-ldx (i) + x : fetch-word (a)

a: calc-addr (i)
adv-ctr

is-ldxi (i) + x : 8p0, s-ad (i)
adv-ctr

is-loop (i) + test-loop(i)
incr-x

is- ls(i) + store-word (a , s t k)

a: (b , 2 1. s-ad (i))
b:fetch-word (s t k)

adv-ctr

is-rs(i) + store-word (a , s t k)

a: 2 (b, 2 1 s-ad (i))
b:fetch-word (s t k)

adv-ctr
is-bin (i) + store-word (a , srk)

a: &(b, c, i)
c: fetch-word (s t k)

b: pop-stk
adv-ctr

is-not (i) + store-word (a , s r k)
a: -fetch-word (a , s r k)

adv-ctr
is-xts (i) -+ load-srk (x)

adv-ctr
is-stx (i) -+ x : pop-srk

adv-ctr
is-adx (i) + x : add (x , a)

a: pop-stk

adv-ctr
- is-sbx (i) + x : & (x , a)

a : pop-stk
adv-ctr

is-ret (i) + cc : pop-stk

is-pop (i) + pop-stk
adv-ctr

is-stop (i) + s w (s) : 0
adv-ctr

6. is-branch (i) =

pAss : is-tra (i) V is-tpl (i) v is-tmi (i) v
is-tze (i) V is-tnz (i)

7. cond(i) =

PASS: is-tra (i) V

(is-tpl (i) A (a[O] = 0)) V

(is-tmi (i) A (a[O] = 1)) V

(is-tze (i) A (0 = 2l .a)) V

(is-tnz (i) A (0 # 21a))
a : mem [2 1. stk [8 + L 24];]

8. store-word (a , t) =

mem [2 1. t [8 + L 24[;] : a

9. load-stk (a) = store-word (a , s tk)
push-stk

10. push-stk =

stk : (3 2 ~ 2) T (2*32)1 -1 4- 2 I stk

11. Pop-stk = stk : (3 2 ~ 2) T (2*32) 1 1 + 2 I stk

PASS : fetch-word (s t k)

12. adv-ctr = cc : (3 2 ~ 2) T (2*32) I 1 + 2 I cc

13. calc-addr (i) = calc-id (i , a)
a: calc-ix(i)

14. calc-ix(i) =

(1 = s-ix (i)) + pAss : (32p2 1 T (2*32) I b + c
b: 2 1 x
c: 2 I s-ad(i)

else + p A s s : 8p0, s - a d (i)

15. calc-id (a , i) =

(1 = s - id (i)) + p A s s : 8p0, b[8 + L 241
b : fetch-word (a)

else + p A s s : a

16. -=

x : (3 2 ~ 2) T (2*32) I 1 + 2 I x

17. test-loop (i) =

(0 + 2 1 . x) + cc : calc-addr (i)
else + adv-ctr

18. k (a , N) =

3: (a, NpO) [N + L 321

19. ys (a, N) =

p A s s : ((Npa[O]), a) [L 321

20. is-bin (i) =

PASS: is-add (i) V is-sub (i) V is-and (i) V

is-or (i) V is-eor (i)

21. &(a, b, i) =

is-add (i) + PASS: add (a , b)
is-sub (i) + PASS: sub (a , b)
is-and (i) + p A s s : a A b
is-or (i) + p A s s : a V b
is-eor (i) + p A s s : (a A - b) V (w a A b)

22. add (a, b) =

p A s s : (3 2 ~ 2) T (2*32)1(2 I a) + 2 I b

23. +& (a, b) =

PASS: (3 2 ~ 2) T (2*32) I (2 I a) - 2 I b

24. is-run (S) =

PASS: s w (S) = 1 261

MAY 1974 CORRECTNESS OF MICROPROGRAM$

is-stop (i) =

262 PASS = 44 = 2 1 s-op (i)

A. BlRMAN

26. is-mem (t) =
is-binmatrix (t) + pt = (2*24 32) + pAss : 1

else " * p A s s : 0
else + p A s s : o

is-reg (t) =

is-binvector (t) + (p t) =-32 "* p A s s : 1
else + p A s s : 0

else + p A s s : 0

Appendix B: Definition of pS

Abstract syntax of @

is-pS = ((m e m : is-mem),
(stk : is-reg),
(cc : is-reg),
(sw : is-bit),
(cs : is-controlstore),
(mdr : is-reg),
(x : is-reg),
(a : is-reg),
(b : is-reg),
(mar : is-adreg),
(csar : is-csreg),
(ir : is-ireg),
(s-control: is-control),
(s-lib: is-lib))

Initial state

stk: (3 2 ~ 2) T 2x24
csar: 12pO
cs : MCODEl (Appendix C)
s-control (pS) : exec-ppgm

Macro library for pS

1. exec-ppgm =

is-run (p S) + exec-ppgm
exec-irem

exec-pcycle
else "*n

2. exec-irem =

is-iexec (p S) + exec-irem
exec-pcycle

else +n
3. is-iexec (a) =

PASS: (1 2 ~ 0) # csar (a)

PASS: 1 = s w (a)
5. exec-pcycle = exec-pi (i)

i : fetch-pi

4. is-run (a) =

6. fetch-pi = build-pi (a)
"

a : cs(p.s)[2 A(:sar(pS);I

IBM J . RES. DEVELOP.

7. build-pi (t) =

(1 = t [O]) -+ p A s s : po((s-branch : a),
(s-cond : b),
(s-addr : c))

a : t [O]
b : t [l , 2 , 31
c : t [4 + L 121

else p A s s : p,,((s-branch : a) ,
(s-memf : b),
(s-in1 : c),

(s-in2 : 4,
(szf : e).
(s-our : j))

a : t[O]
b : t [l , 21
c : t [3 , 4 , 51
d : r[6, 7, 81
e : t [9 + 141
f : t (13, 14, 151

8. exec-pi (i) =
(1 = s-branch (i)) + exec-branch (i)
else + exec-assign (i)

9. exec-branch (i)
is-rrm (i) + csar (6): s-addr (i)
is-t+ (i) + (mdr(pS)[O] = 0) -+ csar(pS) : s-addr (i)

else + adv-csar
is-tl (i) + (m d r f p S) [l] = 0) -+ csar(pS) : s-addr (i)

else -+ adv-csar
(i) + (m d r (p S) [2] = 0) "* c s a r (6) : s-addr (i)

else * adv-csar
is-tmdr (i) (mdr (pS) = 32pO) -+ csar(pS): s-addr (i)

else - adv-csar
is-ti(;) + csar(pS) : s-addr(i) V (7p0, i r (p S))

IO. exec-assign (i) =

is-stop (i) + s w (p S) : 0
csar(pS) : 12pO

else + exec-assign- 1 (i)
1 1. exec-assign- 1 (i) =E mem (i) - - set (i, a)

a: @ (i, b, c)

b: select- 1 (i)
c: select-2 (i)

adv-csar
12. select-l (i) =

is-mdr-1 (i) + p A s s : mdr (pS)
is-x-l (i) -* p A s s : , x (6)
is-mone-l (i) -* p A s s : 32pl
is-ohe-1 (i) pilss: 31p0, 1
is-zero-1 (i) 4 p i l s s : 32pO

13. select-2 (i) f

is-one-2 (i) p A s s : 31p0, 1
is-zero-2 (i) + p;4ss: 32pO
i s ~ a s k - 2 (i) "* p A s s : 8p0, 24pl
is-a-2 (i) - + p A s s : a (p S)

MAY 1974

~~

is-b-2 (i) + p A s s : b (b S)
is-stk-2 (i) + p A s s : s t k (p S)
is-cc-2 (i) 4pAss: cc(pSI

14. & (i , a , h) =

is-add (i) + p A s s : (3 2 ~ 2) T (2*32) I (2 I a)
+ 2 1 b

is-sub (i) -+ p A s s : (3 2 ~ 2) T (2*32) I (2 I a)
- 2 I b

is-and (i) -* p A s s : a h b
is-or (i) 4 p A s s : a v b
is-not (i) "* p A s s : - (3 2 ~ 2) T (2*32) I (2 I a)

+ 2 1 b
is-eor (i) -+ 9: (a A - b) V (6 A - a)

is-rs (i) 4 p A s s : c[O], C [L ~ I]
c : (3 2 ~ 2) T (2*32) I (2 I a)

+ 2 1 b
is-1s (i) 4pAss: c[l + ~ 3 1] , 0

C : (3 2 ~ 2) T (2*32) I (2 I a)
+ 2 1 b

15. g (i , a) - -
is-out-mar (i) 4 mar(pS) : a [8 + ~241
is-out-rmdr (i) 4 mdr(pS): a
is-out-x (i) 4 x (p S) : a
is-out-a (i) + a (p S) : a

is-out-b (i) 4 b (pS) : a
is-out-stk (i) 4 stk(pS): a
is-out-cc (i) + c c (p S) : a
is-out-ir (i) 4 i r (pS) : a[3 + 151

16. mem (i) - -

is-read (i) -+ mdr(@): mem(pS) [2 I mar(pS) ;]
is-write (i) + m e m (p S) [2 I mar(@);] : mdr (@I
is-p (i) "* n

17. adv-csar - -

tsar (p S) : (1 2 ~ 2) T (2*12) I 1 + 2 I csar (pS)
18. is-trm (i) PASS: 0 = 2 I s-cond (i)

is-t$ (i)
is-tl (i) = PASS: 2 = 2 I s-cond (i)
is42 (i) = PASS: 3 = 2 I s-cond (i)

is-tmdr (i) = PASS: 4 = 2 I s-cond (i)
is-ti (i) = PASS: 7 = 2 I s-cond (i)

-
PASS: 1 = 2 I s-cond (i) -
-
-

-
19. is-mdr (i) = P A S S : 1 = 2 I s-in1 (i)

is-x- 1 (i) = P A S S : 2 = 2 I s-in1 (i)
is-moue-1 (i) =pAss: 3 = 2 I s-in1 (i)
is-one-l (i) = PASS: 7 = 2 1 s-in1 (i)
is-zero-1 (i) = p A s s : 0 = 2 I s-in1 (i)

20. is-one-2 (i) = P A S S : - 1 = 2 I s-in2 (i)
is-zero-2 (i) = p A s s : 0 = 2 I s-in2 (i)
is-mask-2 (i) = p A s s : 2 = 2 I s-in2 (i)
is-a-2 (i) PASS: 3 = 2 I s-in2 (i)

-
-

_c

-
is-6-2 (i) = PASS: 5 = 2 I s-in2 (i)
is-stk-2 (i) = PASS: 6 = 2 I s-in2 (i)
is-cc-2 (i) = PASS: 4 = 2 I in2 (i)

-
-

2 1. is-add (i) = PASS: 0 = 2 I s-f (i)
is-sub (i) = - PASS: 1 = 2 I s-f (i) a63

-

CORRECTNESS OF MICROPROGUMS

is-and (i) = p A s s : 2 = 2 I s-f (i)
is-or (i) = p A s s : 3 = 2 I s-f (i)
is-not (i) = p A s s : 4 = 2 I s-f (i)
is-eor (i) = p A s s : 5 = 2 1 s-f (i)
is-rs (i) = PASS: 6 = 2 I s-f (i)
is-1s (i) = p A s s : 7 = 2 1 s-f (i)
is-stop (i) = P A S S : 10 = 2 1 s-f (i)

22. is-out-mar (i) = p A s s : 0 = 2 1 s-out (i)
is-out-mdr (i) =E: 1 = 2 I S-out (i)
is-out-x (i) = PASS: 2 = 2 1 s-out (i)
is-out-a (i) , = p A s s : 3 = 2 1 s-out (i)
is-out-b (i) =pAss: 5 = 2 I s-out (i)
is-out-stk (i) = p A s s : 6 = 2 I s-out (i)
is-out-cc (i) = p A s s : 4 = 2 1 s-out (i)
is-out-ir (i) = PASS: 7 = 2 .L s-out (i)

23. is-read (i) = P A S S : 1 = 2 I memf (i)
is-write (i) = PASS: 2 = 2 I memf (i)
is-p (i) = p A s s : O = 2 1 m e m f (i)

-

24. is-mem (t) =

is-binmatrix (t) + pt = (2x24 32) + p A s s : 1
else + p A s s : 0

else -+E: 0
25. is-reg (t) =

is-binvector(t) + (p t) = 32 + p A s s : 1
else + p A s s : 0

else + p A s s : 0
26. is-controlstore(!) =

is-binrnatrix(t) + pt = (2x12 16) + p A s s : 1
else +E: 0

else - + p A s s : 0
27. is-adreg(t) =

is-binvector (t) + (p t) = 24 + p A s s : 1
else + p A s s : 0

else +E: 0
28. is-csreg(t) =

is-binvector(t) + (p t) = 12 + p A s s : 1
else + PASS: 0

else + p A s s : 0
29. is-ireg(t) =

is-binvector (t) + (p t) = 5 + p A s s : 1
else -+ p A s s : 0

else + p A s S : 0

Appendix C: Microcode
VMCODEl CUI V

V MCODFl
C11 1 ADDM ZERQ,CC,MAR,R
c2 1 2 ADDM OiVE,CC,CC,P
C3 1 3 TRM 168
C41 4 T2 7
C5 1 5 T I 32
C6l 7 T l 9

C 71
C81
C9 1
I101
Clll
c121
113 1
C141
C151
C161
C171
C181
C191
C201
C211
I221
C23 1
C241
C25 1
C261
C2 71
C281
C291
C301
1311
C321
C33 1

', C341
' C351
C361
C3 71
C381
C391
C40 1
C411
C42 1
C43 1
1441
C45 1
C461
C471
C481
C49 1
C501
C511
C521
C53 1
C541
C55 1
C56l
C5 71
C581
C591
C60l

8 ADDM X,B,B,P
9 TO 12
10 ADDM ZERO ,B ,MAR ,R
11 ANDM MDR ,MASK ,B ,P
12 T I 64
20 ADDM MONE ,SIX ,SIX ,P
2 1 ADDM ZERO,S!lX,MAR,W
22 TRM 1
23 ADDM MONE ,SIX ,SIX ,P
24 ADDM ZERO ,SIX ,MAR ,W
25 TRM 1
26 ADDM ZERO,B,MAR,W
27 TRM 54
29 TO 70
30 T R M 1
32 ADDM ONE ,STK ,MAR ,R
33 TRM 115
3 4 ADDM ONE ,STK ,MAR ,R
35 TRM 115
36 ADDM ONE ,STK,MAR ,R
37 TRM 115
3 8 ADDM ONE ,STK ,MAR ,R
39 TRM 115
40 ADDM ONE ,SIX ,MAR ,R
41 TRM 115
42 ADDM ZERO ,S!lX ,MAR ,R
43 TRM 142
44 ADDM MONE ,Sl'K ,SIX ,P
45 TRM 144
46 ADDM ZERO ,S!lX ,MAR ,R
47 TRM 158
48 ADDM ZERO ,SIX ,MAR ,R
49 TRM 147
50 ADDM ZERO,STK,MAR,R
51 TRM 149
52 ADDM ZERO,SIX,MAR,R
53 TRM 156
5 4 ADDM ONE ,STK ,SIX ,P
55 TRM 1
5 6 STOPM ZERO, ZERO ,MAR ,P
64 ADDM ZERO ,B ,MAR ,R
65 TRM20
66 ADDM ZERO ,B ,MDR ,P
67 WM 23
68 ADDM ZERO ,SIX ,MAR ,R
69 TRM 26
70 ADDM ZERO , B , CC , P
71 W 1
72 ADDM ZERO ,SIX ,MAR ,R
73 TRM 29
74 ADDM ZERO ,SIX ,MAR ,R
75 TRM 97
76 ADDM ZERO ,SIX ,MAR ,R
77 TRM 99

IBM J. RES. DEVELOP.

I611
C62 1
C63 1
C641
C65l
C661
C671
C681
C691
C701
C711
C721
C731
C 741
I751
C76l
C771
C781
C791
C801
C811
C821
C83 1
C841
C851
C861
C871
C881
C891
C901
C911
C92 1
C93 1
I941
C95l
C96l
C9 71
C981
C991
C l O O l

I ClOll
11021
C103 1
C1041
C1051
C1061
C1071
C1081
Cl09l
CllOl
Cllll
C112 1
C1131
11141

78 ADDM ZERO ,STK ,MAR ,R
79 TRM 1 0 1
80 ADDM ZERO,CC,MDR,P
8 1 TRM 103
82 ADDM ZERO,B,MAR,R
83 TRM 106
8 4 ADDM ZERO,B,X,P
85 TRM 1
86 ADDM X,ONE,X,P
8 7 TRM 108
88 ADDM ZERO ,STK ,MAR ,R
89 TRM 110
90 ADDM ZERO ,STK ,MAR ,R
9 1 TRM 110
96 TRM 1
9 7 TO1
98 TRM 70
99 TMDR 70
100 TRM 1
1 0 1 TMDR 1
102 TRM 70
103 ADDM MONE ,STK ,STK ,P
104 ADDM ZERO ,STK ,MAR ,W
105 T R M 70
106 ADDMMDR,ZERO,X,R
107 TRM 1
108 ADDM X,ZERO,MDR,P
109 TRM 1 0 1
110 ADDM MDR, ZERO,A,P
111 ADDM ZERO,B,MDR,P
112 TRM 124
115 ADDM MDR, ZERO,A,P
116 ADDM ZERO ,STK ,MAR ,R
11 7 ADDM ONE ,STK ,MAR ,P
118 TI 128
120 LSM ZERO,A,A,P
1 2 1 TRM 123
122 RSM ZERO,A,A,P
123 SUBM MDR ,ONE,MDR ,P
124 TMDR 126
125 TI 120
126 ADDM ZERO,A,MDR,W
1 2 7 TRM 1
128 ADDMMDR,A,MDR,W
129 TRM 54
130 SUBMMDR,A,MDR,W
1 3 1 TRM 54
132 ANDMMDR,A,MDR,W
133 TRM 5 4
134 ORMMDR,A,MDR,W
135 TRM54
136 EORM MDR ,A,MDR,W
137 TRM 54
142 NOT” MDR , ZERO ,MDR ,W

C1151 143 TRM 1
Cll6l 144 ADDM ZERO,STK,MAR,P
C1171 145 ADDM X,ZERO,MDR,W
E1181 146 TRM 1
C1191 1 4 7 ADDM MDR, ZERO,A,P
E1201 148 TRM 160
E1211 149 ADDMMDR,ZERO,A,P
C1221 150 TRM 162
C1231 156 ADDMMDR,ZERO,CC,P
C1241 157 TPM 54
C1251 158 ADDMMDR,ZERO,X,P
C1261 159 TRM 54
C1271 160 ADDM X,A,X,P
C1281 1 6 1 TRM 54
C1291 162 SUBM X,A,X,P
C1301 163 TRM 54
C1311 168 ANDMMDR,MASK,B,P
C1321 169 NOTM ZERO,MASK,A,P
C1331 170 ANDMMDR,A,MDR,P
C1341 1 7 1 LSMMDR,ZERO,IR,P
C1351 172 TRM 4

V

Acknowledgments
I acknowledge useful discussions with W. C. Carter,
W. H. Joyner , and G. B. Leeman, Jr . I also thank
K. Haralson and R. Polivka for providing the S-machine
simulator and the microprogram, and the referees for
some very helpful comments.

References
1 . A. Birman, “Correctness in Design: The S-Machine Ex-

periment,” Research Report 4193, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1973.

2. C. W. Gear, Computer Organization and Programming,
McGraw-Hill Book Co., Inc., New York, 1969.

3. K. Haralson and R. Polivka, “Microprogram Training-An
APL Application,” Proc. 4th. Int. APL Users’ Conf., 1972.

4. P. C. Gilmore, “An Abstract Computer with a LISP-Like
Machine Language without a Label Operator,” Computer
Programming and Formal Systems, edited by P. Braffort
and D. Hirschberg, North-Holland Publishing Co., Amster-
dam, 1963, p. 71.

5. C. C . Elgot and A. Robinson, “Random-access Stored-
program Machines, An Approach to Programming Lan-
guages,”J. A C M 11,365 (1964).

6. P. J. Landin, The Mechanical Evaluation of Expressions,”
ComputerJ. 6,308 (1964).

7. K. Walk et al., “Abstract Syntax and Interpretation of
PL/I ,” TR 25.082, IBM Laboratory, Vienna, 1968.

8. P. Lucas, P. Lauer, H. Stigleitner, “Method and Notation
for the Formal Definition of Programming Languages,”
T R 25.087, IBM Laboratory, Vienna, 1968.

9. P. Lucas and K. Walk, “On the Formal Description of
PL/ I” in Annual Review in Automatic Programming 6 , Per-
gamon Press, New York, 1970.

10. J . A. N. Lee, Computer Semantics, Van Nostrand Reinhold
Co., New York, 1972.

11. A. D. Falkoff, K. E. Iverson and E. H. Sussenguth, “A
Formal Description of System/360,” IBM Syst. J . 3, 198
(1964).

MAY 1974

265

CORRECTNESS OF MICROPROGRAMS

12. C. G. Bell and A. Newell, Compufer Structures: Readings
and Examples, McGraw-Hill Book Co., Inc., New York,
1971.

13. F. J . Neuhold, “The Formal Description of Programming
Languages,” IBM Syst. J . 10,86 (197 1).

14. P. Lauer, “Formal Definition of ALGOL 60,” TR 25.088,
IBM Laboratory, Vienna, 1968.

15. P. Wegner, “The Vienna Definition Language,”ACM Com-
puting Surveys 4,5 (1972).

16. R. Milner, “An Algebraic Definition of Simulation Between
Programs,” Report CS 205, Stanford University, Calif.,
February 1971.

17. K. E. Iverson, A Programming Language, John Wiley &
Sons, Inc., New York, 1962.

266

A. BIRMAN

18. R. W. Floyd, “Assigning Meanings to Programs,” Proceed-
ings of Symposia in Applied Math., Vol. 19, American
Mathematical Society, 1967.

19. A. V. Aho and J . D. Ullman, “Optimization of Straight
Line Programs,” SIAM J . Computing 1, (1972).

Received November 29, I973

The author is located at the I B k Thomas .I. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J . RES. DEVELOP.

