250

A. BIRMAN

A. Birman

On Proving Correctness of Microprograms

Abstract: This paper describes the results of an investigation in proving the correctness of microprograms. The vehicle qsed is the S-
machine, which is a very simple “paper” computer. The approach to the proof of corréctness is based on formally defining the machine-
instruction level and the microprogramming level of the given machine, and then showing that these “interfaces” are equivalent through

the use of a concept called algebraic simulation.

Introduction

This paper presents the results of an investigation [1]
into proving the correctness of microprograms. The ve-
hicle chosen for this investigation is the S-machine, a
variation on a computer described by Gear [2] for which
a simulation package is available [3]. This very simple
computer is being used for teaching microprogramming in
the Education Department at IBM Poughkeepsie.

The question of whether a microprogram is correct
leads to another question: “What is the microprogram
supposed to do?”” In trying to answer the latter question
we realize that the functions of a microprogram are re-
lated to the operation of other parts of the computer:
control store, registers, etc. Therefore the microprogram
together with other parts of the computer constitute an
“interface” or a ‘“level” of the system. The concept of
interface is an old and natural one. When designing a
computer we start by specifying the machine at the high-
est interface. As more decisions are made on how to im-
plement this level, a new and more detailed interface is
drawn up. For example, the documentation for the S-
machine consists of

1. a description of the machine-instruction level, the
so-called “principles of operation’ manual, and

2. a description of the microinstruction level, or the
“microprogramming manual.”

The language used in descriptions of this kind is in-
formal; the English language description is complemented
by graphic illustrations. When considering the problem
of correctness, however, we have to formalize our defini-
tion in a way that will enable us to prove whatever we
claim to be correct. If we want to describe an interface

of a given system together with all the data structures and
processes related to this interface, the formal counter-
part of the usual English-language description can be an
abstract machine.

The concept of an abstract machine was first formu-
lated in the field of programming language semantics
[4-9]. An abstract machine which interprets a program
in a given language is considered as one way of specify-
ing the semantics of that language. Our-use of the concept
of abstract machine is similar to that of Lee [10]. Work
in formalization of system definitions can also be found
in Falkoff [11], Bell and Newell [12], and others.

A language that has been used in defining abstract
machines is the Vienna Definition Language (vbpL) [7-9,
13-15]. In order to have a useful definition language for
machine interfaces we had to supplement the vDL with
basic operators and predicates. Since we are dealing with
objects like registers, flip-flop circuits, memories, etc.,
which are represented by binary vectors and arrays, we
selected as basic operators a small number of APL opera-
tors. Using this vDL/APL language we define two ab-
stract machines: abstract machine S, which relates to
the machine instruction interface, and abstract machine
1S, for the microinstruction level (The abstract machine
S is not to be confused with the ‘“S-machine” which is
the name of our computer.). The microprogram itself is
part of uS.

The abstract machine uS is in some sense equivalent
to S. This kind of equivalence is found in the concept
called “algebraic simulation of one program by another,”
described by Milner [16]; abstract machines are them-
selves programs or, more precisely, ‘‘abstract programs.”

IBM J. RES. DEVELQOP.

The essence of the idea of simulation can be informally
described as follows. A simulation of P by P’ implies that
anything computed by P can be computed by P’'. The
simulation should have certain properties: 1) For any
program P there should exist a simulation of P by P, and
2) if there exists a simulation of P by P, and also a simu-
lation of P, by P,, then there should exist a simulation
of P by P,. We display such a concept and prove that it
has these properties.

In this paper we develop an approach to proving the
correctness of microprograms and we apply it to the S-
machine. The proof of correctness for the S-machine
implementation consists of the following steps:

1. Definition of abstract machine S corresponding to the
machine-instruction level.

2. Definition of abstract machine uS for the microin-
struction level. ‘

3. Determining the desired simulation relation R.

4. Proving that S simulates S with respect to R.

The paper is organized as follows. The second sec-
tion contains a brief description of the S-machine. For
further details the reader is referred to [2, 3]. In the third
section we introduce the vDL/APL Ianguage used in de-
fining abstract machines, and we present the definition
of the abstract machine S which is discussed through ex-
amples; the complete definitions of S and uS are found in
Appendixes A and B, respectively. References [7-9, 13,
15] provide further details on vDL and [17] on APL. In
the fourth section the concept of simulation is defined.
An example is given to illustrate how one proves simula-
tion. In the fifth section the simulation relation for (S,
u1S) is postulated and the proof of simulation which in-
volves the method of inductive assertions [18] is given.
Appendix C contains the microcode. Summary, discus-
sions and directions for further research are the subject
of the last section.

e Notation

Given two sets D and D', Ris arelationif RC D X D',
An element of R is denoted by (d, d') ER or d A,
The inverse of RisR™: R™' = {(d',d)|(d,d’) € R}. The
relation R is a (partial) function if for each d € D there
is at most one d’ € D’ such that (d, d') € R; in this case
we also write R : D — D', and R(d)=d' or Rd=d’
for (d, d') € R. If R is a function and for d € D there
exists d’ such that Rd = d’ we say that R is defined at d
and write (Rd). Let F : D — D be a function from D
to D and let d € D; F'd is defined by

a. Fo.d =d, _ _
b. Fid=F (F''d)if (Fd);
= undefined otherwise.

MAY 1974

A straight line program 7= (J, I, O) over a set of
variables = and a set of operators ¢ = {f, g," - -} consists
of a sequence J of assignment statements, a set of input
variables I, and a set of output variables O. Aho and
Ullman [19] use a directed acyclic graph (dag) to repre-
sent straight line programs. We use an equivalent nota-
tion in the form of a sequence of assignments. Without
giving a formal definition for our notation we illustrate
it by an example.

Let w= (J, I, O) be a straight line program over ¢ =
{f,g,h}and £={X,Y,A} where | = O = {X, Y} and J
is the follbwihg sequence of statements:

A<fX,Y)
Y g(4,4)
X < h(4,7)

The dag [19] corresponding to = is

The circled nodes represent the most recent definitions
of the output variables. Let £, = {s,, s,," - -} be a sequence
of new variables such that £ N X = ¢. We represent
the same program as

s, 1 (X, Y)
Yes,:8(s,s,)
X s, h(s;,s,)

Here the most recent definition of the output variables
X, Y are indicated by the arrow. Details on the subject
of equivalence of straight line programs are contained
in [19].

Brief description of the S-machine

The S-machine is a stack oriented machine. The stack
stores a variable number of words; at any time, only the
word stored at the top level of the stack is accessible. A
new. word can be stored in the stack by “‘pushing” the
stack, that is, by creating a new level on top of the stack.
If the stack is “popped,” the word at the top of the stack
is discarded and the word on the next level becomes the
top of the stack. Part of the S-machine instructions ma-
nipulate the stack in various ways, as can be seen from
Table 1. For exampie, the LoAD instruction will push the
stack one level and place on the top of the stack a word

251

CORRECTNESS OF MICROPROGRAMS

252

A. BIRMAN

Table 1 The S-machine instruction set.

One-address instructions

op-code instruction stk change action
0 LOAD -1 Load stack from memory location
1 LDI —1 Load immediate (Loads top of stack with address)
2 STORE +1 Stores top of stack in memory
3 TRA 0 Transfers control to specified location
4 TPL 0 Transfers control if top of stack is non-negative
5 TMI 0 Transfers control if top of stack is negative
6 TZE 0 Transfers control if top of stack is zero
7 TNZ 0 Transfers control if top of stack is nonzero
8 ENTER -1 Enter a subroutine by placing CC on top of the stack and transferring control
9 LDX 0 Load X with contents of memory location.
10 LDXI 0 Load X immediate, i.e., the address of this instruction
11 LOOP 0 Increment X by 1 and transfer control if it is nonzero.
12 LS 0 Left-shift N places, where N is the address
13 RS 0 Right-shift N places
Zero-address instructions
op-code instruction stk change action
32 ADD +1 Add top two levels of stack
33 sUB +1 Subtract top two levels of stack
34 AND +1 AND top two levels of stack
35 OR +1 OR top two levels of stack
36 EOR +1 EXCLUSIVE OR top two levels of stack
37 NOT 0 Complement top level of stack
38 XTS -1 Index to stack (Puts contents of X on top of stack)
39 STX +1 Stack to index (Removes top of stack and places it in X)
40 ADX +1 Adds top of stack to X
41 SBX +1 Subtracts top of stack from X
42 RET +1 Transfers to address contained in top of stack
43 POP +1 Discards top level of stack
44 STOP 0 Stops the machine by setting SW to zero

taken from a specified memory location. The STORE in-
struction will place the top of the stack in a main memory
location and pop the stack.

The basic data element in the S-machine is the 32-bit
word. (This is a variation on the machine described by
Gear [2], which is byte oriented.) The main memory
contains 2** words with addresses from 0 to 2** — 1. All
S-machine instructions take exactly one word; the in-
struction format is given in Fig. 1. As can be seen from
the figure, both indexing (with respect to the index regis-
ter X) and indirect addressing are possible in calculation
of addresses.

Table 1 lists the S-machine instructions together with
the values of their op-code fields, their effects on the
stack, and their functions. There are two types of in-
structions: those which only manipulate the stack with-
out using their address fields (or the indexing and indirect
facilities) and are grouped under ‘zero-address instruc-
tions”’; and “one-address instructions.” The effect of an
instruction on the stack is represented by the change it
causes on the pointer to the top of the stack. The stack

consists of a stack pointer, stored in the reserved register
STK and a (variable) storage area in the higher-address
region of the main memory. Initially the stack pointer
has the value 2%, i.e., it points to the bottom of the stack.
The stack is pushed by decrementing the stack register
by one, and popped by incrementing it by one.

The S-machine data flow is shown in Fig. 2. The
machine operation can be described in the following
manner.

The value of the IN1 bus is gated into the left side of
the Arithmetic and Logic Unit ALU, while the value of
IN2 is gated into the right side of the ALU. Both of these
buses are 32 bits wide. One of eight different functions
(addition, subtraction, etc.) can be performed in the
ALU on the two input operands. The result is gated via
the OUT bus into one of the eight registers shown. In
addition, an optional memory reference, read or write,
can occur. A read causes the 32-bit word addressed by
the current content of the Memory Address Register
(MAR) to be placed into the Memory Data Register
(MDR). A write will cause the content of the MDR to

IBM J. RES. DEVELOP.

012 78 31
AA [|
Address
Op-code
Indexing
Indirect addressing

Figure 1 The S-machine instruction format.

be stored in the location addressed by the MAR. This
whole sequence of events is known as the machine cycle.
As mentioned before, STK contains the stack pointer;
X is the index register; IR is used to store the op-code
during instruction execution. A and B are general work-
ing registers; and CC is used to store the pointer to the
current instruction in main memory,

The sequencing of data through the data flow is de-
termined by the control which is microprogrammed (Fig.
3). The microprogram resides in the Control Store (CS).
The operation of the control can be described as follows.

A word in CS, called a microinstruction, is placed in
the Control Store Data Register (CSDR). Decoding of
the various fields of the microinstruction takes place, the
output of the decoders being connected to gates in the
data flow. The boxes labeled “Test logic” and “+1
Adder” determine the address of the next microinstruc-
tion; the resulting address is placed in the Control Store
Address Register (CSAR).

As illustrated in Fig. 4, the 16-bit microinstruction can
have one of two possible formats. 1) When the value of
bit zero is zero, indicating that the microinstruction con-
trols the data flow, the fields of the microinstruction deal
with various parts of the data flow. The memory field
(bits 1, 2), for example, determines whether a read, a
write or no memory reference occurs. Similarly, the func-
tion field (bits 9, 10, 11) determines the function to be
performed by the ALU. 2) When the value of bit zero is
one, indicating that the microinstruction controls the
sequencing of the microprogram, the test condition field
(bits 1, 2, 3) determines the test condition to be per-
formed for branching. In the microprogram shown in
Appendix C the microinstructjons have their fields speci-
fied by a mnemonic code, instead of the binary code. For
example, microinstruction

10 ADDM ZERO, B, MAR, R

specifies that IN1 bus takes value zero, IN2 bus takes
the value of register B, the ALU performs the operation

MAY 1974

0 23
Main
MAR Memory
e 1
N2
0 31 R
MDR le— 2241
IN1 0 31

Figure 2 The S-machine data flow.

»| +1 ADDER 0 15
0 11
—_‘l CSAR I_ Cs
—
MDR and IR bits ———~ Test Logic
—
0 15
L——i CSDR |
(-

Gate signals
to data flow

e
~
~.

Figure 3 The microprogrammed control.

of addition, and the result goes to MAR. In addition, a
read is started in main memory. The encoding of various
fields and other details on the S-machine may be found
in [2,3].

253

CORRECTNESS OF MICROPROGRAMS

254

A. BIRMAN

The following is a list of properties of the S-machine
which in various ways point to limitation of our results
on correctness:

1. The microprogramming in the S-machine is “vertical.”

2. There are no 1/0 instructions.

3. References to memory ‘(both main store and control
store) involve no delay; i.e., we have instantaneous
read-out. ‘

4. An arbitrary limitation of at most one level of indirect
addressing was imposed on the original S-machine.

5. The instruction set is limited; for instance, there is
no multiply or divide instruction.

Definition language

The language used to define the abstract machines S and
S is based on the vDL language and makes use of the
vDL data structures. We have two classes of data ob-
Jjects—elementary and composite. The composite ob-
jects have a set of components that may be sel_cctéd by
unique selectors. The following tree representation of
such an object i shows that i has four components id, ix,
op, and ad, which can be addressed by using the respec-
tive selector. Names associated with the branches of
the tree identify the unique selectors. The leaves (termi-
nal nodes) of the tree are formed by the components.

id ix op ad

For example, s-id(i) =id. The object i may be con-
structed by using the construction operator p, as follows:

it pe((s-id : id), {s-ix : ix), (s-op : op), {s-ad : ad))

The object i appears in the abstract machine S and repre-
sents an S-machine instruction. The components of i cor-
respond to the instruction fields: indirect addressing bit,
indexing bit, op-code field, address field.

For manipulation of VDL objects the operator u is avail-
able in the language; however, the need for it does not
arise in the definitions of S and uS. Often we have to test,
given a VDL object, whether it belongs to a certain class
of objécts. This is done in the vDL through the use of
predicates. For example a predicate is-inst defining the
set of all S-machine instruction may be written as

is-inst = ((s-id : is-bit),
(s-ix : is-bit),
(s-op : is-opfield),
(s-ad : is-adfield))

where is-bit is a basic predicate and the others have to
be further defined.

In defining S and 1S we made use of the vDL as a defini-
tional system. We supplied the elementary objects for
our particular application together with the basic func-
tions and predicates which operate on those objects. The
abstract machines we define are similar in structure, in
that they are characterized by a szate, also a VDL object,
with the following components:

1. Control,
2. Macrolibrary;
3. Data.

The control, represented by a tree, is built from vDL in-
structions. Given a control tree, the leaves of this tree
are candidates for processing in the next step; any of
those instructions can be picked. The instructions are
of two types:

Macroinstructions Processing consists of replacing the
vertex they occupy in the control tree by a subtree of
instructions, without modifying any other component.

Elementary instructions Execution usuvally produces as-
signments to various components and returns values up
the control tree [13]. At termination the vertex is deleted
from the control tree.

" A macroinstruction has the following format:

macrol (param,, - -, param,) =
cond, —> c-tree,

cond, —> c-tree,

cond, —> c-tree,,

One of the control trees c-tree; is selected during the
macro-expansion to replace the vertex labeled macrol ac-
cording to which predicate cond, returns the value true.
The elementary instruction has the format

eleml (param,,- - -, param,) =
PASS: e, '
s-scl: e,

s-scm: e,
where the e; are expressions which may make use of
basic functions and predicates. (For convenience, the
body of an instruction may appear instead of a control
tree c-tree, ina macroinstruction; in this case the instruc-
tion may use all the parameters of the macroinstruction.)
Both macroinstructions and eleméntary instructions have
their definitions in the macrolibrary. The basic functions
and predicates are a subset of APL. A list of those actually
used is given in Table 2. Not shan in the table are predi-

IBM J. RES. DEVELOP.

cates that characterize the elementary objects is-bit, is- 0 1 23 56 8 9 112 15
binvector, and is-binmatrix. Some changes to the vDL are
adopted for convenience:

1. The list facility for constructing objects in the vbL and \ 1 [} A L
its related function length are not being used. Instead, Qutput
the APL vector and matrix facilities are employed. 0 Function

2. Predicates are treated as functions with domain {0, 1}.
If a predicate appears on the left side of a macroex- IN1
pansion, then it must have a definition in the library N2
which is evaluated in the normal fashion.

3. If x is a selector operating on state S, we may write x Memory
instead of x(S§), if § is determined by the context. o 1 34 s

* Abstract machine S
The definition of S is given in Appendix A; it consists of

three parts: A

Branch address
1. Predicate is-S (for abstract syntax of §), 1
2. Initial state; Test condition
3. Macrolibrary. Figure 4 Microinstruction formats.

The predicate is-S identifies those components of the
S-machine which are known at this interface — main store
mém, stack register stk, index register x, instruction
counter cc and the machine-on-off bit sw. Table 2 Basic (aPL) functions in the definition language.

The initial state specifies the value of stk and the con-

trol tree s-control (S); all other components have arbi- Function Definition or example
trary values. . _ +, =, X, * Binary arithmetic functions

The macrolibrary component of the state contains <, =, =, # Binary relations on scalars
definitions of VDL instructions; the main macrodefinition A Vs~ Boolean functions
. . pY Sizeof Y;p2315=4
1S exec-pgm: XpY Reshape Y to size X; 300 =000
exec-pgm = X[.Y] In.dexX.byY;23 15[23]= 15
'—-(S) -) A4 First 4 integers; Q3 =012

is-run exec-pgm) XTA Representation of 4 in system with radii X

exec-inst (i) AlY Value of representation Y in radix 4
i: fetch-inst 22215=101
I Q —_— 21110=6

. ewe—)))) Xy Catenation; 135,63=13563

This macro calls itself recursively until the predicate A|B A-residue of B; 47 =3

is-run takes the value 0 (or false) which happens when
bit sw is turned off, as can be seen for the definition of
is-run. Each of these calls executes one machine in-
struction.

The cycle has two parts: instruction fetch by macro
fetch-inst and instruction execution by exec-inst. As a fur-

*4, B are integers; X, Y are vectors

ther example, consider the execution of a LOAD instruc- address. As the tree structure of a macrodefinition is
tion; the part of the macrodefinition exec-inst relevant for represented by indentation [13], it is seen that after the
this case is macro-expansion of exec-inst the control tree has two
is-load — load-stk (a) leaves: adv-ctr and calc-addr(i). The choice of the next

step is, however, irrelevant if the definition is consistent;
that is, the machine S is determinate. We choose to exe-
cute adv-ctr first. The execution of LOAD is completed by

a: fetch-word(b)
b: calc-addr(i)

adv-ctr the sequence of macros: calc-addr which computes the
Here i is the parameter passed to exec-inst and is the ob- address of the word to be loaded on top of the stack;
ject representing the instruction executed. The macro fetch-word which fetches that word; and finally load-stack,
adv-ctr increments cc by one for the next instruction which loads the word on the stack. 255

MAY 1974 CORRECTNESS OF MICROPROGRAMS

256

A. BIRMAN

The abstract machine S is similarly defined; its defini-
tion is given in Appendix B.

Simulation of one program by another

In this section we present a concept of simulation slightly
different from Milner’s [16] and illustrate a proof of sim-
ulation in an example.

Definition 1~ An abstract program is a triple P= (D, D,
F) where D is a set called the domain of P; D, C D is a
set of initial values; and F: D — D is a partial function. A
computation is a sequence (d,, d,, d,, ---) in which
d, €D d, =Fd,i=1,2, -

Consider, for example, the class of flowchart pro-
grams. These can be regarded as abstract programs hav-
ing domain D C M X E, where M is the set of nodes in
the program graph and E is the set of state-vector values.
For recursive programs, M could be the infinite set of
states of a pushdown stack.

Assume we have a flowchart program and we define
D C M X E. With each flowchart we can associate a func-
tion advance which takes s € M X E as argument and
returns a value also in M X E after executing one instruc-
tion. Assume further that we have an edge in the flow-
chart from node n, to node n; and labeled by the assign-

ment X é—f(xl, Ty x"); fet (xl, ct xn) € E. Then
advance (n;, x;,* -, x,)
= (n]., Xptts xlc71’f(x1" T xn)’ Xer12" "5 xn)'

Now define a function advance’ as follows:
advance’(s) =sif s € D
= advance' (advance(s)) if s € D.
The function advance’ returns the first value in D en-
countered by repetitive applications of advance. Finally,
F(d) = advance' (advance(d)) if d € D and
{advance’ (advance(d)))
= undefined otherwise.

By specifying D we have essentially determined F: F is
obtained by use of the functions advance, advance’ or
some similar device. Often d € D is given as an expres-
sion containing free variables. Calculating Fd amounts
to “symbolic execution” of a path. Then we may want to
use, instead of the expression Fd, the path that gives rise
to Fd.

Definition 2 Let P= (D, D, F) and P' = (D', D/, F')
be two programs. Arelation R C D X D'isastrong simu-
lation (or simply, simulation) of P by P' if

Cl. v({d,d") € R (Fd) iff (F'd") and if both are defined
then (Fd, F'd') € R.

C2. vd,eD,3d’ €D,

C3. vd' €D, 1d, €D, (d,d)) €ER

C4. vdeED vd' € D’ (d, d') € R implies:
[Vd, € D if (d,, d') € R then d, = d]

(d, d/) €R

Condition C1, which is called weak simulation, means
that the following diagram commutes:

F F
Fd —————————»F'd’
R

This can be also stated as: R is a weak homomorphism
between the algebraic structures (D, F), (D', F').

Condition C2 asserts that R is total on D ; Condition
C3 asserts that R~ is total on D/'; Condition C4 means
that R™" is single-valued. If R is a strong simulation of P
by P’ we write sim(P,R, P").

If R is a strong simulation of P by P’, P’ can compute
anything computed by P and this is shown in the follow-
ing theorem.

Theorem | Let P= (D,D,, F) and P'= (D', D, F') be
two programs and let R C D X D’ be such that sim(P, R,
P’). Then

vd, € Dvd, € D, (d,, d;) € R implies
(Fldy) iff (F7 d)), i= 1,2, |
and if both are defined, then F'd,= R™'[F'd,']

Proof The proof is by induction on i. Assume / = 1.
From C1 of Definition 2 it follows that: (Fd) iff (F'd,’)
and if both are defined (Fd,, F'd)) € R. Since R™" is
single-valued Fd, = R '[F'd,]. Assume the theorem is
true for i < n. Then (F'~'dy iff (F'"'d,'); if both are de-
fined then (F id()) iff (F ’ido’> according to C1 of Definition
2. The rest of the theorem follows by an induction step.

Theorem 1 states that if (d,, d,’) € R and we apply F
and F', respectively, to the states of P and P’ any number
of times, then all pairs of states obtained in this manner
are in R. Moreover, the state in P is retrievable from the
state of P’ due to the single-valued nature of R~'. There-
fore, for any computation in P from d, € D to d € D, we
can use R to obtain the same result as follows. Take d,’
such that (d,, d,) € R: the existence of d,’ is guaranteed
by C2 of Definition 2. Then use P’ to compute d’ € D’
such that (4, d") € R. Finally take d=R ' (d').

As mentioned in the introduction, a reasonable con-
cept of simulation should have the following property:
For any program P there should exist a simulation of P by
P. If there exists a simulation of P by P, and also a simu-
lation of P, by P,, then there should exist a simulation of
P by P,. Definition 3 and Theorem 2 show these proper-
ties for our simulation concept as given by Definition 2.

IBM J.. RES. DEVELOP.

Definition 3 Let P, P’ be two programs. We define the re-
lation < between two programs by P < P’ if there exists
R such that sim (P, R, P').

Theorem 2 The relation < over the class of programs is
reflexive and transitive.

Proof First we show that for any program P 3 R such
that sim(P, R, P). Let P= (D, D, F), R = {(d, d)|
d € D}, i.e., R is the identity relation on D. Using Defini-
tion 2 it is easy to check that sim (P, R, P). It remains to
be shown that < is transitive. Let P= (D, D, F), P' =
(D',Dy,F')and P''= (D', D', F'") be programs and let
R, R' be such that sim(P, R, P') and sim(P', R’, P"");
then P < P', P’ < P". Let Q =RR'={(d,d")|d € D,
d'eD”,3d €D'(d,d)€ERand (d',d"’) ER’'}. Using
Definition 2 we check that sim(P, Q, P'’).

The following example indicates how one proves simu-
lation of one program by another and illustrates in a sim-
plified way some features of the proof for the S-machine.

e Example

Consider the programs P, P’ (Fig. 5). In P, x is an integer
and y is a 32-bit binary vector; a left shift is performed
iteratively by executing a one-bit left shift each iteration.
The set of integers is denoted by N. We define

E={(x,y)[x€N,ye {0, 1}*)}
M=1{1,2,3}.

Then P is represented in our formalism by

D =MXE
D,={(1, e}|e € E}.

For P’ we define

E ={(x,y,2,A)|x,Z €N,y € {0,1}*, 4 € N'}
M =1{1,2,3}
D' ={(m',e)|m €{1,3},¢ EE'}
U{(2,¢e)|e €E, 2 =1}
D) ={(1,¢)|e EE'}.

We postulate the following simulation R:

R =R, UR,, UR,

R, ,={d d&)m=m'=1,x=x",y=y'}

R,={d d)m=m=2,x=x",y=Y,
A=(0123),2 =1}

R,={d, d)m=m'=3,x=x",y=y}

Then we show that sim (P, R, P').

Proof We show that Conditions C1 through C4 in
Definition 2 are satisfied for the R defined above.

Condition C1 is proved by cases. The cases are enu-
merated 1.1 through 1.4,

MAY 1974

x<a
y<h

y<LS(y)

Figure 5 The programs P and P’ (True « 1, False & 0).

1.1 Let (d, d') €R,; i.e., m=m' = 1. The symbolic
execution of Fd, F'd’ corresponds to the following
straight line programs (we use begin, end as delimiters
for straight line programs): T

P’ begin (m' = 1)

P begin (m=1)

x<pl:a x'<ql:a
yep2 h y < q2: h
Pend (m=2) 2 «—q3:1
A<« qg4: (0123)
P’ end (m' =2)

To verify that ¢(Fd, F'd') € R,,, from the above it can
be shown that at node 2 the following relations hold:

1.2 Let(d,d') € R, suchthatx=0.

P’ begin (m=2)
P end (m=3)

P begin (m=2)
Pend (m=3)

257

CORRECTNESS OF MICROPROGRAMS

258

A. BIRMAN

Verify (Fd,F'd’') € R,y
a x=x
b. y=y'.

1.3 Let{(d,d')€ R, and x # 0.

P begin P’ begin
'x<——p1:x—1 ql: 2 +1
y<— p2: LS(y) X e q2:x —1
q3:q1+1
P end y < q4: LS(y")
q5: g3+ 1
Z <« g6:g5+1
P’ end ’

Verify (Fd, F'd') € R,, by:

x'
yl
(0123)
= 1.

]
Il

I

’

oo op
N

1.4 Let (d,d’') €R,,. Both Fd, F'd" are undefined.

The outlines of proof for C2, C3,and C4 are as follows
C2 Show Vvd, € D, id/’ €D, (d,d,) €R.We
haved =(1,e) for some e € E; let d)’ =(1, e'), where
e’ € E’ such that x = x’, y=y'. The above statement fol-
lows. R
C3 Show vd, € D,/ id, e D, (d,,d,) €ER. Let

= (i, '), for some ¢’ € E'; let d,= (1, e) such that
x=x',and y = y'. By direct substitution one can verify
that (d,, d,') € R. '
C4 Show R’ is single-valued. Let d’ = (2, ¢'), ¢’ € E';
suppose 3d,d, € D,d= (2, ¢),and d, = (2, ¢,) such that
(d,d')ER,(d,d)ER Thenx=x',y=y,x,=x,
y, = ¥' and therefore e, = (x,, ¥,) = (x, y) = e, Similarly
ford = (1,¢')ord' = (3,¢'). '

Simuiation of S by uS

Before we can define a relation R and prove that it is in-
deed a simulation of S by uS, we have to bring the ab-
stract machines S and uS to the form of abstract pro-
grams. We define an abstract program § = (D, D,, Fy)
where

= {alis-S (a), s-control(a)
= exec-pgm V s-control(a) = (1}

D, = {ala € D, stk(a) = (32p2) T 2%24, s-control(a)
= exec-pgm}. :
Let us assume that we have a function advance which
accepts one argument, a state of any VDL machine, and
performs ong elementary step, either a basic operation or

a macro-expansion. Moreover, advance(«) is undefined
if s-control(a) = £). Then let ad-§ and F be defined by

ad-S(a) =aifa € D,
= ad-S (advance(a)) if « &€ D;
Fy (a) = ad-S (advance{a)) if « € D and
{ad-S (advance (a)),
= undefined otherwise.

The function ad-S takes as argument a state of S and
by using advance repeatedly, produces the first state of S,
which is also in D. The possibility exists that ad-S is un-
defined because the computation does not terminate. The
function F; accepts a state in D and returns the next
state in D.

Similarly, uS = (D', D, F):

D’ = {Blis-uS (B), s-control(B) = exec-upgm
V s-cantrol(B) = Q, csar(B) = 12p0};

= {BIB € D, stk(B) = (32p2)T2424, c5(8)
= MCODE]1, s-control(B) = exec-upgm};

ad-uS(B) = Bif p € DV,
) = ad-uS (adv.an,ce(ﬂ)) ifpe D,

F <(B) = ad-uS (advance(B)) if B € D' and
{ad-usS (advance(B))),

= undefined otherwise.
LetR=R, UR,;

R, = {(oz, B)la € D, B € D', mem(a) = mem(B),
stk(a) = stk(B), cc(a) = cc(B), x(a) = x(B),
sw(a) = sw(B), s-control(a) = exec-pgm,

5- control(ﬁ) = exec-upgm}; '

R, = {(e, B)Ia € D, B € D', mem(a) = mem(B),
stk(a) = stk(B), cc(a) = cc(B), x(a) = x(B),
swla) = sw(B), s-contral(a) = (),
s-control(B) = Q}.

The proof that R is indéed a strong simylation of S by
uS follows the same pattern as the example in the pre-
vious section,

~ Proof of simulation
Condition C1 of Definition 2 is proved by cases.

1.1 Let (o, B8) € R, and sw= 0. By applying Fs to «
and F uS to B we get the sequences: - :

S- begm [el;
S-end [Fg ()] where s-control (Fg(a)) =

uS- -begin [B];
/,LS -end [F (3)] where S-control (F S(/3)) = ().

Using the values of Fs(a) and F S(B) from above we
verlfy that (Fs(a), F s(B)) €ER,.

IBM J. RES. DEVELOP.

1.2 Let (a, B) € R, and P-LOAD-00, where the predi-
cate P-LOAD-00 is defined by

P-LOAD-00 = (sw=1) A (0= 2Ls-op(bi))
A (0= s-id(bi)) N (0 = s-ix(bi)).

The vDL object bi is defined in Table 3 by a straight line
program. The following sequences are then obtained for
Fs(a),F“s(B)I ‘
S-begin
cce— 51 : (32p2)T(2%32)|1 + 2 Lcc
52 : 215a-00[8 + 24]
s3 : mem[s2;]
stk < s4 : (32p2) T (2+32)|71 + 2 Lstk
55 @ 2.Ls4[8 + 124]
mem[s5;] < 56 : 53
S-end

#S-begin
cc<ml : (32p2)T(2%32)|1 +2.1Lcc
m2 : 8p0, mi[2 + 124]
m3 : ma-00[8 + 124]
m4 . mem[21m3;]
stk <= m5 : (32p2) T (2+32)|71 + 2 Lstk
mb6 : mS5[8 + 24]
mem[21m6;] «— m7 : m4
uS-end

We verify (Fs(a), F s(8)) € R, by

a. sl =ml;
b. s4 = mS§;
c. s5=21m6;
d. s6 =m7.

Other cases are handled similarly. Most of these sym-
bolic executions induce to straight line paths and pose no
special problems. In two cases, however, we obtain a
loop in uS; those paths correspond to left-shift and right-
shift instructions. The equivalence of the looping path in
«S with the straight line path in S is shown through the
method of inductive assertions [18].

Conditions C2, C3 and C4 are proved as follows:

C2 We show Vo, €D, 38, ED, (o, B,) ER. As-
sume a, is given; let 8, € D’ be such that s-control(B,) =
exec-ppgm, mem(a,) = mem(B,), stk(B,) = (32p2)7
2%24, cc(a,) = cc(By), ¢s(B,) = MCODE1, x(B,) =
x(ay), swle,) = sw(B,). From the above it follows
() B,) €ER,.

C3 We show VB, €D,/ 3a,€D, (B, €R. The

proof is similar to the one above.

C4 To show that R™' is single-valued, assume that
a,, a, € D such that («,, B) €R, (a,, B) € R. It follows
that &, = a,.

MAY 1974

Table 3 Some expressions used in the abstract machines.

Machine §

al:21cc [8 +124]
sit memlal;]
a2: si[8 + 1 24]
a3: si[2+ 6]
ad: sif1]
a5: 5i[0]
bi: p,((s-id-a5),
(s-ix:a4),
(s-op:a3),
(s-ad:a))
ac: (32p2)T(2%¥32)| 1+ 21cc
5a-00: 8p0, s-ad(bi)
sa-01: (32p2)T(2%32)|(2Lx) + 2Ls-ad(bi)
a6: mem[2 1s-ad(bi);]
sa-10: 8p0, a6(8 + 24]
a7l: mem[2Lsa-01[8 + ¢ 24];]
sa-11: 8p0, a7 [8 + ¢ 24]

Machine pS

bl: cc[8 + ¢ 24]
mi: mem[21b1;]
b2: mi[8], 24p0
i: b2 [4 + 5]
ma-00: 8p0, mi[8 + 124]
ma-01: (32p2) T (2%32)|(2 L x) +2 Lma-00
b3: ma-00 [8 + ¢ 24]
ma-10: 8p0, mem[2153; 8 + 124]
b4: ma-01 [8 + 124]
ma-11: 8p0, mem [21b4; 8 + 124]

Summary and discussion

At the start of our investigation a complete, indepen-
dently written microprogram for the S-machine was
available. In the course of the simulation proof three
errors were discovered in the microprogram (the cor-
rected microprogram is found in Appendix C.):

1. One error involved the left-shift (LS) and right-shift
(RS) instructions. The instructions were executed
correctly only if the address field (holding the number
of bits to be shifted) was not zero. If the address field
was zero the microprogram entered a loop which
counted down 2** — 1 one-bit shifts.

2. Another error concerned the instructions stack-to-
index (sTx), add-stack-to-index (ADX), and subtract-
stack-from-index (sBx). For any of these instructions
STX was executed.

3. A third error was found in the instruction-fetch part
of the microcode. If the address field of the instruc-
tion interpreted was less then 2% there was no ill ef-
fect; if, however, the address was larger than or equal
to 2%, no instruction was executed correctly, not even
the STOP instruction. Moreover, unlike the two pre-
vious errors, which could have been found using the
simulator package [3], this error could not be found

CORRECTNESS OF MICROPROGRAMS

259

260

A. BIRMAN

because the main memory in the simulator was, for
convenience, only 100 words in size.

In this paper we have introduced an approach to prov-
ing correctness of microprograms and we illustrated it
by showing the correctness of the S-machine. At first,
we defined abstract machines S and uS corresponding
to two interfaces—the machine-instruction level and the
microinstruction level.

Defining S and uS is an iterative process, involving
several passes, for the following reasons:

1. The original definition of S, although otherwise ac-
ceptable, might pose unnecessary restrictions on the
implementation; we remove those restrictions by
changing S.

2. A change in S might make uS easier to understand.

3. We want to change S because we found a “mistake”.
This is to be expected since defining uS involves, in
a sense, redefining S and sometimes discovering that
things are not as were intended in the first place.

Defining an interface in a precise language seems to be
of value even if we are not concerned with proving cor-
rectness. The precise definition removes the ambiguities
of the natural language and provides the means for good
documentation against which any inconsistencies that
might arise in implementation can be checked. It is true
that for an uninitiated person it is harder to read a docu-
ment written in the definition language than a manual
written in English, but the effort required to learn the
definition language will pay off. Another advantage of a
precise definition: An interpreter for the definition lan-
guage can be written which will give the designer the
possibility to “run” the abstract machine and thus gain a
better understanding of the design. And finally, when the
problem of proving correctness of implementation comes
up, the abstract machine is an essential starting point.

One of the things we learned from this work concerns
the mechanization of the correctness proof. Because our
proof was carried out by hand, it became clear that for
practical applications the proof has to be mechanized to
a large extent. Most of the difficulty in carrying out the
proof by hand was not in the complexity of the proof,
but mainly in the large amount of detail one has to keep
track of in such a proof. Specifically, one has to cope with
the large number of paths to be compared, the symbolic
execution of those paths, and proofs of equivalence of
expressions involving APL operators. It is encouraging
that most of the correctness proof for the S-machine
seems amenable to automation. The approach to correct-
ness developed in the course of our experiment could be
used in practical applications, especially for hardware /
firmware design. The work presented here could be ex-
tended in the following directions:

1. Applying our approach to a more realistic computer.
1/0 facilities, “Horizontal” microprogramming, more
realistic timing constraints could be included.

2. Investigating simulation of parallel programs. In our
experiment we reduced whatever parallelism appeared
in S and uS to a sequential case. In a more general
case one has to cope with the problem of determinacy
even before attacking the problem of correctness.

3. Designing an experimental interactive system which
will mechanize the proof procedure.

Appendix A: Definition of S

» Abstract syntax of §

is-S = ((mem : is-mem),

(stk : is-reg),

(x: is-reg),

(cc: is-reg),

(sw: is-bit),
(s-control: is-control),
(s-lib: is-lib))

* Initial state

stk: (32p2)T2%24
s-control(S) : exec-pgm

e Macro library
1. exec-pgm=
is-run(S) — exec-pgm
exec-inst (i)

i: fetch-inst
else = ()
2. fetch-inst =

PASS: build-inst (a)
a: fetch-word (cc)
3. fetch-word (1) =
PASS: mem [m ;]
m:2 Lt [8+24]
4. build-inst (1) =
PASS: p,(s-id:id), (s-ix:ix),
(s-op:op), (s-ad:ad))
id: 1[0]
ix: t[1]
op: t[2 + 6]
ad: t[8 + 124]
5. exec-inst (i) =
is-load (iy — load-stk (a)
a: fetch-word (b)
b: calc-addr (i)
adv-ctr
— load-stk (8p0, s-ad (i))
adv-ctr

is-Idi (i)

IBM J. RES. DEVELOP.

is-store(i) = store-word (a, b)
a: pop-stk
b: calc-addr (i)
adv-ctr

is-branch (i) = cond (i) = cc: calc-addr (i)

else — adv-ctr
is-enter (i) — cc: calc-addr (i)
load-stk (cc)
adv-ctr
is-ldx (i) — x : fetch-word (a)
a: calc-addr (i)
adv-ctr
is-ldxi (i) — x : 8p0, s-ad (i)
adv-ctr
is-loop (i) = test-loop (i)
incr-x
is-Is (i) — store-word (a, stk)
a:ls (b,2 L s-ad (i)
b: fetch-word (stk)
adv-ctr
is-rs (i) — store-word (a, stk)
a:rs (b,2 L s-ad (i)
b: fetch-word (stk)
adv-ctr
is-bin (i) — store-word (a, stk)
a: bin (b, c, i)
c: fetch-word (stk)

b pop-sik
adv-ctr
is-not (i) — store-word (a, stk)
a: ~ fetch-word (a, stk)
adv-ctr
is-xts (i) — load-stk (x)
adv-ctr
is-stx (i) - x : pop-stk
adv-ctr
is-adx (i) — x: add (x, a)
a: pop-stk
adv-ctr
is-sbx (i) — x:sub (x,a)
a : pop-stk
adv-ctr
is-ret (i) — cc : pop-stk
is-pop (i) — pop-stk
adv-ctr
is-stop (i) —>sw(s) : 0
adv-ctr

6. is-branch (i) =
PASS : is-tra (i) Vis-tpl (i) Vis-tmi (i) V
is-tze (i) Vis-tnz (i)
7. cond(i) =
PASS: is-tra (i) V
(is-tpl (i) A (a[0]=0)) V
(is-tmi (i) A (a[0]1=1)) V

MAY 1974

10.

11.

12.
13.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

(is-tze () N (0=21a)) V
(is-tnz (i) A (0 # 21a))
a: mem [2 L stk [8 +24];]

. store-word (a, t) =

mem [2 Lt[8+¢24[;] : a

. load-stk (a) = store-word (a, stk)
push-stk
push-stk =
stk (32p2) T (2%32)| "1+ 2 L stk
pop-stk =stk 1 (32p2) T (2%32) | 1+ 2 L stk
PASS : fetch-word (stk)
adv-ctr =cc: (32p2) T (2%32) | 1+2 L cc
calc-addr (i) = calc-id (i, a)
a: calc-ix(i
. cale-ix (i) =
(1= s-ix (i) = PASS : (3202) T (2#32) | b+ c
b:2 Lx
c: 2 L s-ad(i)
else — PASS: 8p0, s-ad (i)

calc-id (a, i) =
(1=s-id(i)) —> PASS: 8p0, b[8 + ¢ 24]
b : fetch-word (a)
else — PASS: a

incr-x =
x:(32p2) T(2%32) |1+2 L x

test-loop (i) =
0#21Lx) — cc : calc-addr (i)
else — adv-ctr

Is (a, N) =
PASS: (a, NpO)[N + ¢ 32]

rs (@, N) =
PASS: ((Npa[0]), a) [+ 32]

is-bin (i) =
PASS: is-add (i) V is-sub (i) V is-and (i) V
is-or (i) V is-eor (i)

bin (a, b, i) =
is-add (i) - PASS: add (a, b)
is-sub (i) —> PASS: sub (a, b)
is-and (i) - PASS: a A b
is-or (i) — PASS:a Vb
is-eor (i) = PASS: (aA~b)V (~aAb)
add (a, b) =
PASS: (32p2) T (2#32)[(2 La)+21b
sub (a, b) =
PASS: (32p2) T (2#32) | (2La)—21b

is-run (S) =
PASS: sw(S) =1

261

CORRECTNESS OF MICROPROGRAM$

25. is-load (i) = 26. is-mem (t) =

PASS: 0=2 L s-op (i) is-binmatrix (t) = pt = (2%24 32) - PASS : 1
is-ldi (i) = else —> PASS : 0
PASS: 1=2 L s-op (i) else — PASS : 0
is-store (i) = is-reg (1) =
PASS:2=2 1 s-op (i) is-binvector (t) — (pt) =32 —> PASS: 1
is-tra (i) = else — PASS: 0
PASS:3=2 L s-op (i) else — PASS: 0
is-tpl (i) =
PASS: 4=2 L s-op (i)
fg-tmi (i) = Appendix B: Definition of uS
PASS: S=2 1 s-op (i)
is-tze (i) = i
PASS: 6=2 L s-op (i) o Abstract syntax of pS
is-tnz (i) = is-uS = ((mem : is-mem),
PASS: 7=2 1 s-op (i) (stk : is-reg),
is-enter (i) = {cc : is-reg),
PASS: 8=2 1 s-op (i) (sw : is-bit),
is-ldx (i) = (cs : is-controlstore),
PASS:9=2 1 s-op (i) (mdr : is-reg),
is-ldxi (i) = (x :is-reg),
PASS: 10=2 L s-op (i) (a 1 is-reg),
is-loop (i) = (b : is-reg),
PASS: 11=2 L s-op (i) (mar : is-adreg),
is-Is (i) = (csar : is-csreg),
PASS: 12=2 1 s-op (i) (ir : is-ireg),
is-rs (i) = (s-control: is-control),
PASS: 13=12 1 s-op (i) {s-lib: is-lib))
is-add (i) =
PASS:32=2 1 s-op (i) o [nitial state
is-sub (i) = st (3202) T 2424
PASS:33=2 1 s-op (i) csar: 12p0
is-and (i) = ¢s : MCODET! (Appendix C)
PASS:34=2 L s-op () s-control (uS): exec-upgm
is-or (i) = execprs™
PASS:35=2 1 s-op (i) ;
is-eor (i) = e Macro library for pS
PASS:36=2 1 s-op (i) 1. exec-upgm =
is-not (i) = is-run (uS) — exec-upgm
PASS:37=2 1 s-0p (i) exec-irem
is-xts (i) = : exec-pcycle
w: 38=2 1 s-op (i) else -0 -
is-stx (i) = 2. exec-irem =
PASS 39=2 1 s-op (i) is-iexec(uS) — exec-irem
is-adx (i) = exec-ucycle
w: 40=2 1 s-op (i) else)
is-sbx (i) = 3, is-iexec (a) =
PASS: 41=2 L s-op (i) PASS: (12p0) # csar (a)
is-ret (i) = 4. is-run (o) =
PASS: 42=2 1 s-op (i) PASS: 1=sw(a)
is-pop (i) = 5. exec-pcycle = exec-pi (i)
PASS: 43 =2 1 s-op (i) i: fetch-pi
is-stop (i) = 6. fetch-pi = build-pi (a)
262 PASS = 44=2 1 s-0p (i) T a: es(uS)[2 L esar(uS);]

A. BIRMAN IBM J. RES. DEVELOP.

7. build-pi () =
(1=1[0]) — PASS: p,(s-branch : aj,
(s-cond : b},
(s-addr :c¢))
a:t[0]
b:t[1,2,3]
c:t[4+¢12]
else — PASS: wy(s-branch : ay,
(s-memf : b),
(s-inl !¢,
(s-in2 s dy,
{s-f te),
(s-out M
a :[0]
111, 2]
113, 4,5]
: 16,7, 8]
2 1[99+ 1 4]
: 1[13, 14, 15]

L O N

8. exec-pi (i) =
(1 = s-branch (i)) — exec-branch (i)
else — exec-assign (i)
9. exec-branch (i)

is-trm (i) — csar (uS): s-addr (i)

is-t¢ (i) = (mdr(uS)[0] =0) - csar(uS) : s-addr (i)
else — adv-csar

is-tl (i) - (mdr(uS)[1]1=0) = csar(uS) : s-addr (i)
else — adv-csar

is-12 (i) — (mdr(uS)[2] =0) - csar(uS): s-addr (i)
else — adv-csar

is-tmdr (i) = (mdr{uS) = 32p0) — csar(uS): s-addr (i)

else - adv-csar
is-ti (i) — csar(uS) : s-addr(i) V (7p0, ir(uS))

10. exec-assign (i) =
is-stop (i) = sw(uS) : 0
csar(uS) : 12p0
else — exec-assign-1(i)
11. exec-assign-1(i) = mem (i)

set (i, a)
a: result (i, b, ©)
b: select-1 (i)
c: select-2 (i)
: adv-csar
12. select-1 (i) =
is-mdr-1 (i) => PASS: mdr (uS)
isx-1 () — PASS: x (uS)
is-mone-1 (i) — PASS: 32p1
is-one-1 (i) —» PASS: 31p0, 1
is-zero-1 (i) —» PASS: 32p0
13. select-2 (i) =
is-one-2 (i) — PASS:31p0, 1

is-zero-2 (i) —» PASS: 32p0

issmask-2 (i) — PASS: 8p0, 24p1

is-a-2 (i) — PASS: a(uS)
MAY 1974

is-b-2 (i)
is-stk-2 (i)
is-cc-2 (i)
14. result G, a, b)
is-add (i)

is-sub (i)
is-and (i)
is-or (i)
is-not (i)
is-eor (i)
is-rs (i)

is-Is (i)

15. set (i, a)

— PASS: b(jiS)
— PASS: stk(uS)
— PASS: cc(uS)

— PASS: (32p2) T (2%32) | (2 La)

+21Lb
— PASS: (32p2) T (2%32) | (2 L a)
—241b
— PASS:anb
— PASS:a V b
— PASS: ~ (32p2) T (2%32) | (2 L a)
+21Lb

— PASS: (aA~b) V (bA~a)
— PASS: c[0], c[31]
c:(32p2) T (2%32) | (2 L a)
+2Lb
> PASS: c[1+31],0
c:(32p2) T (2%32) | (2 L a)
+2Lb

is-out-mar (i) = mar(uS): a[8 + 24]
is-out-mdr (i) = mdr(uS): a

is-out-x (i)
is-out-a (i)
is-out-b (i)

- x(uS): a
= a(uS):a
— b(uS): a

is-out-stk (i) — stk(uS): a

is-out-cc (i)
is-out-ir (i)
16. mem (i)
is-read (i)
is-write (i)
is-p (i)
17. adv-csar

= cc(uS):a
~> ir(uS): a[3 + 5]

—> mdr(yS): mem(uS) [2 L mar(uS);]
— mem (uS)[2 L mar(uS);] : mdr (uS)
-0

csar (wS): (12p2) T (2*12) | 1 + 2 L csar (uS)

18. is-trm (i)
is-1¢ (i)
is-t1 (i)
is-12 (i)
is-tmdr (i)
is-ti (i)

19. is-mdr (i)
is-x-1 (i)
is-mone-1 (i)
is-one—i (i)
is-zero-1 (i)

20. is-one-2 (i)
is-zero-2 (i)
is-mask-2 ()
is-a-2 (i)
is-b-2 (i)
is-stk-2 (i)
is-cc-2 (i)

21. is-add (i)

is-sub (i)

= PASS: 0=2 1 s-cond (i)
= PASS: 1=2 1 s-cond (i)
= PASS: 2= 2 1 s-cond (i)
= PASS: 3=2 1 s-cond (i)
= PASS: 4=2 1 s-cond (i)
= PASS: 7=2 1 s-cond (i)
= PASS: 1 =2 1 s-inl (i)
=PASS: 2=2 L s-inl (i)
= PASS: 3 =2 L s-inl (i)
= PASS: 7= 2 1 s-inl (i)
= PASS: 0=2 1 s-inl (i)
= PASS: 1=2 1 s-in2 (i)
= PASS: 0=2 1 s-in2 (i)
= PASS:2=2 1 s-in2 (i)
= PASS:3=2 1 s-in2 (i)
= PASS: 5=2 1 s-in2 (i)
= PASS: 6 =2 1 s-in2 (i)
=PASS: 4=2 Lin2 (i)
=PASS: 0=2 L sf (i)

= PASS: 1=2 L sf (i) 263

CORRECTNESS OF MICROPROGRAMS

264

A. BIRMAN

is-and (i) = PASS:
is-or (i) = PASS:
is-not (i) = PASS
is-eor (i) = PASS
is-rs (i) = PASS:
is-Is (i) = PASS:
is-stop (i) = PASS:
22. is-out-mar (i) = PASS:
is-out-mdr (i) = PASS:
is-out-x (i) = PASS:
is-out-a (i) = PASS:
is-out-b (i) = PASS:

is-out-stk (i) = PASS:
1 4=2 1 s-out (i)
:7=2 1 s-out (i)

is-out-cc (i) = PASS
is-out-ir (i) = PASS
23, is-read (i) = PASS:
is-write (i) = PASS
is-p (i) = PASS:

24. is-mem (t) =

is-binmatrix (t) = pt =

else

2=21sf (i)
3=21sf(i)

14=21s5f()
15=21sf(D)

6=2 1 s-f (i)
7=2Lsf ()
10=2 L s-f (i)
0=2 1 s-out (i)
1=2 1 s-out (i)
2=2 1 s-out (i)
3=2 1 s-out (i)
=2 L s-out (i)
6=2 L s-out (i)

1=2 1 memf (i)

12 =21 memf (i)

0=2 1L memf (i)

(2%24 32) = PASS: 1
— PASS: 0

else - PASS: 0

25, is-reg (t) =

is-binvector(t) = (pt) =32 = PASS: 1

else

— PASS: 0

else — PASS: 0

26. is-controlstore(t) =

is-binmatrix(t) = pt = (2%12 16) > PASS: 1

else

— PASS: 0

else — PASS: 0

27. is-adreg(t) =

is-binvector (t) = (pt) =24 > PASS: 1

else

- PASS: 0

else — PASS: 0

28. is-csreg(t) =

is-binvector(t) = (pt) = 12 > PASS: 1

else

— PASS: 0

else — PASS: 0

29. is-ireg(t) =

is-binvector (t) = (pt) =5 - PASS: 1

else

— PA4S§S: 0

else — PASS: 0

Appendix C: Microcode
VMCODEA O]V
V MCODF1

(1] 1 ADDM ZERQ,CC ,MAR ,R
(2] 2 ADDM ONE ,CC,CC,P

(3] 3 ThM 168
(4] 4727
[5] 5 TT 32
6] 7719

L7]

£8]

N

[10]
[11]
[12]
[13]
C14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[2u4]
[25]
[26]
[271
[28]
[29]
[30]
[31]
£32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
(407
[41]
L42]
[43]
[44]
[u5]
[u6]
[47]
48]
[(49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

8 ADDM X,B,B,P
9 T0 12

10
11
12
20
21
22
23
24
25
26
27
29
30
32
33
34
35
36
37
38
39
40
w1
42
43
By
45
46
w7
48
49
50
51
52
53
54
55
56
Bk

65

66
67
68
69
70
71
72
73
74
75
76

ADDM 7ERO ,B ,MAR ,R
ANDM MDR ,MASK ,B ,P
TT 64

ADDM MONE ,STK ,STK ,P
ADDM 7ERO ,STK ,MAR W
TRM 1

ADDM MONE ,STK ,STK ,P
ADDM ZERO,STK ,MAR W
TRM 1

ADDM ZERO ,B ,MAR W
TRY 54

70 70

TRM 1

ADDM ONE ,STK ,MAR ,R
TRM 115

ADDM ONE ,STK ,MAR ,R
TRM 115

ADDM ONE ,STK ,MAR ,R
TRM 115

ADDM ONE ,STK ,MAR ,R
TRY 115

ADDM ONE ,STK ,MAR ,R
TRM 115

ADDM ZERO ,STK ,MAR ,R
TRM 142

ADDM MONE ,STK ,STK ,P
TRM 144

ADDM ZERO ,STK ,MAR ,R
TRM 158

ADDM ZERO,STK ,MAR ,R
TRM 147

ADDM ZERO,STK ,MAR ,R
TRM 149

ADDM 7ERO ,STK ,MAR R
TRM 156

ADDM ONE ,STK ,STK ,P
TRY 1

STOPM ZERO,ZERO ,MAR ,P

ADDM ZERO,B ,MAR ,R
TRM 20

ADDM ZERO,B ,MDR P
TRM 23

ADDM ZERO,STK ,MAR ,R
TRM 26

ADDM 7ERO, B, CC, P
TRM 1

ADDM 7ERO ,STK ,MAR ,R
TRM 29

ADDM 7ERO,STK ,MAR ,R
TRM 97

ADDM ZERO,STK ,MAR R

77 TRM 99

IBM J. RES. DEVELOP.

[61]
[62]
[63]
[64]
[651]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
C74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
rsu]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]

MAY 1974

78 ADDM ZERO,STK ,MAR ,R
79 TRM 101

80 ADDM ZERO,CC ,MDR P
81 TRM 103

82 ADDM ZERO,B ,M/R R
83 TRM 106

84 ADDM ZERO,B,X,P

85 TRM 1

86 ADDM X ,ONE X P

87 TRM 108

88 ADDM ZERO,STK ,MAR R
89 TRM 110

90 ADDM ZERO,STK ,MAR R
91 TRM 110

96 TRM 1

97 T0 1

98 TRM 70

99 TMDR 70

100 TRM 1

101 TMDR 1

102 TRM 70

103 ADDM MONE ,STK ,STK ,P
104 ADDM ZERO,STK MAR W
105 TRM 70

106 ADDM MDR ,ZERO,X ,R
107 TRM 1

108 ADDM X, ZERO ,MDR ,P
109 TRM 101

110 ADDM MDR ,ZERO,A P
111 ADDM ZERO,B ,MDR P
112 TRM 124

115 ADDM MDR,ZERO,A P
116 ADDM ZERO ,STK ,MAR R
117 ADDM ONE ,STK ,MAR ,P
118 TT 128

120 LSM ZERO,A,A,P

121 TRM 123

122 RSM ZERO,A,A,P

123 SUBM MDR ,ONE ,MDR ,P
124 TMDR 126

125 TT 120

126 ADDM ZERO,A,MDR W
127 TRM 1

128 ADDM MDR ,A ,MDR ,W
129 TRM 54

130 SUBM MDR ,A ,MDR ,W
131 TRM 54

132 ANDM MDR ,A ,MDR W
133 TRM 54

134 ORM MDR ,A ,MDR W
135 TRM 54

136 EORM MDR ,A ,MDR ,W
137 TRM 54

142 NOTM MDR , ZERO ,MDR W

(1151 143 TRM 1

[116] 144 ADDM ZERO,STK ,MAR,P
[117] 4145 ADDM X ,ZERO ,MDR W
[118] 146 TRM 1

[149] 147 ADDM MDR ,Z7ERQ,A,P
[120] 148 TRM 160

(1241 149 ADDM MDR,ZERO,A,P
[122] 150 TRM 162

(1231 156 ADDM MDR,7ERO,CC,P
[124] 157 TPM 54

(1251 158 ADDM MDR,ZERO,X,P
[126] 159 TRM 54

[(127] 160 ADDM X ,A,X,P

[128] 161 TRM 54

[129] 162 SUBM X,A,X,P

[130] 163 TRM 54

[(131] 168 ANDM MDR ,MASK ,B,P
[(132] 169 NOTM ZERO,MASK ,A,P
[133] 170 ANDM MDR,A,MDR,P
(134] 171 LSM MDR,ZERO,IR,P
[135] 172 TRM &4

v

Acknowledgments

I

acknowledge useful discussions with W. C. Carter,

W. H. Joyner, and G. B. Leeman, Jr. I also thank
K. Haralson and R. Polivka for providing the S-machine
simulator and the microprogram, and the referees for
some very helpful comments.

References

1

11.

. A. Birman, “Correctness in Design: The S-Machine Ex-
periment,” Research Report 4193, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1973.

. C. W. Gear, Computer Organization and Programming,
McGraw-Hill Book Co., Inc., New York, 1969.

. K. Haralson and R. Polivka, ‘“Microprogram Training— An
APL Application,” Proc, 4th. Int. APL Users’ Conf., 1972.

. P. C. Gilmore, *“An Abstract Computer with a Lisp-Like
Machine Language without a Label Operator,” Computer
Programming and Formal Systems, edited by P. Braffort
and D. Hirschberg, North-Holland Publishing Co., Amster-
dam, 1963, p. 71.

. C. C. Elgot and A. Robinson, “Random-access Stored-
program Machines, An Approach to Programming Lan-
guages,” J. ACM 11,365 (1964).

. P. J. Landin, The Mechanical Evaluation of Expressions,”
ComputerJ. 6,308 (1964).

. K. Walk et al., “Abstract Syntax and Interpretation of
PL/I,” TR 25.082, IBM Laboratory, Vienna, 1968.

. P. Lucas, P. Lauer, H. Stigleitner, “Method and Notation
for the Formal Definition of Programming Languages,”
TR 25.087, IBM Laboratory, Vienna, 1968.

. P. Lucas and K. Walk, “On the Formal Description of
PL /1" in Annual Review in Automatic Programming 6, Per-
gamon Press, New York, 1970.

. J. A. N. Lee, Computer Semantics, Van Nostrand Reinhold

Co.,New York, 1972.

A. D. Falkoff, K. E. Iverson and E. H. Sussenguth, “A

Formal Description of System/360,” IBM Syst. J. 3, 198

(1964).

265

CORRECTNESS OF MICROPROGRAMS

13.

14.

15.

16.

266

A. BIRMAN

. C. G. Bell and A. Newell, Computer Structures: Readings

and Examples, McGraw-Hill Book Co., Inc., New York,

1971.

F. J. Neuhold, “The Formal Description of Programming

Languages,” /BM Syst.J. 10,86 (1971).

P. Lauer, “Formal Definition of ALGOL 60,” TR 25.088,

IBM Laboratory, Vienna, 1968.

P. Wegner, “The Vienna Definition L.anguage,” ACM Com-

puting Surveys 4,5 (1972).

R. Milner, “An Algebraic Definition of Simulation Between

Programs,” Report CS 205, Stanford University, Calif.,

February 1971.

. K. E. Iverson, A Programming Language, John Wiley &
Sons, Inc., New York, 1962,

18. R. W. Floyd, “Assigning Meanings to Programs,” Proceed-
ings of Symposia in Applied Math., Vol. 19, American
Mathematical Society, 1967.

19. A. V. Aho and J. D. Uliman, “Optimization of Straight
Line Programs,” SIAM J. Computing 1, (1972).

Received November 29, 1973

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELQP,

