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On  Proving  Correctness of Microprograms 

Abstract: This paper describes the results of an investigation in proving the correctness of microprograms. The vehicle used is the S- 
machine, which  is a very simple “paper” computer. The approach to the proof of correctness is based on formally defining the machine- 
instruction level and the microprogramming level of the given machine, and then showing that  these “interfaces” are equivalent through 
the use of a concept called algebraic simulation. 

Introduction 
This paper presents the results of an investigation [ 1 1  
into proving the correctness of microprograms. The ve- 
hicle chosen for this investigation is the S-machine, a 
variation on a computer described by Gear [ 2 ]  for which 
a simulation package is available [3]. This very simple 
computer is being used for teaching  microprogramming in 
the Education Department at IBM Poughkeepsie. 

The question of whether a microprogram is correct 
leads to another question: “What is the microprogram 
supposed to do?” In trying to answer the latter question 
we realize that the functions of a microprogram are re- 
lated to the operation of other parts of the computer: 
control store, registers, etc. Therefore the microprogram 
together with other parts of the computer constitute an 
“interface” or a “level” of the system. The concept of 
interface is an old and natural one. When  designing a 
computer we start by specifying the machine at the high- 
est interface. As more decisions are made  on  how to im- 
plement this level, a new and more detailed interface is 
drawn up. For example, the documentation for the S- 
machine consists of 

1. a description of the machine-instruction level, the 

2. a description of the microinstruction level, or the 
so-called “principles of operation” manual, and 

“microprogramming manual.” 

The language  used in descriptions of this kind is in- 
formal; the English  language description is complemented 
by graphic illustrations. When considering the problem 
of correctness, however, we have to formalize our defini- 
tion in a way that will enable us to prove whatever we 

250 claim to be correct. If we want to describe an interface 

of a given system together with  all the data structures and 
processes related to this interface, the formal counter- 
part of the usual English-language description can be an 
abstract machine. 

The concept of an abstract machine was first  formu- 
lated in the field  of programming  language semantics 
[4-91. An abstract machine which interprets a program 
in a given  language is considered as  one way of specify- 
ing the semantics of that language. Ouruse of the concept 
of abstract machine is similar to that of Lee [ lo] .  Work 
in formalization of system definitions can also be  found 
in  Falkoff [ 111, Bell and Newel1 [ 121, and others. 

A language that has been  used in  defining abstract 
machines is the Vienna Definition Language (VDL) [7-9, 
13-15]. In order to have a useful  definition  language for 
machine interfaces we  had to supplement the VDL with 
basic operators and predicates. Since we are dealing  with 
objects like registers, flip-flop circuits, memories, etc., 
which are represented by binary vectors and arrays, we 
selected as basic operators a small number of APL opera- 
tors. Using this VDL/APL language we define  two ab- 
stract machines: abstract machine S, which relates to 
the machine instruction interface, and abstract machine 
pS, for the microinstruction level (The abstract machine 
S is not to be confused  with the “S-machine” which is 
the name of our computer.). The microprogram  itself is 
part of pS. 

The abstract machine pS is in some sense equivalent 
to S. This kind of equivalence is found in the concept 
called “algebraic simulation of one program by another,” 
described by Milner [ 161 ; abstract machines are them- 
selves programs or, more precisely, “abstract programs.” 
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The  essence of the idea of simulation can  be informally 
described  as follows. A simulation of P by P’ implies that 
anything computed by P can be computed by P’.  The 
simulation  should have  certain  properties: 1 )  For  any 
program P there should exist a simulation of P by P ,  and 
2 )  if there  exists a simulation of P by P ,  and  also a simu- 
lation of P I  by P, ,  then there should exist a simulation 
of P by P,. We  display such a concept  and  prove  that it 
has  these properties. 

In this paper  we  develop  an  approach to proving the 
correctness of microprograms and  we apply it to  the S- 
machine. The proof of correctness  for  the S-machine 
implementation consists of the following steps: 

1.  Definition of abstract machine S corresponding to the 

2. Definition of abstract machine pS for  the microin- 

3. Determining the  desired simulation  relation R .  
4. Proving that pS simulates S with respect  to R .  

machine-instruction level. 

struction level. 

The  paper is organized as follows. The  second sec- 
tion contains a brief description of the S-machine. For 
further  details  the  reader is referred to [2,3]. In  the third 
section we  introduce  the VDL/APL language  used in de- 
fining abstract machines, and we present  the definition 
of the  abstract machine S which is discussed through  ex- 
amples;  the  complete definitions of S and pS are found in 
Appendixes A and B, respectively. References [7-9, 13, 
151 provide  further  details  on VDL and [ 171 on APL. In 
the  fourth section the  concept of simulation is defined. 
An  example is given to illustiate how one  proves simula- 
tion. In  the fifth section the simulation  relation for (S, 
pS) is postulated and  the proof of simulation  which in- 
volves the method of inductive  assertions [ 181 is given. 
Appendix C contains  the microcode. Summary, discus- 
sions and  directions  for  further  research  are  the subject 
of the  last section. 

Notation 
Given  two  sets D and D‘ ,  R is a  relation if R D X D’. 
An element of R is denoted by ( d ,  d‘ ) E R or d 3 d’. 
The  inverse of R is R-’: R” = { (d’, d )  I ( d ,   d ’ )  E R } .  The 
relation R is a (partial) function if for  each d E D there 
is at most  one d’ E D’ such  that ( d ,  d’) E R ;  in this  case 
we  also write R : D + D‘ ,  and R ( d )  = d‘ or R d =  d’ 
for ( d ,  d’ ) E R .  If R is a  function and  for d E D there 
exists d’ such  that R d  = d’ we say that R is defined at d 
and write ( R d ) .  Let F : D + D be a function  from D 
to D and let d E D ;  Fid is defined by 

a. F’d = d ;  
b. Fid = F (F”’d)  if ( F i - ’ d ) ;  

= undefined otherwise. 
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A  straight  line  program T = ( J ,  I ,  0) over a set of 
variables Z and a set of operators + = { f ,  g ;  . .} consists 
of a sequence J of assignment statements, a set of input 
variables I ,  and a set of output variables 0. Aho  and 
Ullman [ 191 use a directed  acyclic graph (dug)  to repre- 
sent straight  line  programs. We  use  an  equivalent nota- 
tion in the form of a sequence of assignments. Without 
giving a formal definition for  our notation we illustrate 
it by an example. 

Let T = (J, I ,  0) be a straight line program over + = 

{ f ,  g ,  h }  and Z = { X ,  Y , A }  where I = 0 = {X, Y }  and J 
is  the following sequence of statements: 

A + f W ,  Y )  
Y e  g ( A , A )  
X+- h ( A ,  Y )  

The dug [ 191 corresponding  to T is 

X I \  Y 

The circled nodes  represent  the  most  recent definitions 
of the  output variables. Let X, = {s,, sZ;  . .} be a sequence 
of new  variables such  that Z n Z, = 4. We  represent 
the  same program as 

s, : f(X, Y )  
Y +  s* : g(s,, S I )  

x s3 : h (SI’ sz) 

Here the  most  recent definition of the  output variables 
X, Y are indicated by the arrow. Details  on  the subject 
of equivalence of straight  line  programs are  contained 
in [ 191. 

Brief  description of the S-machine 
The S-machine is a stack  oriented machine. The stack 
stores a variable number of words; at any time,  only the 
word stored at the  top level of the  stack is accessible.  A 
new. word can  be  stored in the  stack by “pushing” the 
stack,  that  is, by creating a new  level on  top of the stack. 
If the  stack is “popped,”  the  word  at  the  top of the  stack 
is  discarded  and  the word on  the  next level becomes  the 
top of the stack. Part of the S-machine instructions ma- 
nipulate the  stack in various ways,  as  can  be  seen  from 
Table 1 .  For  example,  the LOAD instruction will push  the 
stack  one level and place on  the  top of the stack  a word 



Table 1 The S-machine instruction set. 

One-address  instructions 

op-code  instruction  stk  change  action 
0 
1 
2 
3 

5 TMI 0 
6 
7 TNZ 0 Transfers control if top of stack is nonzero 
8 ENTER -1 Enter  a subroutine by placing CC on top of the stack and transferring control 
9 

10 LDXI 0 Load X immediate, i.e., the address of this instruction 
11 LOOP 0 Increment X by 1 and transfer control if  it is nonzero. 
12 LS 0 Left-shift N places, where N is the  address 
13 RS 0 Right-shift N places 

LOAD -1 Load stack from memory location 
LDI 
STORE 
TRA 0 Transfers control to specified location 

-1 Load immediate (Loads top of stack with address) 
+1  Stores top of stack in memory 

4 TPL 0 Transfers control if top of stack is non-negative 
Transfers control if top of stack is negative 

TZE 0 Transfers control if top of stack is zero 

LDX 0 Load X with contents of memory location. 

Zero-address  instructions 

op-code  instruction  stk  change  action 
32 ADD +1 
33 SUB +1 
34 AND +1 
35 OR +1 
36 EOR +1 
37 NOT 0 
38 XTS -1 
39 STX +1 
40 ADX +1 
41 SBX +1 
42 RET +1 
43 
44 

Add top two levels of stack 
Subtract top two levels of stack 
AND top two levels of stack 
OR top two levels of stack 
EXCLUSIVE OR top two levels of stack 
Complement top level of stack 
Index to stack (Puts contents of X on top of stack) 
Stack to index (Removes top of stack and places it in X)  
Adds top of stack to X 
Subtracts top of stack from X 
Transfers to address contained in top of stack 

POP Discards top level of stack 
STOP Stops the machine by setting SW to zero 

taken  from a specified memory location. The STORE in- 
struction will place the  top of the stack in a main memory 
location  and  pop the stack. 

The basic data element in the S-machine  is the 32-bit 
word. (This is a variation on  the machine  described by 
Gear  [2], which is byte oriented. 1 The main memory 
contains zz4 words with addresses from 0 to 224 - 1.  All 
S-machine  instructions take exactly one  word;  the in- 
struction  format  is given in Fig. 1.  As  can  be seen  from 
the figure, both indexing (with respect  to  the index regis- 
ter X )  and  indirect  addressing are possible in calculation 
of addresses. 

Table 1  lists the S-machine  instructions  together  with 
the  values of their  op-code fields, their effects on  the 
stack, and their  functions. There are two  types of  in- 
structions: those which only  manipulate  the  stack with- 
out using their address fields (or  the indexing and  indirect 
facilities) and  are grouped under “zero-address  instruc- 
tions”;  and  “one-address  instructions.” The effect of an 
instruction  on the stack  is  represented by the change it 
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consists of a stack  pointer,  stored in the reserved  register 
STK and a (variable) storage area in the higher-address 
region of the main memory. Initially the stack  pointer 
has  the value 224, i.e., it points  to  the bottom of the stack. 
The stack is pushed by decrementing the stack  register 
by one, and  popped by incrementing it by one. 

The S-machine data flow is shown in Fig. 2. The 
machine operation can  be described in the following 
manner. 

The value of the  IN1  bus is gated  into the left side of 
the Arithmetic and Logic Unit  ALU, while the  value of 
IN2 is  gated into  the right side of the  ALU. Both of these 
buses  are  32 bits wide. One of eight different functions 
(addition, subtraction,  etc.)  can be performed in the 
ALU on the two  input  operands. The result  is gated via 
the OUT bus  into  one of the eight registers shown. In 
addition, an optional  memory  reference, read or write, 
can occur.  A read causes  the 32-bit word addressed by 
the  current  content of the Memory Address Register 
(MAR) to be placed into  the Memory Data Register 
(MDR). A write will cause  the  content of the  MDR  to 
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I A A  t Address 

Op-code 

Indexing 

Indirect addressing 

Figure 1 The  S-machine instruction format. 

be stored in the  location addressed by the MAR.  This 
whole sequence of events is known as  the machine cycle. 
As mentioned  before, STK  contains  the stack  pointer; 
X is the index  register; IR is used to  store  the op-code 
during instruction  execution. A and B are general work- 
ing registers;  and CC is  used to  store  the pointer to  the 
current instruction in main memory. 

The sequencing of data through the  data flow is de- 
termined by the control which is  microprogrammed (Fig. 
3).  The microprogram  resides in the  Control  Store  (CS). 
The operation of the  control  can  be described as follows. 

A word in CS, called a microinstruction, is placed in 
the Control  Store  Data Register (CSDR). Decoding of 
the  various fields of the microinstruction takes place, the 
output of the  decoders being connected to gates in the 
data flow. The  boxes labeled "Test logic" and "+1 
Adder" determine  the  address of the  next microinstruc- 
tion; the resulting address is placed in the  Control  Store 
Address Register (CSAR). 

As illustrated in Fig. 4, the 16-bit  microinstruction can 
have  one of two  possible  formats. 1) When the value of 
bit zero is zero, indicating that  the microinstruction con- 
trols the  data flow, the fields of the microinstruction  deal 
with  various parts of the  data flow. The memory field 
(bits 1, 2 ) ,  for  example,  determines whether a read, a 
write or no  memory  reference occurs. Similarly, the func- 
tion field (bits 9, 10, 11)  determines  the function to  be 
performed by  the  ALU. 2 )  When  the  value of bit zero is 
one, indicating that  the microinstruction controls  the 
sequencing of the  microprogram, the  test condition field 
(bits 1, 2, 3 )  determines  the test condition to  be per- 
formed for branching. In the  microprogram  shown in 
Appendix  C the microinstructions have  their fields speci- 
fied  by a mnemonic code, instead of the binary code. For 
example,  microinstruction 

10 D D M  ZERO, B ,  M A R ,  R 

specifies that  IN1 bus takes value  zero, IN2 bus  takes 
the  value of register B, the ALU performs the operation 

MAY 1974 

I 

Y 

t '  - 1  

IN2 
bus 
- 0 0 31 

MDR +- zZ4-1 

IN 1 0 31 
bus 

X 
A 

0- 
B 

4 I -  

STK 

cc 
-1 - 

0 31 0 31 

0 31 
LATCH 

OUT bus 

Figure 2 The S-machine data flow. 
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Figure 3 The microprogrammed  control. 

of addition,  and the result goes  to  MAR.  In addition, a 
read is  started in main memory. The encoding of various 
fields and other details on  the S-machine may be found 
in [2,3]. 253 

CORRECTNESS OF MICROPROGRAMS 



The following is a list of properties of the S-machine where is-bit is a basic  predicate  and the  others  have  to 
which in various  ways  point to limitation of our results be  further defined. 
on  correctness: In defining S and pS we made  use of the VDL as a defini- 

1 .  The microprogramming in the S-machine is “vertical.” 
2. There  are  no I /O instructions. 
3 .  References  to memory (both main store and control 

store) involve no delay; i.e., we  have  instantaneous 
read-out. 

4. An  arbitrary limitation of at most one level of indirect 

tional  system. We supplied the elementary  objects for 
our particular  application together with the basic func- 
tions  and predicates which operate  on  those objects. The 
abstract machines  we define are similar in structure, in 
that they are characterized by a state, also a VDL object, 
with the following components: 

addressing was imposed  on the original S-machine. 1 .  Control; 

no’multiply or divide  instruction. 3 .  Data. 
5 .  The instruction set is limited; for instance, there is 2.  Macrolibrary; 

Definition language 
The language used to define the  abstract machines S and 
pS is based  on the VDL language and makes use of the 
VDL data  structures.  We  have  two  classes of data  ob- 
jects - elementary and composite. The composite ob- 
jects  have a set of components that may be selected by 
unique selectors. The following tree representation of 
such  an object i shows that i has  four  components id, ix,  
op; and ad, which can  be  addressed by using the respec- 
tive  selector. Names associated with the  branches of 
the  tree identify the-  unique  selectors. .The  leaves (termi- 
nal nodes) of the  tree are formed by the components. 

For example, s-id(i) = id. The object i may be con- 
structed by using the construction operator p, as follows: 

i : po( (s-id : i d ) ,  (s-ix : ix),   (s-op : op) ,   (s-ad : a d ) )  

The object i appears in the  abstract machine S and  repre- 
sents  an S-machine  instruction. The  components of i cor- 
respond to  the instruction fields: indirect  addressing  bit, 
indexing bit,  op-code field, address field. 

For manipulation of VDL objects the  operator p is avail- 
able in the language; however, the need for it does  not 
arise in the definitions of S an4 pS. Often we have  to  test, 
given a VDL object, whether it  belongs to a certain  class 
of objects. This is done in the VDL through  the use of 
predicates. For example a predicate is-inst defining the 
set of all S-machine  instruction may be written as 

is-inst = ((s-id : is-bit), 
(s-ix : is-bit), 
(s-op : is-opjield), 
(s-ad : is-adjield)) 

The control, represented  by a tree, is built from VDL in- 
structions. Given a control tree, the  leaves of this tree 
are candidates for processing in the next step;  any of 
those instructions can  be picked. The instructions are 
of two  types: 

Macroinstructions Processing consists of replacing the 
vertex they occupy in the control tree by a subtree of 
instructions,  without modifying any  other component. 

Elementary instructions Execution usually produces as- 
signments to various components  and  returns values up 
the control tree [ 131.  At termination the  vertex is deleted 
from the  control tree. 
’ A macroinstruction  has  the following format: 

macro1 (param,; . ., param,) = 
cond, + c-tree, 
cond, + c-tree, 

cond, + c-tree, 

One of the control trees c-tree, is selected  during the 
macro-expansion to replace the  vertex labeled macro 1 ac- 
cording to which predicate cond, returns  the value true. 
The elementary  instruction has  the  format 

eleml  (param,;. ., param,) = 
p A s s :  e ,  
s-scl:  e, 

s-scm:  e,, 

where the e, are  expressions which may make use of 
basic  functions  and  predicates. (For convenience, the 
body of an instruction may appear instead of a  control 
tree c-tree, in a macroinstruction; in this case  the instruc- 
tion may use all the  parameters of the macroinstruction.) 
Both  macroinstructions  and  elementary  instructions  have 
their definitions in the macrolibrary. The basic  functions 
and predicates are a subset of APL. A  list of those actually 
used i s  given in Table 2.  Not shown in the table are predi- 
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cates  that  characterize  the elementary  objects is-bit, is- 
binvector, and is-binmatrix. Some changes to  the VDL are 
adopted  for convenience: 

1. The list facility for constructing  objects in the VDL and 
its  related  function length are  not being used. Instead, 
the APL vector  and matrix facilities are employed. 

2. Predicates  are treated as functions with domain (0, 1 }. 
If a predicate appears on  the  left  side of a macroex- 
pansion,  then  it  must have a definition in the library 
which is  evaluated in the  normal fashion. 

3. If x is a selector  operating on  state S, we may write x 
instead of x ( S ) ,  if S is determined by the  context. 

Abstract machine S 
The definition of S is given in Appendix A; it  consists of 
three parts: 

1. Predicate is-S (for  abstract  syntax of S) ,  
2. Initial state; 
3. Macrolibrary. 

The  predicate is-S identifies those  components of the 
S-machine which are known at this  interface- main store 
mem, stack register stk, index  register x ,  instruction 
counter cc and the machine-on-off bit sw. 

The initial state specifies the value of stk and the con- 
trol tree s-control (S); all other  components  have arbi- 
trary values. 

The macrolibrary  component of the  state contains 
definitions of VDL instructions; the main macrodefinition 
is exec-pgm: 

exec-pgm = 
is-run ( S )  + exec-pgm 

exec-inst (i) 
i: fetch-inst 

else + 0 
This  macro calls itself recursively until the predicate 
is-run takes the  value 0 (or false) which happens when 
bit sw is  turned off, as  can be seen  for  the definition of 
is-run. Each of these calls executes  one machine in- 
struction. 

The  cycle has  two  parts: instruction fetch by macro 
fetch-inst and instruction  execution by exec-inst. As a fur- 
ther example, consider  the execution of a LOAD instruc- 
tion; the  part of the macrodefinition exec-inst relevant for 
this  case is 
is-load + load-stk ( a )  

a: fetch-word(b) 

b:  calc-addr(i) 

adv-ctr 
Here i is the  parameter passed to exec-inst and is the ob- 
ject representing the instruction  executed. The macro 
adv-ctr increments cc by  one  for  the  next instruction 

i ,l 2,3 5 , 6  8,Y 11, 1; 15, 

output 

Branch address 

Test condition 

Figure 4 Microinstruction  formats. 

Table 2 Basic (APL) functions in the  definition  language. 

Function  Dejinition or example* 

Binary  arithmetic  functions 
Binary  relations  on  scalars 
Boolean  functions 
Size  ofY;  p2  3 1 5 = 4 
Reshape Y to  size X 3pO = 0 0 0 
IndexXbyY;23   15 [23]  = 1 5  
First A integers;  ~3 = 0 1 2 
Representation of A in system  with  radii  X 
Value of representation Y in radix A 

2 2 2 T 5 = 1 0 1  
211 1 0 = 6  

Catenation; 1 3 5,  6 3 = 1 3 5 6 3 
A-residue of B ;  417 = 3 

*A,  B are integers; X, Y are vectors 

address. As the  tree  structure of a macrodefinition is 
represented by indentation [ 131,  it is seen that  after  the 
macro-expansion of exec-inst the control tree  has  two 
leaves: adv-ctr and calc-addr(i). The choice of the  next 
step is, however,  irrelevant if the definition is consistent; 
that is, the machine S is determinate. We  choose  to exe- 
cute adv-ctr first. The execution of LOAD is completed by 
the  sequence of macros: calc-addr which computes  the 
address of the word to be loaded on  top of the  stack; 
fetch- word which fetches  that word; and finally load-stack, 
which loads  the word on the stack. 256 
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The  abstract machine pS is similarly defined; its defini- 
tion is given in Appendix B. 

Simulation of one program by another 
In this  section we  present a concept of simulation slightly 
different  from  Milner's [ 161 and illustrate  a  proof of sim- 
ulation in an example. 

Definition I An  abstract  program  is a  triple P= (D,  Do, 
F )  where D is a set called the  domain of P;  Do c D is a 
Set of initial values;  and F: D + D is a partial  function.  A 
computation is a sequence  (do,  dl, d,, . . .) in which 
do E Do, di+l = Fdi, i = 1,2; . .. 

Consider,  for  example,  the  class of flowchart  pro- 
grams. These  can be  regarded as  abstract programs  hav- 
ing domain  D M X E ,  where M is  the  set of nodes in 
the program  graph and E is the  set of state-vector values. 
For  recursive programs, M could be  the infinite set of 
states of a pushdown stack. 

Assume  we  have a flowchart program and  we define 
D M X E .  With each flowchart we can  associate a func- 
tion advance which takes s E M X E as  argument  and 
returns a  value also in M X E after executing one instruc- 
tion. Assume  further  that  we  have  an edge in the flow- 
chart from node n' to  node nj and labeled  by the assign- 
ment xk + f ( x , ,  . . ., xn); let (x,, . . ., xn) E E .  Then 
mdvunce ( n i ,  x,,. . ., x n )  

Now define a  function advance'  as follows: 
advance' ( s )  = s if s E D 

The function advance'  returns  the first value in D en- 
countered by repetitive applications of advance.  Finally, 
F (d) = advance'  (advance  (d) ) if d E D and 

(advance'  (advance ( d l  ) ) 

BY specifying D we have essentially determined F ;  F is 
obtained  by use of the  functions  advance,  advance'  or 
some similar device. Often d E D is given as  an  expres- 
sion  containing free variables.  Calculating F d  amounts 
to "symbolic execution" of a  path. Then we may want to 
use, instead of the  expression Fd,  the  path  that gives rise 
to  Fd. 

Definition 2 Let P = (D,  Do, F) and P' = (D',  Dor, F') 
be  two programs.  A  relation  R c D X D' is a strong simu- 
lation (or simply, simulation) of P by P' if 

C1. v ( d , d ' )  E R  ( F d )  iff(F'd')andifbotharedefined 

C2.  vd, E Do 3 do' E Do' (do, do') E R 
C3. vd,' E Do' 3 do E Do (do, dor) E R 
C4. Vd E D Vd'  E D' (d, d') E R implies: 

= (nj~x,,"',xk_,,f(x,,'..,x,),x~+,,'..,x,). 

= advance'  (udvance(s)) if s $ D. 

= undefined otherwise. 

then (Fd,   F 'd ' )  E R. 

[Vd, E D if (dl, d') E R then  dl = dl 

Condition C 1 ,  which is called weak simulation,  means 
that  the following diagram  commutes: 

F F' 

t t 
Fd -F'd' 

R 

This  can  be  also  stated  as: R is a weak homomorphism 
between  the algebraic structures ( D ,  F ) ,  (D', F'). 

Condition  C2  asserts  that R is  total  on  Do;  Condition 
C3  asserts  that R-l is total on  Do';  Condition  C4  means 
that R" is single-valued. If R is a strong  simulation of P 
byP 'wewri tes im(P,R,P ' ) .  

If  R is a strong simulation of P by P', P' can  compute 
anything computed by P and  this is shown in the follow- 
ing theorem. 

Theorem 1 Let P = (D,   Do,  F )  and P' = (Dl, Do' ,  F') be 
two programs and  let R D X D' be  such  that sim (P, R ,  
P' ) . Then 

Vd, E D,Vdo' E Do' (do,  do) E R implies 
(F'd,) iff ( F t i  do'), i =  1, 2;",  
and if both  are defined,  then F 'do = R" [ F lido'] 

Proof The proof is by  induction on i. Assume i = 1. 
From C  1 of Definition 2 it follows that: (Fd,) iff (F'd,') 
and if both  are defined (Fd,, F'd,,') E R .  Since R" is 
single-valued Fd, = R"[F'd,']. Assume  the  theorem is 
true  for i < n. Then (Fi"do) iff (Fti-'d(); if both  are de- 
fined then @do) iff  (F"d,,') according to  C1 of Definition 
2.  The  rest of the  theorem follows  by an induction  step. 

Theorem 1 states  that if (do, d; ) E R and  we  apply F 
and F ' ,  respectively,  to  the  states of P and P' any  number 
of times,  then all pairs of states obtained in this manner 
are in R .  Moreover,  the  state in P is retrievable  from  the 
state of P' due  to  the single-valued nature of R". There- 
fore,  for  any  computation in P from do E Do to d E D ,  we 
can use R to obtain the  same result as follows. Take do' 
such  that  (do,  do') E R;  the  existence of do' is guaranteed 
by C2 of Definition 2 .  Then use P' to  compute d' E D' 
such  that  (d, d') E R .  Finally take d= R" (8). 

As mentioned in the  introduction, a reasonable con- 
cept of simulation  should have  the following property: 
For  any program P there should exist a simulation of P by 
P. If there  exists a simulation of P by P, and  also a simu- 
lation of P, by P,, then there should exist a simulation of 
P by P,. Definition  3 and  Theorem 2 show  these  proper- 
ties  for  our simulation concept  as given  by  Definition 2. 
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Dejinition 3 Let P ,  P‘ be  two  programs.  We  define the re- 
lation < between  two programs by P < P‘ if there  exists 
R such  that sim  (P,  R ,  P’ ). 

Theorem 2 The relation < over  the  class of programs is 
reflexive and transitive. 

Proof First we show  that  for  any program P 3 R such 
that s im(P,  R ,  P ) .  Let P = ( D ,  Do, F ) ,  R = { (d, d ) l  
d E D } ,  i.e., R is the identity  relation on D. Using Defini- 
tion  2 it is easy to check  that s im(P,  R ,  P ) .  It  remains  to 
be shown that < is transitive. Let P = ( D ,  Do, F ) ,  P’ = 

(D’,  D;, F ’ )  and PI’= (D’,  Dof’,  F ” )  be  programsand  let 
R ,  R‘ be such  that s im(P,  R ,  P ’ )  and sim(P’,  R ’ ,  P ” ) ;  
then P < P‘, P‘ < P“. Let Q = RR’ = { (d ,  d”) Id E D ,  
d” E D ” ,  3 d‘ E D ’ ( d ,  d‘) E R and (d’, d ” )  E R ’ } .  Using 
Definition 2 we check  that s im(P,  Q, P“).  

The following example indicates  how one  proves simu- 
lation of one program by another  and illustrates in a sim- 
plified way some features of the proof for  the S-machine. 

Example 
Consider  the programs P ,  P‘ (Fig. 5 ) .  In P ,  x is an integer 
and y is a 32-bit  binary vector; a  left  shift is performed 
iteratively by executing a one-bit  left  shift each iteration. 
The  set of integers is denoted by N .  We define 

E = I ( x ,  y )  IX E N ,  y E 
M = { l , 2 , 3 } .  

Then P is represented in our formalism by 

D = M X E  
D o =  ( (1 ,  e ) l e  E E } .  

For P’ we define 

E’ = { ( X ! ,  y r ,  z ’ ,  A lx’, Z’ E N ,  y’ E io, 1}Y A E 7 v 4 }  

” = { 1,2 ,   3 )  
D‘ = { (m’, e ’ )  Im’ E { 1, 3}, e’ E E ’ }  

U { (2, e ’ )  le’ E E’ ,  z’ = 1} 
Do’ = { (1, e ’ )  le’ E E’} .  

We  postulate  the following simulation R: 

R = R , ,  U R,, U R,, 
R 1 , = { ( d , d ’ ) l r n = r n ’ = 1 , x = x ‘ , y = y ‘ }  
R,, = { ( d ,   d ‘ )  Im = m‘ = 2 ,  x = x’, y = y ’ ,  

R 3 3 = { ( d , d ‘ ) l m = m ’ = 3 , x = x ’ , y = y ’ } .  

Then  we  show  that sim  (P,  R ,  PI) .  

A = (0 1 2 3 ) ,  2’ = 1)  

Proof We show that  Conditions C1 through C4  in 
Definition 2 are satisfied for  the R defined above. 

Condition  C1 is proved by cases.  The  cases  are  enu- 
merated 1.1  through  1.4. 

P :  to 

t o  
I x‘+a I 

Figure 5 The programs P and P’ (True * 1 ,  False * 0 ) .  

1.1 Let ( d ,  d‘) E R, , ;  i.e., m = m’ = 1. The symbolic 
execution of F d ,  F‘d’ corresponds  to  the following 
straight line programs (we  use begin, end  as delimiters 
for straight  line programs) : 

P begin ( m  = 1 )  P’ begin (m’ = 1)  

” 

x - p l :  a x’ + q l :  a 

y +- p 2 :  h y ’  + q 2 :  h 
P A  ( m  = 2) z ’ +  q3: 1 

A c q 4 :   ( 0 1 2 3 )  
P’ end (m’ = 2 )  

To verify that ( F d ,   F ‘ d ‘ )  E R,,, from the  above  it  can 
be shown that at node 2 the following relations hold: 

a. z =  1 
b. x =  x’ 
c. y = y’ 
d. A = (0 1 2 3).  

1.2 Let ( d ,  d‘ ) E R,, such  that x = 0. 

P begin ( m  = 2) P’ begin ( m  = 2 )  
P A  ( m  = 3)  P’ end ( m  = 3)  
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Verify (Fd, F ' d ' )  E R33: 

a. x = x' 
b. y =  y ' .  

1.3 Let (d ,  d' ) E R,, and x # 0. 

P begin P' begin 
T - 

x - p l :   x -  1 q l :  2' + 1 
Y +- P 2 :  L S ( Y )  x' + q2: x' - 1 

q3: ql  + 1 
y' + q4: L S ( y ' )  

q5: q3 + 1 
zr +- g6: qs + 1 

P' end 

Verify (Fd, F ' d ' )  E R,, by: 

a. x = x' 
b. y =  y' 
c. A =  (0 1 2 3 )  
d. z' = 1. 

I .4 Let (d ,  d' ) E Rz3. Both Fd, F'd'  are undefined. 

The outlines of proof for C2,  C3, and C4 are as follows 
C2 Show "do E Do 3 do' E Do' (do,   dor)  E R. We 
have do = ( 1 ,  e )  for some e E E ;  let do' - ( 1 ,  e ' ) ,  where 
e' E E' such that x = x', y = y ' .  The above statement fol- 
lows. 
C3 Show Vd,' E Do' 3 do E Do (do,  do')  E R. Let 
d,' = ,(i, e' ), for some e' E E ' ;  let do = ( 1, e )  such that 
x = x ' ,  and y = y' .  By direct substitution one can verify 
that (do,  do') E R.  
C4 Show R" is  single-valued. Let d' = ( 2 ,  e ' ) ,  e' E E ' ;  
suppose 3d,dlED,d=(2,e) ,andd,=(2,e , )suchthat  
( d ,  d') E R, (d l ,  d') E R .  Then x = x ' ,  y = y ' ,  x, - x' ,  
y ,  = y' and therefore e, = (x , ,  y , )  = (x ,  y)'  = e. Similarly 
ford'= ( 1 , e ' )  brd'=(3,e ') .  

Simulation of S by pS 
Before we can define a relation R and prove that it is in- 
deed a simulation of S by pS, we have to bring the ab- 
stract machines S and pS to the form of abstract pro- 
grams. We define an abstract prpgram S = ( D ,  Do, F , )  
where 

D = {alis-S(a),  s-control(a) 
= exec-pgm v s-control(a) - g} 

Do = {ala E D ,  s t k ( a )  = ( 3 2 ~ 2 )  T 2*24? s-control(a) 
= exec-pgm}. 

Let us assume that we have a function advance which 
accepts one argument, a state of any VDL machine, and 

258 performs one elementary step, either a basic operation or 

a macro-expansion. Moreover, advance (a) is  undefined 
if s-controf(a) = a. Then let ad-S and F ,  be  defined by 

ad-S(a)  = a  if a E D ,  
= ad-S(advance(a)) if a # D ;  

F,(a) - ad-S (advance(a)) if a E D and 
(ad-S(advance(a) ) ) ,  

= undefined otherwise. 

The function ad-S takes as argument a state of S and 
by using advance repeatedly, produces the first state of S, 
which is also in D. The possibility exists that a d 4  is un- 
defined because the computation dpes not terminate. The 
function F ,  accepts a state in D q d  returns the next 
state in D. 

Similarly, pS = (D', Do', F M ) :  

q0' = {PIP E D',  s tk(p)  = (32p2)T2-~24, cs@) 
= MCODEl,  s-control(P) - exec-ppgm}; 

ad-pS(p)  = p  ifp E a', 
= ad-pS  (udvance(p) ) if p # D' ; 

F,,(p)  pd-pS (advance(p)) if p E D' and 
(ad-@ (advance(p) 1 ), 

= undefined otherwise. 

LetR = p ,  U R,; ' 

R, = {(a, 6)la E D ,  /3 E D', mem(cu) = m e m ( p ) ,  
$k(a) = s tk(P) ,  cc (a)  = C C ( P ) ,  x ( a )   ? X ( @ ) ,  
s w ( a )  = s w ( p ) ,  s-control(a) = exec-pgm, 
s-control(p) = exec-ppgm); 

R,  = {(a, P ) l a  E D, E D', m e m ( a )  = rnem(p), 
s t k ( a )  = s t k ( f i ) , c c ( a )  = c c ( p ) , x ( a )   = x ( P ) ,  
s w ( a )  = s w ( p ) ,  s-contral(a) - R, 
s-control(p) =,a}. 

The proof that R is indeed a strong simulation of S by 
pS follows the same pattern as  the exampIe in the pre- 
vious section. 

Proof of simulation 
Condition C 1 of Definition 2 is proved by cases. 

1.1 Let (a, p )  E R ,  and sw = 0. By applying F s  to a 
and F?, to p we get the sequences: 

S-begin [a] ; 
- S-end [F, (a)]  where s-control (F , (a) )  = R; 

&end [ F , , ( p ) ]  where S-control ( F N S ( p ) ]  = R. 

Using the values of F,(a) and F p S ( P )  from above we 
verify that ( F s ( a ) ,  F f i s ( p ) )  E R,. 

Ps-begin [PI ; 
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1.2 Let (a ,  p )  E R ,  and P-LOAD-00, where  the predi- 
cate P-LOAD-00 is defined by 

P-LOAD-00 = (sw = 1 )  A (0  = 2 ls -op (b i ) )  
A (0 = s- id (b i ) )  A (0 = s- ix (b i ) ) .  

The VDL object bi is defined in Table 3 by a straight  line 
program. The following sequences  are  then obtained for 
F s ( a ) ,  F,s(P): 

S-begin 
cc s l  : ( 3 2 ~ 2 ) ~ ( 2 * 3 2 )  11 + 21cc 

~2 : 2 1 ~ ~ - 0 0 [ 8  + ~ 2 4 1  
s3 : mem[s2;]  

s.5 : 21s4[8 + ~ 2 4 1  
stk + s4 : ( 3 2 ~ 2 )  T ( 2 ~ 3 2 )  1-1  + 2 l s t k  

mem[sS;] +- s6 : s3 
S-end 
pS-begin 

cc + m l  : (32p2)T(2*32)11 + 21cc 
m2 : 8p0,  mi[2 + ~ 2 4 1  
m3 : ma-00[8 + ~ 2 4 1  
m4 : m e m [ 2 ~ r n 3 ; ]  

m6 : m5[8  + ~ 2 4 1  
stk + m5 : ( 3 2 ~ 2 )  T (2.32) 1-1 + 21stk 

m e m [ 2 l m 6 ; ]  +- mi' : m4 
pS-end 

Weverify (Fs(a),F,s(P)) E R1by 

a. s l  = m l ;  
b. s4 = m5; 
c. s5 = 21m6; 
d. s6 = mi'. 

Other  cases are handled similarly. Most of these sym- 
bolic executions  induce  to straight line paths  and  pose  no 
special  problems. In  two  cases,  however,  we  obtain a 
loop in pS; those  paths  correspond  to left-shift and right- 
shift  instructions. The equivalence of the looping path in 
pS with the straight line path in S is shown  through the 
method of inductive assertions [ 181. 

Conditions C2,  C3 and C 4  are proved asfollows: 

C2 We  show Va,  E Do 3 p, E Do' (ao, Po)  E R.  As- 
sume a. is given;  let p, E D' be  such  that s-control(p,) = 

exec-ppgm,  mern(a,) = mem(Po),  stk(Po) = (32p2)T 
2*24, cc(ao) = cc(po) ,  cs (po)  = MCODEl,  x@,) = 

x ( a o ) ,  sw(ao)  = sw(po) .  From  the  above  it follows 
(a,, Po) E R, .  

C3 We  show Vp, E Do' 3 a, E Do (ao, Po) E R .  The 
proof is similar to  the  one  above. 

C4 To show  that R-l is single-valued, assume  that 
a,, a2 E D such  that (al ,  p )  E R,  (a2, p )  E R .  It follows 
that a1 = az. 

Table 3 Some expressions used in the abstract machines. 

Machine S 

a l :  21cc [8 + L 241 
si: mem[al;] 

a2: s i [ 8  + L 241 
a3: si[2 + L 61 
a4: s i [  1 3  
a.5: si[O] 
bi: po((s-id:a5), 

(s-ix:a4), 
(s-op:a3), 
(s-ada2)) 

ac: (32p2)T(2*32) I 1 + 21cc 
~ ~ - 0 0 :  8 ~ 0 ,  s-ad(bi) 
sa-01: (32p2)T(2*32) I (2l.x) + 2ls-ad(bi) 

a6:  mem[2ls-ad(bi);] 

a7: mern[2lsa-01[8 + L 24j;] 
~ ~ - 1 0 :  8 ~ 0 ,  a6[8 + ~241 

sa-11: 8p0 ,  a7 [8 + L 241 

Machine pS 

b l :  cc[8 + L 241 
mi: rnem[21bl;] 
62: mi[&], 24pO 

ii: b2 [4 + LS] 
ma-00: 8 p 0 ,  mi[8 + ~241 
ma-01: ( 3 2 ~ 2 )  T (2*32) 1(2 I x) + 2  lma-00 

ma-IO: 8p0 ,  mem[21b3; 8 + ~241 

ma-11: 8 p 0 ,  mem [2164; 8 + ~241 

b3: ma-00 [S + L 241 

b4:  ma-01 [8 + ~241 

Summary and discussion 
At  the  start of our investigation  a complete, indepen- 
dently written  microprogram for  the  S-machine  was 
available. In  the  course of the simulation  proof three 
errors  were  discovered in the microprogram (the  cor- 
rected microprogram is found in Appendix C . )  : 

1 .  One  error involved the left-shift (LS) and right-shift 
(RS) instructions. The  instructions  were  executed 
correctly only if the  address field (holding the  number 
of bits to  be  shifted)  was  not  zero. If the  address field 
was  zero  the microprogram entered a loop which 
counted  down zz4 - 1 one-bit shifts. 

2. Another  error  concerned  the  instructions stack-ta- 
index ( STX), add-stack-to-index (ADX) , and  subtract- 
stack-from-index ( SBX). For any of these  instructions 
STX was  executed. 

3.  A  third error  was found in the instruction-fetch part 
of the microcode.  If the  address field of the instruc- 
tion interpreted  was  less  then zz3 there  was  no ill ef- 
fect; if, however,  the  address  was  larger  than  or  equal 
to 223, no  instruction  was  executed  correctly,  not  even 
the  STOP instruction. Moreover, unlike the  two pre- 
vious errors, which  could have  been  found using the 
simulator  package [ 3 ] ,  this error could not be  found 
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because the main  memory in the simulator was, for 1. Applying our approach to a more realistic computer. 
convenience, only 100 words in size. I / 0 facilities, “Horizontal” microprogramming,  more 

In this paper we have introduced an approach to prov- 
ing correctness of micrdprograms and we illustrated it 
by  showing the correctness of the S-machine. At first, 
we defined abstract machines S and pS corresponding 
to two interfaces- the machine-instruction level and the 
microinstruction level. 

Defining S and pS is an iterative process, involving 
several passes, for the following reasons: 

1. The original  definition of S ,  although otherwise ac- 
ceptable, might pose unnecessary restrictions on the 
implementation; we remove those restrictions by 
changing S .  

2. A change in S might  make pS easier to understand. 
3. We want to change S because we found a “mistake”. 

This is to be expected since defining pS involves, in 
a sense, redefining S and sometimes discovering that 
things are not as were intended in the first  place. 

Defining an interface in a precise language seems to be 
of value even if we are not concerned with  proving cor- 
rectness. The precise definition removes the ambiguities 
of the natural language and provides the means for good 
documentation against which any inconsistencies that 
might arise in  implementation can be checked. It is true 
that for an uninitiated person it is harder to read a docu- 
ment written in the definition  language than a manual 
written in English, but the effort required to learn the 
definition  language will pay off. Another advantage of a 
precise definition: An interpreter for the definition  lan- 
guage can be written which  will  give the designer the 
possibility to “run” the abstract machine and thus gain a 
better understanding of the design.  And  finally,  when the 
problem of proving correctness of implementation comes 
up, the abstract machine is an essential starting point. 

One of the things we learned from this work concerns 
the mechanization of the correctness proof. Because our 
proof  was carried out by hand, it became clear that for 
practical applications the proof has to be  mechanized to 
a large extent. Most of the difficulty  in carrying out the 
proof  by  hand  was not in the complexity of the proof, 
but mainly  in the large amount of detail one has to keep 
track of in such a proof.  Specifically, one has to cope with 
the large number of paths to be compared, the symbolic 
execution of those paths, and proofs of equivalence of 
expressions involving APL operators. It is encouraging 
that most of the correctness proof for the S-machine 
seems amenable to automation. The approach to correct- 
ness developed in the course of our experiment could  be 
used  in practical applications, especially for hardware/ 

realistic timing constraints could  be  included. 
Investigating simulation of parallel programs. In our 
experiment we reduced whatever parallelism appeared 
in S and pS to a sequential case. In  a more general 
case one has to cope with the problem of determinacy 
even before attacking the problem of correctness. 
Designing an experimental interactive system which 
will mechanize the proof procedure. 

Appendix A: Definition of S 

Abstract syntax of S 
i s4  = ((mern : is-mem), 

(stk : is-reg), 
(x:  is-reg), 
(cc:  is-reg), 
(sw:  is-bit), 
(s-control:  is-control), 
(s-lib:  is-lib)) 

9 Initial state 

stk: (32p2)T2*24 
s-control(S) : exec-pgm 

9 Macro library 

1. exec-pgm = 

is-run(S) + exec-pgm 
exec-inst ( i )  

i: fetch-inst 
else + 

2. fetch-inst = 

PASS: build-inst ( a )  -~ 
a: fetch-word  (cc) 

3 .  fetch-word ( t )  = 

PASS: mern [m ;] 
m: 2 I t [8 + L 241 

4. build-inst ( t )  = 

PASS:  po((s-id:id),  (s-ix:ix), 
( S - O P : O P ) ,  (s-ad:ad)) 

id:  t[O] 
ix:  t [  1 3  

op: t [2  + 661 
ad: t [ 8  + ~241 

5 .  exec-inst (i) = 

is-load (i) + load-stk ( a )  

a: fetch-word ( b )  
b:  calc-addr ( i )  

adv-ctr 
firmware  design. The work presented here could  be  ex- is-ldi(i) + load-stk ( 8 ~ 0 ,  s-ad ( i ) )  
tended in the following directions: adv-ctr 
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is-store(i) + store-word ( a ,  b )  
a: pop-stk 

b: calc-addr (i) 
adv-ctr 

is-branch (i) + cond (i) + cc:  calc-addr ( i )  
else -+ adv-ctr 

is-enter ( i )  + cc:  calc-addr (i) 
load-stk ( C C )  

adv-ctr 
is-ldx (i) + x : fetch-word ( a )  

a: calc-addr (i) 
adv-ctr 

is-ldxi (i) + x : 8p0, s-ad (i) 
adv-ctr 

is-loop (i) + test-loop(i) 
incr-x 

is- ls( i )  + store-word (a ,  s t k )  

a: (b ,  2 1. s-ad ( i ) )  
b:fetch-word ( s t k )  

adv-ctr 

is-rs(i) + store-word ( a ,  s t k )  

a: 2 (b, 2 1 s-ad ( i )  ) 
b:fetch-word ( s t k )  

adv-ctr 
is-bin (i) + store-word ( a ,  srk) 

a: &(b,  c,  i )  
c:  fetch-word ( s t k )  

b: pop-stk 
adv-ctr 

is-not ( i )  + store-word ( a ,  s r k )  
a: -fetch-word ( a ,  s r k )  

adv-ctr 
is-xts (i) -+ load-srk ( x )  

adv-ctr 
is-stx (i) -+ x : pop-srk 

adv-ctr 
is-adx ( i )  + x :  add ( x ,  a )  

a: pop-stk 

adv-ctr 
- is-sbx (i) + x : & ( x ,  a )  

a : pop-stk 
adv-ctr 

is-ret (i) + cc : pop-stk 

is-pop (i) + pop-stk 
adv-ctr 

is-stop ( i )  + s w ( s )  : 0 
adv-ctr 

6.  is-branch (i) = 

pAss : is-tra (i) V is-tpl (i) v is-tmi (i) v 
is-tze (i) V is-tnz (i) 

7. cond( i )  = 

PASS: is-tra ( i )  V 

(is-tpl ( i )  A (a[O] = 0) )  V 

(is-tmi (i) A (a[O] = 1 ) )  V 

(is-tze (i) A (0 = 2l .a)  ) V 

(is-tnz (i) A (0  # 21a))  
a : mem [2 1. stk [8 + L 24];] 

8. store-word ( a ,  t )  = 

mem [2 1. t [ 8  + L 24[;] : a 

9. load-stk ( a )  = store-word ( a ,  s tk )  
push-stk 

10. push-stk = 

stk : ( 3 2 ~ 2 )  T (2*32)1  -1 4- 2 I stk 

11. Pop-stk = stk : ( 3 2 ~ 2 )  T (2*32) 1 1 + 2 I stk 

PASS : fetch-word ( s t k )  

12. adv-ctr = cc : ( 3 2 ~ 2 )  T (2*32) I 1 + 2 I cc 

13. calc-addr ( i )  = calc-id ( i ,  a )  
a:  calc-ix(i) 

14. calc-ix(i) = 

(1 = s-ix (i) ) + pAss : (32p2 1 T (2*32) I b + c 
b: 2 1 x  
c:  2 I s-ad(i)  

else + p A s s :  8p0, s - a d ( i )  

15. calc-id ( a ,   i )  = 

( 1  = s - id ( i ) )  + p A s s :  8p0, b[8 + L 241 
b : fetch-word ( a )  

else + p A s s :  a 

16. -= 

x : ( 3 2 ~ 2 )  T (2*32) I 1 + 2 I x 

17. test-loop ( i )  = 

(0 + 2 1 . x )  + cc : calc-addr ( i )  
else + adv-ctr 

18. k ( a ,  N )  = 

3: (a, NpO)  [ N  + L 321 

19. ys (a,  N )  = 

p A s s :  ((Npa[O]), a )  [ L  321 

20. is-bin ( i )  = 

PASS: is-add (i) V is-sub (i) V is-and (i) V 

is-or (i) V is-eor ( i )  

21. &(a,  b,  i )  = 

is-add (i) + PASS: add ( a ,  b )  
is-sub (i) + PASS: sub ( a ,  b )  
is-and ( i )  + p A s s :  a A b 
is-or ( i )  + p A s s :  a V b 
is-eor ( i )  + p A s s :  ( a  A - b )  V (w a A b )  

22. add (a, b )  = 

p A s s :  ( 3 2 ~ 2 )  T (2*32)1(2 I a )  + 2 I b 

23. +& (a,  b )  = 

PASS: ( 3 2 ~ 2 )  T (2*32) I (2 I a )  - 2 I b 

24. is-run (S) = 

PASS:  s w ( S )  = 1 261 
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is-stop ( i )  = 

262 PASS = 44 = 2 1 s-op ( i )  
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26. is-mem ( t )  = 
is-binmatrix ( t )  + pt = (2*24  32) + pAss : 1 

else " * p A s s :  0 
else + p A s s : o  

is-reg ( t )  = 

is-binvector ( t )  + ( p t )  =-32 "* p A s s :  1 
else + p A s s :  0 

else + p A s s :  0 

Appendix B: Definition of pS 

Abstract  syntax of @ 

is-pS = ( ( m e m  : is-mem), 
(stk : is-reg), 
(cc : is-reg), 
(sw : is-bit), 
(cs : is-controlstore), 
(mdr : is-reg), 
(x : is-reg), 
( a  : is-reg), 
( b  : is-reg), 
(mar : is-adreg), 
(csar : is-csreg), 
(ir : is-ireg), 
(s-control:  is-control), 
(s-lib:  is-lib)) 

Initial  state 

stk: ( 3 2 ~ 2 )  T 2x24 
csar: 12pO 
cs : MCODEl (Appendix C )  
s-control (pS)  : exec-ppgm 

Macro  library for pS 

1. exec-ppgm = 

is-run ( p S )  + exec-ppgm 
exec-irem 

exec-pcycle 
else "*n 

2. exec-irem = 

is-iexec ( p S )  + exec-irem 
exec-pcycle 

else +n 
3. is-iexec (a) = 

PASS:  ( 1 2 ~ 0 )  # csar ( a )  

PASS:  1 = s w ( a )  
5. exec-pcycle = exec-pi ( i )  

i : fetch-pi 

4. is-run ( a )  = 

6. fetch-pi = build-pi ( a )  
" 

a : cs(p.s)[2 A( :sar(pS);I 
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7. build-pi ( t )  = 

( 1  = t [ O ] )  -+ p A s s :  po((s-branch : a), 
(s-cond : b), 
(s-addr : c ) )  

a : t [O] 
b : t [ l ,   2 ,  31 
c : t [4  + L 121 

else p A s s :  p,,((s-branch : a) ,  
(s-memf : b), 
(s-in1 : c), 

(s-in2 : 4, 
(szf : e). 
(s-our : j)) 

a : t[O] 
b : t [ l ,  21 
c : t [ 3 ,   4 ,  51 
d : r[6,  7, 81 
e : t [ 9  + 141 
f : t (  13, 14, 151 

8. exec-pi (i) = 
( 1  = s-branch ( i )  ) + exec-branch ( i )  
else + exec-assign ( i )  

9. exec-branch (i) 
is-rrm ( i )  + csar (6): s-addr ( i )  
is-t+ ( i )  + (mdr(pS)[O] = 0 )  -+ csar(pS) : s-addr ( i )  

else + adv-csar 
is-tl ( i )  + ( m d r f p S ) [ l ]  = 0 )  -+ csar(pS) : s-addr ( i )  

else -+ adv-csar 
( i )  + ( m d r ( p S ) [ 2 ]  = 0 )  "* c s a r ( 6 ) :  s-addr ( i )  

else * adv-csar 
is-tmdr (i) (mdr (pS)  = 32pO) -+ csar(pS):  s-addr ( i )  

else - adv-csar 
is-ti(;) + csar(pS) : s-addr(i) V (7p0, i r ( p S ) )  

IO. exec-assign ( i )  = 

is-stop (i) + s w ( p S )  : 0 
csar(pS)  : 12pO 

else + exec-assign- 1 ( i )  
1 1. exec-assign- 1 ( i )  =E mem ( i )  - - set (i, a )  

a: @ (i, b, c) 

b: select- 1 ( i )  
c: select-2 (i) 

adv-csar 
12. select-l (i) = 

is-mdr-1 ( i )  + p A s s :  mdr (pS) 
is-x-l (i) -* p A s s :  , x (6) 
is-mone-l ( i )  -* p A s s :  32pl 
is-ohe-1 ( i )  pilss: 31p0, 1 
is-zero-1 ( i )  4 p i l s s :  32pO 

13. select-2 (i) f 

is-one-2 (i) p A s s :  31p0, 1 
is-zero-2 ( i )  + p;4ss: 32pO 
i s ~ a s k - 2  (i) "* p A s s :  8p0, 24pl 
is-a-2 ( i )  - + p A s s :  a ( p S )  
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is-b-2 ( i )  + p A s s :  b ( b S )  
is-stk-2 (i) + p A s s :  s t k ( p S )  
is-cc-2 (i) 4pAss: cc(pSI 

14. & ( i ,  a ,  h )  = 

is-add ( i )  + p A s s :  ( 3 2 ~ 2 )  T (2*32) I ( 2  I a )  
+ 2 1 b  

is-sub ( i )  -+ p A s s :  ( 3 2 ~ 2 )  T (2*32) I ( 2  I a )  
- 2 I b  

is-and ( i )  -* p A s s :  a h b 
is-or (i) 4 p A s s :  a v b 
is-not ( i )  "* p A s s :  - ( 3 2 ~ 2 )  T (2*32) I ( 2  I a )  

+ 2 1 b  
is-eor ( i )  -+ 9: (a  A - b )  V ( 6  A - a )  

is-rs ( i )  4 p A s s :  c[O],  C [ L ~ I ]  
c : ( 3 2 ~ 2 )  T (2*32) I ( 2  I a )  

+ 2 1 b  
is-1s (i) 4pAss: c[l  + ~ 3 1 ] , 0  

C : ( 3 2 ~ 2 )  T (2*32) I ( 2  I a )  
+ 2 1 b  

15. g ( i ,  a )  - - 
is-out-mar ( i )  4 mar(pS) :  a [8  + ~241  
is-out-rmdr ( i )  4 mdr(pS):  a 
is-out-x (i) 4 x ( p S ) :  a 
is-out-a (i) + a ( p S ) :  a 

is-out-b ( i )  4 b (pS) : a 
is-out-stk (i) 4 stk(pS):  a 
is-out-cc (i) + c c ( p S ) :  a 
is-out-ir (i) 4 i r (pS )  : a[3  + 151 

16. mem ( i )  - - 

is-read ( i )  -+ mdr(@):   mem(pS)   [2  I mar(pS) ; ]  
is-write (i) + m e m ( p S ) [ 2  I mar(@);]  : mdr (@I 
is-p  (i) "* n 

17. adv-csar - - 

tsar ( p S ) :  ( 1 2 ~ 2 )  T (2*12) I 1 + 2 I csar (pS) 
18. is-trm (i) PASS: 0 = 2 I s-cond (i) 

is-t$ ( i )  
is-tl (i) = PASS: 2 = 2 I s-cond ( i )  
is42 ( i )  = PASS: 3 = 2 I s-cond ( i )  

is-tmdr (i) = PASS: 4 = 2 I s-cond ( i )  
is-ti ( i )  = PASS:  7 = 2 I s-cond (i) 

- 
PASS: 1 = 2 I s-cond (i) - 
- 
- 

- 
19. is-mdr ( i )  = P A S S :  1 = 2 I s-in1 ( i )  

is-x- 1 (i) = P A S S :  2 = 2 I s-in1 ( i )  
is-moue-1 ( i )  =pAss: 3 = 2 I s-in1 (i) 
is-one-l ( i )  = PASS:  7 = 2 1 s-in1 (i) 
is-zero-1 ( i )  = p A s s :  0 = 2 I s-in1 ( i )  

20. is-one-2 ( i )  = P A S S :  - 1 = 2 I s-in2 ( i )  
is-zero-2 ( i )  = p A s s :  0 = 2 I s-in2 ( i )  
is-mask-2 ( i )  = p A s s :  2 = 2 I s-in2 ( i )  
is-a-2 (i) PASS:  3 = 2 I s-in2 ( i )  

- 
- 

_c 

- 
is-6-2 (i) = PASS:  5 = 2 I s-in2 ( i )  
is-stk-2 ( i )  = PASS:  6 = 2 I s-in2 (i) 
is-cc-2 (i) = PASS:  4 = 2 I in2 ( i )  

- 
- 

2 1. is-add (i) = PASS:  0 = 2 I s-f ( i )  
is-sub ( i )  = - PASS: 1 = 2 I s-f ( i )  a63 

- 
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is-and (i) = p A s s :  2 = 2 I s-f ( i )  
is-or (i) = p A s s :  3 = 2 I s-f ( i )  
is-not ( i )  = p A s s :  4 = 2 I s-f (i) 
is-eor ( i )  = p A s s :  5 = 2 1 s-f ( i )  
is-rs ( i )  = PASS:  6 = 2 I s-f (i) 
is-1s ( i )  = p A s s :  7 = 2 1 s-f (i) 
is-stop ( i )  = P A S S :  10 = 2 1 s-f ( i )  

22. is-out-mar (i) = p A s s :  0 = 2 1 s-out (i) 
is-out-mdr (i) =E: 1 = 2 I S-out ( i )  
is-out-x ( i )  = PASS:  2 = 2 1 s-out (i) 
is-out-a ( i) ,  = p A s s :  3 = 2 1 s-out (i) 
is-out-b ( i )  =pAss: 5 = 2 I s-out (i) 
is-out-stk ( i )  = p A s s :  6 = 2 I s-out ( i )  
is-out-cc (i) = p A s s :  4 = 2 1 s-out (i) 
is-out-ir ( i )  = PASS:  7 = 2 .L s-out (i) 

23. is-read (i) = P A S S :  1 = 2 I memf (i) 
is-write (i) = PASS:  2 = 2 I memf (i) 
is-p (i) = p A s s : O = 2 1 m e m f  (i) 

- 

24. is-mem ( t )  = 

is-binmatrix ( t )  + pt = (2x24  32) + p A s s :  1 
else + p A s s :  0 

else -+E: 0 
25. is-reg ( t )  = 

is-binvector(t) + ( p t )  = 32 + p A s s :  1 
else + p A s s :  0 

else + p A s s :  0 
26. is-controlstore(!) = 

is-binrnatrix(t) + pt = (2x12  16) + p A s s :  1 
else +E: 0 

else - + p A s s :  0 
27. is-adreg(t) = 

is-binvector ( t )  + ( p t )  = 24 + p A s s :  1 
else + p A s s :  0 

else +E: 0 
28. is-csreg(t) = 

is-binvector(t) + ( p t )  = 12 + p A s s :  1 
else + PASS:  0 

else + p A s s :  0 
29. is-ireg(t) = 

is-binvector ( t )  + ( p t )  = 5 + p A s s :  1 
else -+ p A s s :  0 

else + p A s S :  0 

Appendix C: Microcode 
VMCODEl CUI V 

V MCODFl 
C11 1 ADDM ZERQ,CC,MAR,R 
c2 1 2 ADDM OiVE,CC,CC,P 
C3 1 3 TRM 168 
C41 4 T2 7 
C5 1 5 T I  32 
C6l 7 T l  9 

C 71 
C81 
C9 1 
I101 
Clll 
c121 
113 1 
C141 
C151 
C161 
C171 
C181 
C191 
C201 
C211 
I221 
C23 1 
C241 
C25 1 
C261 
C2 71 
C281 
C291 
C301 
1311 
C321 
C33 1 

', C341 
' C351 
C361 
C3 71 
C381 
C391 
C40 1 
C411 
C42 1 
C43 1 
1441 
C45 1 
C461 
C471 
C481 
C49 1 
C501 
C511 
C521 
C53 1 
C541 
C55 1 
C56l 
C5 71 
C581 
C591 
C60l 

8 ADDM X,B,B,P 
9 TO 12 
10 ADDM ZERO  ,B  ,MAR  ,R 
11 ANDM MDR ,MASK ,B ,P 
12 T I  64 
20 ADDM MONE ,SIX ,SIX ,P 
2 1  ADDM ZERO,S!lX,MAR,W 
22 TRM 1 
23 ADDM MONE ,SIX ,SIX ,P 
24 ADDM ZERO ,SIX ,MAR ,W 
25 TRM 1 
26 ADDM ZERO,B,MAR,W 
27 TRM 54 
29 TO 70 
30 T R M 1  
32 ADDM ONE ,STK  ,MAR  ,R 
33 TRM 115 
3  4 ADDM ONE ,STK  ,MAR  ,R 
35 TRM 115 
36 ADDM ONE ,STK,MAR ,R 
37 TRM 115 
3  8 ADDM  ONE ,STK  ,MAR  ,R 
39 TRM 115 
40 ADDM ONE ,SIX ,MAR  ,R 
41 TRM 115 
42 ADDM ZERO ,S!lX ,MAR  ,R 
43 TRM 142 
44 ADDM MONE ,Sl'K ,SIX ,P 
45 TRM 144 
46 ADDM ZERO ,S!lX ,MAR  ,R 
47 TRM 158 
48 ADDM ZERO ,SIX ,MAR  ,R 
49 TRM 147 
50 ADDM ZERO,STK,MAR,R 
51 TRM 149 
52 ADDM ZERO,SIX,MAR,R 
53 TRM 156 
5  4 ADDM ONE ,STK ,SIX ,P 
55 TRM 1 
5  6 STOPM  ZERO,  ZERO ,MAR ,P 
64 ADDM  ZERO  ,B  ,MAR ,R 
65 TRM20 
66 ADDM ZERO  ,B  ,MDR  ,P 
67 WM 23 
68 ADDM ZERO ,SIX ,MAR  ,R 
69 TRM 26 
70 ADDM ZERO , B , CC , P 
71 W 1  
72 ADDM ZERO ,SIX ,MAR  ,R 
73 TRM 29 
74 ADDM ZERO ,SIX ,MAR ,R 
75 TRM 97 
76 ADDM  ZERO ,SIX ,MAR  ,R 
77 TRM 99 
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I611 
C62 1 
C63 1 
C641 
C65l 
C661 
C671 
C681 
C691 
C701 
C711 
C721 
C731 
C 741 
I751 
C76l 
C771 
C781 
C791 
C801 
C811 
C821 
C83 1 
C841 
C851 
C861 
C871 
C881 
C891 
C901 
C911 
C92 1 
C93 1 
I941 
C95l 
C96l 
C9 71 
C981 
C991 
C l O O l  

I ClOll 
11021 
C103 1 
C1041 
C1051 
C1061 
C1071 
C1081 
Cl09l 
CllOl 
Cllll 
C112 1 
C1131 
11141 

78 ADDM  ZERO ,STK ,MAR ,R 
79 TRM 1 0 1  
80 ADDM  ZERO,CC,MDR,P 
8 1  TRM 103 
82 ADDM  ZERO,B,MAR,R 
83 TRM 106 
8 4  ADDM  ZERO,B,X,P 
85 TRM 1 
86 ADDM  X,ONE,X,P 
8 7  TRM 108 
88 ADDM  ZERO  ,STK ,MAR ,R 
89 TRM 110 
90 ADDM  ZERO ,STK ,MAR ,R 
9 1  TRM 110 
96 TRM 1 
9 7  TO1 
98 TRM 70 
99 TMDR 70 
100 TRM 1 
1 0 1  TMDR 1 
102 TRM 70 
103 ADDM  MONE ,STK  ,STK ,P 
104 ADDM  ZERO  ,STK ,MAR ,W 
105 T R M  70 
106 ADDMMDR,ZERO,X,R 
107 TRM 1 
108 ADDM  X,ZERO,MDR,P 
109 TRM 1 0 1  
110 ADDM MDR, ZERO,A,P 
111 ADDM  ZERO,B,MDR,P 
112 TRM 124 
115 ADDM MDR,  ZERO,A,P 
116 ADDM  ZERO  ,STK  ,MAR  ,R 
11 7 ADDM  ONE ,STK ,MAR ,P 
118 TI 128 
120 LSM  ZERO,A,A,P 
1 2 1  TRM 123 
122 RSM  ZERO,A,A,P 
123 SUBM  MDR  ,ONE,MDR  ,P 
124 TMDR 126 
125 TI 120 
126 ADDM  ZERO,A,MDR,W 
1 2 7  TRM 1 
128 ADDMMDR,A,MDR,W 
129 TRM 54 
130 SUBMMDR,A,MDR,W 
1 3 1  TRM 54 
132 ANDMMDR,A,MDR,W 
133 TRM 5 4  
134 ORMMDR,A,MDR,W 
135 TRM54 
136 EORM  MDR  ,A,MDR,W 
137 TRM 54 
142 NOT”  MDR , ZERO  ,MDR ,W 

C1151 143 TRM 1 
Cll6l 144  ADDM  ZERO,STK,MAR,P 
C1171 145 ADDM  X,ZERO,MDR,W 
E1181 146 TRM 1 
C1191 1 4 7  ADDM MDR,  ZERO,A,P 
E1201 148 TRM 160 
E1211 149 ADDMMDR,ZERO,A,P 
C1221 150 TRM 162 
C1231 156 ADDMMDR,ZERO,CC,P 
C1241 157 TPM 54 
C1251 158 ADDMMDR,ZERO,X,P 
C1261 159 TRM 54 
C1271 160 ADDM X,A,X,P 
C1281 1 6 1  TRM 54 
C1291 162 SUBM X,A,X,P 
C1301 163 TRM 54 
C1311 168 ANDMMDR,MASK,B,P 
C1321 169 NOTM  ZERO,MASK,A,P 
C1331 170 ANDMMDR,A,MDR,P 
C1341 1 7 1  LSMMDR,ZERO,IR,P 
C1351 172 TRM 4 
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