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Efficient  Algorithm  for  the  Partitioning of Trees 
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Abstract: This paper describes an  algorithm for partitioning  a  graph  that is in the  form of a tree. The algorithm has a growth in com- 
putation time and storage requirements  that is directly proportional to the number of nodes in the tree. Several applications of the algo- 
rithm  are  briefly described. In particular  it is shown that the tree partitioning  problem frequently arises in  the allocation of computer 
information to blocks of storage. Also, a heuristic method of partitioning  a general graph based on this algorithm is suggested. 

Introduction 
Consider a  graph G whose  nodes  have nonnegative inte- 
ger weights  and whose edges have positive  values.  A 
familiar combinatorial  problem is the partitioning of G 
into subgraphs such  that  the  sum of the node  weights in 
any subgraph  does not exceed a given  maximum and  the 
sum of the values of the  edges joining the different 
subgraphs is minimal. This  type of graph partitioning 
problem arises  in a variety of forms in computer  sys- 
tems, e.g., the clustering of logic circuits  onto integrated 
circuit  chips  and the mapping of computer information 
onto physical  blocks of storage. 

No computationally efficient algorithm is known to 
exist  for  the partitioning of a general  graph. However, 
partitioning  algorithms have been described [ 1-81 that 
can be  computationally efficient, given special features 
of the  graph  to  be partitioned. 

Here  we  restrict our attention  to  connected, acyclic 
graphs, or trees, and  describe a dynamic programming 
algorithm for  the partitioning of a tree.  This partitioning 
algorithm has a  growth in computation  time  and storage 
requirements  directly proportional to  the  number of 
nodes in the graph. The ability to  partition a tree with 
integer-weighted nodes and  multivalued  edges has not 
been  considered in the literature. An algorithm [ 2 ]  has 
been reported  that partitions a special type of tree with a 
growth in computation of n(log, n )  for an  n-node  tree; 
the edges of the  tree  must,  however,  assume a rather 
restricted set of values. 

In this paper  we first define the partitioning  problem, 
as well as  some  terms  and  concepts useful in its charac- 
terization. Next we describe  the  tree partitioning algo- 
rithm and illustrate it by an example. We  then  consider 
possible  applications of the algorithm. In particular we 
show  that a tree partitioning  problem of the  type de- 

scribed here  can  arise in the allocation of data in hierar- 
chical files to physical  blocks of storage. Also,  we sug- 
gest a possible heuristic  procedure based on the algo- 
rithm for the partitioning of a general  graph. 

Definitions and basic concepts 
Assume a tree T = ( V ,  E )  with node  set V and  edge  set 
E ,  as  shown in Fig. 1. A partition of T is defined as a 
collection of k clusters of nodes {ci), i=  1,2 , .  . ., k, such 
that 
k 
u ci = v; 
i = l  

ci n cj = 0 for all i # j .  

A  nonnegative  integer weight wi is associated with 
each  node i of T .  A weight constraint W is imposed on 
each  cluster of T such  that  the  sum of the weights of the 
nodes of any cluster  does  not  exceed W .  

An  edge (i, j )  of T is said to be cut by a partition of T 
if nodes i and j are in different  clusters.  A  positive  value 
uii is  associated with each  edge ( i ,  j )  of T .  The value of a 
partition of T is  equal  to  the sum of the  values of the 
edges of T that are within its  clusters  (intracluster  edges); 
the cost of a partition of T is equal  to  the sum of the 
values of the  edges of T that  are  cut by the partition of T 
(intercluster  edges).  Thus  the value  plus the  cost of a 
partition of T is equal to  the  sum of the values of the 
edges of T .  

An optimal  partition of T ,  pT (opt) = {cl, cZ; . e, c,} ,  is 
one in which each  cluster ci satisfies the weight con- 
straint 

2 wj i w, 
j c r .  
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Partition = ( C I ~ C ~ C ~  ] 
T =  ( V , E )  c1= [ A , B ]  
v =  ( A , B , c , D , E )  c 2 = [ C , D )  
E =  ( o , b , c , d )  c3 = {El 

Figure 1 A partition of the  tree T = ( V , E ) ,  where the weight 
constraint is 2 and all nodes are assumed to have unit weight. 

and in  which cost 

uij is minimal, 

where i€cf,   j€c& g = 1,2; . ., k, and f # g. An equivalent 
property of an optimal  partition of G is one  that satisfies 
the weight constraint  and in which the value of T 

2 uij is maximal, 

where f =  1, 2 , .  . ., k., 

i,jccf 

To identify the different  liodes of a tree,  the  tree is 
labeled by the assignment of a  unique  integer to each 
node, as in Fig. 2.  To represent a partition we use a 
collection of lists in which each list represents a cluster 
and the  contents of the list are  the  nodes in that  cluster. 
For  example, a cluster with nodes 1, 3, 5, and 6 is repre- 
sented by the list ( 1, 3, 5, 6 ) ,  where  the  order in which 
the  nodes  appear in the list is not  important.  An  example 
of a representation of a partition with this cluster is 

Each  cluster  formed by a  partition of tree T represents 
a subtree of T .  However; we restrict,  our  attention.  to 
partitions of T each of whose clusters  forms a connected 
subtree of T ,  where connected means that  every pair of 
nodes in the  subtree is joined by a path [9]. We can ap- 
ply this “connectivity”  constraint [7] because  the clus- 
ters of an optimal  partition of any  connected graph can 
be modified by forming from  each  cluster ci a set of clus- 
ters  each of which consists of a connected subgraph 
contained in ci. Since  the original partition  was  optimal 
and  the new partition costs  no  more  than  the original, 
such a modification results in an optimal  partition each 
of whose clusters is a connected subgraph. 

For notational convenience, we change  the given tree 
T into a directed and ordered tree T ’ ,  as in  Fig. 3. A di- 

(1 ,  3, 5 , 6 )  ( 2 , 4 , )  ( 7 ) .  

Partitionp=(1,2,3)  (4,6,8) (5,7) 
V a l u e o f p = 3 + 2 + 4 + 3 + 8  
Cos tofp=6+1 

Figure 2 Value and cost of a partition. 

I. 

rected,  ordered  tree is defined [ 101 to be a finite set T’ of 
one or more  nodes  such that: 

1. There is a distinct  node called the root of T’, 
2.  The remaining nodes (exclGding the  root)  are, sepa- 

rated  into m P 0 disjoint si ts  TI,., TI2, . ., TI,,,, and 
each of these  sets is in turn a birected,  ordered  tree. 

The  trees T‘ , ,  TI, , .  . ., T ’ ,  are called the subtrees of the 
root,  where T ’ ,  is the first subtree, T ’ ,  the  secopd,  etc. 

The particular directed,  ordered  tree used does npt 
affect the  growth in  computational  complexity of the 
algorithm. By convention we form T‘ by  selecting  node 
1 as  the root of T’ and  the  sons of node 1 become  those 
nodes adjacent  to (sharing an edge with)  node 1 .  The 
sons of node 1 are  ordered by  increasing  label value. If 
node i is a son of node 1 ,  those  nodes  adjacent  to  node i 
(excluding  node 1 ) are again ordered as the sons of node i 
by increasing  label values. This  process is repeated  for 
each  node in T resulting  in the  ordered,  directed  tree T ‘ .  

Partitioning  algorithm 
The basis of the  tree partitioning  algorithm is a dynamic 
programming technique  that  takes  advantage of a basic 
property of a tree,  its acyclic nature,  to find a globally 
optimal  partition  based on local information. The algo- 
rithm generates  the optimal  partition of the  tree T !  by 
finding the partitions of increasingly  larger subtrees of T‘ 
until the  subtree  that is partitioned is T’ itself. 

The first step in the partitioning  algorithm is to gener- 
ate  the trivial partitions of the leaf nodes of T ’ .  We  then 
determine  that  set of nodes in T’ all of whose  subtrees 
have been  partitioned. Assume  that  there is a node in 
this set with the label x. We generate  the partitions of x 
by means of the following sequence of steps: 

J .  A. LUKES IBM J. RES. DEVELOP. 



Figure 3 Transformation of tree  into a directed  tree. (a) Tree 
T ;  (b)  directed,  ordered  tree T’. 

1 .  Find  the partitions of node x and  its first subtree. 
2. Combine  these partitions and  the partitions of the 

second  subtree of x to generate  the partitions of,  the 
subtree  composed of node x and  its first two  subtrees. 

3. Combine  the partitions created in step 2 with the par- 
titions of the third subtree of x. The  result  is  the  set 
of partitions of the  subtree  composed of node x and 
its first three  subtrees. 

4. Continue this procedure  such  that on the ( i  + 1)st  
step  the partitions of the  subtree  composed of node x 
and  its first i + 1 subtrees  are  generated by  combining 
the  pahitions  generated  on  step i with the partitions 
of the ( i  + 1 )st  subtree of x. ’ 

5. Finally we  reach a point in the algorithm when the 
tree with root x is partitioned. 

A s  a  result of the partitioning of the  tree with root x, it 
may happen that  the  node  that is the  father of x becomes 
qualified as a node all of whose subtrees  are partitioned. 
If such is the  case, we add  the  father of node x to this 
set. 

Upon finishing the partitioning of the  tree with root 
node x, .we remove  node x from the  set of nodes sharing 
the  property  that all of their  subtrees  are partitioned. 
Another node from this set is selected,  and  the  tree  for 
which this node  is  the  root is partitioned in the  manner 
described  above.  At  some point in the algorithm, the  set 
of nodes  each of whose  subtrees is partitioned is  exhaust- 
ed,  whereupon we have  generated  the optimal  partition 
of T ’ .  

Tree T’ 

Root of T’ 

Last son of root 

I 
I 
I j 
I I 

I 

Figure 4 Generation of partitions by combining the  partitions 
of two subtrees. 

Subtree V -Subtree U’ 

Before  this  algorithm can be  considered to  be practi- 
cal, however,  we must  first find some orderly  method of 
generating the partitions of a subtree consisting of some 
node u and its first i + 1 subtrees, given the partitions of 
the  subtree .composed of u and  its first i subtrees  and  the 
partitions of the (i+ 1)st  subtree.  Next, we observe  that 
the  number of partitions of a subtree can become very 
large. For example,  consider  the simple tree  structure 
consisting of a node of T’ all of whose sons  are leaf 
nodes. The  number of partitions of this tree  such  that 
the weight and connectivity constraints  are both  ob- 
served is 

w-1 

1=0 c (“3 
where k = number of nodes in the  tree  and W = the 
weight constraint.  For w > k / 2 ,  this  bound grows  as 
2k. We solve this  problem by eliminating a  large number 
of pahitions of each  subtree in the partitioning al- 
gorithm. 

Consider s.ome subtree of T ’ ,  U in Fig. 4, which in 
general  consists of a  node u and  its first i subtrees.  In  the 
proof of optimality to  come  later  we will show  that  we 
need carry only a maximum of W partitions of U along 
in the partitioning process,  where W is  the weight  con- 
straint. If w is the weight of node u, this set of partitions 
is  denoted by ui ( i  = w, w + 1,. . ., W )  , where  each parti- 
tion ui is distinguished  from the  other  partitions of U by 
the properties: 21 91 
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1. Partition ui is a partition of U whose  cluster contain- 

2.  Partition ui is that partition of all those with property 
ing node u is of weight i, 

1 whose value is maximal. 

We  now consider a method of generating the partitions 
of a subtree U ' ,  given the partitions of subtrees U and 
V ,  where  the  nodes of U and V comprise  the  nodes of 
UI. 

In Fig. 4 we have  two  subtrees, U and V ,  whose  parti- 
tions have been generated previously. T o  generate  the 
partitions of U' ,  the  subtree  created by  combining U and 
V ,  we use  either of two operations: 

1. Concatenate  the  clusters of a partition of U ,  ui, with 
those of a partition of V ,  uj, merging the  nodes in the 
clusters containing nodes u and u into a single cluster. 

2 .  Concatenate  the  clusters of ui and uj. 

We observe  that  any  other combination of the partitions 
ui and uj violates the connectivity constraint. 

Let  us  use  the notation C[ui ,  u j ]  to denote  the parti- 
tion created by the first operation  above.  The weight of 
the  cluster of C[ui ,  uj]  containing node u is i + j, and  its 
partition  value is the  sum of the value of ui, uj, and edge 
(i, j ) .  The partition created by the  second  operation  can 
also be denoted by the  above notation if we define uo to 
be the partition of V that  has  the maximal  value of all 
partitions of V. (If  the  second  operation  were used to 
combine ui with  any  partition uj, the resulting  partition 
could never  have a value greater  than C [ui, uo] . Thus,  we 
only consider  the combination C [ ui,  UO] in forming some 
ui' using the second operation.)  Then C [ u i ,  U O ]  repre- 
sents a  partition of U'  whose  cluster containing node u 
is of weight i and whose value is equal to the  sum of the 
values of ui and UO. 

We note  that  the  assumption  is  made  that all nodes in 
T (hence in T ' )  are integer-weighted. Therefore,  the 
partition uK' of U' is selected  from  the  set { C [ u , ,  u k - , ] ,  

sume  nodes u and u have unit  weight for clarity of nota- 
tion. (See Fig. 5.) The partition C [ u a ,  u,] in this  set 
with maximal value is selected as uk'. 

We  now summarize  the  steps  associated with the par- 
titioning algorithm. 

Step I Label  the  tree T ,  and  form  the  directed,  order 
tree T ' .  
Step 2 For  each leaf node u with weight w, form  the 
partition u, = uo = ( u ) .  The  value of this  partition is 
zero.  For all nodes u of T' that  are  branch  nodes  (nodes 
having one  or  more  sons), initialize ( u )  = uj with value 
zero;  here j is the weight of node u. 
Step 3 Select  some  node x all of whose  sons  are leaf 
nodes,  and  form  the optimal  partitions for  each weight 

C[u,, u J ,  . . ., C[u,-,, u, l ,  c[uk7 ~ 0 1 1 , ~  where  we  as- 

equal  to or less  than  the weight constraint of the  subtree 
whose  root is node x. To form  these optimal  partitions, 
follow these  steps: 

a. Let i =  1. 
b. Form xj' = C [xa, y , ]  (for j = w, w + 1 , .  . ., W )  , where 

the  operator C[x, ,  y , ]  forms partitions  by either of the 
operations defined above;  the particular  partition 
C[xa ,  y,]  chosen is that of maximal value. Here y is 
the ith son of node x and a + b = j ,  where w 5 a i W 
and 0 i b i W.  The weight of node x is w, and  the 
weight constraint is W .  

c. Make all xj = xj'.  If i = number of sons of node x, go 
to  Step 4. Else,  let i = i + 1 and  go  to  Step 3 (b).  

Step 4 Denote by x0 the partition of the  subtree  whose 
root  is x that  has maximal value  from  the  set {x,, x,+,, 

Delete  the  sons of node x from  the  tree T' .  If node x is 
the  root of T ' ,  then x0 represents  the optimal  partition of 
T' (hence of T ) .  Otherwise,  go to Step 3. 

. . . , x,}. 

Proof of optimality 
Consider  some optimal  partition q of the  tree T'.  As- 
sume  that  each  cluster of q contains a connected  subtree 
of T ' .  As a consequence,  we  can  separate  the  clusters of 
q into  three groups: 

1. Those  clusters  comprised of nodes in the  subtrees 

2. A single cluster containing node u, 
3. All other  clusters. 

whose  roots  are  the first i sons of some  node u, 

Let us  now  proceed to delete  from  the  clusters of q all 
those  nodes  (except  node u )  not in a subtree  whose  root 
is  one of the first i sons of node u. The resulting clusters 
comprise a partition li of the  subtree U of Fig. 4. We 
now  claim that if the  cluster of I; containing node u is of 
weight j ,  then  the  value of li is  equal  to  that of uj. 

Let  us  assume  that  the  value of li is less  than  that of 
uj. We  can then generate a partition p whose  value ex- 
ceeds  that of q by the  amount  that uj exceeds I;. We  do 
so as follows: 

1. Make  the  clusters of p containing nodes not in subtree 
U equal  to  the  clusters of q that are in the third  group 
above. 

2.  Add  the remaining nodes of T' (i.e., those  nodes  not 
in a cluster of or in one of the  group 3 clusters of q )  
to the  cluster containing node u. We  note  that  these 
nodes  are precisely the  nodes in the single cluster 
comprising group 2 of q not found  in subtree U .  

Clearly  then q cannot  be optimal if li does  not  have 
equal value  to uj. 
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In  conclusion,  the optimal  partition of T' whose clus- 
ters  form  connected  subgraphs  can  never  be  generated 
from  some  partition ii of subtree U ,  where ii has  the fol- 
lowing properties: 

1. Its  cluster containing  node u is of weightj, 
2. Its  value is less  than uj. 

We  can  then ignore all such partitions in generating the 
optimal  partition of T' .  

Growth  rate 
Consider  the number of steps required to form all pos- 
sible  partitions in combining the  subtrees U and V of 
Fig. 4 to  create  the partitions of U'.  There  are a maximum 
of W partitions uj' representing the  set of optimal  parti- 
tions of U'.  Each  such partition is  chosen from a max- 
imum o f j  partitions C [ u,, ub] , where a + b = j and 1 5 a,  
0 5 b. The maximum number of partitions that  must  be 
considered in forming the uj' is then  given  by the  series 

1 + 2 + 3 . . . + W = W ( W + 1 ) / 2  . 
In forming the optimal  partition of T' ,  we are required 

to  combine  the partitions of some U with the partitions of 
some V once  for  every  edge in the  tree.  Since  an n-node 
tree  has n - 1 edges, the  computational complexity grows 
as W'n and is independent of the  particular  structure of 
the  tree  under consideration. 

Example 
We now  illustrate the algorithm just  described by means 
of an example. The  tree of Fig. 6 (a) is to  be partitioned 
for a weight constraint of three. Each  node  is  assumed to 
have unit  weight, and  the edges have  the values shown. 

Figure 6 (b) shows  the  directed  and  ordered  tree T' re- 
sulting from  the labeling of T .  We illustrate the  steps in 
forming the optimal  partition  below, where  the  subscripts 
indicate either weight or  an optimal  partition and V in- 
dicates value: 

Initialize: 
1, = ( 1 )  V [  l , ]  = 0 
2, = (2) V[2,] = 0 
3, = 3, = (3) V[3,] = 0 
4, = 4, = (4) V[4,] = 0 
5, = 5 , =   ( 5 )  V[5,] = 0 

To form  partitions of the  subtree  whose  root  is  2,  the 
first iteration is: 

2,' = C[2,, 3,] = (2) (3)* with value = 0. 

*Optimal  partition of the collection C [ u,, ub] = uj, where 
a + b=j .  

2,' = [ C [ 2 , ,  3 , ]  = (2, 3)* with value = 4 
C[2,, 3,] does  not  exist  since 2, cannot  yet  occur. 

Value = 12 
Cost = 3 

Optimalpartition=1,=(1,4) ( 2 , 3 , 5 )  

(C)  

Figure 6 Optimal  partitioning of a tree. (a) Tree T ;  (b) tree 
T' ;  (c) partition of T .  

2,' = cannot  occur since no previously generated parti- 
tion of subtree 2 or 3 can  form 23'. 

The  second iteration is: 

2,' = C[2,, 5,] = (2)  ( 3 )  ( 5 ) *  with value = 0. 

C[2,, 5,] = (2, 5 )  (3 )*  with value= 6 
C[2,, 5,] = (2, 3 )  ( 5 )  with  value = 4. 2,' = [ 
C [ 2,, 5,] does  not  exist  since 5, cannot  occur 

C[2,, 5,] does  not  exist  since 2, does not yet exist. 
5,] = (2, 3, 5 ) *  with value= 10 
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All edges = 1 

(b) 

Figure 7 Application of tree  partitioning. (a) Logical  relation- 
ship of data in a hierarchical  file; (b) allocation of data to 32- 
byte  blocks. 

Therefore 

2,= (2, 3,  5 )  V[2,] = 10 
2, = (2) ( 3 )  ( 5 )  V[2,1 = 0 

2, = 2, V[2,] = 10. 
2, = (2, 5 )  ( 3 )  V[2,] = 6 

To form the partitions of the  subtree  whose  root is 1 ,  the 
first iteration is 

1,' = C[l,, 2,] = ( 1 )  (2, 3,  5 ) *  with value = 10. 

C[l,, 2,] = ( 1 ,  2)(3,  5 ) *  with value= 3 
C [  l,, 2,] does  not  occur  since 1, has  not  yet  oc- 

1,' = [ 
curred. 

i C[1,, 2,]= (2,5,1)  ( 3 ) *  with value = 9 
1,' = C [  l,, 2,] does  not  exist  since 1, does  not  yet  exist 

C [  l,, 2,] does  not  exist  since 1, does  not  yet exist. 

The  second iteration is 

1, '  = C[l,, 4,] = ( 1 )  (2, 3, 5 )  (4)* with value = 10 

C[l,,  4,] = ( 1 ,  4)  (2, 3,  5 ) *  with value = 12- 
C [  l,, 4,] = ( 1 ,  2) (3,  5)(4)  with value = 3 222 

1,' = [ 

C[ 1 ,, 4,] does not exist  since  no 4, exists. 

C[1,, 4,] = ( 1 ,  2, 5 )  ( 3 )  (4)* with value = 9. 
C[ l,,  4,] = ( 1 ,  2, 4) (3,  5 )  with value = 5 

Therefore  the optimal  partition of the given tree is 
1, = 1, = ( 1 ,  4)(2,  3,  5 ) .  Figure 6(c)  illustrates  this 
partition. 

Tree partitioning problems 
Graphs in the  form of trees  occur  frequently in the rep- 
resentation of computer information. Certain linked 
lists, segments of nonrecursive programs, and hierarchi- 
cal file structures  are  several  examples of such  tree 
structures.  The  tree partitioning  problem arises  when 
information  must be allocated to blocks of memory 
whose  capacity  is limited. Kernighan [3] noted that  the 
placement of program segments  into pages  in  memory 
hierarchies is  such a partitioning  problem. Here  the  tree 
nodes  are  the  segments, a node weight equals  the num- 
ber of bytes in a segment,  and  the  edges  represent a 
probable transition from  one  segment to another  and  are 
assigned  values equal  to  the  expected  transitions be- 
tween segments. The problem is  then  reduced  to  one of 
allocating nodes  to  clusters  (pages) so as  to  reduce  the 
expected  number of page  faults  while  executing the pro- 
gram. 

A similar example of a tree partitioning  problem is the 
distribution of the  data of a hierarchical file structure 
into blocks of memory  on a secondary  storage device. 
One is given a logical data  structure  whose  nodes con- 
sist of data  segments and directory information  and 
whose  edges imply a logical relationship of data seg- 
ments. If the  expected  transitions  from  node  to  node of a 
data  structure  are  known,  the  structure  assumes  the 
form of a tree with  weighted nodes  and  edges  whose 
values  equal  the  expected  internode transitions. The 
objective  then is to allocate nodes of the  tree  to finite 
capacity  storage blocks. Since a search  operation is re- 
quired for  each block of information  in secondary  stor- 
age, it is advantageous to cluster information referenced 
together  frequently  into  the  same blocks.  Distributing 
the  nodes in  blocks such  that  the  sum of the  expected 
transitions  between blocks is minimized results in the 
minimum number of interblock transitions  for  the hierar- 
chical file structure.  Figure 7 illustrates  this  problem. 

We note  that  every  connected graph has a number of 
embedded  trees within it. For  example, Fig. 8 shows a 
graph and  one of its  embedded trees. A heuristic algo- 
rithm for  the partitioning of a general graph can  be for- 
mulated based  upon  the  tree partitioning  algorithm, 
where  the partitioned tree  is  an  embedded  tree of the 
given  graph. First,  an  embedded  tree T is determined 
from  the given  graph G. Those  edges of G not in this 
tree  are  then  considered to be  cut.  The  embedded  tree is 
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partitioned,  resulting in a partition of the graph. The  cost 
of the resulting  partition  has a value z that lies in the 
range 

y 5 z z x + y ,  

Where x = sum of edges of G not in T and y = sum of 
edges  cut by the  tree partition. This range results from 
the  observation  that  one  or more of the  edges in G, but 
not T ,  may lie in a cluster of the resulting  partition of T .  

A connected graph  may have many embedded  trees, 
so that enumerating all embedded  trees in order  to find 
the optimal  partition can become  a  formidable  task. One 
technique  (Fig. 9)  that may  be  used to  ease this  problem 
is  to find the maximal spanning tree of G, since  this min- 
imizes the  sum of the  edges  removed from G. The re- 
sulting partition has a value such  that  the values of x and 
y are minimized, yet  the sum x + y may not  be minimal 
because  edges deleted in forming tree T may later  be 
found in the  cluster of a partition of T. No useful 
method of predicting those  edges of G that may be in- 
cluded in a cluster of an optimal  partition of the  embed- 
ded  tree T has been  found.  Figure 9 illustrates the selec- 
tion of a suboptimal  partition of a  graph G using the 
above technique. 

Summary 
We have .described a computationally efficient algorithm 
for  the partitioning of a tree with integer-weighted nodes 
and edges with  positive  values. Several applications of 
the algorithm in the allocation of computer information 
to physical storage  space  are suggested.  We also  de- 
scribe  the  use of this algorithm in finding a  suboptimal 
partition of any  connected graph. 

A possible extension of. this algorithm is to find a 
computationally efficient method of determining an opti- 
mal partition of any graph G based  upon the partitioning 
of one of the embedded trees of G. Since the  tree parti- 
tioning algorithm grows linearly with the  number of tree 
nodes,  an efficient method of selecting the  embedded 
tree of G that  resuits in the optimal  partition is required. 

, .  
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