
J. A. Lukes

Efficient Algorithm for the Partitioning of Trees
‘ e .

Abstract: This paper describes an algorithm for partitioning a graph that is in the form of a tree. The algorithm has a growth in com-
putation time and storage requirements that is directly proportional to the number of nodes in the tree. Several applications of the algo-
rithm are briefly described. In particular it is shown that the tree partitioning problem frequently arises in the allocation of computer
information to blocks of storage. Also, a heuristic method of partitioning a general graph based on this algorithm is suggested.

Introduction
Consider a graph G whose nodes have nonnegative inte-
ger weights and whose edges have positive values. A
familiar combinatorial problem is the partitioning of G
into subgraphs such that the sum of the node weights in
any subgraph does not exceed a given maximum and the
sum of the values of the edges joining the different
subgraphs is minimal. This type of graph partitioning
problem arises in a variety of forms in computer sys-
tems, e.g., the clustering of logic circuits onto integrated
circuit chips and the mapping of computer information
onto physical blocks of storage.

No computationally efficient algorithm is known to
exist for the partitioning of a general graph. However,
partitioning algorithms have been described [1-81 that
can be computationally efficient, given special features
of the graph to be partitioned.

Here we restrict our attention to connected, acyclic
graphs, or trees, and describe a dynamic programming
algorithm for the partitioning of a tree. This partitioning
algorithm has a growth in computation time and storage
requirements directly proportional to the number of
nodes in the graph. The ability to partition a tree with
integer-weighted nodes and multivalued edges has not
been considered in the literature. An algorithm [2] has
been reported that partitions a special type of tree with a
growth in computation of n(log, n) for an n-node tree;
the edges of the tree must, however, assume a rather
restricted set of values.

In this paper we first define the partitioning problem,
as well as some terms and concepts useful in its charac-
terization. Next we describe the tree partitioning algo-
rithm and illustrate it by an example. We then consider
possible applications of the algorithm. In particular we
show that a tree partitioning problem of the type de-

scribed here can arise in the allocation of data in hierar-
chical files to physical blocks of storage. Also, we sug-
gest a possible heuristic procedure based on the algo-
rithm for the partitioning of a general graph.

Definitions and basic concepts
Assume a tree T = (V , E) with node set V and edge set
E , as shown in Fig. 1. A partition of T is defined as a
collection of k clusters of nodes {ci), i= 1,2 , . . ., k, such
that
k
u ci = v;
i = l

ci n cj = 0 for all i # j .

A nonnegative integer weight wi is associated with
each node i of T . A weight constraint W is imposed on
each cluster of T such that the sum of the weights of the
nodes of any cluster does not exceed W .

An edge (i, j) of T is said to be cut by a partition of T
if nodes i and j are in different clusters. A positive value
uii is associated with each edge (i , j) of T . The value of a
partition of T is equal to the sum of the values of the
edges of T that are within its clusters (intracluster edges);
the cost of a partition of T is equal to the sum of the
values of the edges of T that are cut by the partition of T
(intercluster edges). Thus the value plus the cost of a
partition of T is equal to the sum of the values of the
edges of T .

An optimal partition of T , pT (opt) = {cl, cZ; . e, c,} , is
one in which each cluster ci satisfies the weight con-
straint

2 wj i w,
j c r .

MAY 1974

21 8

Partition = (C I ~ C ~ C ~]
T = (V , E) c1= [A , B]
v = (A , B , c , D , E) c 2 = [C , D)
E = (o , b , c , d) c3 = {El

Figure 1 A partition of the tree T = (V , E) , where the weight
constraint is 2 and all nodes are assumed to have unit weight.

and in which cost

uij is minimal,

where i€cf, j€c& g = 1,2; . ., k, and f # g. An equivalent
property of an optimal partition of G is one that satisfies
the weight constraint and in which the value of T

2 uij is maximal,

where f = 1, 2 , . . ., k.,

i,jccf

To identify the different liodes of a tree, the tree is
labeled by the assignment of a unique integer to each
node, as in Fig. 2. To represent a partition we use a
collection of lists in which each list represents a cluster
and the contents of the list are the nodes in that cluster.
For example, a cluster with nodes 1, 3, 5, and 6 is repre-
sented by the list (1, 3, 5, 6) , where the order in which
the nodes appear in the list is not important. An example
of a representation of a partition with this cluster is

Each cluster formed by a partition of tree T represents
a subtree of T . However; we restrict, our attention. to
partitions of T each of whose clusters forms a connected
subtree of T , where connected means that every pair of
nodes in the subtree is joined by a path [9]. We can ap-
ply this “connectivity” constraint [7] because the clus-
ters of an optimal partition of any connected graph can
be modified by forming from each cluster ci a set of clus-
ters each of which consists of a connected subgraph
contained in ci. Since the original partition was optimal
and the new partition costs no more than the original,
such a modification results in an optimal partition each
of whose clusters is a connected subgraph.

For notational convenience, we change the given tree
T into a directed and ordered tree T ’ , as in Fig. 3. A di-

(1 , 3, 5 , 6) (2 , 4 ,) (7) .

Partitionp=(1,2,3) (4,6,8) (5,7)
V a l u e o f p = 3 + 2 + 4 + 3 + 8
Cos tofp=6+1

Figure 2 Value and cost of a partition.

I.

rected, ordered tree is defined [101 to be a finite set T’ of
one or more nodes such that:

1. There is a distinct node called the root of T’,
2. The remaining nodes (exclGding the root) are, sepa-

rated into m P 0 disjoint si ts TI,., TI2, . ., TI,,,, and
each of these sets is in turn a birected, ordered tree.

The trees T‘ , , TI, , . . ., T ’ , are called the subtrees of the
root, where T ’ , is the first subtree, T ’ , the secopd, etc.

The particular directed, ordered tree used does npt
affect the growth in computational complexity of the
algorithm. By convention we form T‘ by selecting node
1 as the root of T’ and the sons of node 1 become those
nodes adjacent to (sharing an edge with) node 1 . The
sons of node 1 are ordered by increasing label value. If
node i is a son of node 1 , those nodes adjacent to node i
(excluding node 1) are again ordered as the sons of node i
by increasing label values. This process is repeated for
each node in T resulting in the ordered, directed tree T ‘ .

Partitioning algorithm
The basis of the tree partitioning algorithm is a dynamic
programming technique that takes advantage of a basic
property of a tree, its acyclic nature, to find a globally
optimal partition based on local information. The algo-
rithm generates the optimal partition of the tree T ! by
finding the partitions of increasingly larger subtrees of T‘
until the subtree that is partitioned is T’ itself.

The first step in the partitioning algorithm is to gener-
ate the trivial partitions of the leaf nodes of T ’ . We then
determine that set of nodes in T’ all of whose subtrees
have been partitioned. Assume that there is a node in
this set with the label x. We generate the partitions of x
by means of the following sequence of steps:

J . A. LUKES IBM J. RES. DEVELOP.

Figure 3 Transformation of tree into a directed tree. (a) Tree
T ; (b) directed, ordered tree T’.

1 . Find the partitions of node x and its first subtree.
2. Combine these partitions and the partitions of the

second subtree of x to generate the partitions of, the
subtree composed of node x and its first two subtrees.

3. Combine the partitions created in step 2 with the par-
titions of the third subtree of x. The result is the set
of partitions of the subtree composed of node x and
its first three subtrees.

4. Continue this procedure such that on the (i + 1)st
step the partitions of the subtree composed of node x
and its first i + 1 subtrees are generated by combining
the pahitions generated on step i with the partitions
of the (i + 1)st subtree of x. ’

5. Finally we reach a point in the algorithm when the
tree with root x is partitioned.

A s a result of the partitioning of the tree with root x, it
may happen that the node that is the father of x becomes
qualified as a node all of whose subtrees are partitioned.
If such is the case, we add the father of node x to this
set.

Upon finishing the partitioning of the tree with root
node x, .we remove node x from the set of nodes sharing
the property that all of their subtrees are partitioned.
Another node from this set is selected, and the tree for
which this node is the root is partitioned in the manner
described above. At some point in the algorithm, the set
of nodes each of whose subtrees is partitioned is exhaust-
ed, whereupon we have generated the optimal partition
of T ’ .

Tree T’

Root of T’

Last son of root

I
I
I j
I I

I

Figure 4 Generation of partitions by combining the partitions
of two subtrees.

Subtree V -Subtree U’

Before this algorithm can be considered to be practi-
cal, however, we must first find some orderly method of
generating the partitions of a subtree consisting of some
node u and its first i + 1 subtrees, given the partitions of
the subtree .composed of u and its first i subtrees and the
partitions of the (i+ 1)st subtree. Next, we observe that
the number of partitions of a subtree can become very
large. For example, consider the simple tree structure
consisting of a node of T’ all of whose sons are leaf
nodes. The number of partitions of this tree such that
the weight and connectivity constraints are both ob-
served is

w-1

1=0 c (“3
where k = number of nodes in the tree and W = the
weight constraint. For w > k / 2 , this bound grows as
2k. We solve this problem by eliminating a large number
of pahitions of each subtree in the partitioning al-
gorithm.

Consider s.ome subtree of T ’ , U in Fig. 4, which in
general consists of a node u and its first i subtrees. In the
proof of optimality to come later we will show that we
need carry only a maximum of W partitions of U along
in the partitioning process, where W is the weight con-
straint. If w is the weight of node u, this set of partitions
is denoted by ui (i = w, w + 1,. . ., W) , where each parti-
tion ui is distinguished from the other partitions of U by
the properties: 21 91

I MAY 1974 PARTITIONING TREESi

220

J . A. LUKES

1. Partition ui is a partition of U whose cluster contain-

2. Partition ui is that partition of all those with property
ing node u is of weight i,

1 whose value is maximal.

We now consider a method of generating the partitions
of a subtree U ' , given the partitions of subtrees U and
V , where the nodes of U and V comprise the nodes of
UI.

In Fig. 4 we have two subtrees, U and V , whose parti-
tions have been generated previously. T o generate the
partitions of U' , the subtree created by combining U and
V , we use either of two operations:

1. Concatenate the clusters of a partition of U , ui, with
those of a partition of V , uj, merging the nodes in the
clusters containing nodes u and u into a single cluster.

2 . Concatenate the clusters of ui and uj.

We observe that any other combination of the partitions
ui and uj violates the connectivity constraint.

Let us use the notation C[ui , u j] to denote the parti-
tion created by the first operation above. The weight of
the cluster of C[ui , uj] containing node u is i + j, and its
partition value is the sum of the value of ui, uj, and edge
(i, j) . The partition created by the second operation can
also be denoted by the above notation if we define uo to
be the partition of V that has the maximal value of all
partitions of V. (If the second operation were used to
combine ui with any partition uj, the resulting partition
could never have a value greater than C [ui, uo] . Thus, we
only consider the combination C [ui, UO] in forming some
ui' using the second operation.) Then C [u i , U O] repre-
sents a partition of U' whose cluster containing node u
is of weight i and whose value is equal to the sum of the
values of ui and UO.

We note that the assumption is made that all nodes in
T (hence in T ') are integer-weighted. Therefore, the
partition uK' of U' is selected from the set { C [u , , u k - ,] ,

sume nodes u and u have unit weight for clarity of nota-
tion. (See Fig. 5.) The partition C [u a , u,] in this set
with maximal value is selected as uk'.

We now summarize the steps associated with the par-
titioning algorithm.

Step I Label the tree T , and form the directed, order
tree T ' .
Step 2 For each leaf node u with weight w, form the
partition u, = uo = (u) . The value of this partition is
zero. For all nodes u of T' that are branch nodes (nodes
having one or more sons), initialize (u) = uj with value
zero; here j is the weight of node u.
Step 3 Select some node x all of whose sons are leaf
nodes, and form the optimal partitions for each weight

C[u,, u J , . . ., C[u,-,, u, l , c[uk7 ~ 0 1 1 , ~ where we as-

equal to or less than the weight constraint of the subtree
whose root is node x. To form these optimal partitions,
follow these steps:

a. Let i = 1.
b. Form xj' = C [xa, y ,] (for j = w, w + 1 , . . ., W) , where

the operator C[x, , y ,] forms partitions by either of the
operations defined above; the particular partition
C[xa , y,] chosen is that of maximal value. Here y is
the ith son of node x and a + b = j , where w 5 a i W
and 0 i b i W. The weight of node x is w, and the
weight constraint is W .

c. Make all xj = xj'. If i = number of sons of node x, go
to Step 4. Else, let i = i + 1 and go to Step 3 (b).

Step 4 Denote by x0 the partition of the subtree whose
root is x that has maximal value from the set {x,, x,+,,

Delete the sons of node x from the tree T' . If node x is
the root of T ' , then x0 represents the optimal partition of
T' (hence of T) . Otherwise, go to Step 3.

. . . , x,}.

Proof of optimality
Consider some optimal partition q of the tree T'. As-
sume that each cluster of q contains a connected subtree
of T ' . As a consequence, we can separate the clusters of
q into three groups:

1. Those clusters comprised of nodes in the subtrees

2. A single cluster containing node u,
3. All other clusters.

whose roots are the first i sons of some node u,

Let us now proceed to delete from the clusters of q all
those nodes (except node u) not in a subtree whose root
is one of the first i sons of node u. The resulting clusters
comprise a partition li of the subtree U of Fig. 4. We
now claim that if the cluster of I; containing node u is of
weight j , then the value of li is equal to that of uj.

Let us assume that the value of li is less than that of
uj. We can then generate a partition p whose value ex-
ceeds that of q by the amount that uj exceeds I;. We do
so as follows:

1. Make the clusters of p containing nodes not in subtree
U equal to the clusters of q that are in the third group
above.

2. Add the remaining nodes of T' (i.e., those nodes not
in a cluster of or in one of the group 3 clusters of q)
to the cluster containing node u. We note that these
nodes are precisely the nodes in the single cluster
comprising group 2 of q not found in subtree U .

Clearly then q cannot be optimal if li does not have
equal value to uj.

IBM J. RES. DEVELOP.

In conclusion, the optimal partition of T' whose clus-
ters form connected subgraphs can never be generated
from some partition ii of subtree U , where ii has the fol-
lowing properties:

1. Its cluster containing node u is of weightj,
2. Its value is less than uj.

We can then ignore all such partitions in generating the
optimal partition of T' .

Growth rate
Consider the number of steps required to form all pos-
sible partitions in combining the subtrees U and V of
Fig. 4 to create the partitions of U'. There are a maximum
of W partitions uj' representing the set of optimal parti-
tions of U'. Each such partition is chosen from a max-
imum o f j partitions C [u,, ub] , where a + b = j and 1 5 a,
0 5 b. The maximum number of partitions that must be
considered in forming the uj' is then given by the series

1 + 2 + 3 . . . + W = W (W + 1) / 2 .
In forming the optimal partition of T' , we are required

to combine the partitions of some U with the partitions of
some V once for every edge in the tree. Since an n-node
tree has n - 1 edges, the computational complexity grows
as W'n and is independent of the particular structure of
the tree under consideration.

Example
We now illustrate the algorithm just described by means
of an example. The tree of Fig. 6 (a) is to be partitioned
for a weight constraint of three. Each node is assumed to
have unit weight, and the edges have the values shown.

Figure 6 (b) shows the directed and ordered tree T' re-
sulting from the labeling of T . We illustrate the steps in
forming the optimal partition below, where the subscripts
indicate either weight or an optimal partition and V in-
dicates value:

Initialize:
1, = (1) V [l ,] = 0
2, = (2) V[2,] = 0
3, = 3, = (3) V[3,] = 0
4, = 4, = (4) V[4,] = 0
5, = 5 , = (5) V[5,] = 0

To form partitions of the subtree whose root is 2, the
first iteration is:

2,' = C[2,, 3,] = (2) (3)* with value = 0.

*Optimal partition of the collection C [u,, ub] = uj, where
a + b=j .

2,' = [C [2 , , 3 ,] = (2, 3)* with value = 4
C[2,, 3,] does not exist since 2, cannot yet occur.

Value = 12
Cost = 3

Optimalpartition=1,=(1,4) (2 , 3 , 5)

(C)

Figure 6 Optimal partitioning of a tree. (a) Tree T ; (b) tree
T' ; (c) partition of T .

2,' = cannot occur since no previously generated parti-
tion of subtree 2 or 3 can form 23'.

The second iteration is:

2,' = C[2,, 5,] = (2) (3) (5) * with value = 0.

C[2,, 5,] = (2, 5) (3)* with value= 6
C[2,, 5,] = (2, 3) (5) with value = 4. 2,' = [
C [2,, 5,] does not exist since 5, cannot occur

C[2,, 5,] does not exist since 2, does not yet exist.
5,] = (2, 3, 5) * with value= 10

221

PARTITIONING TREEN MAY 1974

All edges = 1

(b)

Figure 7 Application of tree partitioning. (a) Logical relation-
ship of data in a hierarchical file; (b) allocation of data to 32-
byte blocks.

Therefore

2,= (2, 3, 5) V[2,] = 10
2, = (2) (3) (5) V[2,1 = 0

2, = 2, V[2,] = 10.
2, = (2, 5) (3) V[2,] = 6

To form the partitions of the subtree whose root is 1 , the
first iteration is

1,' = C[l,, 2,] = (1) (2, 3, 5) * with value = 10.

C[l,, 2,] = (1 , 2)(3, 5) * with value= 3
C [l,, 2,] does not occur since 1, has not yet oc-

1,' = [
curred.

i C[1,, 2,]= (2,5,1) (3) * with value = 9
1,' = C [l,, 2,] does not exist since 1, does not yet exist

C [l,, 2,] does not exist since 1, does not yet exist.

The second iteration is

1, ' = C[l,, 4,] = (1) (2, 3, 5) (4)* with value = 10

C[l,, 4,] = (1 , 4) (2, 3, 5) * with value = 12-
C [l,, 4,] = (1 , 2) (3, 5)(4) with value = 3 222

1,' = [

C[1 ,, 4,] does not exist since no 4, exists.

C[1,, 4,] = (1 , 2, 5) (3) (4)* with value = 9.
C[l,, 4,] = (1 , 2, 4) (3, 5) with value = 5

Therefore the optimal partition of the given tree is
1, = 1, = (1 , 4)(2, 3, 5) . Figure 6(c) illustrates this
partition.

Tree partitioning problems
Graphs in the form of trees occur frequently in the rep-
resentation of computer information. Certain linked
lists, segments of nonrecursive programs, and hierarchi-
cal file structures are several examples of such tree
structures. The tree partitioning problem arises when
information must be allocated to blocks of memory
whose capacity is limited. Kernighan [3] noted that the
placement of program segments into pages in memory
hierarchies is such a partitioning problem. Here the tree
nodes are the segments, a node weight equals the num-
ber of bytes in a segment, and the edges represent a
probable transition from one segment to another and are
assigned values equal to the expected transitions be-
tween segments. The problem is then reduced to one of
allocating nodes to clusters (pages) so as to reduce the
expected number of page faults while executing the pro-
gram.

A similar example of a tree partitioning problem is the
distribution of the data of a hierarchical file structure
into blocks of memory on a secondary storage device.
One is given a logical data structure whose nodes con-
sist of data segments and directory information and
whose edges imply a logical relationship of data seg-
ments. If the expected transitions from node to node of a
data structure are known, the structure assumes the
form of a tree with weighted nodes and edges whose
values equal the expected internode transitions. The
objective then is to allocate nodes of the tree to finite
capacity storage blocks. Since a search operation is re-
quired for each block of information in secondary stor-
age, it is advantageous to cluster information referenced
together frequently into the same blocks. Distributing
the nodes in blocks such that the sum of the expected
transitions between blocks is minimized results in the
minimum number of interblock transitions for the hierar-
chical file structure. Figure 7 illustrates this problem.

We note that every connected graph has a number of
embedded trees within it. For example, Fig. 8 shows a
graph and one of its embedded trees. A heuristic algo-
rithm for the partitioning of a general graph can be for-
mulated based upon the tree partitioning algorithm,
where the partitioned tree is an embedded tree of the
given graph. First, an embedded tree T is determined
from the given graph G. Those edges of G not in this
tree are then considered to be cut. The embedded tree is

J. A. LUKES IBM J. RES. DEVELOP.

partitioned, resulting in a partition of the graph. The cost
of the resulting partition has a value z that lies in the
range

y 5 z z x + y ,

Where x = sum of edges of G not in T and y = sum of
edges cut by the tree partition. This range results from
the observation that one or more of the edges in G, but
not T , may lie in a cluster of the resulting partition of T .

A connected graph may have many embedded trees,
so that enumerating all embedded trees in order to find
the optimal partition can become a formidable task. One
technique (Fig. 9) that may be used to ease this problem
is to find the maximal spanning tree of G, since this min-
imizes the sum of the edges removed from G. The re-
sulting partition has a value such that the values of x and
y are minimized, yet the sum x + y may not be minimal
because edges deleted in forming tree T may later be
found in the cluster of a partition of T. No useful
method of predicting those edges of G that may be in-
cluded in a cluster of an optimal partition of the embed-
ded tree T has been found. Figure 9 illustrates the selec-
tion of a suboptimal partition of a graph G using the
above technique.

Summary
We have .described a computationally efficient algorithm
for the partitioning of a tree with integer-weighted nodes
and edges with positive values. Several applications of
the algorithm in the allocation of computer information
to physical storage space are suggested. We also de-
scribe the use of this algorithm in finding a suboptimal
partition of any connected graph.

A possible extension of. this algorithm is to find a
computationally efficient method of determining an opti-
mal partition of any graph G based upon the partitioning
of one of the embedded trees of G. Since the tree parti-
tioning algorithm grows linearly with the number of tree
nodes, an efficient method of selecting the embedded
tree of G that resuits in the optimal partition is required.

, .

References
1. P. A. Jensen, “Optimal Network Partitioning,” Oper. Res.

19,916 (1970).
2. B. W. Kernighan, Some Graph Partitioning Problems Re-

lated to Program Segmentations, PhD. thesis, Princeton
University, Princeton, N. J. , January, 1969.

3. 8. W. Kernighan, ‘:Optimal Sequential Partitions of
Graphs,”J.ACM18,34 (1971) .

4. E. L. Lawler, “Electrical Assemblies With a Minimum
Number of Interconnections,” IRE Trans. Elect. Com-
purersC-l1,86 (February 1962).

5. E. t. Lawler, K. N . Levitt, and J. Turner, “Module Cluster-
ing to Minimize Delay in Digital Networks,” IEEE Trans.
Computers C-18,47 (1969).

MAY 1974

(b)

Figure 8 An embedded tree. (a) Graph G ; (b) embedded tree
of G .

Figure 9 Heuristic graph partitioning. (a) Graph G ; (b)
embedded tree T (maximal spanning tree); (c) resulting parti-
tion of T ; (d) partition of G .

,Edge value

1 w
,”u,, 4

3 4

Cost of deleted edges of G = 4
Cost of partition of T = 3

(C)

@ 3 4 2

Cost = 6
(d) 223

PARTITIONING TREES

224

J. A. LUKES

6. F. Luccio and M. Sami, “On the Decomposition of Net- 10. D. E. Knuth, The Art of Computer Programming 1, Ad-
works in Minimally Interconnected Suljnetworks,” IEEE dison-Wesley Publishing Co., Inc., Reading, Mass., 1968.
Trans. Circuit Theory CT-16, 184 (1969).

lems,” Digital Systems Laboratdry Report No. 32, Stanford Received March 3 , 1973; revised December 17, 1973
University, Stanford, California, June !97?.

8. H. s. Stone, “An Algorithm for Module Partitioning,” J . The author is located at the IBM Systems Development
ACM18,182 (1970).

Inc., Reading, Mass., 1969. fornia 951 14.

7. J . A. Lukes, “Combinatorial Solutions fq Partitioning Prob-

9. F. Harary, Graph Theory, Addison-Wesley Publishing Co., Division laboratorY On Skyport Drive, Jose,

IBM J. RES. DEVELOP.

