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M. Karnaugh

Loss of Point-to-Point Traffic in Three-Stage

Circuit Switches

Abstract: A theoretical study is made of simple analytical models for the point-to-point loss of telecommunication traffic caused by
blocking in three-stage circuit switches. Two new models are compared with Jacobaeus’ frequently used model and with some simulation
results to determine regions of acceptable accuracy. The effects of random hunting and sequential hunting for routes are compared by

simulation.

The results apply to space-division link systems and also to some time-division switches of current interest. In the case of random hunt-
ing, the new models give improved agreement with simulation results. The overestimate of loss inherent in the Jacobaeus method, how-
ever, is found to be acceptably low when the numbers of primary and tertiary matrix switches are not small, e.g. > 10. We lack a good
analytical model for the sequential hunting method, which is found to result in lower traffic loss for the switches being studied.

1. Introduction

Recent progress in the development of miniaturized elec-
tronic circuits and, particularly, large-scale integrated
digital electronics has made time-division digital (PCM)
switching techniques very attractive for telephone ap-
plications [ 1,2]. This has resulted in increased interest
in three-stage switches, of which there are some espe-
cially convenient time-division forms.

Although it has long been known that three-stage
switches can be made strictly nonblocking [3], con-
siderable savings in components can be realized by per-
mitting a very small but positive probability that a call
will be lost because of link congestion (i.e., blocking) in
the switch. It is therefore important to be able to estimate
the dependence of the loss on the switch parameters, on
the switch control (i.e., route hunting) algorithm, and on
the offered traffic. .

Probably the best known and most widely used method
for the estimation of loss in link systems is that of
C. Jacobaeus [4], which is described also in a book by
R. Syski [5] and in a survey paper by K. Kiimmerle [6].
This approximate method is distinguished by its sim-
plicity and ease of computation. Its sources of error were
known to Jacobaeus, who correctly pointed out that they
cause an overestimate of the loss. The overestimate,
which leads to safe designs, was readily accepted at a
time (1950) when digital computers were not generally
available.

In this paper we apply the method of Jacobeaus spécif-
ically to loss in three-stage switches. Alternative loss
formulas are derived from two other models that remove
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some of the sources of error. The formulas are then com-
pared with one another and with a few simulation results
in order to determine their regions of acceptable ac-
curacy. Itis important to bear in mind that the method of
Jacobaeus has been applied to a much broader range of
problems than are considered in this paper, which is not
intended to be a critique of the more general usefulness
of his method.

As preliminaries, the structures of the three-stage
space-division switch and its time-division analogs are de-
scribed, and a mathematical definition of the loss is given.

The approach taken in this paper is to offer a self-
contained treatment of a few related heuristic models.
Accordingly, only the simplest cases will be considered
and no attempt will be made to delineate the various pos-
sible extensions of the models to more complex cases.
Switches with Bernoullian offered traffic will receive the
most attention because this is the only type of offered
traffic for which the models are exactly comparable.

This paper is concerned only with point-to-point loss,
also called “point loss”; i.e., a call is considered to be
lost when the connection from a particular inlet of the
switch to a particular outlet is blocked. The “group loss”
of calls from a particular inlet to any one of a group of
outlets will not be considered.

2. Notation

Each elementary switching element, or crosspoint, is
functionally a single-pole or multi-pole, single-throw
switch. Crosspoints may be made of metallic contacts,
e.g., reed relays or crossbar switches, or semiconductor
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gates. Figure 1(a) represents a switching matrix that
connects a set of five horizontal conductors to a set of
five vertical conductors by means of 25 crosspoints. Any
switching matrix of this type will be called a matrix for
brevity.

Constraints are frequently placed on the operation of
the crosspoints in a matrix. We shall assume that no more
than one crosspoint in any row or in any column may at
any time be closed, i.e., conducting. In this fashion, any
one-to-one connection pattern of horizontals to verticals
may be realized.

In order to simplify block diagrams of switches, the
representation in Fig. 1(b) will be substituted for that in
Fig. 1(a). More generally, Fig. 1(c) represents a matrix
with L inlets and K outlets, the convention of flow being
from left to right. '

In a space-division switch, each inlet or outlet of a
matrix can provide no more than one communication
channel. In a time-division switch, the fundamental time
period, called a frame, is subdivided into S equal, periodic
subintervals, called time-slots, each of which can in-
dependently provide a communication channel. The S
channels are said to be in time-division multiplex (TDM).
A time-division matrix can assume an independent con-
necting state in each of its § time-slots. Therefore, it is
functionally equivalent to S separate space-division
matrices. Figure 2(a) represents a time-division matrix
with K time-slots.

A time-division matrix cannot shift any communication
channel from one time-slot to any other time-slot. This
function, called time-slot interchange, is performed by a
buffer, which stores data from the incoming channels and
permits it to be read out again in any order and in any
subset of the outgoing time-slots having the necessary
cardinality. This function requires that the buffer have a
random access capability. Although more limited time-
slot interchange may be achieved by partial-frame mem-
ories or shift registers [7], we assume that the buffers
have full-frame storage and random access capability.

Figure 2(b) shows the representation we use for a buf-
fer having S input time-slots and T output time-slots.
This buffer can provide no more than the minimum of §
and T channels of communication. It is the time-switch-
ing analog of a matrix with § inlets and T outlets.

A very small space-division switch is shown in Fig.
3(a). This switch can connect any of the four inlets to
any of the four outlets, but not all sets of one-to-one
connections are possible. For example, if a connection
from inlet 1 to outlet 1 is already established, it is im-
possible to add a connection from inlet 2 to outlet 2 be-
cause the needed link (1, 1) is already in use. In this
case, the desired connection is said to be blocked. At-
tempts to establish new calls in the presence of blocking
result in traffic loss.
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Figure 1 Simplified representation of crosspoint matrix dia-
grams. (a) A five-by-five crosspoint matrix. (b) Simplified
representation of the five-by-five matrix. (c) Representation of
an L-by-K matrix.

Not all of the matrices will be shown explicitly in dia-
grams of larger switches. Figure 3 (b) represents a two-
stage network having N primary matrices and M second-
ary matrices. Notice that each connection must pass
through two crosspoints and one link.

Folded switches, in which each line appears as both an
inlet and an outlet, have some interesting properties.
When transmission through the switch is bidirectional,
either of two inlet-to-outlet connections will suffice to
establish a call [8]; but when the switch is unidirectional,
both connections must be made [1]. For simplicity, we

205

BLOCKING IN THREE-STAGE SWITCHES




206

()

(a)

(b)

Figure 2 The time-division matrix and the buffer. (a) Repre-
sentation of a time-division matrix with N inlets, M outlets, and
K time-slots. (b) Representation of a buffer with'S input time-
slots and T output time-slots. The buffer is capable of full-
frame storage and random access for t1me-d1v151on switching.
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Figure 3 Two-stage networks. (a) A very small two-stage
space division switch. (b) A two-stage space division switch
with N primary matrices and M secondary matrices.

assume that the inlets and the outlets of our switches
form disjoint sets, and we require a smgle, unique con-
nection for each new call.

“The customary algebraic notation is used in the anal-
ysis that follows. Square brackets, however are reserved
for the arguments of functions. ‘
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3. Three-stage switches

A three-stage space-division switch is illustrated in Fig.
4(a). There are exactly’ K possible‘ routes for a desired
connection, each one traversing three matrices and two
links. To establish a new call through the switch via a
particular route, both the A-link and the B-link of that
route must be idle. Blocking occurs when none of the K
routes has a pair of idle links.

C. Clos [3] has demonstrated that this switch is non-
blocking when K =L + T — 1. A considerable saving in
crosspoints is possible, however, when occasional block-
ing_ is tolerated. We are concemed with estimating the
loss when '

K<L+T-—1. (1)
In addition, we assume that
K = max [L, T] (2)

so that the primary and the tertiary between which a new
connection is desired have at least one idle link on each.
Blocking then results from a failure to match idle links
on any route, Condition (2) is typical of a central switch
for trunks and preconcentrated lines.

There are analogies between the three—stage space-
division switch in Fig. 4(a) and at least two types of
time-division switches having buffers. These analogies
permit the same estimates of loss to be used for all three
types of switch. :

Consider the time-space-time switch in F1g 4(b).
Here, the inlet channels are time-division multlplexed on
each of the N inlet lmes and the outlet channels are time-
division multiplexed on each of the M outlet lines. There
are L time-slots per frame at the inlets and T time-slots
per frame at the ‘outlets, the frames all havmg equal
periods. The prrmarres and tertiaries are buffers, and the
secondary is a time-division matrix having K time-slots.

As in the space-division switch, there are K routes for
any desired connection. These routes are not, however,
spatially disjoint. fnstead each one occupies a different
time-slot in the same physrcal pair of buses Each bus
provides K links in time-division multlplex As before,
blockmg occurs when - there is no matchmg idle pair-of
links; but the matchmg must occur in time. The secondary
matrrx cannot permute time-slots.

A space—tlme-space switch is shown in Fig. 4(c) The
inlets are in TDM with L time-slots per frame and the
outlets are in TDM w1th T time-slots per frame. The
primary and tertlary are time-division matrlces, and the
K ‘secondaries- are buffers To find a route, the calling
time-slot must be ‘idle in an A bus and the called tiine-
slot must be idle in the B bus of the same buffer. The K
routes are now spatlally disjoint.

The primary in ‘Fig. 4(c) is functionally equivalent to
L space-division matrices having N inputs and K outputs
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each, Similarly, the tertiary is functionally equivalent to
T space division matrices having K inputs and M outputs
each. Each secondary buffer is the time analog of a space-
division matrix. Therefore, the analogy with the space-
division switch of F1g 4(a) requ1res transposition of the
parameters (N L) and also of (M, T) in formulas or
simulations.

Nonblocking three-stage time-division switches - re-
sembling these were disclosed in a patent of H. Inose and
T. Saito [9]. M. J. Marcus [ 10] has published an article
on space-time equivalents in connecting networks con-
taining a broader range of analogies than we require for
the present purposes. M. Huber [ 11] has published an
early paper on congestion in time-division switches,
emphasleng group loss. Inasmuch as estimates for the
loss in the space-division switch can also be applied to
the t1me-d1v151on analogs, we refer spec1ﬁcally to Fig.
4(a) in the analysis that follows. ,

Description of the switch is not complete until one has
defined the route-hunting algorithm, Whenever more than
one of the K routes is available to a new call, a rule will
be needed for making the selection. for example, we
might specify one of the following rules. ‘

1. Random hunting: Test the routes in random order,
selecting the first one available. '

2. Sequentjal hunting: Test the routes in a fixed sequence,
selecting the first one available.

3. Sequential hunting with random start: Test the routes
in a fixed cyclic sequence but with a random starting
point, selectmg the first one avanlable

4. ngh-occupancy hunting: Test the routes in order of
decreasing occupancy of the secondary traversed,
with a fixed sequence when occupancies are equal,
selecting the first ope available.

In the case of sequential hunting, there is also‘a choice
to be made as to whether the sequence followed is the
same for all primary-ﬂtert'iary connections. The influence
of some of these hunting methods on the loss has been
studied by D. Bazlen, G. Kampe, and A. Lotze [ 12].

Of the four hunting algorithms defined above, only
random hunting is accurately modeled in our analysis.
Sequential hunting '(with a primary-tertiary invariant
sequence) gives the three-stage switch a lower loss,
however, and we shall see a few simulations of this. '

It is a reasonable conjecture that sequential hunting
with random start is very similar to random hunting. It
is .also a reasonable conjecture that high-occupancy
hunting is very similar to sequential hunting. We have
not simulated these hunting algorithms. V. E. Bene§ has
published a study of optimal routing [ 13] which suggests
the superiority of hlgh -occupancy hunting over random
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Figure 4 Three-stage networks. (a) A three-stage space-
division switch with N prlmanes, K secondaries, and M ter-
tiaries. (b) A three-stage, time-space-time switch. (c) A three-
stage space-tlme—space switch.

hunting; but he gives numerical results only for a three-
stage switch with four inlets and four outlets, made from
2 X 2 matrices. :

4. Models for the offered traffic
It is traditional to idealize the offered traffic model in
order to arrive at 51mple estimates of the loss. The “‘of-
fered traffic” is the traffic that would be camed by the
switch if it were strictly nonblocking.

The offered traffic is assumed to-arise from one or more
independent MarkoYian birth and death processes. It
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is further assumed that each primary receives equal
traffic and that each tertiary receives equal traffic. A
number of different models may be employed, and one
should be selected that reasonably approximates the case
to be analyzed.

Consider a single process that generates all of the
traffic in the switch. Let C represent the number of calls
in the switch. The range of this random variable is

0=C=WwW, (3)
where W is a constant such that
0 < W= min [NL, MT]. (4)

We assume that the rate of requests for new calls and
the rate at which existing calls are terminated both de-
pend only on C. In particular, the rate of requests for
new calls is A[C], where

MC] >0whenC < W,
= (QwhenC=W. (5)

The rate of termination of calls is assumed to be uC,
with u > 0. New calls occur at random between the idle
inlets and the idle outlets. Terminations occur at random
among the existing calls.

The definition of the offered traffic process may now be
completed by specifying the function A[C]. The three
most common choices, and the resulting distributions,
P[C], of C are given below. More detail is to be found in
Syski’s book [14].

1. Bernoulli
ACT =AW —C), (6)
with A, > 0, a constant.

The resulting Bernoulli distribution is
Py = (%) -, (1)

a=x/ (A + n). (8)

2. Engset, with V > W, (V being the number of inde-
pendent sources of calls)

AMC]=A(V—C) when C < W, 9)
=0 when C =W,

The Engset (truncated Bernoulli) distribution is
PLCY = (¥) &/w/ D, (10)

where the denominator is

w

D=3 (g) Ao/ w)°. (11)

C=0
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3. Erlang (infinite number of sources)
MCl=x,when C < W,
=0 when C=W. (12)

The Erlang (truncated Poisson) distribution is

P[C] = (\,/m)°/C! D, (13)

where

D,=3 (\/mw°/CL (14)
C=0

It is also possible to apply one of the above processes
to model the traffic offered at a single primary or a single
tertiary. It is easy to see, however, that the traffic in the
entire switch and the traffic in each of its several primaries
cannot simultaneously be of either the Engset type or
the Erlang type.

If the traffic offered to the entire switch is Bernoullian,
with W = NL= MT, then it can be shown that the traffic
offered to any subset of the inlets is also Bernoullian,
having the same values of A, and u. It is uniquely for
this case that the three loss formulas to be compared
are exactly comparable in offered traffic. Therefore, this
case will be used as the basis for numerical comparisons
of the formulas and for simulation.

5. Definition and estimation of the loss

Loosely speaking, the loss due to blocking in a switch is
the expected fraction of the offered calls that will be
blocked during some period of statistical equilibrium. We
employ a more precise definition that is consistent with
that of V. E. Bene§ [15], who calls this quantity “the
probability of blocking.”

Bene$ makes the simplifying assumption that blocked
calls are cleared, that is, they do not change the state of
the system. This assumption is not entirely realistic be-
cause blocked calls may result in repeated trials. This is
a matter of little importance in the region of interest,
where the loss is small.

Assuming a stationary, Markov-type offered traffic
process, the blocked calls cleared hypothesis, a switch
structure, and a route-hunting algorithm, Benes§ shows
that the model is a stationary, finite-state Markov process.

Suppose we observe such a system for a time interval
(0, 1], keeping count of the number of times, «[¢], that
a new call is attempted and the number of times, 8[¢],
that an attempt is blocked. Bene§ shows that the limit,

b= lim B[] /«[1], (15)

exists and is constant with probability one. We call this
quantity the loss.
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The proof given by Benes also implies that the limits

ro=limalr}/1, (16)
re=lim B[¢]/1 a7

exist and are constant with probability one.
Since r, > 0, it follows that
b=rg/r, (18)

From this point on, the analysis diverges from that of
Benes.

It is clear that r_ is the time average of the rate at which
new calls are attempted. Similarly, rg is the mean rate at
which attempts are blocked. The corresponding proba-
bility averages are

r,=> Plelr[o], (19)

rg=> PloIA[c]P[B|s], (20)

where o indexes the states of the system, P[o] is the
equilibrium probability of being in state o, A[o] is the
calling rate in state o, and P[B|o] is the conditional
probability that an attempted call will be blocked, given
state . This leads to the loss formula

2 Plo]A[o]P[B|o]
2 Plo]\[o]

(21)

Equation (15) is a suitable starting point for the estima-
tion of loss by simulation, and Eq. (21) is a suitable start-
ing point for analytical approximation. Because of the in-
tractably large number of states, however, considerable
simplification of this formula will be necessary in order to
make the computations practical.

Simplification is achieved by partitioning the universe
of all states, indexed by o, into n subsets, named o, 0,,

- o,. The equilibrium probability that the system is in
the ith subset is ‘

Plo,] = E Pl(o]. (22)

When in subset o;, the system attempts new calls at the

mean rate,

A ol=Y Plolrle]l/P[o}], (23)

and the conditional probability of blocking these calls is
Yy Plalr[o]P[B|o]

TET;

P[Blo,]l =

24
> Plolr[o] @4

TET;
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It is now easy to verify that

Z P[O’i])\[O'i]P[B|O'i]
b=- : (25)

2 PloIr o]

The problem of estimating the loss is thus reduced to
the problem of finding a suitable partition of the universe
of states of the system and then estimating P[-], A[-],
and P[B|-] for the subsets of the partition. In so doing,
we accept some inaccuracies in the estimates as the price
for avoiding consideration of each state of the system.
The computations then become feasible.

Equations (21) and (25) depend upon the existence
of equilibrium state probabilities; but they are valid for
any specific switch structure, routing method, or traffic.

Alternative calculations of the loss are made possible
by the already assumed symmetries of the switch struc-
ture, the route-huhting algorithm, and the offered traffic
process with respect to permutations of the primary ma-
trices and permutations of the tertiary matrices.

Suppose that we relabel the primaries and the tertiaries.
With the assumed symmetries, this causes a permutation
of the state indices that leaves the transition matrix of the
Markov process invariant. The measure over the state-
valued function space is therefore also invariant. From
this, it is clear that the mean calling rate between any one
of the N primaries and any one of the M tertiaries is
precisely r,/ NM; and the mean rate at which these calls
are blocked is rB/ NM. Because of this, it does not matter
whether the blocking rate and the calling rate are com-
puted for the entire switch, a single primary, or a par-
ticular primary-tertiary pair; their ratio still gives the loss.
Each of these three choices will be used in one of the
three models that follow. More generally, we are free to
use the blocking rate and the calling rate between any
subset of the primaries and any subset of the tertiaries.

6. Application of Jacobaeus’ method

We are now ready to estimate the point-to-point loss in
the switch of Fig. 4(a), using approximations that charac-
terize the method of Jacobaeus [4-6].

The blocking rate and the calling rate will be computed
for the traffic from a particular primary, called “‘the pri-
mary”, to a particular tertiary, called ‘““the tertiary”. The
subsets of states will be indexed by (x, y), where x is the
number of calls in the primary and y is the number of calls
in the tertiary.

A simplifying approximation is made that x and y are
independently distributed,

Plx, y] = P[x]P[y]. (26)
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The separate distributions are selected, a priori, so as
to reasonably approximate the offered traffic. The most
commonly used forms are Bernoulli, Erlang, and Engset.

It is also necessary to specify the form of A[x, y].
K. Kiimmerle [16] points out that a common control
system, when seeking one of a group of outlets, will fre-
quently select an idle one at random. This suggests that
the 'probability that the tertiary is the target for a new
call is approximately propoitional to the number of its
1dle outlets. Such a model is quite consistent with the
choice of a Bernoulli distribution of calls in the tertiary,
although other models may be employed.

With this model, Eq. (25) takes the form

> PLx1P[yIr[x, y1P[B|x, y]

b=l . 27)
> P[x]1P[yIr[x, y]
=

The approximation of P[B|x, y] is quite independent of
the choice of distributions for x and y and of the calling
rate. The primary has (K — x) idle A-links, and the ter-
tiary has (K —y) idle B-links. Jacobaeus assumes that
the idle A-links and the idle B-links are distributed at ran-
dom, ,withoui bias, and with mutal independence over the
K routes through the switch. As a consequence of these
assumptioné the number of matching idle link pairs is
hypergeometrically distributed [see Appendix A]. The
probabiljty of blocking is'the probability that this number
is zero.

P[le’ Y]=Q0[K,K_X9K_y]
=xiyl /K (x +y— K. (28)

This model is now applied to the specific case in which
x and y have Bernoulli distributions with L and T sources,
respectively.

Pu]=(§)%%1—agbﬂ (29)

T _ .
PiI=(]) a'(1-a)™, (30)
and, in order to be consistent about the total traffic in the
switch,

LNa, =TMa,. (31

The callmg rate between the primary and the tertlary
takes the form

Ax, yl1 =y(L—x)(T —y), (32)

where vy is a constant.
The denominator of Eq. (27) is easily seen to be
vL(1—a,)T(1—a,) and Eq. (27) becomes
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(L=DUT—1"D e (1—a)'"

b= b e A
K! Eo (L—1—x)!
= a, (1 —a,)"""

XEO(T— I—yy+x—K)

The summation over y is performed using the identity

T—14+x~K _
= 3 (KT e w
ytx-K=0 .

With a subsequent change of variable,
i=x+T—-1—K, (33)

we obtain the simple formula

_ _ -1 s NS

R e R N) s o
(34)

where

S=L+T-2-K. (35)

The most important source of error in Jacobaeus’
model is in the hypothesis of mutually independent oc-
cupancies of the A-links and B-links. In any attempt to
correct this source of error, at least two distinct factors
must be considered. First, there may be some existing
calls between the primary and the tertiary. The A-link
and the B-link on the corresponding number of routes are
surely both occupied. Second, we must, in some fashion,
take into account the fact that the switch is controlled so
as to occupy only complete routes. Therefore, there are
always equal numbers of busy A-links and busy B-links
incident on each secondary. '

Other sou_rceS of error include the assumption of in-
dependent distributians, P[x] and P[y], and the failure to
consider the deformation of these distributions caUsed by
blocking. The latter would require iterative computa-
tions for its correction [16], but we find it possible to ob-
tain good agreement with simulation results without that
refinement.

7. Global model

Correction of the major sources of error in Jacobaeus’
model is facilitated by modeling the traffic through the
entire switch. We begin by assuming a stationary,
Markov, birth-and-death process for the number of calls,
C, in the switch having the equ111br1um distribution,
P[C]. This is determined by the callmg rate )\[C] as
discussed in Section 4.

The subsets of states are indexed by C (i.e., the states
are partitioned into W + 1 subsets; and the Cth subset
consists of all the states having exactly C calls in the
switch). The calling rate and blocking rate are measured
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on the entire switch. All that now remains to be done in
order to apply Eq. (25) is to find an approximation to ‘the
conditional probability of blocking, P[B|C], given C calls
in the switch and a new. call bemg attempted from a ran-
domly selected 1dle inlet to a randomly selected idle
outlet.

The matrix on which the calling inlet terminates is
called ‘“‘the primary”’, and the matrix on which the called
outlet terminates is called “the tertiary”. The following
additional variables are used in approximating P[B|C]:

x = the number of calls in the primary, with distribution,
P[x|C], ‘

y = the number of calls in the tertiary, with distribution,
P[y|C],

z = the number of calls between the primary and the ter-
tiary, with distribution P[z|C, x, y].

It is approximated by means of the formula,

P[B|C]= 3 P[x|C]P[y|C]IP[2IC, x,y]P[B|C,x,y, 2],
Z,Y2 (36)

where P[B|C, x, y, z] is the conditional probability of
blocking, given C, x, y, and z. '

Formula (36), by explicitly admitting positive values
of z, has partially corrected the hypothesis of statistically
independent A-link and B-link occupancies. In addition,
the distributions of x and y both have explicit functional
dependence upon C.

Although this formula requires a tr1ple summation, we
shall see that the summations over x, y, and z can be per-
formed algebraically. This leads toa simple result.

The distributions of x, y, and z are hypergeometnc as
follows [see Appendix A]:

P[3\7|C]=QI[NL—1,C,L—1], (37)
P[ZlC, X, y] = QZ[C’ X, y] ' (39)

It is now necessary to estimate P[B|C, x, y, z]. There
are (x — z) calls in the primary that do not go to the ter-
tiary. We assume that these calls use the remaining
(K — 2z) A-links at random, without bias, and indepen-
dently of the use of the (K — z) B-links of the tertiary
that do not carry calls from the primary. Exactly (y — z)
of the latter are busy, and these are also selected at ran-
dom without bias. Under these assumptions, which only
partially correct the hypothesis of statistical indepen-
dence, the distribution of the number of idle link pairs
(i.e., available routes for the attempted new call) is hy-
pergeometric. The probability of no available routes is

P[B|C,x,y,z] = Q[K— 2z, K—x,K—y]. (40)
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It is easy to see that this function is maximized in the
range

0 < z=< min [x, y]

when z = 0. Therefore, one overestimates the probability
of blocking by assuming that z = 0 with probability one,
an assumption that reduces formula (40) to Jacobaeus
formula, (28).

Using formulas (36) through (40) and performing the
summations as explained in Appendix B, we obtain the
result [17],

NL+MT—-2—C\/(C
PulBIC)= {< L+ T—2—K><K)} /
(]t T
L—1 T—1
The subscript, H, in Eq. (41) indicates that this is the
higher of two estimates to be used here.

P,4[B|C] still overestimates the probability of blocking
when the switch is nearly full. To see this, let us first as-
sume that N =M (when N < M, a similar argument ap-
plies, but with the roles of primaries and tertiaries inter-
changed). The argument will be based on the fact that the
number of busy A-links on any secondary must be equal
to the number of busy B-links on that secondary.

" Each secondary has N A-links and M B-links. There-
fore, an idle B;link'has access to at least (N—M+1)
idle A-links. The tertiary has exactly (K — y) idle B-links,
giving it access to at least (N — M + 1) (K —y) idle A-
links. The total number of idle A-links not incident on the
primary is exactly (NK — C — K + x). Therefore, block-
ing is impossible when (N — M + 1) (K —y) > NK —
C — K + x or when

C=(N=DK+x+y— (N—M)(K—=y) +1. (42)

There are values of C that meet this condition for zero
blocking, for  which our previous estimate of P[B|C],
Eq. (41), gives positive values. For example, let N =M,
L =T=K, and let x and y take their maximum values,
(L—1) and (T —-1), respectively. Then (42) becomes
C = NL—1,but C=NL—1is included in the summation
over C from which the loss is to be computed. '

This suggests the possibility of a multiplicative correc-
tion to the approximation (40), which exhibits a lamen-
table independence of C in its present form. The gorrec-
tion factor should go to zero when C equals the right-
hand member of (42) and increase smodthly as C de-
creases. It should be as simple as possible and give good
agreement with simulation. A form that meets these con-
ditions is the global correction factor,

F={(N=-2)K+x+y— (N—M)(K—y) +1—C}
+ (NK - C). (43)
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The denominator represents the number of idle A-links.

When x and y are carried through the summations over
x and y, as performed in Appendix B, their mean values
are

¥=K—T+1+{S(MT—1)/(NL+MT—2-C)},
(44)

y=K—L+1+{S(NL—=1)/(NL+MT—2~-C)},
(45)

where, as before, S is defined by Eq. (35). As a conse-
quence, the weighted mean of F with respect to x and y is

F={(IN-LK—(N—-M{L-1)+1+G-C}
+ (NK = 0O), (46)
where

G=S§{C+ (N—M)(NL-1)}/(NL+MT—2—-C).
(47)

Averaging F has the minor disadvantage that there may
be a few small values for x and y that give negative values
for F when C is very large, and these are included in the
average. The total contribution of these cases will usually
be negligible, because small values of x and y give very
little blocking, and values of C near its maximum are very
unlikely, except in cases of artificially high offered traffic.
While it would have been more correct to define F to be
zero when its numerator is negative, this would have
complicated the summation excessively.
We now define

P.[B|C]=F P4[B|C], F=0
=0, F<o. (48)

Using either estimate of P[B|C], and the three global
traffic models defined in Section 4, we have the means for
evaluating the loss, b, from Eq. (25), which now has the
form

b= PICINCIPBIC]/ S, PICIAC]. (49)
C=K C=0

The upper limit on the summations is (W — 1) because
AW] = 0. In the numerator, we observe that P[B|C]
= 0 when C < K. Results follow for the three traffic
models, which were defined in Section 4.

1. Bernoulli

' W—1\ ¢ c

=3 (W& et -a" " PiBIC) (50)
C=K

2. Engset
AV VL = 1y AN

b=— ( c )(—“) P[B|C], (51)
[k Dx C=K K
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where

A (V— 1)()\())"'} (52)
B A+ { D\ W J\n

is the mean of the offered traffiic process and D, is de-
fined in Eq. (11).

3. Erlang
M1 a\© P[BIC A\ 1

=3 () e oG o
é=x M : w/ Wl

where D, is defined by Eq. (14). In the case of Erlang
traffic, the mean of the offered traffic process is

e~ - o

8. Quasi-global mode|
It will frequently be desirable to use an Engset or an
Erlang model for the traffic in a single primary matrix.
These models are incompatible with the global model of
Section 7, although they can be used in the method of
Jacobaeus. In this section, we provide a quasi-global
model that is also applicable to such cases.

The calling rate and the blocking rate are measured on
a single primary, called “the primary”. The subsets of
states are indexed by the number of calls, x, in the pri-
mary. The formula for the loss is

L-1

b= PLAXIPIBI]/ S PLxAL]. (55)

In estimating P[B|x], we use the additional variables,
C, y, 2, as in Section 7, and also u = the number of calls
in all other primaries, with distribution P[u].

It follows that

C=u-+x. (56)

The conditional blocking probability will be estimated
from

P[B|x] =3 PlulP[B]|u, x], (57)

where

P[Blu, x] =¥ P[y|C]P[2|C, x, y]P[BIC, x, y, z]. (58)
y,2

The last three functions in Eq. (58) are defined by Eqs.
(38), (39) and (40); and the summations over y, z are
performed as in Appendix B. The result is

P[Blu, x] =

(MT — T)N(T — 1)u!x! )
Hu—K+x)!MT—T+K—x)(T—1—K+x)!"

59)
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P[u] can be given the Bernoulli, Engset, or Erlang
distribution, independently of P[x]. While some incon-
sistency may result, no great harm will be done. In any
case, the summation over 4 can be done algebraically.
We select the Bernoulli forms with W = NL = MT as an
example, using

Pl = (V) ara -, (60)
Plx] = (i) 2" (1 — a)*>, 61)
AMx] =X, (L—x). (62)

The summation over u in Eq. (57) gives

P[B|x] =

(NL— I)YMT — TH)!\(T — 1)!Ixa"~
KMT~T+K—x)!(NL—-L—K+x){T—1—K+x)!I

(63)
From Eqgs (55), (61), (62), and (63), the loss is
p— (NL — L)Y(MT — T)!{(L — DI(T — 1)ta"
K!
s (1 _a)S—i
X MT—1—DINL —L-T+ 1+ 0I5 —u7
(64)

where S=L+T—-2—Kandi=x+T—1—K, as in
Section 6. This formula gives numerical agreement with
formula (50) when the high estimate, P,[B|C], is used
for P[B|C] in (50).

The quasi-global model does not facilitate accurate
evaluation of the global correction factor, F, of Eq. (43).
A useful correction that still overestimates the loss is
obtained from Eq. (43) by substituting —u for (— C + x)
in the numerator, substituting for y its maximum value,
(T — 1), and using the mean values i for u and C for C.
Then,

F={(N—-2)K+T— (N—-M)(K—T+1)—a}
= (NK—0), (65)
where & and C = i + ¥ may be taken from the offered
traffic distributions P[«] and P[x].
There are no random variables left in Eq. (65), so it
may be used as a multiplicative correction for b, regard-
less of the assumed traffic. We must recall, however, that

N = M was assumed in its derivation. Otherwise, we
must change Eq. (65) to

FF={(M—2)K+T— (M—N)(K—L+1)—a}
+ (MT -C).
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9. Numerical comparisons
It was pointed out in Section 4 that the method of
Jacobaeus, the global model, and the quasi-global model
are exactly comparable when the traffic is Bernoullian
and W= NL= MT. This case is used for numerical com-
parisons of the three methods and for simulations.

The simulations are designed according to a Bernoulian
offered traffic process with parameters A, u and source
occupancy,

a,= £,/ O\, + ). (66)

The actual source occupancy, a, is reduced somewhat
below a, by the loss. To compute a, we note that, in
equilibrium, the mean rate of new calls equals the mean
rate of call terminations.

(1 —=b)(W—Wa)r,= pWa, (67)
from which we get

a=(1=b)\/{(1 =b)\,+ p}. (68)
and, since A,/ =a,/ (1 —a,),

a= (1—b)a,/ (1 — ba,). (69)

The reduction in source occupancy from Eq. (69) is
very small. With 5= 0.0607 and a,= 0.90, a=0.894. This
is the greatest reduction observed in the simuiations. The
actual occupancy per source, a, is used in plotting all
simulation results. This is the same as the average line
occupancy.

Figures 5(a) through (g) summarize the numerical
results of analysis and simulation. Each of these figures
has three curves representing the analytical results. The
top curve, labeled J, results from the method of Jacobaeus.
The middle curve, Q, results from both the global model
and the quasi-global model, but without the global cor-
rection factor. The lowest curve, G, results from the
global model with the global correction factor as defined
by Eq. (48).

A single point on each, encircled, shows how the mid-
dle curve is lowered when multiplied by the approximate
global correction factor, Eq. (65). .

All but one of the graphs also show some results of
simulation. The vertical bars indicate 95 percent confi-
dence intervals. Each of these is intersected by a hori-
zontal stroke at the mean value of the samples. Simula-
tion results obtained with sequential hunting of routes
are labeled ““S.H.”. The other simulations employ random
hunting.

Switch parameters in the captions of Figs. 5(a) through
(g) refer to the switch of Fig. 4 (a). The traffic is Bernoulli,
with W = NL = MT in each case. Figure 5(g), however,
shows a case in which N > Mand L < T.

The lowest curve in each figure is seen to give remark-
able agreement with the results of simulation based on
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Figure 5 - Traffic loss versus the source occupancy plotted for three-stage switches with Bernoulli offered traffic and W = NL = MT
sources, Curves J result from Jacobaeus’ method; curves Q result from the global and quasi-global imodels without the global correction
factor; curves G result from the global model with the globally corrected conditional probability of blocking, Eq. (48). The isolated
points are obtained from the quasi-global model with the approximate global correction factor, Eq. (65). The vertical bai's show. 95 per-
cent confidence intervals and samplé mean values obtamed from simulations. Those labeled “S.H.” result from sequential hunting, and
the others from random hunting. (a) N=M=2, L=T=K=24.(b) N= M=2, L=T=24,andK=28. (c) N=M= 2, L=T=
24, and K = 32. At a source occupancy of 0.98 and with random hunting, no loss was observed in the simulations.- (d) N=M=10,
L=T=K=24, (e) N=M=10, L=T=24, and K= 28, (f) N=M =10, L=T=24, andK=32. Ata source occupancy of
0.96, and with sequential hunting, the simulated mean loss was 0.000407. (g) N=6, M=3, L=12, T=24,and K=24. (h) N=

M =10 and L = T = K = 500. This switch was not simulated.

random hunting. The loss obtained from sequential hunt-
ing is always less-than that obtained from random hunt-
ing. The relative decrease in loss provided by sequential
huntmg becomes more pronounced as the traffic is de-
creased or as the number of routes, K, is increased. It
is clear that sequential hunting is'to be recommended
and that even the lowest curve significantly overestimates
the loss in this case. However, the relative overestimate
decreases as the traffic increases toward the overload
point.

Two simulation results are not shown on the ﬁgures
The first of these was done for the switch of Fig. 5(c)
with random hunting and an occupancy of 0.98. No loss
at all was observed in six runs of 20,000 trials each. The
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second was done for the switch of Fig. 5(f) with sequen-
tial hunting and an occupanc'y of 0.96. In this case, 14
runs of 10,000 trials each ga’vé a mean loss of 0.000407
and a standard deviation of 0. 000260.

The figures show that the analytical curves are quite
far apart when N = M = 2, but that they are reasonably
close when N = M = 10. Both the global correction and
the occurrencc of calls between the primary and the
tertiary become less impoitant as the numbers of pri-
maries and tertiaries incrgasé. As an example, consider
the switch of Fig. 5(f), but with N = M =20 instead of 10.
At a source occupancy of 0.96, the three curves give
predicted losses of 0.0137, 0.0112, and 0.0101. The
Jacobaeus curve is independent of N and M , while the
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other curves rise toward it as N and M increase. Going
to N = M = 100, the predicted losses are 0.0137,0.0131,
and 0.0129. )

We conclude that the method of Jacobaeus can give
acceptable accuracy when N and M are sufficiently large,
provided that random hunting is assumed. Unfortunately,
none of the simple analytical models are accurate for
sequential hunting. We must take comfort in the observa-
tions that overestimates lead to safe designs and that the
relative error is least in the critical overload region.
Nevertheless, we might find a very much lower loss for
the switch of Fig. 5(h) with sequential hunting, because
of the very large numbér, 500, of routes. This switch was
not simulated because of its large size.

10. Additional observations

The preceding sectioxi summarizes our evaluation of the
analytical models considered here. A few additional com-
merits on the three stage switches may be of interest.

It is the author’ s opinion, offered without evidence,
that hlgh—occupancy hunting gives the least loss; but it is
not likely to be significantly better than sequentlal hunt-
ing, which is a computationally simpler procedure. Al-
though sequential hunting with random start can be
carried out with less delay than sequential hunting in
some systems, it is likely to give as much loss as random
huinting.

With a given hunting method and a fixed traffic load, the
loss in a three-stage switch may be decreased by increas-
ing the number of crosspoints in either of two ways. One
way is to increase the sizes of the primaries and tertiaries
by increasing K, L, and T more or less proportionately.
This does not decrease the link occupancies, but it does
offer more pdssible routes, thereby increasing the chance
that one will be available. This results in lower loss at a
given traffic load, but in a more steeply rising curve, so
that the switch may still overload at sufficiently high oc-
cupancy. An example of the loss curve in such a switch
is shown in Fig, 5(h), where K = L = T = 500. Duerdoth
and Seymour [1] call such a switch “quasi-non-block-
ing,” presumably because the loss is extremely low at the
expected busy-hour traffic load.

A second way to decrease the loss is to increase the
ratio of K to L and T, that is, to increase the internal ex-
pansion of the switch. This produces lower loss and also
reduces the slope of the loss curve. Such a switch is il-
lustrated in Fig. 5(f), where.L =T =24 and K = 32. At
98 percent occupancy, the loss of this switch is about
0.01 with random hunting and much less with sequentlal
hunting. A switch like this cannot be overloaded; but it
requires only 32/47 of the crosspoints that would be
needed to make it strictly nonblocking.
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Appendix A: Hypergeometric distribution [18)

The hypergeometric distribution applies to random sam-
ples taken without replacement from a finite population
containing two types of elements. Suppose there are v
elements, of which a are of type 1 and (v — «) are of
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type 2. If we select 8 elements at random, withbut re-
placement, then the probability that exactly y of these
are of type 1 is

otva 8= (7)a"%) / ;)
-GIE=5)/C)

- (v — o)l (v — B)lalB!
Myl —y!IB— v —a—B+y)l
(A1)

wheny =0, (a—vy) =0, (B—y) =0, v—a—B+7y)
= 0, and is equal to zero otherwise.
The mean of this distribution is

y=aB/v. (A2)

Because Q,[», a, 8] is a discrete probability distribu-
tion, we have the important identity

2 Qlv.aBl=1, (A3)

whenever j = min [a, 8]

and i< max [0, +8—v].

Appendix B: Derivation of Formula (41)
Summation of the right-hand member of Eq. (36) is
achieved by the use of the identity (A3). The order of
summations will be z, y, and x.

First, defining

r+y-K
P[B|C,x,y]= ¥ P[2|C, x, y]P[B|C, x,y,2] (BI)

z2=0

and substituting from Eqs. (39) and (40), we get

P[B|C, x, y] =

””2”"‘ (C —x)I(C — )y
= CdK—2)x+y—K—2)(C—x—y+2)!
Use of the identity (A3) in the form

T+ Y—K

1= 2 QZ[C,K,X+Y_K]

2=0

(B2)

leads to the formula
(C—x)(C =yt
(C—K)KH(C—x—y+ K} {(x+y—K)¥
(B3)

P[B|C, x, y] =
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Next, defining
T-1 C
P[B|C,x]= 3 P[y|CIP[BIC, x, y] (B4)
y=0

and substituting from Egs. (B3) and (38), we get

P[BIC, x] =
K (MT ~ T)T — DYMT — 1 — C)ICHC — x)'!
v‘zo MT-DIKIC—KNx+y—KNT—1—y(C+K—x—y){MT—-T—C+y)l
(B5)
Use of (A3) in the form
T-1 .
1= Quuys[MT—1,T—1—-K+x,C]
y=0
enables us to show that
P[BIC, x] =
(MT — T)(T — 1)!/(C — x)!x! (B6)
K(C—K)YMT—T+K—-—x)(T—1—K+x)!I
Finally, we hav.e
L—1
P,[B|C]= 2 P[x|C]P[B|C, x]. (B7)
x=0
Substituting from Eqgs. (B6) and (37), we get
P, [BIC]=
‘o MT — TH)NT — IWNL — L)L = 1NL—1-C)IC!
;-:o (NL—1)KNC—KWNT = 1=K+ x)L—1—x)(MT—T+K—x{(NL-L—-C+ x)!'
(B8)
The use of (A3) in the form
L—1
1= Qr, jso[NL+MT—2~C,L+T
xr=0

—2—~K,MT—1]

enables us to derive formula (41).
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