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Loss of Point-to-Point Traffic in Three-Stage 
Circuit  Switches 

Abstract: A theoretical study is made of simple analytical models for the point-to-point loss of telecommunication traffic caused by 
blocking  in three-stage circuit switches. Two new models are compared with Jacobaeus’ frequently used model  and  with some simulation 
results to determine regions of acceptable accuracy. The effects of random hunting and sequential hunting for  routes  are compared by 
simulation. 

The results apply to space-division link systems and also to some time-division switches of current interest. In the case of random hunt- 
ing, the new models give improved agreement with  simulation results. The overestimate of loss inherent in the  Jacobaeus method, how- 
ever, is found to be acceptably low  when the numbers of primary and tertiary matrix switches are not small, e.g. > 10. We lack a good 
analytical model for the sequential hunting method, which is found to result in lower traffic loss for the switches being studied. 

1. Introduction 
Recent progress in the development of miniaturized elec- 
tronic circuits and, particularly, large-scale integrated 
digital electronics has  made  time-division  digital (PCM) 
switching techniques very attractive for telephone ap- 
plications [ 1,2]. This has resulted in increased interest 
in three-stage switches, of which there are some espe- 
cially convenient time-division  forms. 

Although  it has long been known that three-stage 
switches can be  made strictly nonblocking [ 31, con- 
siderable savings in components can be  realized by per- 
mitting a very  small but positive probability that a call 
will  be lost because of link congestion (i.e., blocking) in 
the switch. It is therefore important to be able to estimate 
the dependence of the loss on the switch parameters, on 
the switch control (i.e., route hunting) algorithm, and on 
the offered  traffic. 

Probably the best known  and  most  widely used method 
for the estimation of loss in  link systems is that of 
C .  Jacobaeus [ 41, which  is described also in a book by 
R. Syski [ 51 and in a survey paper by  K. Kiimmerle [ 61. 
This approximate method is distinguished by its sim- 
plicity  and ease of computation. Its sources of error were 
known to Jacobaeus, who correctly pointed out that they 
cause an overestimate of the loss. The overestimate, 
which  Ieads to safe designs, was readily accepted at a 
time (1950) when digital computers were not  generally 
available. 

In this paper we apply the method of Jacobeaus specif- 
ically to loss in three-stage switches. Alternative loss 
formulas are derived from two other models that remove 

some of the sources of error. The formulas are then com- 
pared  with  one another and with a few  simulation results 
in order to determine their regions of acceptable ac- 
curacy. It is important to bear in  mind that the method of 
Jacobaeus has been applied to a much broader range of 
problems than are considered in this paper, which  is not 
intended to be a critique of the more general usefulness 
of his  method. 

As preliminaries, the structures of the three-stage 
space-division switch and its time-division analogs are de- 
scribed, and a mathematical  definition of the loss is  given. 

The approach taken in this paper is to offer a self- 
contained treatment of a few related heuristic models. 
Accordingly, only the simplest cases will be considered 
and no attempt will be  made to delineate the various pos- 
sible extensions of the models to more complex cases. 
Switches with  Bernoullian  offered  traffic will receive the 
most attention because this is the only type of offered 
traffic for which the models are exactly comparable. 

This paper is concerned only  with point-to-point loss, 
also called “point loss”; i.e., a call is considered to be 
lost when the connection from a particular inlet of the 
switch to a particular outlet is  blocked. The “group loss” 
of calls  from a particular inlet to any one of a group of 
outlets will not be considered. 

2. Notation 
Each elementary switching element, or crosspoint, is 
functionally a single-pole or multi-pole,  single-throw 
switch. Crosspoints may be  made of metallic contacts, 
e.g., reed relays or crossbar switches, or semiconductor 
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gates.  Figure 1 (a) represents a switching matrix that 
connects a set of five horizontal conductors  to a set of 
five vertical conductors by means of 25 crosspoints. Any 
switching matrix of this  type will be called a matrix for 
brevity. 

Constraints are frequently placed on  the  operation of 
the  crosspoints in a matrix. We shall assume  that  no more 
than one  crosspoint in any row or in any column may at 
any time be closed, i.e., conducting. In this fashion, any 
one-to-one  connection pattern of horizontals to verticals 
may be realized. 

In  order  to simplify block diagrams of switches, the 
representation in Fig. 1 (b) will be substituted for  that in 
Fig. 1 (a). More generally, Fig. 1 (c) represents a matrix 
with L inlets  and K outlets, the convention of  flow being 
from left to right. 

In a space-division  switch, each inlet or outlet of a 
matrix can provide  no more than one communication 
channel. In a time-division switch, the fundamental time 
period, called a frame, is subdivided into S equal,  periodic 
subintervals, called time-slots, each of which can in- 
dependently  provide a communication  channel. The S 
channels  are said to  be in time-division multiplex (TDM) . 
A time-division matrix can  assume  an independent  con- 
necting state in each of its S time-slots. Therefore, it  is 
functionally  equivalent  to S separate space-division 
matrices.  Figure 2(a)  represents a time-division matrix 
with K time-slots. 

A time-division matrix cannot shift any communication 
channel from one time-slot to  any  other time-slot. This 
function, called time-slot interchange, is performed by a 
buffer, which stores  data from the incoming channels and 
permits it to  be read out again in any  order  and in any 
subset of the outgoing time-slots having the necessary 
cardinality. This function  requires that  the buffer have a 
random access capability.  Although  more limited time- 
slot interchange may be achieved by partial-frame mem- 
ories  or shift  registers [7], we assume  that  the buffers 
have full-frame storage and  random access capability. 

Figure 2(b) shows  the representation we use  for a buf- 
fer having S input  time-slots  and T output time-slots. 
This buffer can provide  no more than the minimum of S 
and T channels of communication. It is the time-switch- 
ing analog of a matrix  with S inlets  and T outlets. 

A  very small space-division  switch is shown in Fig. 
3 (a).  This switch can  connect  any of the  four inlets to 
any of the  four  outlets, but not all sets of one-to-one 
connections  are possible. For example, if a connection 
from  inlet 1 to  outlet 1 is already established,  it  is im- 
possible to add a connection from inlet 2 to  outlet 2 be- 
cause  the needed link (1, l )  is already in use. In this 
case,  the desired  connection  is said to  be blocked. At- 
tempts  to establish  new  calls in the  presence of blocking 
result in traffic loss. 
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Figure 1 Simplified representation of crosspoint matrix  dia- 
grams. (a) A five-by-five crosspoint matrix. (b) Simplified 
representation of the five-by-five matrix. (c)  Representation of 
an L-by-K  matrix. 

Not all of the matrices will be shown explicitly in dia- 
grams of larger  switches.  Figure 3(b)  represents a two- 
stage  network having N primary  matrices and M second- 
ary matrices. Notice  that  each connection  must  pass 
through two  crosspoints and one link. 

Folded  switches, in which each line appears  as  both  an 
inlet  and an outlet, have some  interesting  properties. 
When  transmission  through the switch is bidirectional, 
either of two  inlet-to-outlet  connections will  suffice to 
establish a call [8] ; but  when the switch is unidirectional, 
both connections  must be made [ 11. For simplicity, we 
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Figure 2 The time-division matrix and the buffer. (a) Repre- 
sentation of a time-division matrix with N inlets, M outlets, and 
K time-slots. (b) Representation of a buffer  with S input time- 
slots and r output time-slots. The buffer is capable of  full- 
frame storage and random access  for time-division switching. 
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Figure 3 Two-stage networks. (a) A very small two-stage 
space division switch. (b) A two-stage space division switch 
with N primary matrices and M secondary matrices. 
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assume that the inlets and the outlets of our switches 
form disjoint sets, and we require a single, unique con- 
nection for each new  call. 

'The customary aigebraic notation is  used in the anal- 
ysis that follows. Square brackets, however, are reserved 
for the arguments offunctions. . 

3. Three-stage switches 
A three-stage space-division switch is illustrated in Fig. 
4(a). There  are exactly' K possible routes for a desired 
connection, each one traversing three matrices and two 
links. To ,establish a new  call through the switch via a 
particular route, both the A-link  and the B-link  of that 
route must be idle. 'Blocking occurs when none of the K 
routes has a pair of idle links. 

C. Clos [3] has demonstrated that this switch is non- 
blocking  when K = L + T - 1 .  A considerable saving in 
crosspoints is possible, however, when occasional block- 
ing, is tolerated. We are concerned with estimating the 
loss when 

K < L + T - 1 .  ( 1 )  

In addition, we assume that 

K 2 max [L ,  TI ( 2 )  

so that the primary and the tertiary between which a new 
connection is desired have at least one idle  link on each. 
Blocking then results from a failure to match  idle  links 
on  any route. Condition (2) is typical of a central switch 
for trunks and preconcentrated lines. 

There  are analogies between the three-stage space- 
division switch in  Fig. 4(a) and at least two types of 
time-division switches having  buffers. These analogies 
permit the same estimates of loss to  be used for all-three 
types of switch. 

Consider the time-space-time switch in Fig. 4(b).  
Here, the inlet channels are time-division  multiplexed  on 
each of the N inlet lines and the outlet channels are time- 
division  multiplexed on each of the M outlet lines. There 
are L time-slots per frame at the inlets and T time-slots 
per frame at the outlets, the frames all  having equal 
periods. The primaries and tertiaries are buffers;  and the 
secondary is a time-division matrix having K time-slots. 

As'in the space-division switch, there are K routes for 
any desired connection: These routes are not, however, 
spatially disjoint. Instead, .each one occupies  a different 
time-slot in the same'  physical.'  pair  of buses. Each bus 
provides K links in time-division  .multipiex. As before, 
blocking occurs when there is no matching  idle pair'of 
h k s ;  but the matching  must occur in  time. Theseconpary 
matrix cannot pedute  time-slots. 

A  spacdtime-space switch is shown in  Fig. 4(c). The 
inlets are in' TDM with L time-slots per frame and the 
outlets are in TDM with T time-slots per frame. The 
primary and t e r t i y  are time-division matrices, and the 
K secondaries are buffers. To find a route, the calling 
time-slot must be'idle in an A bus and the called tiine- 
slot must  be  idle ih !he B bus of the same buffer. The K 
routes are now  spatially disjoint. 

The primary in"Fig. 4(c) is functionally equivalent to 
L space-division matrices having N inputs and K outputs 
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each, Similarly, the  tertiary  is functionally equivalent  to 
T space division matrices having K inputs  and M outputs 
each.  Each  secondary buffer is  the timk analog of a space- 
division  matrix. Therefore,  the analogy with the space- 
division  switch of Fig. 4(a)  requires transposition of the 
parameters ( N ,  L )  'and  also of ( M ,  T )  in formulas  or 
simulations. 

Nonblocking three-stage time-division switches re- 
sembling these'were disclosed in a patent pf H .   h o s e  and 
T. Saito [9]. M. J. Marcus [ 101 has published a;n article 
on space-time equivalents in connecting networks  con- 
taining a broader  range of analogies thaQ we  require  for 
the  present  purposes. M. Huber [ 111 has published an 
early  paper on congestion in time-division switches, 
emphasizing  group loss. Inasmuch as egtimates for  the 
loss in the space-division  switch can  also be  applied  'to 
the time-division analogs, we refer specifically to Fig. 
4(a) in the  analysis  that follows. 

Description of the switch is not  complete until one  has 
defined the route-hunting  algorithm. Whenever  more than 
one of the K routes is available to a  new call, a rule will 
be needed for making the selection. For example, we 
might specify one of the following rules. 

1 .  Random hunting: Test  the  routes in random  order, 
selecting the first one available. 

2.  Sequential hunting: Test  the  routes in a fixed sequence, 
selectinq the first one available. 

3. Sequential hunting  with random  start:  Test  the  routes 
in a fixed cyclic sequence'but with a random  starting 
point,  selecting the first one available. 

. ,  

4. High-occupancy  hunting: Test  the  routes in order of 
decreasing occupancy of the  secondary  traversed, 
with a 'fixed sequepce when occupancies  are'  equal, 
selecting the first one available. 

In  the  case of sequential  hunting, there is also a choice 
to be made  as  to  whether  the  sequence followed is the 
same  for all primary-tertiary connections.  The influence 
of some of these hunting methods  on  the loss has been 
studied  by D. Bazlen, G .  Kampe,  and A. Lotze [ 121. . 

Of the  four hunting  algorithms defined above, only 
random hunting is accurately modeled in our analysis. 
Sequential hunting (with a  primary-tertiary  invariant 
sequence) gives the three-stage  switch a lower loss, 
however, and we shall see a  few  simulations of this. 

It is a reasonable  conjecture  that sequential hunting 
with random  start is very similar to  randqm hunting. I t  
is also a reasonable  conjecture  that high-occupancy 
hunting is very  similar to sequential hunting. We have 
not simulated these hunting  algorithms. V. E. Bene; has 
published a study of optimal  routidg [ 1 3 1  which  suggests 
the superiority of high-occupancy hunting over  random 

MAY 1974 

Primaries . Secondaries . Tertiaries 

. .  N M 

(6) 

Secondaries 

Figure 4 Three-stage  networks. (a) A three-stage  space- 
division  switch  with N primaries, K secondaries, and y ter- 
tipries. (b) A three-stage,  time-space-time  switch. ( c )  A three- 
stage, space-time-space switch. 

hunting; but  he gives  numerical results only for a three- 
stage switch  with four inlets and  four  outlets,  made from 
2 x 2 matrices. 

4. Models for the offered trgffic 
It is traditional to idealize the' offered traffic model in 
order to arrive  at simple ptimates of the loss. The "of- 
fered traffic" is 'the tiaffic that would be  carried by the 
switch if it were strictly  nonblocking. 

The offered traffic is  assumed to arise from one or more 
independent  Markovian birth and  death  prpcesses.  It 207 
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is  further  assumed  that  each primary  receives  equal 3.  Erlang (infinite number of sources) 
traffic and  that  each  tertiary  receives equal traffic. A 
number of different  models may be employed, and  one * L C ]  = *o when < w, 
should be selected that  reasonably  approximates  the  case = 0 when C =W. ( 1 2 )  
to  be analyzed. 

Consider a single process  that  generates all of the  The Erlang (truncated  Poisson) distribution is 
traffic in the switch. Let C represent  the  number of calls 
in the switch. The range of this random variable is P [ C l  = ( X , / P ) ~ / C  ! D,, 

0 5  c5 w, ( 3 )  where 

where W is a constant  such  that 

0 < W 5 min [ N L ,  M T ] .  

We  assume  that  the  rate of requests  for new calls  and 
the  rate at which  existing  calls are terminated both  de- 
pend only on C. In  particular,  the  rate of requests  for 
new  calls is A[ C] , where 

X[C] > 0 when C < W ,  

= 0 when C =  W .  ( 5 )  

The  rate of termination of calls is assumed  to  be pC, 
with p > 0. New calls occur  at random between  the idle 
inlets  and the idle outlets.  Terminations  occur at  random 
among the existing calls. 

The definition of the offered traffic process may now be 
completed by specifying the function h [ C ] .  The  three 
most  common  choices,  and  the resulting distributions, 
P [  C] , of C are given below. More detail is to be found in 
Syski’s  book [ 141. 

1 .  Bernoulli 

h [ C ]  =A, (W-C) ,  (6) 

with X, > 0, a constant. 

I t  is also possible to apply  one of the  above  processes 
to model the traffic offered at a single primary or a single 
tertiary. I t  is easy to  see,  however,  that  the traffic in the 
entire switch and  the traffic in each of its several  primaries 
cannot simultaneously be of either  the  Engset  type or 
the Erlang  type. 

If the traffic offered to  the  entire switch is Bernoullian, 
with W = N L  = M T ,  then it can be shown  that  the traffic 
offered to  any  subset of the inlets is  also Bernoullian, 
having the  same values of Lo and p. It is uniquely for 
this case  that  the  three loss formulas  to  be  compared 
are  exactly  comparable in offered traffic. Therefore, this 
case will be used as  the basis for numerical comparisons 
of the  formulas  and  for simulation. 

5. Definition and estimation of the loss 
Loosely speaking, the loss due  to blocking in a  switch is 
the  expected  fraction of the offered calls that will be 
blocked  during  some  period of statistical equilibrium. We 
employ  a more  precise definition that is consistent with 
that of V. E. Bene: [ 151 ,  who calls  this quantity  “the 
probability of blocking.” 

The resulting  Bernoulli  distribution is Bene: makes  the simplifying assumption  that blocked 
calls are  cleared,  that is,  they do  not  change  the  state of 

cause blocked  calls may result in repeated trials. This is 
a = X,/ (Ao + PI .  (8) a matter of little importance in the region of interest, 

P [ C ]  = (T) aC( 1 - a ) W - C ; .  (7)  the system. This  assumption is not entirely  realistic be- 

2. Engset, with V > W ,  ( V  being the number of inde- 
pendent  sources of calls) 

where  the loss is small. 
Assuming  a stationary,  Markov-type offered  traffic 

process,  the blocked  calls  cleared hypothesis, a switch 
h [ C ]  = h,(V - C) when C < W ,  ( 9 )  structure,  and a route-hunting  algorithm, Bene: shows 

that  the model is a stationary, finite-state Markov process. 
Suppose we observe  such a system  for a time  interval 

The  Engset  (truncated Bernoulli)  distribution is (0, t ] ,  keeping count of the  number of times, ( r [ t ] ,  that 
a new call is  attempted  and  the  number of times, / 3 [ t ] ,  

= O  when C = W .  

p i c 1  = (E) ( A 0 / CL (10) that  an  attempt is blocked.  Benes shows  that  the limit, 

where  the  denominator is b = !& P [ t l   / a [ t l ,  ( 1 5 )  

208 
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quantity  the loss. 
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The proof given  by BeneS also implies that  the limits 

r, = a[t]/t, (16) 

rB = j;! ~ [ t l  It (17) 

exist  and  are  constant with probability  one. 

Since r, > 0, it follows that 

b = rs/r , .  (18) 

From this  point on,  the analysis  diverges from  that of 
BeneS. 

It is clear  that r, is the time average of the  rate  at which 
new calls are  attempted. Similarly, rs is the mean rate  at 
which attempts  are blocked. The  corresponding proba- 
bility averages  are 

where u indexes  the  states of the  system, P[u] is  the 
equilibrium  probability of being in state u, A[u] is  the 
calling rate in state u, and P[BIu] is the conditional 
probability that  an  attempted call will be blocked,  given 
state u. This  leads  to  the loss formula 

u 

Equation ( 15 ) is a suitable  starting  point for  the estima- 
tion of loss by simulation,  and Eq. ( 2  1 ) is a suitable  start- 
ing point for analytical  approximation. Because of the in- 
tractably large number of states,  however,  considerable 
simplification of this formula will be  necessary in order  to 
make  the  computations practical. 

Simplification is achieved by partitioning the  universe 
of  all states, indexed  by IT, into n subsets, named u,, a,, 
. . . an. The equilibrium  probability that  the  system is in 
the ith subset  is 

P[Ui] = P[u]. 
Uf ui 

When in subset ai, the system attempts new  calls at  the 
mean rate, 

(23 1 

and  the conditional  probability of blocking these calls is 

It is now easy  to verify that 

2 P [ ~ i l ~ [ ~ i l P r B l u i l  

I: P[UiIA[Uil 
b =  

i 

The problem of estimating the  loss is thus  reduced  to 
the problem of finding a suitable  partition of the  universe 
of states of the system and  then estimating P[.], X[ . ] ,  
and P[BI.] for  the  subsets of the partition. In so doing, 
we  accept  some  inaccuracies in the  estimates  as  the  price 
for avoiding consideration of each  state of the system. 
The  computations then become feasible. 

Equations (21) and ( 2 5 )  depend upon the  existence 
of equilibrium state probabilities; but  they  are valid for 
any specific switch structure, routing method, or traffic. 

Alternative calculations of the  loss  are  made possible 
by the already assumed  symmetries of the switch struc- 
ture,  the route-hunting  algorithm, and  the offered traffic 
process with respect  to  permutations of the primary ma- 
trices and permutations of the  tertiary  matrices. 

Suppose  that  we relabel the primaries and  the tertiaries. 
With the  assumed  symmetries, this causes a permutation 
of the  state indices that  leaves  the  transition matrix of the 
Markov  process invariant. The  measure  over  the  state- 
valued function  space  is  therefore  also invariant. From 
this, it is  clear  that  the mean calling rate  between  any  one 
of the N primaries and  any  one of the M tertiaries  is 
precisely r,/ N M ;  and  the  mean  rate  at which these calls 
are blocked is ra/  N M .  Because of this, it  does not matter 
whether  the blocking rate  and  the calling rate  are com- 
puted for  the  entire  switch, a single primary, or a par- 
ticular  primary-tertiary  pair; their ratio still gives the loss. 
Each of these  three  choices will be  used in one of the 
three models that follow. More generally, we are  free  to 
use  the blocking rate  and  the calling rate  between  any 
subset of the primaries  and any  subset of the tertiaries. 

6. Application of Jacobaeus’ method 
We are now ready  to  estimate  the point-to-point loss in 
the switch of Fig. 4(a),  using approximations  that  charac- 
terize  the method of Jacobaeus [4-61. 

The blocking rate  and  the calling rate will be  computed 
for  the traffic from  a particular primary,  called “the pri- 
mary”, to a particular  tertiary, called “the  tertiary”.  The 
subsets of states will be  indexed by (x, y ) ,  where x is the 
number of calls in the primary and y is the  number of calls 
in the  tertiary. 

A simplifying approximation is made  that x and y are 
independently distributed, 

P [ x ,  Y1 = P[xIP[yl. (26) 
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The  separate  distributions  are  selected, a  priori, so as 
to  reasonably  approximate  the offered traffic. The most 
commonly  used forms  are Bernoulli, Erlang, and Engset. 

I t  is  also  necessary  to specify the form of A[x, y ] .  
K. Kiimmerle [ 161 points  out  that a common control 
system, when  seeking one of a group of outlets, will fre- 
quently  select  an idle one  at random. This suggests that 
the probability that  the  tertiary is the target for a new 
call is approximately  proportional to  the  number of its 
idle outlets. Such a model is quite consistent with the 
choice of a Bernoulli  distribution of calls in the  tertiary, 
although other models may be  employed. 

With this  model,  Eq. ( 2 5 )  takes  the  form 

2 P [ x l P [ y l A [ x ,   Y l P r B I x ,  Y 1  
b=”U 

2 P [ x l P [ ~ l A [ x , ~ l  
(27) 

x> I 

The approximation of P [ B  [x, y ]  is quite  independent of 
the  choice of distributions  for x and y and of the calling 
rate. The primary has ( K  - x )  idle A-links,  and the ter- 
tiary has  (K - y )  idle B-links. Jacobaeus  assumes  that 
the idle  A-links and  the idle B-links are  distributed  at ran- 
dom,  without bias, and with  mutal independence  over  the 
K routes through the switch. As a consequence of these 
assumptions  the  number of matching  idle link pairs is 
hypergeometrically  distributed [see  Appendix A]. The 
probability of blocking isthe probability that  this  number 
is zero. 

This model is now applied to  the specific case in which 
x and y have Bernoulli distributions with L and T sources, 
respectively. 

P [ x ]  = (5;) a,”( 1 - al)L-x, (29) 

and, in order to be consistent  about  the total  traffic in the 
switch, 

L N a ,  = T M a , .  ( 3 1 )  

The calling rate  between  the primary and  the  tertiary 
takes t‘he form 

A [ x , Y I = ~ ( L - ~ ) ( T - ~ ) ,   ( 3 2 )  

where y is a constant. 

yL(1-al)T(1-a~)andEq.(27)becomes 
The  denominator of Eq.  (27) is easily seen  to be 

( L  - 1 ) ! ( T  - l)!  L-l alx( 1 - a,) 
L-l-x 

b =  K !  x=o E ( L  - 1 - x ) !  
T-1 

1 - a,> 
T-1-y 

X ; o ( T -   1 - y ) ! ( y + x - K ) ! ’  

The summation over y is performed using the identity 

With a subsequent  change of variable, 

i = x + T -  1 - K ,  ( 3 3 )  

we obtain  the simple  formula 

( 3 4 )  

where 

S = L + T - 2 - K .   ( 3 5 )  

The most important  source of error in Jacobaeus’ 
model is in the  hypothesis of mutually  independent oc- 
cupancies of the A-links  and B-links. In  any  attempt  to 
correct this source of error,  at  least two  distinct factors 
must  be  considered. First,  there may be  some existing 
calls between  the primary and  the tertiary. The A-link 
and the B-link on  the  corresponding  number of routes  are 
surely  both  occupied. Second, we must, in some  fashion, 
take  into  account  the  fact  that  the switch is controlled so 
as  to  occupy only complete routes. Therefore,  there  are 
always  equal  numbers of busy  A-links  and  busy B-links 
incident on  each  secondary. 

Other  sources of error include the  assumption of in- 
dependent  distributions, P [ x ]  and P [ y ]  , and  the failure to 
consider  the deformation of these distributiorfs fahsed by 
blocking. The  latter would require  iterative  .computa- 
tions  for  its  correction [ 161, but we’find it possible to ob- 
tain good agreement with simulation results without that 
refinement. 

7. Global model 
Correction of the major sources of error in Jacobaeus’ 
model is facilitated by modeling the traffic through the 
entire switch.  We begin by assuming a stationary, 
Markov, birth-and-death process  for  the number of calls, 
C ,  in the switch having the equilibrium  distribution, 
P [ C ] .  This is determined by the calling rate A [ C ] ,  as 
discussed in Section 4. 

The  subsets of states  are indexed  by C (i.e., the  states 
are partitioned into W + 1 subsets;  and  the  Cth  subset 
consists of all the  states having exactly C calls in the 
switch).  The calling rate  and blocking rate  are  measured 
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on  the  entire switch. All that now  remains to be done in 
order  to apply Eq. ( 2 5 )  is to find an approximation to’the 
conditional  probability of blocking, P [ B  IC] ,  given C calls 
in the switch and a new call being attempted  from a ran- 
domly selected idle inlet to a randomly selected idle 
outlet. 

The matrix on which the calling inlet terminates is 
called “the primary”, and  the  matrix  on which the called 
outlet  terminates is called “the  tertiary”.  The following 
additional  variables are used in approximating P [ B  I C ]  : 

x = the  number of calls in the primary, with distribution, 

y = the  number of calls in the  tertiary, with distribution, 

z = the  number of calls between  the primary and  the ter- 

P [ x l C I ,  

P[YlCI ,  

tiary, with distribution P [z lC, x, y ] .  

It is approximated by  means of the  formula, 

W I C I  = c ~~xlCl~~YlCl~~zlC,x,Yl~~Blc,x,Y,zl, 
+.YJ ( 3 6 )  

where P [BIC, x, y ,  z ]  is  the conditional  probability of 
blocking,  given C ,  x, y ,  and z. 

Formula ( 3 6 ) ,  by explicitly  admitting  positive  values 
of z, has partially corrected  the  hypothesis of statistically 
independent A-link and B-link occupancies. In addition, 
the  distributions of x and y both  have explicit  functional 
dependence upon C .  

Although  this formula  requires a triple summation, we 
shall see  that  the summations over x, y, and z can be per- 
formed  algebraically. This  leads  to a  simple  result. 

The  distributions of x, y ,  and z are hypergeometric, as 
follows [see Appendix A] : 

P [ i l C ]  = Q , [ N L  - 1, C ,  L - 1 1 ,  ( 3 7 )  

P [ Y ~ C I   = Q , [ M T -  1 ,  C ,  T -  1 1 ,  ( 3 8 )  

P[zlC, x, y1 = Q,[C,  x, y l .   ( 3 9 )  

It is now necessary  to  estimate P [BIC, x ,  y ,  21. There 
are (x - z )  c’alls in the primary that  do not go to  the ter- 
tiary. We  assume  that  these calls use  the remaining 
( K  - z )  A-links at random,  without bias, and indepen- 
dently of the  use of the ( K  - z )  B-links of the  tertiary 
that  do not carry calls  from the primary. Exactly ( y  - z )  
of the  latter  are  busy,  and  these  are  also selected at ran- 
dom without bias. Under  these  assumptions, which  only 
partially correct  the  hypothesis of statistical  indepen- 
dence,  the distribution of the  number of idle link pairs 
(i.e.,  available routes for the  attempted new call) is hy- 
pergeometric. The probability of no available routes is 

P [ B ~ C , x , y , z ] = Q , [ K - z , K - x , K - ~ ] .  ( 4 0 )  
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It is easy  to  see  that this function is maximized in the 
range 

0 5 z 5 min [x, y ]  

when z = 0. Therefore,  one  overestimates  the probability 
of blocking by  assuming that z = 0 with  probability one, 
an  assumption  that  reduces  formula ( 4 0 )  to  Jacobaeus’ 
formula, ( 2 8 ) .  

Using formulas ( 3 6 )  through ( 4 0 )  and performing the 
summations  as explained in Appendix B,  we obtain the 
result [ 171, 

{( L - l ) (   T - 1  
N L - 1   M T - 1  

The  subscript, H ,  in Eq. ( 4 1 )  indicates that this is  the 
higher of two estimates  to be used here. 

P H[ BI C ]  still overestimates  the probability of blocking 
when the switch is nearly full. To see this,  let us first as- 
sume that N 2 . M  (when N < M ,  a similar argument  ap- 
plies,  but with the roles of primaries and  tertiaries inter- 
changed).  The argument will be  based’on  the  fact  that  the 
number of busy  A-links on  any  secondary must  be equal 
to the number of busy B-links on  that  secondary. 
‘ Each  secondary  has N A-links and M B-links. There- 

fore,  an idle Bylink’ has  access  to ut  least ( N  - M + 1 ) 
idle A-links. The  tertiary  has  exactly ( K  - y )  idle B-links, 
giving it access  to a t   f eas t   (N  - M + 1 ) ( K  - y )  idle A- 
links. The total number of idle A-links not incident on  the 
primary is exactly ( N K  - C - K + x). Therefore, block- 
ing is impossible when ( N  - M + 1 )  ( K  - y )  > N K  - 
C - K + x or when 

C ? ( N - 2 ) K + x + y - ( N - M ) ( K - y ) + 1 .  ( 4 2 )  

There  are values of C that  meet this  condition for  zero 
blocking, for which our previous estimate of P [ B I C ] ,  
Eq. ( 4 1 )  , gives  positive  values. For  example, let N = M ,  
L = T = K ,  and let x and y take  their maximum values, 
( L  - 1 )  and ( T  - l ) ,  respectively. Then (42) becomes 
C 1 N L  - 1 ,  but C = N L  - 1 is included in the summation 
over C from which the loss is to be computed. 

This suggests the possibility of a multiplicative correc- 
tion to  the approximation ( 4 0 ) ,  which exhibits a  lamen- 
table  independence of C in its present  form.  The qorrec- 
tion factor should go to  zero when C equals  the right- 
hand member of (42) and  increase smoothly as C de- 
creases.  It should  be as simple as possible and give good 
agreement with simulation. A form that  meets  these con- 
ditions  is  the global  comection factor, 

F = ( ( N - 2 ) K + x + y -   ( N - M ) ( K - y )  + 1 - C }  

+ ( N K  - C ) .  ( 4 3 )  21 1 
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The  denominator  represents  the  number of idle A-links. where 
When x and y are  carried through the  summations  over 

x and y ,  as performed in Appendix B ,  their mean  values 
are 

- A,V 

i = K - T +  l + { S ( M T -  l ) / ( N L + M T ” - C ) } ,  is  the mean of the offered traffiic process and Dl is de- 
(44) fined in Eq. (1 l ). 

y = K - L +  l + ( S ( N L - l ) / ( N L + M T - 2 - C ) } ,  3. Erlang 
(45) w-1 

A, P[BICl 
where,  as  before, S is defined by Eq. (35).  As a conse- = (F) 7 / I . 2  - (2r &}? (53) 
quence,  the weighted  mean of F with respect  to x and y is C=K 

P = { ( N - L ) K -  ( N - ” ) ( L -  1 )  + 1 + G - C }  where D, is defined by Eq. (14). In  the  case of Erlang 
traffic, the mean of the offered traffic process  is 

+ ( N K  - C ) ,  

where 

G = S { C +  ( N - M ) ( N L -  l ) ) / ( N L + M T - 2 - C ) .  
(47) 

Averaging F has  the minor  disadvantage that  there may 
be a few  small  values for x and y that give  negative  values 
for F when C is very large, and  these  are included in the 
average. The  total  contribution of these  cases will usually 
be negligible, because small values of x and y give very 
little  blocking, and values of C near its  maximum are very 
unlikely, except in cases of artificially high offered traffic. 
While it would have  been more correct  to define F to be 
zero when its  numerator is negative,  this would have 
complicated the summation  excessively. 

We now define 

P,[BIC] = P P”[BIC], F 1 0  

= 0, F < 0. (48) 

Using either  estimate of P [ B  IC], and  the  three global 
traffic models defined in Section 4, we  have  the  means  for 
evaluating the  loss, b, from  Eq. ( 2 5 ) ,  which now has  the 
form 

b = z P[ClA[ClP[BICI/  P[ClA[Cl. (49) 
w-1 w-1 

C=K C=O 

The  upper limit on  the  summations  is ( W  - 1 )  because 
A[W] = 0. In  the  numerator, we observe  that P[BIC] 
= 0 when C < K .  Results follow for  the  three traffic 
models,  which were defined in Section 4. 

1.  Bernoulli 

b = y ( W ,  I)UC(l - u)W-”CPIBIC] 
C=K 

2 .  Engset 

8. Quasi-global mode( 
It  will frequently  be  desirable  to  use  an  Engset  or  an 
Erlang model for  the traffic in a single primary matrix. 
These models are incompatible  with the global model of 
Section 7, although they can be used in the method of 
Jacobaeus.  In this section,  we  provide a quasi-global 
model that  is  also applicable to  such  cases. 

The calling rate  and  the blocking rate  are  measured  on 
a single primary,  called “the primary”. The  subsets of 
states  are indexed  by the  number of calls, x, in the pri- 
mary. The  formula  for  the loss is 

b= P[xlA[xlP[Blxl/ 2 P[xlA[xl. ( 5 5 )  
L-1 L-1 

x=o  x=o 

In estimating P [ B  1x3, we use  the additional  variables, 
C ,  y, z, as in Section 7, and also u = the  number of calls 
in all other primaries,  with distribution, P [  u ] .  

It  follows that 

The conditional blocking probability will be  estimated 
from 

where 

P[Blu,  x1 = P[ylCIP[zlC, x, ylP[BIC, x, Y, 21. ( 5 8 )  

The  last  three  functions in Eq. (58) are defined by Eqs. 
( 3 8 ) ,  (39) and (40); and  the  summations  over y, z are 
performed as in Appendix B. The result is 

Y.2 

P[Blu,  x] = 

( M T  - T ) !  ( T  - 1 )!u!x! 
k ! ( u - K + x ) ! ( M T - - + K . - x ) ! ( T -  l - K K x ) !  (59 1 
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P [ u ]  can be  given the Bernoulli, Engset, or Erlang 
distribution, independently of P [ x ] .  While some incon- 
sistency may result, no great harm will be  done.  In any 
case,  the summation over u can be done algebraically. 
We select  the Bernoulli forms with W = N L  5 M T  as  an 
example, using 

The summation over u in Eq. (57) gives 

P [ B l x ]  = 

From  Eqs (55), (61),  (62), and (63), the  loss is 

( N L  - L ) ! ( M T -  T ) ! ( L  - 1 ) ! ( T  - l)!aK 
K !  

b =  

S ( 1  - 
X ~ ( M T - l - i ) ! ( N L - L - T + l + i ) ! ( S - i ) ! i ! '  

w h e r e S = L + T - 2 - K a n d i = x + T - l - K , a s i n  
Section 6. This  formula gives  numerical agreement with 
formula (50) when the high estimate, P,[BIC], is used 
forP[B(C] in (50). 

The quasi-global model does  not facilitate accurate 
evaluation of the global correction  factor, F ,  of Eq. (43).  
A useful correction  that still overestimates  the loss is 
obtained  from Eq. (43) by substituting--u for (- C + x j  
in the  numerator, substituting for y its  maximum  value, 
(T - l ) ,  and using the mean values ii for u a n d r f o r  C .  
Then, 

F = { ( N - 2 ) K + T - ( N - M ) ( K - T + l ) - U }  

+ (NK -c), (65) 

where ii and = U + X may be  taken  from  the offered 
traffic distributions P [ u ]  and P [ x ] .  

There  are  no  random variables  left in Eq. (65),  so it 
may  be used as a multiplicative correction  for b, regard- 
less of the  assumed traffic. We must  recall,  however, that 
N 1 M was  assumed in its  derivation.  Otherwise, we 
must  change Eq. (65) to 

F f = ( ( M - 2 ) K +  T -  ( M - N ) ( K - L +  1 )  - i i }  

+ ( M T  -C).  

9. Numerical comparisons 
It  was pointed out in Section 4 that  the method of 
Jacobaeus,  the global model, and  the quasi-global model 
are exactly comparable  when  the traffic is Bernoullian 
and W = N L  = M T .  This  case  is used for numerical  com- 
parisons of the  three  methods and for simulations. 

The simulations are designed according  to a  Bernoulian 
offered traffic process with parameters A,,, p and  source 
occupancy, 

a,, = A,/ (Ao + P I .  (66) 

The  actual  source  occupancy, a,  is  reduced  somewhat 
below a, by the loss. To compute a, we  note  that, in 
equilibrium, the mean rate of new calls equals  the mean 
rate of call terminations. 

( 1  - b )  (W - W a ) A ,  = ~ W U ,  (67 1 
from which we get 

U =  ( 1  --b)A,,/{(l - b ) A , + p } ,  (68 1 
and,  since A o / p  = a,/ ( 1  - a, , ) ,  

a = ( 1  - b)a,/ ( 1  - ba,). (69 1 
The reduction in source  occupancy  from  Eq. (69) is 
very small. With b= 0.0607 and a,= 0.90, a = 0.894. This 
is the  greatest reduction observed in the simulations. The 
actual  occupancy  per  source, a, is used in plotting all 
simulation  results. This is the  same  as  the  average line 
occupancy. 

Figures 5(a) through (g) summarize the numerical 
results of analysis and simulation. Each of these figures 
has  three  curves representing the analytical  results. The 
top  curve, labeled J ,  results from the method of Jacobaeus. 
The middle curve, Q ,  results from both  the global model 
and  the quasi-global model, but without the global cor- 
rection  factor. The  lowest  curve, G,  results  from  the 
global model with the global correction  factor  as defined 
by Eq. (48). 

A single point on  each, encircled, shows how the mid- 
dle  curve is lowered  when multiplied by the  approximate 
global correction  factor, Eq. (65 ). 

All but  one of the  graphs  also  show  some  results of 
simulation. The vertical bars indicate 95 percent confi- 
dence intervals. Each of these is intersected by a hori- 
zontal stroke  at  the mean  value of the samples. Simula- 
tion results obtained  with  sequential hunting of routes 
are labeled  "S.H.". The  other simulations  employ random 
hunting. 

Switch  parameters in the  captions of Figs. 5 (a )  through 
(g) refer to  the switch of  Fig. 4 (a).  The traffic is Bernoulli, 
with W = N L  = M T  in each  case.  Figure 5 (g),  however, 
shows a case in which N > M and L < T .  

The  lowest  curve in each figure is seen to give  remark- 
able  agreement with the  results of simulation based  on a1 3 
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Figure 5 Traffic loss versus  the  source  occupancy  plotted  for  three-stage  switches  with  Bernoulli  offereil  traffic and W = NL = MT 
sources.  Curves J.result from Jacobaeus’  method;  curves Q result from  the  global and quasi-global  models  without  the  global  correction 
factor;  curves G, result from the global model with the globally  corrected  conditional  probability of blocking,  Eq. (48). The  isolated 
points are  oljtained  from the quasi-global model with the  approximate global correction  factor,  Eq. (65). The  vertical  bars show 95 per- 
cent  confidence  intervals and sample mean values obtained  from  simulations..Those  labeled “S.H.” result  from  sequential  hunting,  and 
theothersfromrandomhunting.(a)N=M=2, L=T=K=24 .  ( b ) N = M = 2 ,  L = T = 2 4 , a n d K = 2 8 . ( c ) N = M = 2 ,  L = T =  
24, and K = 32. At a source  occupancy of 0.98 and with  random  hunting, no loss was observed in the simulations. (d) N = M =  10, 
L = T = K = 2 4 .  (e) N = M = I O ,  L = T = 2 4 ,  a n d K = 2 8 .  (f) N=’M=10, L=T=24,  andK=32.Atasourceoccupancyof 
0.96,  and  with sequential  hunting,  the  simulated  mean loss was 0.000407. (8) N = 6 ,  M = 3, L = 12, T = 24, and K = 24. (h) N = 
M = 10 and L = T = K = 500. This switch was not  simulated. 

random hunting. The loss obtained  from sequential  hunt- 
ing is always less than that obtained from  random hunt- 
ing. The relative decrease in loss provided by sequential 
hunting becomes  more  pronounced  as  the traffic is de- 
creased  or  as  the  number of routes, K, is increased., I t  
is clear that sequential  hunting is $0 be  recommended 
and  that  even  the  lowest  curve significantly overestimates 
the loss in this  case. However,  the relative overestimate 
decreases  as  the traffic increases  toward  the  overload 
point. 

Two simulation results  are  not  shown  on  the figures. 
The first of these  was  done  for  the switch of Fig. 5 (c )  
with random hunting and  an  occupancy of 0.98. No loss 
at all was  observed in six runs of 20,000 trials  each. The 

I .  

second was done  for  the switch of Fig. 5 (f) with  sequen- 
tial hunting and  an  occupancy of 0196. In this case, 14 
runs of 10,000 trials each  gave a mean loss of 0.000407 
and a standard deviation of 0.000260. 

The figures show  that  the analytical curves  are  quite 
far  apart when N = M = 2, but  that  they are reasonably 
close when N = M = 10. Both  the global correction  and 
the  occurrence of calls between  the primary and  the 
tertiary  become  less  impoitant as the  numbers of ,pri; 
maries and  tertiaries increase. As an example, consider 
the switch of Fig. 5 (f),  but with N =  M =  20 instead of 10. 
At a source  occupancy of 0.96, the  three  curves give 
predicted losses of 0.0137,  0.01  12, and 0.0101. The 
Jacobaeus  curve is independent of N and M ,  while the 
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other  curves rise toward  it  as N and M increase. Going 
to N = M = 100, the predicted losses  are 0.0 I37 ,O.O 13 1 ,  
and 0.0 129. 

We  conclude  that  the method of Jacobaeus  can give 
acceptable  accuracy  when N and M are sufficiently large, 
provided  that  random hunting is assumed. Unfortunately, 
none of the simple analytical  models are  accurate  for 
sequential hunting. We must take  comfort in the obderva- 
tions that  overestimates lead to  safe designs and  that  the 
relative error is least in the critical  overload region. 
Nevertheless,  we might find a  very  much lower loss for 
the  switch of Fig. 5 (h) with  sequential  hunting, because 
of the very large number, 500, of routes.  This switch  was 
not simulated because of its  large size. 

10. Additional observations 
The preceding  section  summarizes our evaluation of the 
analytical  models considered here. A few  additional  com- 
ments  on  the  three-stage switches may be of interest. 

It  is  the author’s  opinion, offered without evidence, 
that high-occupancy hunting gives the  least loss; but it is 
not likely to  be significantly better than  sequential  hunt- 
ing, which is a computationally  simpler  procedure. Al- 
though  sequential  hunting with random  start  can be 
carried  out with less delay than sequential hunting in 
some  systems, it is likely to give as much loss  as random 
hunting. 

With a given  hunting  method and a fixed traffic load,  the 
loss in a three-stage  switch may be  decreased by increas- 
ing the  number of crosspoints in either of two ways. One 
way is to increase  the sizes of the primaries and  tertiaries 
by,increasing K ,  L,  and T more  or  less proportionately. 
This  does not decrease  the link occupancies,  but  it  does 
offer more possible routes,  thereby increasing the  chance 
that  one will be  available. This  results in lower  loss  at a 
given traffic load,  but in a more steeply rising curve, so 
that  the switch  may still overload at sufficiently high oc- 
cupancy.  An  example of the loss curve in such a switch 
is shown in Fig. 5 (h) , where K = L = T = 500. Duerdoth 
and  Seymour [ 11 call such a switch  “quasi-non-block- 
ing,” presumably because  the  loss  is extremely low at  the 
expected  busy-hour traffic load. 
. A second way to  decrease  the loss is to  increase  the 
ratio of K to L and T ,  that is, to  increase  the internal ex- 
pansion of the switch. This  produces  lower  loss  and  also 
reduces  the  slope 6f the  loss curve. Such a switch is il- 
lustrated in Fig. 5 (f) ,  where. L = T = 24 and K = 32 .  At 
98 percent  occupancy,  the  loss of this  switch is about 
0.01 with random  hunting and  much  less with  sequential 
hunting. A  switch  like  this cannot be overloaded; but it 
requires only 32/47 of the  crosspoints  that would be 
needed to make it strictly nonblocking. 
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Aipendix A: Hypergeometric distribution [ 181 
The hypergeometric distribution applies to random sam- 
ples taken  without  replacement  from a finite population 
containing two  types of elements. Suppose  there  are v 
elements, of which (Y are of type 1 and (v - a) are of 
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type 2.  If we select p elements at random, witkibut re- 
placement,  then the probability that exactly y of these 
are of type 1 is 

- - (v - a) !  (v - p)!a!p! 
v!y! ( a  - y ) !  (p  - y ) !  (v - a - p + y)!' 

( A I )  

w h e n y 2 0 ,  ( a - y )  1 0 ,  ( P - y )  1 0 ,  ( u - a - P + y )  
1 0, and is equal to  zero otherwise. 

The mean of this distribution is 

7 = ap/u.  (A2 1 

Because Q y [ v ,  a, p ]  is a discrete probability distribu- 
tion, we have  the important  identity 

j 

Q y [ v ,  a ,  PI = 1 ,  (A3 1 
Y = i  

wheneverj 2 min [a,  p ]  
and i 5 max [0, a + P - v ] .  

Appendix B: Derivation of Formula (41) 
Summation of the right-hand member of Eq.  (36) is 
achieved by the  use of the identity (A3).  The  order of 
summations will be z, y ,  and x. 

First, defining 
X + Y - K  

P [ B I C ,  x ,  y1 = P[zlC, x ,   y l P [ B I C ,   x ,   y ,  21 (B1) 

and  substituting from Eqs. (39) and (40), we get 

z=o 

Use of the  identity (A3) in the  form 

1 =  x Q , [ C 9 K , x + y - K ]  

leads  to  the formula 

X + Y - K  

Z=O 

( C - x ) ! x ! ( C - y ) ! y !  P I B I C '  x' = 
( C - K ) ! K ! ( C - x - y + K ) ! ( x + y - K ) ! '  

Next, defining 

WIG, X I  = x P[YlCIP[i3IC, x ,  Y 
T-1 

I / = O  

and substituting  from  Eqs. (B3 ) and 

P[BIC, x ]  = 

1 (€34) 

(38),weget 

7-3 

, . , ~ M T ~ ~ I ) ! K ! ~ C - K ~ ! ~ X + ~ - K K ) ! ~ T - ~ - ~ ) ! ( C + K - - ~ - ~ ) ! ( M T - ~ - - C + ~ ) ! '  c ~ M T " ) ! ~ T - I ) ! ( M T - l " ) ! C ! ( C - - x ) ! x !  

(B5 1 
Use of (A3) in the form 

1 = x Qx+y-K[MT - 1 ,  T - 1 - K + X ,  C ]  
T-1 

y=0 

enables us to show that 

P[BIC,  x ]  = 

( M T  - T ) ! ( T  - 1)!(C - x)!x!  
K ! ( C - K ) ! ( M T - T + K - X ) ! ( T - ~ - K + X ) ! '  (B6) 

Finally,  we ha& 

Substituting from Eqs.  (B6) and (37), we get 

1 = x QT-, -K+x[NL + MT - 2 - C ,  L + T 
L-1 

x=o 

- 2 - K , M T - l ]  

enables  us to  derive formula (4 i ). 
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