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On  Optimization of Storage  Hierarchies 
0 ' .  d m  

Abstract: A simple model of the storage hierarchies is formulated with the assumptions that the effect of the storage management 
strategy is characterized by the hit ratio fqnction. The hit ratio function and the device technology-cost function are assumed to be repre- 
sentable by power functions (or piece-wise power functions). The optimization of this model is a geometric programming problem. An 
explicit formula for  the minimum hierarchy access time is derived; the cqpacity and technology of each storage level are determined. The 
opfimal number of storage levels in a hierarchy is shown to be directly proportional to the logarithm of the systems capacity with the 
constant of propottionality dependent upon the technolagy and hit ratio characteristics. The optimal cost ratio of adjacent storage levels 
is constant, as are the ratios of the device access'times and storage capacities of the adjacent levels. An illustration of the effect of over- 
head cost and level-dependent cost, such as the cost per "box"  and coq for managing  memory faults is given and several generalizations 
are presented. 

. .  

Introduction 
The general  trend in the  developlrent of large computer 
systems is toward  increasing the  use of storage hierar- 
chies. 'A linear storage hierarchy  model consists of n 
levels, M,, M,; . ., M,, connected in cascade  as shown in 
Fig. 1.  The convention is that thg, higher is  the level the 
lower is its index. Generally, thq higher is the level, the 
faster is its  speed,  the higher is  iis  cost  per  byte,  and  the 
smaller is  its capacity. Information  transfers  are  between 
adjacent levels  and are entirely  controlled by  the activity 
in the first level M,.  The  rules of operation  are 

1.  Whenever'a page is stored in-level M i ,  there  is a copy 
of it in each of the  lower levels, Mi+,;  . ., M,. 

2. Whenever a  referenced  page is not found in M , ,  a 
reguest for it is  sent  to  the  successive  lower levels 
until it is found in the say Mi level. 

3. Whenever M ;  is full and a new page is to be  brought in 
from Mi+,, a replacement policy,  usually the  Least Re- 
cently  Used (LRU) policy, i? invoked to select a page 
to be deleted from M i  (since  there  is  already a copy'in 
Mi+,, there is no need to move the displaced  page 
into Mt+, )  [ 11. 

The principal advantage of this storage organization 
is that a  program's  Working Set  accumulates rapidly in 
the  fastest level M,, thus,  accesses  are  completed  at 
nearly the speed of M , ,  but the total cost of the  storage 
system  approaches  that of the  lowest level. A second 
advantage  is  that  the mechanism can be  readily imple- 
mented, requiring  very  little  operating system interven- 
tion [ 11. 

The most  notable examples  are  the  cache memory [ 2 ]  
on  the IBM System 360 Model 85 and Model 195. These 
systems  use  three levels ( n  = 3 ) ;  a seven-level  system 
is illustrated in a book by Lorin [ 31. 

Several'  papers [4-81 describe  some of the  techniques 
used for  cost-performance evaluation of storage hierar- 
chies.'These  papers  are  concerned with storage hier- 
archies of two  orthree levels. Typically,  their algorithms 
evaluate,  for a given hierarchy configuration (given num- 
ber. of storage  levels,  device  characteristics, etc. ), its 
cost-performance in terms of the  total system cost  per 
memory access  for different capacities and page sizes at 
each level,  and select  the configuration with the  lowest 
cost  per  access. 

These  studies  and numerical results  have  prompted 
some  fundamental questions:  How is the  system per- 
formance affected by the  cost  and  the required capacity? 
What  is  the minimum hierarchy  access time? How'should 
the  cost  be allocated to  each  storage level? What  are  the 
optimum Capacity and technology of each  level?  What is 
the optimum number of the levels in the  hierarchy? 

To provide  some  answers  to  these  questions, numerical 
computations  .and simulations, important  as they are, 
are  not sufficient: They  must be  supplemented  by  analy- 
sis, and the functional  relations among key system param- 
eters  are called for. Unfortunately, hierarchical storage 
systems  are complex and difficult for mathematical  anal- 
ysis,  and  few theoretical results of general nature  are 
available.  If one  starts with an all-inclusive model of the 
system, it is doubtful that  analytic solutions  can  be 
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achieved. We  therefore begin with bare  essentials  and 
formulate the problem in a  mathematically tractable  yet, 
hopefully practical, and'meaningful way. 

A  simple model is formulated with the following as- 
sumptions: 1)  The effect of the  storage management 
strategy is characterized by the memory  hit  ratio  func- 
tion. 2)  The device technology is specified by the  device 
access time  and the  cost  per unit of storage  (byte or other 
unit). 3 ) The hit ratio function and  the  device technology- 
c&t function  -are  representable by power  functions (or 
piece-wise  power functions).  Under  these  assumptions 
the optimization of such a system  becomes a geometric 
programming problem. 

An explicit  formula for  the minimum hierarchy  access 
time ,[ Eqs. (3  1 ) and (32) ] is obtained as a function of the 
hierarchy cost and the required capacity.  The capacity 
and  device technology are determined for  each  storage 
lev$l [Eqs. (43), (44), (47) and (48)]. Theoptimalcost 
ratio of adajacent levels is  constant (39) and,  for  an op- 
timal configuration the ratios between  device  access 
tirqes and of adajacent levels, as well as  the  ratios be- 
tween their  capacities,  are  also  constant.  [Eqs. (45) 
and (4611. 

The optimal number of storage  levels in a  hierarchy 
is shown  to be direcdy proportional to  the logarithm of 
the system's capacity, with the  constant of proportion- 
ality dependent upon the technology  and hit ratio char- 
aFteristic powers [ Eqs. (57 )  'and (60 )  ]. 

Model and assumptiqns 
The hierarchical 'storage system under consideration is 
shown in Fig. 1 with the operational  rules described in 
the  Introduction.  'It is a.linear  hierarchy of n levels, M,,  
M,,  . . ., M,. The  two major factors  that  determine  the 
performance of a storage hierarchy are  the  storage de- 
vice characteristics of each'level and  the  storage manage- 
ment strategy.  Since  copies.of  the information stored in 
the higher  levels are found in all lower levels, the  system 
storage  capacity, namely the maximum amount of infor- 
mation that can  be stored in the'systmn, is equal to  the 
capacity of. the  lowest level. In  our analysis the following 
assumptions  are made: 

A 1 .  Each  storage level, Mi, is characterized by its  access 
time ti and capacity Ci. 

A2. The storage  management strategy  is completely 
characterized by the  success function or hit ratio 
H, which is a  function of the storage capacity C .  

A3. The  device technologies are  characterized by their 
cost function b ( t ) ,  which represents  either  purchase 
or rental,  per  storage unit (say  byte) of the tech- 
nology giving the  access time t. 

The  cost function is always a monotonic  decreasing 
function .in access  time; a sample curve is shown in Fig. 2 .  
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Figure 1 Schematic diagram of a  linear  storage  hierarchy 
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Figure 2 Relative cost-access time characteristic. 

The  access time  includes device  cycle  time,  transfer 
time,  and waiting time. 

The  success function H generally depends  not only 
on  the  storage capacity C ,  but also on the block size,  the 
management  algorithm, and  other factors. 'For any rea- 
sonable choice of the algorithm,  howFver, such  as LRU, 
H is most sensitive . .  to  the  capacity, which is the  most 
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Zapacity - 
Figure 3 Qualitative  representation of a miss ratio  curve. 

critical parameter [ 1 1 .  Therefore, in the  present  analysis, 
the  success function H is assumed  to  be a function of C 
only, and it is always  monotone increasing in C .  

The  success  function, H ( C )  , is  the probability of find- 
ing the  requested information for  each  memory  reference 
to a memory of capacity C .  Since a copy of all informa- 
tion in level i exists in every level greater  than i, the prob- 
ability of a hit at Mi and misses in the higher  levels M,, 
M,; . ., Mi-l, is hi, namely, 

hi = H ( C i )  - H(ci - l ) ,  (1)  

which is  the relative number of successful accesses to 
level i, and  is  sometimes referred to  as  the  access fre- 
quency. The miss  ratio or  fault probability is defined as 

F ( C )  = 1 - H ( C ) .  (2 1 
A sample of F ( C )  is given in Fig. 3. 

Let Ti be the effective  hierarchy access time to  the ith 
level M,,  i.e., Ti is the  sum of individual access times of 
each level  up to Mi,  namely, 

1 

Ti = 4. (3 1 
j=l 

In our analysis, because of the particular choice of opti- 
mization criterion, Eq. ( 3 )  is equivalent to a more  general 
form, 

T i =   T o + K C  4 ,  

where To and K are  constants with K > 0. The effective 
or  average  hierarchy  access time per  each memory  refer- 
ence is, therefore, 

i 

(4) 
j=l 

n 
T ’ C  hi T,. ( 5 )  

I= 1 

Substitution of Eqs. (1 ) and ( 3 )  into ( 5 )  gives 

T =  H(Cn)tl + [H(C, )  - H(Ci-,)1ti. (6) 

It  is a convention  to define H ( C , )  = 1, which amounts 
to assuming that all requested information is  stored in 
the  lowest level Mn (the largest store).  For notational 
simplicity we define H ( C , )  = 0. With these definitions 
F(Co)  = 1 and  Eq. (6) becomes 

n 

i=2 

n  n 

T =  t ,  + c, [ I  - H(C,_,)1ti = c, [1  - H(Ci&,)1ti 
i=2 i= 1 

n 
= F (Ci-l)t,. (7 1 

i= 1 

The total cost of the  storage  system is 

n 
S = b(t i )Ci ,  (8 1 

i= 1 

which, in our  analysis, is equivalent to a more  general 
form of 

COST = F C T ( S ) ,  (9 1 

where FCT is  any monotonic  function of S. The equiva- 
lences  between  Eqs. ( 3 )  and (4) and  between (8) and 
(9)  do  not hold in Refs. [6, 7 and 81 because  their mea- 
sure of cost-performance  is  the  total  system  cost  per 
reference, namely, the’product of S and T.  

Optimization problem 
Our  criterion  for optimization is to minimize the effective 
hierarchy access time T subject to  the  storage  system 
cost  and  capacity  constraints  or, equivalently, to mini- 
mize the system cost  subject  to  the  constraints on T and 
the capacities. The problem is as follows: 

Given: 
storage capacity Cn 
system  cost So 
success function H(C) or fault  probability  function 

technology cost function b ( t )  
number of levels, n 

F (‘3 

Variables: 
t,, tZ,’ . ., t ,  
c,, c,, . . .I cn-l 

Minimize: 

T = F (Ci-l)fi. 

Subject  to  the  constraints: 

n 

i=l 

n 
s = c, b(t , )C,  9 so; 

i= 1 
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ti > 0 for i = 1, 2 , .  . ., n and 

C i > O f o r i =   1 , 2 ; . . , n -  1. 

( 1 1) Power functions 
We  assume  that  the  fault probability F (C) and tech- 

(12) nology cost function b( t )   are  power  functions; specifi- 

Since  the  functions F ( C )  and b ( t )  are generally not 
linear, the minimization is a  problem in nonlinear  pro- A4.  The fault  probability is 
gramming. No general  solution is known, so to  obtain  an 
explicit  solution, we  assume  power  functions  for F and F (C) = F 0 C a  for F,"" 5 C < C,, (15)  
b. The  number of levels, n, is considered to be, later  on, 
an  unknown variable, and  its optimal value is determined where F, and a are positive constants. Without loss 

by optimization techniques.  First we derive  some general of generality, we  take  the  constant F,  = i ,  i.e., 

relations  by the method of Lagrange multipliers. Form 
F (C) = C-". (15') the Lagrangian  function 

L = T + A(S - So)  ( 1 3 )  This choice of F, amounts  to using Ft'" as  the unit 
for  the  storage  capacity  since  Eq. ( 15)  can be writ- 

At  the optimum values the partial derivatives of L with ten as F = ( C / F ,  1la ) -a . As  seen,  Eq.  (7)  does  not 
respect  to all ti's, Ci's and A vanish. (For a more rigorous contain F (C,) ; the required range  for  the validity of 
approach  Kuhn-Tucker conditions [9] should be  used.) the  power function is only up  to  and including Cn-l. 
As a result, AS. The  cost  per unit capacity  or  byte is 

cally: 

s = so, b ( t )  = bot-@  for t > 0, 

A = -  F ' (C,) ti+, 

b ( t i )  
f o r i =  1, 2 , . . . ,  n- 1,  (14b)  where bo and p are positive constants.  Again, with- 

out loss of generality, we take bo = 1  (i.e., bo is the 
unit for  cost) : 

Both derivatives H' ( C )  and b' ( t )  are negative. Eq.  (14) 
is a system of 2n equations, solvable at least in principle, 
for  the 2n variables t , ,   t z , .  * ., t,; C,, C,; . *, Cn-,; and  the 
multiplier A. Some immediate observations  can be made 
from Eq. ( 14) : 

1. The  cost  constraint is active  (as  expected). 
2 .  The  capacity  or size Ci of the ith level Mi is directly 

proportional to  the miss ratio of Mi-l and inversely 
proportional to  the  cost slope of the technology at M,. 

3. The  access time, ti ,  of Mi is proportional to  the  byte 
cost of Mi-l and inversely  proportional to  the  slope of 
the miss  ratio at Mj-, .  

-4. The  cost of M i  is 

The higher is the miss  ratio at  Mi-, ,  the  more money 
should be  spent  for M,. 

5. The  average period of time for  each memory reference 
when Mi is active, i.e., the  contribution of Mi to  the 
hierarchy  access time T ,  is 

The higher the  cost of Mi-1 per  byte,  the longer will 
be  the period of activity for M i .  

These  assumptions may appear  restrictive;  however, 
at the  present level of analysis,  and  due to scarcity of 
data,  they  enable us to gain some insight and  to  determine 
the sensitivity of certain  parameters in a storage hier- 
archy model. Furthermore,  these  functionals  agree rea- 
sonably well with  empirical data; Eq. (16) is used in [8] 
with 0.2 5 p 9 0.6, and  the  power function is not  too 
different from  the empirical hit ratio data of Mattson 
[ 101. Some empirical data  show leveling off in  miss ratio 
beyond certain capacities. This phenomenon can  be ac- 
counted  for by using different  values of (Y for different 
levels (see  later  generalizations). 

With  these  assumptions  the  expressions  for  the effec- 
tive hierarchy  access time and  the  cost  constraint  become 

n 
T = t ,  + x ci-,-= t i ;  (17) 

s/s ,=-x t i 8  ci5 1. 

i=2 

1 ,  
so i = l  

(18) 

The  system of equations  (14)  can  now be  solved  ex- 
plicity; however,  the  intermediate  results  are  quite com- 
plex. Instead of solving (14)  directly,  we  use a theory 
in geometric programming to  obtain  an  expression  for 
the minimum hierarchy  access time  without having first 
to  solve  for  the C,'s and t i 's.  With the positivity  condi- 
tions of Eqs. ( 1  1 ) and (12),  both  the  objective  function 197 

MAY 1974 OPTIMIZATION OF STORAGE  HIERARCHIES 



(17) and  the  constraint (18) are posynomials in the C,'s 
and f;'s. The optimization  problem as formulated here is 
a standard geometric  programming  problem. 

Constrained minimum 
By the  theory of geometric programming, the  constrained 
minimum of the effective  hierarchy access time is 

T* = AACn'211 S[* (i) , 
zn Si 

1=1 

where 

A = Si = x 6n+i (20) 

and  the  vector variable S = (al, ti,, . . ., tizi) is subject to 
linear constraints, namely: 

Positivity: 

6, 3 0  f o r i =  1, 2;.., 2n.  (21) 

Normalization: 

2 n  . n 

i=n+l i = l  

n 

2 s i=  1. 
i= l  

Orthogonality: 

SA = 0, (23  1 
where A is a 2n X (2n - 1 ) matrix of exponents obtained 
from Eqs. (17) and (18) as 

n . n-1 

n n-  1 

0 

I 0 

The  submatrices ,A,, and  are n X n, while A,, and 
A,, are n X (n - 1). A,, and hl come  from  Eq. (17) and 

h1 and hi from (18) .  A,, is  the n X n identity matrix 
I,; 4, = -PIn; A,, has all zeros  except  the diagonal just 
below the main &agonal; where all elements  are -a; the 
top n - 1 rows of 4, form an (n - 1 ) X ( r t  - 1)  identity 
matrix  and  the  bottom row consists of all zeros. 

With the definition of (24), Eq. (23 ) gives 

si = for i = 1,  2,. . ., n ;  (25) 

= "ai+, for i = 1, 2,. ., n - 1. (26) 

With the aid of Eqs. (22) and (25),  (20) yields 
n 

A = p" Zsi = p". (27) 
i= 1 

The unique  solution of the 2n equations of (22),  (25) 
and (26) is obtained as 

k if aP = 1; 

8n+i = P-lsi = P-' (aP)n-i 6, for i = 1,  2, * * ., n. (30) 

Note  that A and 6,'s are all positive. 
By substituting Eqs. (28)-(30) into (19); and  after 

some .(tedious)  algebraic  manipulations, the minimum 
hierarchy access time is obtained as follows. 

when ap # 1, 

where 

and 

y = x isi - n. 

The summation  yields 

n 

i= 1 
(34) 

(34') 
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where 

77 = y ( l  + p-l) = ( 1  + p-q* - n(aP)fl  
- 1 (spy - 1 ).(34b) 

The minimum value is a product of three  factors;  the 
system  cost  and  the  system  capacity  enter  into only  on6 
(separate)  factor each. As intuitively expected,  the op- 
timum access time decreases with  increasing system  cost 
and  increases with  increasing  capacity. The logarithmic 
rate of decrease with respect  to  the cost is  determined 
by the technology cost slope p, and  the  rate of increaSe 
with respect  to  the  capacity is determined by both tech- 
nology and the hit ratio characteristics  as well as  the 
number of levels. If the technology cost  curve  is  steep 
(i.e., if /3 is large),  the effect of the hierarchy cost in te- 
ducing the  access time is lessened., The third factor de- 
pends only on a, p and n and is independent of So and C,. 

Cost allocation and access time distribution 
Here  we  examine  the allocation of the  total  hierarchy  cost 
to  each storage  level and  the contribution of each level 
to  the effective hierarchy  access time. Returning  to Eqs. 
(17)  and  (18), ti-'Ci is the  cost allocated to M i  and 
ci-l-uti is  the activity  time of Mi. The total cost So and 
hierarchy access time are  the  respective  sums of these 
terms  over all levels. 

The  ratio between the  cost of M i  and the total hier- 
archy  cost,  is ai, i.e., 

u , = ~ , - ~ c , / s ,  for i=  1 ,2; . . ,n .   (35)  

The  ratio  between activity  time of M i  and  the effec- 
tive  hierarchy access time is di,  i.e., 

di=CL-a'ti/T,  fori=  1,2;.. ,n  (36) 

with the convention that C ,  = 1. 

i =  1,2;..,n, 
At  the optimizing point, it can be shown [ 121 that  for 

ai = ti-PCi/So = 6,+,/A 

and 

di = C;:,ti / T* = ai ,  (37) 

where T* is the optimal access time of the hierarchy. 
Substitution of (25)-(30) into (37) yields 

It also follows that 
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(33') 

In  other  words,  the fractional cost allocations are  equal 
to  the relative  activity  time  distributions; the more  costly 
storage level contributes a larger  fraction to the optimum 
hierarchy  access time T* since it is more active.  The  cost 
(or activity time)  ratio of two  adjacent  storage levels is 
simply ab. If crp < 1, the  greater  cost should  be  allocated 
to  the  lower level (i.e., the slower and  larger  memory 
level). If a~ = 1, all levels are of equal cost. If ab > I ,  
then the higher  level (i.e., faster  and  smaller) should get 
the larger fraction of cost. For  example, if ap = +, then 
the  costs of M,, M z ,  M ,  and M ,  should be itl the ratio 
1:2:4:8. 

Determination of minimizing parameters 
The  constrained minimum of the  hierarchy  access time 
and  the  associated variables 6,'s are obtaified without 
explicitly  solving for  the minimizing parameters, namelk 
C,, C,, ; . .,, C,-, and t,, t z ,  * .  ., t, which characterize a11 
stofage levels. We  show  that  these minimizing parameters 
can be  obtained by solving a set of 2n - 1  simultaneods 
linear equations. (They  can  also  be  obtained from E&, 
(14b) and (14c)  derived  from  the Langangian  functiori.) 

In  the  system of equations  as given by Eq.  (37),  the 
unknown  variables are  C,, C,; . ., C,-,,  t,, t,;. ., t,, but 
all other  parameters  are  known, being either given,  name- 
ly So,  C,, a ,  p and n, or already  solved in terms of the 
givkn parameters, namely T*, A and Si's. There  are 2n - 1 
independent  equations  since X i  ai - X i  di = 0, and they 
are nonlinear. They  can  be  transformed,  however,  into 
a set of linear equations in the logarithms of the unknown 
variables by taking  logarithms of both  sides of the equa- 
tions as: 

f o r i =  1, 2;.., n 

In ti - a In Ci-,  = ln(6,T*), and 

-p In ti -t In Ci = In@ tinci S o ) ,  

which can  be  written in a matrix form  as 

wh 

P =  

e 

In t, 
In tz 

In t ,  
In C ,  
In C, 

. I  

In'C,,- 

Q =  

The  matrix A is  the  same 2n X (2n - 1)  matrix as given 
in Eq.  (24). 



To solve Eq. (40) for  the minimizing parameters, a Hence  the  capacity  ratio  are 
recurrence  equation in In C,  is first obtained by eliminat- 
ing In ti from (40) as: 

ci+ / c, = cn1ln0pt. 

In Ci-arp In Ci-l = m i   f o r i =  1,2;.., n, (41) 

where 

Furthermore (48) yields, for n = noPt, 

ti+l / ti = (ab) l'@ ~ ~ l l @ ~ o p t .  

(45') 

m , = I n S , + p I n  T * +  (1+p) ln6 , ,  (42) Expected number of faults and CPU cost 

and 6, is given  by Eqs. (28) and (29) in terms of a, p and 
n. Once  the Ci or In C, are determined,  the ti's are given 

Once  the  capacities of each  storage level are  determined, 
it is possible to  evaluate the expected  number of faults 

each  reference to get a hit at M i  and i - 1 faults  at  the all 
directly by Eq. (40). The solution is obtained as follows. per  Rference. As given in Eq. ( 1 9 the probability for 

When ~$3 = 1 preceding  levels, M , ,  M,; ., Mi-l is 

c, = (43) h i =  H ( C , )  - H(C, - , )  = F (C,-l) - F (CJ. (49) 

and  The  expected  number of faults NF  is then 

The  capacities  and  access times are in a geometric pro- 
gression. The  ratios  are  constants which are  dependent 
on the system capacity C,: 

With the  assumption  that  the fault  probability F ( C )  is 
F ,  C-", i.e., Eq. ( 1 5 ) ,  and with the  convention  that 
H ( C , )  = 1 ,  the  expected  number of faults  becomes 

ci+ ] / ci = cnlln; 
t i + l / t i  = (Ci+, /Ci)" = C,"', 

n R - 1  

For illustration,  when a = /3 = 1 ,  n = 4, and C, = lo8, 
the optimal capacities  and  access times of the  four stor- 
age  levels are respectively lo2, lo4, 10' and 10' bytes, 
and 10 ns, 1 ps, 100 ps and 10 ms. It  is of interest  to  note 
that  the  constancy in the  ratio of the  access  times of ad- 
jacent levels for  the optimum  configuration has been  re- 
ported [8], and  the  constancy in the  ratio of capacities 
has  been empirically observed [ 1 11. 

When Cup # 1 
The solution of the  recurrence  equation (41 ) is 

where  the Ci's are given in Eq. (43) or (47'). The ex- 
pression in terms of the  basic  parameters  is  quite simple 
for  the  case in which ap = 1 ;  substitution of (43) in ( 5  1 ) 
yields 

which increases with increasing n. For  example, when 
C, = lo6, n = 4, CY = p = 1 ,  and F ,  = 4, the  expected 
number of faults per  each  reference  is 0.12. 

One could also  compute  the  overhead  cost of the CPU 
n-i 

In ci = In C, - (up)', 

and from Eq. (40) we  have reference CMF is then 

for managing the faults, which may differ for different 
(47) levels. Let ( ( i )  be  the  overhead  cost  for managing a  fault 

at the i-th level. The  expected  overhead  cost  per  each 
j=1 

~ 

(48) C M F  = ( ( i -  l ) h i .  
i=2 

(53 

If the  cost is simply proportional to  the  index of the level, 
(48') i.e., if 

Substitution of Eqs. (32) and (42) into (47) with the aid ( ( i )  = k i, 
ofEqs. (28), (29) and (33') yields 

then (53 )  becomes 

In C, = (47') C M F = k i   ( i - l ) h , = k X N F ;  (55  

where nopt is given in Eq. (60). When n = noPt, (47') 
becomes 

i=2 

i.e., the  average  overhead  cost  for managing faults  per 
each  reference  is  directly proportional to  the  expected 

200 Ci = C,qnOPt. (43' ) number of faults  per reference. 
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Optimum number of memory levels 
The  constrained minimum of the  storage hierarchy access 
time T * ,  as given in Eq. (31 )  or (32) does not depend 
only on  the system cost So, capacity C,, technology 
and  program work load characteristics a and p, but  also 
on  the  number of the storage  levels, n. In  the  analysis so 
far,  the value of n is considered  given as usually is the 
case in practice.  We may,  however,  consider n as an  ad- 
ditional  unknown parameter  to be  determined. The opti- 
mum number of storage levels, is  that value of n which 
minimizes the  constrained minimum T * ,  and can be  de- 
rived by considering T* as a  function of n with the  system 
parameters So, C,, a and p as  constants.  The  derivations 
are given for  cases ap = 1 and ap # 1 and are  achieved 
without solving for  the minimizing parameters Ci and ti. 

a/3 = 1 
The  derivative of T * ,  using Eq. (3  1 ), with respect  to 
n is: 

which is negative for small n and positive for large II. 
Hence, T* first decreases  and then increases as n in- 
creases. 

By setting the  derivative  to  zero and solving for n, the 
minimizing value of n is obtained as 

a In C ,  
n0,t = - 1 + a  

In C , = -  1 + p .  (57) 

The optimal  number of storage  levels is directly  propor- 
tional to  the logarithm of the storage system  capacity. 
Since  the  number  is  an integer, the  actual optimal  value 
is.either  the integral part of the  above  expression  or  the 
smallest  integer greater than that,  and is determined by 
evaluating and comparing their  respective values for T*.  
Neglecting  this quantization effect, we find the  corre- 
sponding minimum access time to  be 

T,* = So-a ( e  nopt) l+a.  ( 5 8 )  

ap # 1 :  
Equations (32) and ( 3 3 )  suggest that it would be  simpler 
to  take  the  derivative of  In T* than of T* itself. After 
some  manipulation we find that 

which is again proportional to the logarithm of the ca- 
pacity. As a matter of fact  as a/3 "* 1, (60) becomes 

As a  numerical example, when a = p = 1/2, Eq. (60) 
yields noPt = 5 (or 4),  6 (or 5 ) ,  and 7 (or 6 ) ,  respectively, 
as  the optimum number of levels for  the  storage capaci- 
ties of lo6, lo7 and lo8 "bytes" [actual unit depends upon 
the normalization factors used in Eqs. ( 15) and ( 16)]. 

Level-dependent cost 
The  results obtained so far  can readily  be extended  to 
include any additional cost  that is dependent  on  the num- 
ber of levels in the  storage  hierarchy,  such as  the so- 
called per  box  cost,  constant  bus  cost,  and  the  cost of 
managing faults as discussed in the preceding  section. 
Let g ( n )  denote  such additional cost; g ( n )  may depend 
on  any given parameter  such  as a and p, but is indepen- 
dent of the variables Ci and ti; g ( n )  in general is mono- 
tone increasing in n. 

The system cost now becomes 

and  the  cost  constraint becomes 

Equation (62) has  the  same form as  the original con- 
straint,  Eq. (18) ,  with So replaced by So- g ( n )  which 
is also independent of the variables. Therefore  the 
formulas for  the minimum access time T" are still valid 
after replacing So by So - g ( n ) .  More explicitly, T* of 
Eqs. (3  1 ) and (32) becomes: 

[ S o -  g (n)I -"  C ,  ain nl+e 

T* ={ 
when ap = 1 

[So - g ( n ) ] - "  C,*nda T,(n,  a, p )  when a/3 # 1. 
(63 1 

The inclusion of the level-dependent cost g ( n )  does 
not  change the values of h and 6. Furthermore,  it  does 
not affect the  cost allocation nor  the  access time  distri- 
bution except  that So is replaced by So - g ( n )  in the defi- 
nition of ai in Eq. (35) .  The  equations  to  determine  the 
minimizing parameters remain valid, the only modifica- 

It  can be verified from the sign of the  last  expression 
that T* first decreases and  then increases as n increases 
from  zero,  and  the unique minimizing value of n is 

tion being the  above mentioned  replacement. 
The additional cost g ( n ) ,  however,  does  have a signifi- 

cant effect on  the optimum number of storage levels. 
Without g ( n ) ,  no,, is independent of the  system  cost S,; 
this is no longer  true. Moreover,  the inclusion of g ( n )  

(60) tends  to  reduce  the optimum number  (as would be in- 201 
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tuitively expected).  Consider first the  case wherein 
aP = 1 and  for simplicity, take 

g ( n )  = kn, (64 1 
k being some  constant. 

ffp = 1 
The  derivative of  In T* with respect  to h is 

-In d T * = -  kn2 - [ak lnC, + (1 + a ) S O ] n  + &S,,lnC, 
dn n2 (s, - k n )  

(65 1 
By setting  this  &pression to  zero,  we  have a quadratic 
equation in n. t h e  .equation .has  two positive roots,  one 
being, less than; and  the  other  greater  than, S J k .  Since 
Sd - kn must be  positive, the smaller  root is the  unique 
miiimizing poi& 

--{[crklnC,+ 1 ( 1 + a ) S O ] 2 - 4 a k S o l n C n } ~  , k 'I 
(66 1 

which depends  not only on In C,, but also on SO, and can 
be shown to be always  less than a In C n /  ( 1  + a), the 
optimum number of levels without including kn. 

f fp # I 
The  derivative is 

X [ ( l  + p)n In ap - (ab - 1) In Cnj .  (67 )  

The equatioti  obtained by setting  this expression  to  zero 
is transcendental in n and  no closed-form solution'exists. 
The  .optimum riamber of levels, however,  can be  readily 
computed arid depends  on  the hierarchy capacity only 
as In C,. I t  can  be  seen  that inclusion of level-dependent 
cost,  such  as  per  box or fault-managing overhead  tends 
to reduce  the optimum number of levels. 

The  results  and  formulas presefited in this paper  can 
also be  used to include to some extent  the effect of vari- 
able time delays  such as  address decoding time, bussing 
times  which are  dependent on the  storage  capacities, arid 
access-deptndent  costs,  such  as bus cost, without  any 
change in  mathematics. All that is required is to change 
the values of the  exponents a and P in the basic  time and 
cost  equations,  (17) and (18). 

Inclusion of these additional  time delays  and  costs ?ill 
increase  the Cohtributiob of each  storage level to the total 
hierarchy cost  and  access time, i.e., to  the magnitude of 
each  product  term in Eqs. (17)  and ( 18). A simple way 
to reflect this  increase  is to decrease  the values of a and P, 
e.g., by replacing a and P by an effective a, < a and 

f i e  < P, without  introducing any additional term in the 
sum,  and  thus  without requiring any new  derivations. 
One of the effects of using smaller a and P is to reduce 
the value of the optimum number of memory  levels in 
the hierarchy. 

. ,  

Some generalizations 
The preceding  formulation and  results can  be generaliked 
to  be applicable to  the  cases  where  the vaiues of the  char- 
acteristic  parameters a and /3 are different for different 
storage levels. 

Variable iw and j3 
Instead of assuming the  same technology-cost and  hit 
ratio functions for all storage levels, we can allow differ- 
ent  characteristics (still  assuming the power  functional 
form) for different  levels. Let ai and Pi denote  the cor- 
responding powers  for storage level Mi. The hierarchy 
access time  and the  cost  constraint  are now 

n 
s = 2 ci 5 s,. 

i= 1 

The phenomenon of leveling off of the miss ratio a s  pre- 
viously mentioned can  be  accommodated by setting a, 
equal  to zero. 

The  expression of the  constrained minimum of the 
hierarchy access time of Eq. (19) remains the  same; 
however,  the optimizing vector S is different. The ortho- 
gonality  conditions  become 

n-i-1 

Si = Pi sn+i = f f i  Pi S i + l  = 8, n "i+j P i + j  
j=O 

f o r i =  1, 2;.., n; (70) 

= ai Si+l for i = 1 ,  2 , .  . ., n - 1 .  (71) 

Hence, fori= 1 ,  2 ; . . ,  n -  1, 

S i / 6 , ,  = f f i  Pi and an+ilan+i+, = f f i   P i + , .  

The normalization condition,  Eq. ( 2 2 ) ,  yields 

(73 1 

Substitution of (73)  into (70) and  (71) gives the ex- 
plicit expressions  for all S's in terms of the ai's and Pi's. 
Furthermore, 

(74) 

Therefore,  the minimum hierarchy access times,  Eq. 
( 19 ) , becomes 
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Notice  that X and  the tji’s are  functions of n, & i s ,  and 
pi’s but are  independent of So and C,. 

Similarly, Eq. (75)  can be  used to  determine  the opti- 
mum ,number of ievels. An explicit  closed form  expres- 
sion €or nopt does  not  seem likely,; numerical computation 
is required. However,  it is apparent  that  the effect of 
C ,  enters only as In C,. 

Nonuniform coeficients: 
Consider  the  hierarchy  access time  and the  cost con- 
straint  as 

and 
n 

s = c, rn+i ti-* c,; (77 1 
i = l  

where  the r i ’ s  are  some positive constants.  When  these 
constan;s aie h e ,  Eqs. (76)  and (77)  reduce  to  (17) 
and (18) .  

The  constrained minimum of the hierarchy access 
time is now 

The orthogonality nd norrhalization conditions remain 
the  same  as before 1 iiamely, Eqs. (22) ,  ( 2 5 )  and  (26)]. 
Therefore A and 6 are  the  same  as given by Eqs. (27)-  
(30). Substitution of these values in (78)  renders 

T,* = T* (ril6i, (79 1 
2n 

i=1 

where T* is  the  expression given by either (3  1 )  or (32) .  
In  other  words  the hierarchy access time is modified by a 
multiplicalive factor. 

Combination of previous  cases 
The  constrained minimum effective hierarchy  access 
time is now given by Eq. (78) with h and 6 given by 

MAY 1974 

Eqs. (74) , ,  (70), (71) and  (73). Again, .the optimum 
number.of memory ievel depends  on  the logarithm of the 
hierarchy capacity,  rather  than  directly  on  the  capacity, 
in all these  cases. 
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