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On Optimization of Storage Hierarchies

Abstract: A simple model of the storage hierarchies is formulated with the assumptions that the effect of the storage management
strategy is characterized by the hit ratio function. The hit ratio function and the device technology-cost function are assumed to be repre-
sentable by power functions (or piece-wise power functions). The optimization of this model is a geometric programming problem. An
explicit formula for the minimum hrerarchy access time is derived; the cgpacity and technology of each storage level are determined. The
optimal number of. storage levels in a hierarchy is shown to be directly proportional to the loganthm of the systems capacity with the
constant of proportronahty dependent upon the technology and hit ratio characteristics. The optimal cost ratio of adjacent storage levels
is constant, as are the ratios of the device access times and storage capacities of the adjacent levels. An illustration of the effect of over-

head cost'and level-dependent cost, such as the cost per “box” and cost for managing memory faults is given and several generalizations

are presented.

Introduction

The general trend in the developrpent of large computer
systems is toward increasing the use of storage hierar-
chies. A linear storage hrerarchy model consists of n
levels, M, M,,---, M, connected in cascade as shown in
Fig. 1. The convention is that thg higher is the level the
lower is its index. Generally, the higher is the level, the
faster is its speed, the higher is its cost per byte, and the
smaller is its capacity. Information transfers are between
adjacent levels and are entrrely controlled by the activity
in the ﬁrst level M. The rules of operatlon are

1. Whenever a page is stored inlevel M|, there is a copy
ofitin each of the lower levels, M, ,, -, M,.

2. Whenever a referenced page is not found in M, a
request for it is sent to the successive lower levels
until it is found in the say M, level. .

3. Whenever M ; 1s full and a new page is to be brought in
from M, |, a replacement policy, usually the Least Re-
cent]y Used (LRU) policy, is invoked to select a page
to be deleted from M, (since there is already a copy in
M, ,, there is no need to move the displaced page
1nto Mm) [11.

The principal advantage of this storage organization
is that a program’s Working Set accumulates rapidly in
the- fastest level M, thus, accesses are completed at
nearly the speed of M, but the total cost of the storage
system approaches that of the lowest level. A second
advantage is that the mecharism can be readily imple-
mented, requiring very little operating ‘system interven-
tion [1].

The most notable examples are the cache memory 2]
on the IBM System 360 Model 85 and Model 195. These
systems. use three levels (n.= 3); a seven-level system
is illustrated in a book by Lorin [3].

Several papers [4-8] describe some of the techniques
used for cost-performance ‘evaluation of storage hierar-
chies.’ These papers are concerned with storage hier-
archies of two or-three levels. Typically, their algorithms
evaluate, for a given hierarchy configuration (given num-
ber. of storage levels, device characteristics, etc.), its
cost—performance in terms of the total system cost per
memory access for different capacities and page sizes at
each level, and select the configuration with the lowest
cost per access.

These studies and numerical results have prompted
some fundamental questions: How is the system per;
formance affected by the cost and the required capacrty"
What is the minimum hlerarchy access time? How should
the cost be allocated to each storage level? What are the
optimum capacity and technology of each level? What i is
the optrmum number of the levels in the hierarchy?

To provide some answers to these questions, numerical
computations -and simulations, important as they are,
are not sufficient. They must be supplemented by analy-
sis, and the functional relations among key system param-
eters are called for. Unfortunately, hierarchical storage
systems are complex and difficult for mathematlcal anal-
ysis, and few theoretical results of general nature are
available. If one starts with an all-inclusive model of the
system, it is doubtful that analytic solutions can ‘be
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achieved. We therefore begin with bare essentials and
formulate the problem in a mathematically tractable yet,
hopefully practical, and meaningful way.

A simple model is formulated with the following as-
sumptions: 1) The effect of the storzige management
strategy is characterized by the memory hit ratio func-
tion. 2) The device technology is specified by the device
access time and the cost per unit of storage (byte or other
unit). 3) The hit ratio function and the device technology-
cost function are representable by power functions (or
piece-wise power functions). Under these assumptions
the optimization of such a system becomes a geometric
programming problem.

An explicit formula for the minimum hierarchy access
time [Egs. (31) and (32)] is obtained as a function of the
hierarchy cost and the required capacity.. The capacity
and device technology are determined for each storage
level [Eqs. (43), (44), (47) and (48)]. The optimal cost
ratio of adajacent levels is constant (39) and, for an op-
timal configuration the ratios between device access
times and of adajacent levels, as well as the ratios be-
tween their capacities, are also constant. [Egs. (45)
and (46)].

The optimal number of storage levels in a hierarchy
is shown to be directly proportional to the logarithm of
the system’s capacity, with the constant of proportion-
ality dependent upon the technology and hit ratlo char-
acteristic powers [Eqs (57) and (60)].

Model and assumptions

The hierarchical ‘storage system under consideration is
shown in Fig. 1 with the operational rules described 1n
the Introduction. Tt is a’ hnear hierarchy of n levels, M,
M,, -, M,. The two major factors that determine the
performance of a storage hierarchy are the storage de-
vice characteristics of each level and the storage manage-
ment strategy Since copies-of the information stored in
the higher levels are found in all lower levels, the system
storage capacity, namely the ma_x1rnum amount of infor-
mation that can be stored in the system, is equal to the
capacity of the lowest level, In our analysis the following
assumptions are made:

Al. Each storage level, M, is characterized by its access
time ¢, and capacity C,. '

A2. The storage management strategy is completely
characterized by the success function or hit ratjo
H, which is a function of the storage capacity C.

A3. The device technologies are characterized by their
cost function b(¢), which represents either purchase
or rental, per storage unit (say byte) of the tech:
nology giving the access time .

The cost function is always a monotonic decreasing
function in access time; a sample curve is shown in Fig. 2.
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Figure 1 Schematic diagram of a linear storage hierarchy
model. : )

Cost per byte (relative)

Access time (relative )

Figure 2 Relative cost-access time characteristic.

The access time includes device cycle tlme, transfer
time, and waiting time.

The success function H generally depends not only
on the storage capacity C, but also on the block size, the
management algorithm, and other factors. For any rea-
sonable choice of the algorithm, however, such as LRU,
H 1s most sensmve to the capacity, Wthh is the most
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Fault probability

Capacity ————»

Figure 3 Qualitative representation of a miss ratio curve.

critical parameter [1]. Therefore, in the present analysis,
the success function H is assumed to be a function of C
only, and it is always monotone increasing in C.

The success function, H{C), is the probability of find-
ing the requested information for each memory reference
to a memory of capacity C. Since a copy of all informa-
tion in level i exists in every level greater than i, the prob-
ability of a hit at M, and misses in the higher levels M,
M,, -, M,_,,is h,, namely,

h,=H(Cl) _H(C,,l)’ (1)

which is the relative number of successful accesses to
level i, and is sometimes referred to as the access fre-
quency. The miss ratio or fault probability is defined as

F(C)=1—H(C). 2)

A sample of F (C) is given in Fig. 3.

Let T, be the effective hierarchy access time to the ith
level M, i.e., T, is the sum of individual access times of
each level up to M, namely,

T,= i e (3)
j=1

In our analysis, because of the particular choice of opti-
mization criterion, Eq. (3) is equivalent to a more general
form,

T,=T,+K3 ¢, (4)

where T, and K are constants with K > 0. The effective
or average hierarchy access time per each memory refer-
ence is, therefore,

T=S hT, (5)

Substitution of Eqs. (1) and (3) into (5) gives
T=H(C,),+3 [H(C,) —H(C,_)I, (6)
i=2

It is a convention to define H(C,) = 1, which amounts
to assuming that all requested information is stored in
the lowest level M, (the largest store). For notational
simplicity we define H(C,) = 0. With these definitions
F(C,) = 1and Eq. (6) becomes

n

T=t, +i [1-H(C )= [1-H(C_)]

i=1

=3 F(C_)t, ™)
i=1
The total cost of the storage system is
5= b(1,)C, (8)
i=1

which, in our analysis, is equivalent to a more general
form of

COST = FCT(S), 9)

where FCT is any monotonic function of S. The equiva-
lences between Eqgs. (3) and (4) and between (8) and
(9) do not hold in Refs. {6, 7 and 8] because their mea-
sure of cost-performance is the total system cost per
reference, namely, the'product of S and 7.

Optimization problem

Our criterion for optimization is to minimize the effective
hierarchy access time T subject to the storage system
cost and capacity constraints or, equivalently, to mini-
mize the system cost subject to the constraints on T and
the capacities. The problem is as follows:

Given:
storage capacity C,
system cost S,
success function H(C) or fault probability function
F(C)
technology cost function b(t)
number of levels, n
Variables:
to by oty
C,Cy o C
Minimize:

n-1

n

T=Y F(C,_), (7)
i=1

Subject to the constraints:

§=3 b(t)C,= Sy (10)
i=1
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t;>0fori=1,2,--+, nand (1)
C,>0fori=1,2,--,n— 1. (12)

Since the functions F(C) and b(¢) are génerally not
linear, the minimization is a problem in nonlinear pro-
gramming. No general solution is known, so to obtain an
explicit solution, we assume power functions for F and
b. The number of levels, #, is considered to be, later on,
an unknown variable, and its optimal value is determined
by optimization techniques. First we derive some general
relations by the method of Lagrange multipliers. Form
the Lagrangian function

L=T+\S~S,) (13)

At the optimum values the partial derivatives of L with
respect to all ¢’s, C,’s and A vanish. (For a more rigorous
approach Kuhn-Tucker conditions [9] should be used.)
Asaresult,

§=35, (14a)
_ F'(C)ty, .
A= b1, fori=1,2,--,n—1, (14b)
F(C, ) )
A= Cib’(ti) fori=1,2,--+, n (14c)

Both derivatives H' (C) and b’ () are negative. Eq. (14)
is a system of 2n equations, solvable at least in principle,
for the 2n variables ¢, t,,-*~ t,; C,, C,, -+, C,_,; and the

multiplier A. Some immediate observations can be made
from Eq. (14):

1. The cost constraint is active (as expected).

2. The capacity or size C, of the ith level M, is directly
proportional to the miss ratio of M,_, and inversely
proportional to the cost slope of the technology at M,.

3. The access time, ¢, of M, is proportional to the byte
cost of M,_, and inversely proportional to the slope of
the miss ratio at M,_,.

4. The cost of M, is

b()C=—F (C) N0 b(1) |,.,,

The higher is the miss ratio at M,_,
should be spent for M.

5. The average period of time for each memory reference
when M, is active, i.e., the contribution of M, to the
hierarchy access time T, is

the more money

d
F(C)t==Ab(t_) /5 F (Oleee, -

The higher the cost of M,_, per byte, the longer will
be the period of activity for M.
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Power functions

We assume that the fault probability F(C) and tech-
nology cost function b(r) are power functions; specifi-
cally:

Ad. The fault probability is
F(C)=F,CforF/*=C < C, (15)

where F, and a are positive constants. Without loss
of generality, we take the constant F, = 1,i.e.,

F(Cy=C™" (15")

This choice of F, amounts to using F,"* as the unit

for the storage capacity since Eq. (15) can be writ-

ten as F = (C/Folla)_“. As seen, Eq. (7) does not

contain F (C,); the required range for the validity of

the power function is only up to and including C,_,.
AS35. The cost per unit capacity or byte is

b(1) = bot"B fort >0, (16)

where b, and B are positive constants. Again, with-
out loss of generality, we take b, =1 (i.e., b, is the
unit for cost):

b(t)=1" (16")

These assumptions may appear restrictive; however,
at the present level of analysis, and due to scarcity of
data, they enable us to gain some insight and to determine
the sensitivity of certain parameters in a storage hier-
archy model. Furthermore, these functionals agree rea-
sonably well with empirical data; Eq. (16) is used in [8]
with 0.2 = 8= 0.6, and the power function is not too
different from the empirical hit ratio data of Mattson
[10]. Some empirical data show leveling off in miss ratio
beyond certain capacities. This phenomenon can be ac-
counted for by using different values of « for different
levels (see later generalizations).

With these assumptions the expressions for the effec-
tive hierarchy access time and the cost constraint become

T=4+YC,_,"t; (17)
i=2
1 < .8

/8= C=1. (18)
Soi=1

The system of equations (14) can now be solved ex-
plicity; however, the intermediate results are quite com-
plex. Instead of solving (14) directly, we use a theory
in geometric programming to obtain an expression for
the minimum hierarchy access time without having first
to solve for the C’s and ¢'s. With the positivity condi-
tions of Eqs. (11) and (12), both the objective function
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{17) and tﬁe _t:onstraint (18) are posynomials in the C;s
and #s. The pptimi'zation problem as formulated here is
a standard geometric programming problem.

Constrained minimurm

By the theory of geometric programming, the constrained
minimum of the effective hierarchy access time is

2n 8;
P S - A
T*=\'C, S, E(Si) ; (19)
where
2n - n
A= 2 81 = 2 87L+l (20)
. i=n+1 i=1 i
and the vector variablg 8= (8,85, 8,;,) is subject to
linear constraints, namely:
Positivity:
8,=0fori=1,2,2n. (21)
Normalization:
>é=1 (22)
i=1
Orthogonality:
6A =0, (23)

where A is a 2n X {(2n — 1) matrix of exponents obtained
from Eqs. (17) and (18) as

n n-—1
n A Ap
A=la,]= (24)
" Ay Ap
n n—1
0
0
—a 0
* .
—a e n—1
n 1, e o
.0
0 .
—a g
_ 00 eee 0 —a|l
n _Bl'n Iﬂ—l =l
D 1

The submatrices. A, and A, are n X n, while A,, and
A, aren X (n—1). A and A,, come from Eq. (17) and

A,, and A,; from (18). A, is the n X 1 identity matrix
L; A, =—BI,; A,, has all zeros except the diagonal just
below the main diagonal; where all elements are —a; the
top n — 1 rows of A,, form an (n— 1) X (n— 1) identity
matrix and the bottom row consists of all zeros.

With the definition of (24), Eq. (23) gives

25)

$i= Bo,.; fori=1,2, - n;

8, =oad,, fori=1,2,--,n— 1. (26)

With the aid of Egs. (22) and (25), (20) yields

A=pB" S8, =p". (27)
i=1

The unique solution of the 21 equations of (22), (25)
and (26) is obtained as

1

" ifag=1; _
8, =1 (28)
Bl a1
(ap)” — 1
5,=aps,,, = (aB)" 8, fori=1,2,--,n—1and (29)

8,,,=B78,=B(aB)" "8, fori=1,2,-'n.  (30)

Note that A and 8,’s are all positive. _

By substituting Egs. (28)-(30) into (19); and after
some (tedious) algebraic manipulationé, the minimum
hierarchy access time is obtained as follows.

When af =1,
T* =S —-1/8 C 1/pn | n1+1/B
0 n
=8, €M (31)
when a8 # 1,
r* — S0—1/B . Can/B . Tg(n, a, B)’ (32)
where
_ (aB)V]I+I/B
T,(n, o, ) = [T,, (33)
and
y=> i~ n 34)
i=1
The sumrhation yields
n aB n
5, = - . (34a)
2 CaB—l (@p) 1
Hence
: %
aB—1 (ap)"~1
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Therefore

T,(n, o, B) = (aB)"/8,"" (33)
where

_ = (1 31 aff n(ag)" (341
n=r(a g = (14 (e - 28 ) G

The minimum value is a product of three factors; the
system cost and the system capacity enter into.only one
(separate) factor each. As intuitively expected, the op-
timum access time decreases with increasing system cost
and increases with increasing capacity. The logarithmic
rate of decrease with respect to the cost is determined
by the technology cost slope B, and the rate of increase
with respect to the capacity is determined by both tech-
nology and the hit ratio characteristics as well as the
number of levels. If the technology cost curve is steep
(i.e., if B is large), the effect of the hierarchy cost in re-
ducing the access time is lessened. The third factor de-
pends only on a, 8 and # and is independent of S, and C,.

Cost allocation and access time distribution
Here we examine the allocation of the total hi'erarchy cost
to each storage level and the contribution of each level
to the effective hierarchy access time. Returning to Egs.
(17) and (18), ti‘BCi is the cost allocated to M, and
¢;_, 1, is the activity time of M. The total cost S, and
hierarchy access time are the respective sums of these
terms over all levels.

The ratio between the cost of M, and the total hier-
archy cost, is a,, i.e.,

a=t"*C,/s, fori=1,2,--- n (35)
The ratio between activity time of M, and the effec-

tive hierarchy access time is d, i.e.,

d=C. /T, fori=1,2,--n (36)

i-1 %

with the convention that C = 1.
At the optimizing point, it can be shown [12] that for
= 1’ 2" ‘ " ”7

= ti_BCi/So =38,,;/\
and

d=C1t/T*=38, (37)

i-1%i

where T* is the optimal access time of the hierarchy.
Substitution of (25)-(30) into (37) yields

n—i n—i aB - 1
a,=d,=38= (af) 8,=(aB)  ——. (38)
(af)" —1

It also follows that

a; d,
—=—t=qB, (39)
Qiyy di+1
MAY 1974

In other words; the fractional cost allocations are equal
to the relatlve activity time dlstnbutlons., the more costly
storage level contnbutes a larger fraction to the optimum
hierarchy access time T* since it is more active. The cost
(or activity time) ratio of two adjacent storage levels is
simply aB. If ¢ < 1, the greater cost should be allocated
to the lower level (i.e., the slower and larger memory
level). If a8 = 1, all levels are of equal cost. If af > 1,
then the higher level (i.e., faster and smaller) should get
the larger fraction of cost. For example, if a8 = £, then
the costs of M,, M,, M, and M, should be in the ratio
1:2:4:8,

Determination of minimizing parameters ,
The constrained minimum of the hierarchy access time
and the associated variables 8,’s are obtained without
explicitly solving for the minimizing parameters, namely
C,Cp - C,yand 1, 1,0 1, which characterize all
storage levels. We show that these minimizing parametefs
can be obtained by solving a set of 2n — 1 simultaneous
linear equations. (They can also be obtained from Eds,
(14b) and (14c) derived from the Langangian functiori.)

In the system of equations as given by Eq. (37), the
unknown variables are C,, C,,-* C,_, 1, b,,** - 1,, but
all other parameters are known, being either given, narme-
ly S, C,, @, B and n, or already solved in terms of the
givén parameters, namely 7%, A and §.’s. There are 2 — 1
indepondent equations since ¥, a,— %, d; =0, and they
are nonlinear. They can be transformed, however, into
a set of linear equations in the logarithms of the unknown
variables by taking logarithms of both sides of the equa-
tions as:

fori:: 1’2’...’”

Int,—alnC,_, =In(3T*), and

—BInt+InC,=In(Bs,,;S,), (40)
which can be written in a matrix form as
Ap=4q (40")
where
[ne, 7 Pn(slr*) ‘l
Int, In(8,7%)
m'zn In(5,T*)
p={InC, |, q= In(B5,,,S,)
ln~C2 ln([_%’SMZSO)
- n(B5, .S,)
l C 2n—-1~0
L e In(88,,S,) — InC

The matrix A is the same 2n X (2n — 1) matrix as given
in Eq. (24).
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To solve Eq. (40) for the minimizing parameters, a
recurrence equation in In C, is first obtained by eliminat-
ing In ¢, from (40) as:

InC,—aBInC,_,=m, fori=1,2,"-n, (41)
where
m=InSy+BIn T*+ (1+B)n 8, (42)

and §, is given by Eqgs. (28) and (29) in terms of a, 8 and
n. Once the C, or In C, are determined, the #;’s are given
directly by Eq. (40). The solution is obtained as follows.

When o =1

c,=cm™ (43)
and
1,=(nC,/8)%= (n/8,)" C,™ (44)

The capacities and access times are in a geometric pro-
gression. The ratios are constants which are dependent
on the system capacity C,:

C.,/C;=C,""; (45)

L /4= (Ci-f»l/ci)a = Cna,n (46)

For illustration, when a=8=1, n=4, and C, = 10°,
the optimal capacities and access t{imes of the four stor-
age levels are respectively 107, 10, 10° and 10° bytes,
and 10 ns, 1 us, 100 us and 10 ms. It is of interest to note
that the constancy in the ratio of the access times of ad-
jacent levels for the optimum configuration has been re-
ported [8], and the constancy in the ratio of capacities
has been empirically observed {11].

When off # 1
The solution of the recurrence equation (41) is

n—i

InC,=(B)™"InC,—3 m,,/ (aB)’, (47)
i=1

and from Eq. (40) we have

In¢,=[In C,—In(8,S,)18™" (48)

or

L= (Ci/siso)llﬁ- (48')

Substitution of Egs. (32) and (42) into (47) with the aid
of Egs. (28), (29) and (33’) yields

where ny, is given in Eq. (60). When n= ng,, (47')
becomes

(47")

C,=C, e, (43)

Hence the capacity ratio are

Ciut/ €= C, " (45")
Furthermore (48) yields, for n = ngp,,
L/ 1= (aB)'® C,VPom, (46')

Expected number of faults and CPU cost

Once the capacities of each storage level are determined,
it is possible to evaluate the expected number of faults
per reference. As given in Eq. (1), the probability for
each feference to get a hit at M, and i — 1 faults at the all
preceding levels, M,, M,, -, M,_ is

i-1

h,=H(C)—H(C,_))=F(C,_))—F(C). (49)

The expected number of faults NF is then

NF=2 (i— D), (50)
i=1

With the assumption that the fault probability F(C) is
F, C™*, ie., Eq. (15), and with the convention that
H(C,) = 1, the expected number of faults becomes

n n—1
NF=F,Y (i— D, =C ™ =F, E c % (51
=1 i=1
where the C/’s are given in Eq. (43) or (47'). The ex-
pression in terms of the basic parameters is quite simple
for the case in which a8 = 1; substitution of (43) in (51)
yields
n-1 C —ain

. —C.
NF = FO 2 Cn-m/n = FO - —a/r:n
i=1 1-C

n

, (52)

which increases with increasing n. For example, when
C,=10° n=4, a=B=1, and F,= 4, the expected
number of faults per each reference is 0.12.

One could also compute the overhead cost of the CPU
for managing the faults, which may differ for different
levels. Let {(i) be the overhead cost for managing a fault
at the i-th level. The expected overhead cost per each
reference CMF is then

n
CMF=7 t(i—1)h, (53)
=2
If the cost is simply proportional to the index of the level,
ie.,if

L)y =ki, (54)

then (53) becomes

CMF=kY (i—1)h=kX NF; (55)
i=2

i.e., the average overhead cost for managing faults per
each reference is directly proportional to the expected
number of faults per reference.
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Optimum number of memory levels

The constrained minimum of the storage hierarchy access
time T*, as given in Eq. (31) or (32) does not depend
only on the system cost S, capacity C,, technology
and program work load characteristics « and 8, but also
on the number of the storage levels, n. In the analysis so
far, the value of »n is considered given as usually is the
case in practice. We may, however, consider n as an ad-
ditional unknown parameter to be determined. The opti-
mum number of storage levels, is that value of » which
minimizes the constrained minimum 7*, and can be de-
rived by considering T* as a function of n with the system
parameters S, C,, a and 8 as constants. The derivations
are given for cases 8 = 1 and a8 # 1 and are achieved
without solving for the minimizing parameters C, and ¢,

af=1
The derivative of T*, using Eq. (31), with respect to
nis:
ar* _
dn

5,70 C, ™ ne (1 +a —% In cn), (56)

which is negative for small » and positive for large n.
Hence, T* first decreases and then increases as n in-
creases.

By setting the derivative to zero and solving for n, the
minimizing value of n is obtained as

InC,
1+8°

_ a
n°m_1+a

InC, =

(57)

The optimal number of storage levels is directly propor-
tional to the logarithm of the storage system capacity.
Since the number is an integer, the actual optimal value
is_either the integral part of the above expression or the
smallest integer greater than that, and is determined by
evaluating and comparing their respective values for T*.
Neglecting this quantization effect, we find the corre-
sponding minimum access time to be

T *=58," (e ngp)' ™" (58)
m (1]

af3 # [:

Equations (32) and (33) suggest that it would be simpler
to take the derivative of In T* than of T* itself. After
some manipulation we find that

d. o (aB)"
n InT _B[(aﬁ)"" e InaB X [(1+B)nlnaB
— (ap—DIn C,]. (59)

It can be verified from the sign of the last expression
that T* first decreases and then increases as n increases
from zero, and the unique minimizing value of n is

af—1

n"”’=(1_+—ﬁ3—)mln C, (60)
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which is again proportional to the logarithm of the ca-
pacity. As a matter of factas o8 — 1, (60) becomes

M,y = I C,/(1+p).

As a numerical example, when a= 8= 1/2, Eq. (60)
yields ng,; = 5 (or 4),6 (or5),and 7 (or 6), respectively,
as the optimum number of levels for the storage capaci-
ties of 10°%, 10" and 10° “bytes” [actual unit depends upon
the normalization factors used in Eqs. (15) and (16)].

Level-dependent cost

The results obtained so far can readily be extended to
include any additional cost that is dependent on the num-
ber of levels in the storage hierarchy, such as the so-
called per box cost, constant bus cost, and the cost of
managing faults as discussed in the preceding section.
Let g(n) denote such additional cost; g(n) may depend
on any given parameter such as « and S, but is indepen-
dent of the variables C, and ¢; g(n) in general is mono-
tone increasing in 7.

The system cost now becomes

5= b(t)C,+g(n), (61)
i=1

and the cost constraint becomes

S =1 (62)

Equation (62) has the same form as the original con-
straint, Eq. (18), with S, replaced by S,— g(n) which
is also independent of the variables. Therefore the
formulas for the minimum access time T are still valid
after replacing S, by S, — g(n). More explicitly, T* of
Egs. (31) and (32) becomes:

[S,—gm) ] C " n'**

[S,—g(m)]™* C2W* T (n, @, B) when o # 1.
(63)

when aff =1

The inciusion of the level-dependent cost g(n) does
not change the values of A and 8. Furthermore, it does
not affect the cost allocation nor the access time distri-
bution except that S is replaced by S, — g(n) in the defi-
nition of g, in Eq. (35). The equations to determine the
minimizing parameters remain valid, the only modifica-
tion being the above mentioned replacement.

The additional cost g(#n), however, does have a signifi-
cant effect on the optimum number of storage levels.
Without g(n), n,y is independent of the system cost S;
this is no longer true. Moreover, the inclusion of g(x)
tends to reduce the optimum number (as would be in-

201

OPTIMIZATION OF STORAGE HIERARCHIES




202

C. K. CHOW

tuitively ‘expect_ed).r Consider first the case wherein
af8 = 1 and for simplicity, take

g(n) = kn, (64)
k being some constant.
af =] _
The derivative of In T* With respect to 7 is
—d—lri T = kn - [ak InC, + (1+ a)S,]n+ aSOInC
dn n* (S, — kn)

(65)

By settmg th1s exprcssnon to zero, we have a quadratic

equation in n. The equatlon has two pos1t1ve roots, one
being. less: than, and the other greater than, S,/k. Sirce
Sg—kn must be positive, the smaller root is the unique
m1ri1mlzmg pomt

S
nom=%|:alnC,'l+(l+a)T°

—% {lakIn C,+ (1+ @)S,]° — 4ak S, In c"}%],
(66)

which depends not only on In C,, but also on §,, and can
be shown to be always less than a In C,/ (1 + a), the
optimum number of levels without including kn.

aff # 1
The derivative is
d k

iy L oy —
P Ty

(@B)" In oB.,
Bl(ep)” — 17’
x[(1+B)nna— (@B~ 1) InC,]J.

(67)
The ecjuation obtained by settlng this expression to zero
is transcendental in 7 and no closed-form solution exists.
The optimum riumber of levels, however, can be readily
computed ard depends on the h1erarchy capacity only
as In C It can be seen that inclilsion of level- dependent
cost, such as per box or fault-managing overhead tends
to reduce the optimum number of levels.

The results and formulas preserited in this paper can
also be used to include to some extent the effect of vari-
able time deldys such as address decoding time, bussing
times which are dependent on the storage capacities, arid
access-dependent costs, such as bus cost, without any
change in mathematics. All that is reqmred is to change
the values of the exponents @ and 8 in the basic time and
cost equatlons, (17) and (18).

Inclusmn of these additional time delays and costs, W1ll
increase the COntrlbutlon of each storage level to the total
hierarchy cost and access time, i.e.; to the magnitude of
each product term in Eqgs. (17) and (18). A simple way
to reflect this increase is to decrease the values of a and 8,
e.g., by replacmg a and B by an effective o, < a and

B. < B, without introducing any additional term in the
sum, and thus without requiring any new dérivations.
One of the effects .of using smaller o and g is to reduce
the value of the optimim number of memory levels in
the hierarthy.

Some generalizations

The preceding formulation and results can be generalized
to be applicable to the cases where the values of the char-
acteristic parameters « and 3 are different for different
storage levels.

. Vartable o and B

Instead of assuming the same technology cost and h1t
ratio functions for all storage levels, we can allow differ-
ent characteristics (still assuming the power functional
form) for d1ﬁ'erent levels. Let a, and B, denote the cor-
responding powers for storage level M, The hierarchy
access time and the cost constraint are now

n,
T=4+3>C,_ "y

i=2

(68)

and
n
= 2 ti"ﬂi C, =8,

(69)

The phenomenon of leveling off of the miss ratio as pre-
viously mentioned can be accommodated by setting «,
equal to zero.

The expression of the constrained minimum of the
hierarchy access time of Eq. (19) remains the same;
however, the optimizing vector 8 is different. The ortho-
gonaliiy conditions become

n-i—-1
0, =P8, ;=B 8,=8, @ Bij
Jj=0
fori=1,2,--,n (70)
@, =a;8,, fori=1,2,-,n—1. (71)
Hence, for i= 1,2, n—1,
8 /81+1 ai ﬂi and 8n+i/8n+i+l = di '3i+1' (72)
The normalization condition, Eq. (22), yields
n—1 n—i- -1
:(1+; H 1+_; 1+j) . (73)

Substitution of (73) into (70) and (71) gives the ex-
plicit expressions for all §’s in terms of the &;’s and B;’s.
Furthermore,

8,
= (74)
1 B,

Therefore, the minimum hierarchy access times, Eq.
(19), becomes

P
Il
™M
>
=2
I.
uM:
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R 2n
T*=\'s, ¢, [T 8.7% (75)

. i=1
Notice that A and the 8,’s are functions of n, a;’s, and
;s but are 1ndependent of Sp,and C,.

Similarly, Eq. (75) can be used to determine the optl—
mum number of levels. An explicit closed form expres-
sion for ny, does not seem likely: numerlcal computation
is required. However, it is apparent that the effect of
C, enters only as In C,

* Nonuniform coefficients:
Consider the hierarchy access time and the cost con-
straint as

T=%rC_ "t (76)
i=1

and

§S=N rut; (77)

i=1
where the r;’s are some positive constants. When these
constants are one, Eqgs. (76) and (77) reduce to (17)
and (18) » ‘

The corstrained minimum of the hierarchy access

time is now
T*=\'s§, C2n r] (ri)ai (78)

N G
The orthogonahty nd normalization conditions remain
the same as before namely, Egs. (22), (25) and (26)].
Therefore A and & are the same as glven by Eqgs. (27)-
(30). Substitution of these values in (78) renders

2n . ,

T*=T*]] (,i)ﬁi, (79)
i=1

where T* is the expression given by either {31) or (32).

In other \yords the hierarchy access time is modified by a

multiplicative factor.

e Combination of previous cases
The constrained minimum effective hierarchy access
time is now given by Eq. (78) with A and & given by

MAY 1974

Eqs. (74), (70), (71) and (73). Again, the optimum
number of memory level depends on the logarithm of the
hierarchy capacity, rather than directly on the capacity,
in all these cases.
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