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Image Data ,Compression by Predictive  Coding 
I I :  Encoding  Algorithms 

Abstract: This  paper  deals with  predictive  codihg techniques  for efficient transmission  or.siorage of two-level (black  and  white) digital 
images. Part 1 discussed algorithms for prediction. Part I1 deals with  coding techniques for encoding the prediction error pattern.. First, 
we survey  some  schemes  for encoding if the  error  pattern  is  assumed  to be memoryless. Then a method is developed for encoding  cer- 
tain  run-length  distributions.  Finally, some experimental results  for sample documents  are  presented. 

, .  

Introduction 
In  Part I [ 11 we discussed several  prediction  algorithms 
for transforming a two-dimensional  binary image inio a 
prediction error  pattern.  Because this  transformation is 
deterministic and invertible, it is possible to  reconstruct 
the original image from the  error pattern: The  purpose of 
this transforGation is to  convert  the two-dimensional re- 
dundancy of the image into a  form that,is suitable for  easy 
encoding. I t  is generally  much siMpler to encode  the  error 
pattern than the original image. The  error  pattern  can be 
approximated  as  the  output of a binary memoryless 
source which produces 0’s with probability p (the proba- 
bility of correct  prediction)  and 1’s with  probability.p, 
(the probability of prediction error) = 1 - p .  Many 
schemes  for encoding the  output of a  memoryless source 
are known in the literature. The first half of this paper, 
which is a  discussion and  comparison of three.  such 
schemes, is intended to be  tutorial in nature. The Second 
half of the  paper  is  the  development of an encoding 
scheme  that  is useful  when the memoryless source  as- 
sumption is not  justified. Finally, we present some ex- 
perimental results related to  the compression of the  three 
sample documents  discussed in Part I. 

Encoding the error pattern by memoryless encoding 
schemes 
The  error  pattern is assumed  to be the  output of a mem- 
oryless  source producing o’s and 1’s with  probabilities 
p and p, ,  respectively. The  entropy H ( p )  of this source 
is known to  be 

~ ( P ) = - P ~ o g , P “ l - P ) ~ o g ,  ( l - P ) ,  (1) 

which is equal to H ( p , ) .  

It  follows  from  Shannon’s Source Coding Theorem 
[ 2 ]  that  the maximum  possible compression G,,, that 
can be  achieved by encoding  this source is 

There  are  three basic properties of a code  that  are of 
interest  to.us: 1 )  .efficiency, 2 )  Stability, and 3 )  ease of 
implementation. By efficiency we mean  the  cldseness 
with which the  code  comes  to achieving Gmap, the  upper 
limit on  comprtssion  for a particular  value 0-f p .  By sta- 
biiity we mean the code’s efficiency over a  range of pre- 
diction error probabilities. This is important in an image 
compression system where many different  types of 
images having varying  prediction error  rates may be 
processed. By ease of implementation we mean the sim- 
plicity of the  hardware  or  software needed to do the en- 
coding and decoding. 

TO encode  the  error  sequence  we first decompose it in- 
to blocks that  can be of either a fixed or a  variable  length. 
Each block will be  assigned  a codeword  and  these  too 
can be of either fixed or variable  length. Clearly, assign- 
ing fixed-length codewords  to fixed-length error blocks 
cannot provide any compression.  We wiil consider  one 
example of each of the  three  other possibilities: 1 )  fixed 
to variable  encoding, 2 )  variable to fixed encodifig, and 
3 )  variable to variable  encoding; A comparative evalua- 
tion follows the description of the  three encoding 
methods. 

Huffman  encoding-$xed to variable 
The  error  sequence is decomposed  into fixed-length 

BAHL AND  H.  KOBAYASHI IBM I. RES. DEVELOP. 



0" 
.- E 
% 

12 A 
I! 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 

11 - 

10 - 

9 -  

1 I 

8 -  ""1; 

1-  

6 -  

5 -  

4 -  

3 -  

2 -  

V 

I 1 Prediction probability p 

Figure 1 Compression gain of Huffman  codes. 

blocks and then a huffman  code [3] is used for encoding 
the blocks. Huffman coding is the most efficient fixed-to- 
variable length encoding  method. If the fixed-block size 
is N ,  the  Huffkin  code will have 2" dodtwords,  one  for 
each of the 2N binary patterns.  From  our Bssumption that 
the  error  pattern be  regarded as essentially random, it 
follows that 'the probability of a particular pattern is 
pkpE-li ,  where k is the  number of 0's in the pattern. These 
probabilities can be  used to  construct a Huffman code. 
We  do not discuss  the  process of constructing the  code 
since that is well known. For Huffman codes it is not 
possible to  derive a  closed  form for  the compression gain. 
However, it is known that  the  average number of bits, c ,  
needed to  encode  each  error digit is bounded by 

H ( p )  5 c < H ( p )  + N". (3  i 

Thus,  the  compression gain G, is bounded by 

8 -  

1- 

6 -  

5 -  

4 -  

3 -  

2 -  

I 
I 

I 
I 

I 
I 

I 
I 

I 

0 0  A I I I I I I 
v 0.90  0.92 0.94 0.96 0.98 1.00 

Prediction probability p 

Figure 2 Compression gain of three specific Huffman  codes 
withN = 10. 

Figure I shows  the relationship between  the  actual 
compression gain G, and the prediction  probability p for 
N = 1 ,  2, 4, 8, and 10. The compression gain was ob- 
tained by actually  constructing the Huffman codes  for 
various  values of N and p and then  determining their per- 
formance. Figure 1 also  contains a  plot of G,,, = 

1 / H  ( p ) ,  which is the  upper bound on compression. It 
should  be  noted that  tach  curve in Fig. 1 does not  neces- 
sarily represent a single code, but  a sequence of codes, 
each optimal for a particular  value of p .  

The stability of a fixed Huffman code can  be seen in 
Fig. 2 ,  where we have plotted the performance of three 
codes of block length N = 10, which are optimal at p = 

0.90,0.94 and 0.98, respectively. 173 
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Figure 3 Comptession gain of conventional  run-length  en- 
coding. 

Table 1 Example of a conventional  run-length code with M = 7. 

Sequence Run-length Codeword 

1 
01 
00 1 
000 1 
0000 1 
00000 1 
000000 1 
0000000 

000 
00 1 
010 
01 1 
100 
101 
110 
1 1 1  

The implementation of Huffman encoding and decod- 
ing must  be  done by some  form of table lookup.  A code 
of block length  N requires a table of size 2N. For N = 10, 
the  table size is 1024, which is quite large. In particular, 
the decoding of Huffman codes  requires a considerable 
amount of computational effort. 
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Conventional run-length encoding- variable to fixed 
There is a kind of run-length  encoding in which the image 
is first decomposed  into i n s  of successive 0’s and  runs 
of successive 1’s. Then  the lengths of these  runs  are en- 
coded and  transmitted.  This  type of run-length  encoding 
is usually  applicable to images directly.rather than to pre- 
diction error  patterns.  Capon  [4]  and  Huang  [5]  discuss 
this type of coding in great detail. Another  type of run- 
length  encoding,  which is more applicable to  the encoding 
of prediction error  patterns, is one in which we  encode 
and  transmit only runs of 0’s that are terminated by a 
single 1. I t  is this  second type of run-length  encoding that 
we consider in this  paper. 

An  example of conventional run-length  encoding is 
shown in Tabie 1. This kind of encoding has been dis- 
cussed by Elias [6], Wholey [7],  and  Arps [8], among 
others.  The encoding process is in two steps. First,  the 
error  sequence  is  decomposed  into run-lengths. Columns 
1 and 2 of Table 1 show  the  correspondence  between  the 
error  sequence  and  the run-lengths. An  upper bound M 
( M  = 7 in Table 1 ) is placed on  the longest  run-length, so 
if the  number of consecutive O’s, L ,  is M or  greater,  then 
each  group of M 0’s is  considered  to be  a  run of length 
M and  the remaining  bits are  treated as a separate run- 
length; M is chosen in such a way  that M = 2N - 1 for 
some  positive  integer N. 

The second step  is  to assign codewords  to  each run- 
length. In  conventional  nin-length encoding each run- 
lengih L is assigned a codeword, which is the  N-bit binary 
representation of L. Columns 2 and 3 of Table 1 show  an 
example of this codewoi-d assignment. 

It is a simple matter  to  derive  an  expression  for G, in 
this case.  The probabilities of the run-length are given by 

p ( L )  = Pr{run-length = L }  

pL  ape  f o r 0 5  L S  M -  I ;  

= L  for L = M .  

The  average  number of bits in each block, A, is  then 
M-1 

A =  M p ( M )  + 2 ( L  + l ) p ( L )  =-. 
1 - p M  
1 - P  

(6) 

Because all codewords  have length N = log, ( M  + I ) ,  the 
compression gain is 

L=O 

A 1 - p M  
G =-= 

N ( 1  - p )  log, ( M +  1 )  (7 1 
Figure 3 shows  the relationship between p and G, for 
different  values of M .  Since  each  curve in this figure rep- 
resents a single code,  both  the efflciency and  the stability 
of this  method  are  evident from these  curves.  The imple- 
mentation of this  encoding  method is quite simple. All 
that  is  needed is an  N-bit binary counter which has as its 
input the  error  sequence.  Its  operation is as follows: 
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1 ) For  each input of 0, the  counter  counts up by 1 .  
2 )  When  the  counter  reaches  its maximum  value 2N - 1, 

it outputs  sequence of N 1's and is then  reset  to 0. 
3 )  When a run-length terminates, i.e., when the input is a 

1, the  N-bit  counter  outputs  its  contents  and  is then 
reset  to 0. 

The  operation of the  decoder is similarly quite simple. 

Golomb's run-length encoding- variable to variable 
This method is due  to  Golomb [SI. We  give  a  simple in- 
terpretation of this  encoding  method. The first step is to 
obtain  the run-lengths; as  we did in conventional ruh- 
length  encoding, except ttiat no upper bound on the run- 
length is assumed. The  codewords  for  the run-length  can 
be constructed in the following simple manner. First, 
find an integer rn such  that 

p m  W 0.5. (8) 

Once rn is  found,  we partition  the.run-lengths into  groups 
of size r n ;  the  set of nin-lengths 10, 1,2; . ., m - I}  forms 
group A,; the  set (rn, rp + 1; . ., 2rn - l},,group A,; etc. 
In  general,  the  set of run-lengths { ( k  - 1 )m,   (k  - 1 ) m  + 
1,. . ., km - 1 } comprises  group Ah. To each  group  is  as- 
signed a group prefix, which for  group A, is k - 1 1's fol- 
lowed  by a 0 and which we  denote by l ( k - l ) O .  If m is 
ctiosen such  that rn = 2N,  each  group Contains 2N mem- 
bers  and  an  N-bit  sequence (called the  tail) uniquely 
identifies each  member within the group. The simplest 
way of generating  this tail for a run-length L is to con- 
struct  the  N-bit binary representation of L - ( k  - I ) r n ,  
i.e., the binary representation of L modulo m. The code- 
word for a run-length L which  belongs to  group A, con- 
sists of its  group prefix, l(k-l)O, followed  by the  N-bit tail, 
L modulo rn. The  entoding  process  can  be  understood 
from Table 2 ,  which shows  the  Golomb  code  for rn = 4. 

It  is  not  necessary to choose rn to be  a power of 2.  In 
this paper we consider only codes with m = 2N and p m  = B 
because they are simpler to implement. Codes with 
m # 2N are similar to  the  codes  discussed  here, with 
some minor modifications which are discussed in Golomb 
[9] and our earlier report [IO]. 

We now obtain an  expression  for  the compression 
achieved by this  method for  the  case when m = 2N. For 
an  independent binary source,  the run-length  distribu- 
tion is  geometric in hature, i.e., 

Pr{run-length = L }  = g ( L )  =*pL . p e  for L f 0. (9) 

Equation (9)  is similar to ( 5 )  except  that  there  is  no 
limit on  the maximum run-length. 

The  average  number of digits per block, A, is the  aver- 
age  run-iength  plus one, i.e., 

-?? 
Prediction probability p 

Figure 4 Compression gain oi' Golomb run-length encoding. 

Table 2 An example of Golomb's run-length encoding for 
m = 4 .  

Run-length 

0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

Group prejix Tail 

0 00 
01 
10 
11 

10 00 
01 
I O  
1 1  

110 00 
01 
10 
11 

Codeword 

000 

010 
00 1 

01 1 

1000 
1001 
ldlo 
101 1 

11000 
11001 
11010 
11011 
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The combined  probability of run-lengths belonging to 
group A, is 

P(A,)  = x pL  p ,  = pkm = 2-k. (11) 

Because  each run-length in group A, has a codeword of 
length  N + k ,  the  average  codeword length is 

km-1 

L=(k-lhn 

m 

c =  x ( N f k )  * 2- ‘=N+2 .  

Thus 

k=l 

Gc=-- N + 2 2 + log, m - 
1 - p  1 - p  

where m = -1 /log, p .  (14) 

Even  when m # 2N the  above formula (13) is a close 
approximation  to  the  compression gain [ lo]. 

Figure 4 shows  the performance of Golomb’s codes 
for m = 2, 4,8,  16,32, and 64. As in the  case of conven- 
tional  run-length  encoding, each  curve  represents a single 
code.  The  curve  for  the  upper bound  1 / H  ( p )  could not 
be  distinguished from  the  envelope of the  curves plotted 
in that figure. 

Encoding can  be  done by an  N-bit binary counter  as in 
the  case of conventional run-length  encoding. The opera- 
tion of the  counter is as follows: 

1 ) For  each  input of 0, the  counter  counts  up by 1. 
2 )  When the  counter overflows  (i.e.,  when it reaches 

m = 2N), the  encoder  outputs a 1 and  resets  the  count- 
er  to 0. 

3) When  a  run-length terminates, i.e., when the input is a 
1, the  encoder  outputs a 0 followed by the  contents 
of the  N-bit countbr. The  counter  isthen  reset  to 0. 

Decoding  can similarly be performed  in a simple  way. 
Circuits  for encoding and decoding Golomb  codes  are 
discussed in detail in our  report [ 101. Golomb coding is 
closely  related to  Shannon-Fano [2] encoding. This 
is also  discussed in detail  in our earlier report [ IO]. 

Comparison of the  three  encoding  methods 
In  our  experiments with compressing  real images, we 
encountered prediction  probabilities in the range of 
roughly p = 0.93 to p = 0.99, which corresponds  to pre- 
diction error  rates  between  about  seven  and  one  percent, 
respectively.  We are  therefore  interested in comparing 
the  performance of the  codes  over  this region. 

A comparison of Figs. 1, 2, 3, and 4 shows  the  supe- 
riority of Golomb  codes  over  both Huffman  coding of 
fixed lengths and conventional  run-length  encoding. The 
main deficiency of Huffman codes is the  poor perfor- 
mance at higher  values of p .  For  example, with p = 0.98 

176 and N = 10, Huffman codes  achieve only 81 percent of 

the maximum  possible  memoryless  compression. With 
conventional  run-length codes, the efficiency is about 92 
percent  and  for  Golomb  codes it is above 99 percent.  In 
terms of stability, Golomb  codes  are  superior, although 
conventional run-length codes  are almost as good. 
Huffman codes  are comparatively  poor. In  terms of 
implementation, encoders  and  decoders  for  both  Golomb 
and conventional  run-length codes  require very little 
logic, whereas Huffman codes  require  the  storage of a 
table of considerable size. 

Encoding  run-lengths  with non-geometric distribu- 
tions 
In  the preceding  section we  assumed  the  error  sequence 
to be the  output of a binary memoryless source. In this 
section we consider  the encoding of error  patterns which 
do not meet this  idealized  situation. We limit ourselves 
to run-length  encoding because of its  superior perfor- 
mance in the memoryless  case. Some  schemes  for en- 
coding  nongeometric  run-length distributions  have been 
considered by Huang [ 51. 

We  have previously  shown that  for a geometric run- 
length  distribution, the  average  error  sequence block 
length is 

where p ,  is the prediction error probability. This relation 
must,  however, hold for  any run-length  distribution. Con- 
sider any binary source which produces 1’s with prob- 
ability p,. Then in a sequence of length N ,  the  number of 
1’s is N * p ,  as N + m. Because the  number of run- 
lengths is equal to the number of l’s, the  average block 
length A is given by 

(16) 

For a memoryless source,  the run-length  distribution is 
given  by 

g, = pL . p ,  for L = 0, I ,  2;. .. (17) 

Replacing p ,  by - and p by 1 - - we  have 1 1 
A A 

g,= - . -  f o r L = 0 , 1 , 2 ; . .  . (^x1)” ; 
The run-length entropy H,, i.e., the  average  number 

of bits  needed to  encode a run-length, is 
m 

L=O 

Substituting for g ,  from (18) we have 

H , =  A log, A - (A  - 1) log, (A - 1). (20) 
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It  is easily verified that H ,  is the  same  as AH ( p ) .  
Now  consider  another general,  non-memoryless Source 

that  also  has prediction error  rate p e  and hence  average 
run-length A. Let  the run-length  distribution  be  any 
arbitrary  distribution,  denoted by 

p L  = Pr{run-length = L } ,  L = 0, 1 ,  2;. ., (21) 

with average block length 

A =  ( L +  l)pL. 
L=O 

The run-length entropy of this  source,  denoted by H,,  
is given by 

Theorem Among all sources having the  same  average 
run-length, the  source with geometric  run-length dis- 
tribution has maximal run-length entropy. 

Proof We need to  show  that H ,  4 H,.  Consider  the 
quantity 

- p L  log, g L =  x p L [ ( L +  1) log, A-L log, ( A -  I ) ]  
m m 

L=O L=n 

=Alog,A-(A-l)log, ( A - 1 )  

= H,.  (24) 

Then 

Using the well-known inequality In (x) 4 x - 1 for x 3 0, 
we  have 

The maximum compression that  can be  achieved by 
any  method which encodes  the run-lengths of the  source 
specified by (2 1 ) is 

A G,,, = -. 
HL 

Since H ,  5 H,,  we can see that if the distribution is non- 
geometric, it is possible to  achieve  greater compression 
for  the  same prediction error rate. 

One  obvious way of obtaining  a compression close to 
G,,, would be to construct a  Huffman code  for  the run- 
lengths.  Such  Huffman codes  are  unattractive since  they 
require table-lookup  encoding and decoding and, in 

I 

Figure 5 Selection of parameters m,, m,, . . . from log, S ( / )  
curve. 

particular, the decoding requires  considerable  computa- 
tion. We now develop a simple encoding scheme  that we 
have found to be fairly efficient for  the kind of non-geo- 
metric  run-length distributions  encountered in practice. 
The encoding is most readily understood  as a generaliza- 
tion of Golomb’s  run-length  encoding  method and  we 
refer  to it as multi-mode Golomb encoding. 

For  the  arbitrary run-length  distribution of (2 l ) ,  let 
us define a survivor function 

S ( / )  = Pr{run-length L 3 /}  F 1 - pL,  
f -1 

L=n 

e=o, 1 ,2 ; . .  . (28 1 
Now  choose a sequence of integers m, = 2N1, m2 = 2N2, 
. . ., mk = 2Nk,. ’ . such  that 

S ( m , )  M 112, 

S ( m ,  + m,) M 114, 

S ( r n , + m , + . ~ . m , ) ~  I / Y ,  

(29) 

Run-lengths L in the  range m, + m2 +.  . . + mk-] 4 L < 
m, + m2 + ’ . . + m, are said to belong to  group A, and,  as 
in the  case of Golomb encoding, are  encoded by  a pre- 
fix 1 ‘k-l’O, followed by an N,-bit representation L - 
( m ,  + m, +.  . . + m k ) .  A  useful  guide in constructing 
such a code  is  to plot log, S (e) against as in Fig. 5. The 
way to  choose m,,  m2; . ., mk; ’ . is self-explanatory  from 
this curve.  If  the run-length  distribution is  geometric, 
then  the  curve of Fig. 5 becomes a straight line and we 
h a v e m , = m , = ~ ~ ~ = m , = ~ ~ ~ = m , w h e r e p ” ~ ~ , w h i c h  
leads  to a Golornb  code. 

The encoding rule  for  the multimode Golomb  encoder 
is similar to  that of the usual Golomb  encoder  except  that 177 
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Figlire 6 Selection of rn,, mB, and K for typical log, S ( f )  
curve. 

we need to keep track of how many times the run-length 
counter  has overflowed within a run. The modified en; 
coding rule is 

1 ) For  each input of 0, the  counter  counts  up by 1. 
2 )  Wheri the  counter overflows for the kth  time  (i.e., 

When it  teaches mk = 2Nk], a 1 is  generated and the 
Counter is reset to 0. 

3 )  When a fun terminates before. the kth overflow is 
reached; an ( f i l l  + 1 )-bit codeword  is  generated. 
This  codeword is a 0 followed by the N ,  bits in the 
coumer. 

jri practice, we have.found  that log, S ( F )  is fairly +ell 
approximated by two piecewise  linear segments  as  shown 
in Pig. 6. The  parameters of the multimode Golomb  code 
$re then chose4  as follows: 

M, = {m,: 1 4 k 5 k;  
(30) 

The values of r n G ,  mB are  evident from Fig. is. For brev- 
ity we denote. such a cdde by the 3-tuple (ma, ma, K )  
whieh  completely  specifies the  code. 

Experimental results 
Table 3 shows a  comparison of the  performance of 
Golomb  and multimode Golomb  codes  on  the  three 
sample doduments. For all three  documents,  the  error 
pattern  generated by the 4-pel fixed predictor  was  used. 
In  the  case of boiomb  kodes, we encoded  the  error 
pattern with c d e s  having m = 2,  4, 8, 16, 32, . . . and 
chose  the co&e that  gave  the highest compression.  The 
multimode Golomb  codes  were designed  by the method 
outlined ifi the previous  section. The  upper bound on 
compression as given bp (27) is also included in the 
table. This result is roughly the compression that would 
have been  obtaided if we had encoded  the run-lengths 
by Ihiffman codes. In  the  case of the  journal page we find 

mot k > K .  

AND H. KDBAYASHI 

that  the multimbde Golomb  code  achieves roughly 87 
percent of the maximum compression,  whereas  the usual 
Golomb  code  achieves  67  perctnt. Similar  substantial 
improvement in compression  is  found  for  the  other  two 
documents. 

Table 4 shows the  actual  compression obtained by a 
predictive  coding system on the  three sample documents. 
For  each  document we chose  the  three  predictors [ l ]  
which gave  the  lowest prediction error  rates  and  encoded 
the  error  pattern using a  multimode Golomb code. Also 
included in the  table  is  the  upper bound on compression 
as given bjt (27)  for  each case. We find that  the multi- 
mode Golomb  codes  achieve  compressions roughly 80 
to 90 percent of the uppe; bound. 

In  the  case of the  journal page we found the  code  (4, 
64,  24)  gave  the  best performance. For  the  jobshop 
charts  the  code  (4, 128, 24)  was  better.  However,  the 
code  (4,  64,  24) when used on tHe output of the 7-pel 
fixed predictor  for  the  jobshop  charts showed negligible 
deterioration from the  (4, 128, 24)  code.  One  could, 
therefore,  use  the  same  code  over a wide range of docu- 
ments with very small loss in efficiency. 

Comments 
In this paper  we  have considered the problem of com- 
pressing  twa-level black and  white images. Our emphasis 
has been primarily on practical schemes  that  are  easy  to 
implement. There is, no  doubt,  room  for  improvement  on 
the  results  presented here. We find that multimode 
Golomb encoding achieves roughly 80 to 90 percent of 
the  upper  bound for run-length  encoding. I t  should be 
realized that  the  upper bound (27) is somewhat mis- 
leading because, in a single document, many of the pos- 
sible run-lengths do  not occur. A Huffman code con- 
structed  for  the run-length  distribution  obtained  from  a 
single document wohld not assign codewords to non- 
occurring  run-lengths. However, in practice, it is nec- 
essary  to ,design a code which assigns codewords  to all 
possible run-lengths. The  performance of any  such  code 
wbulil then have io be inferior to  the bound  given  by (27) 
for any particular document. 

All the run-length distributions we encountered  were 
monotonically decreasing, i.e., P ( L )  decreases with in- 
creasing L. The  independence  assumption of the second 
section represents  an  attempt to model these  distributions 
by a geometric  distribution, for which we know simple 
and efficient encoding  methods. In the third  section we 
attempted to model the distribution as segments which 
are pieeewise geomettic.  In particular, we concentrated 
on two-segment  approximations. The  advantage of this 
kind of approximation is that simple encoding and de- 
coding  algorithms can  be  constructed.  Furthermore,  the 
encoder  and  decoder  can be  varied by changing a few 
simple parameters, rn,, mB and K .  This would be ad- 
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Table 3 Comparison of Golomb  and multimode Golomb encoding on error  pattern  generated by a 4-pel fixed predictor. 

Golomb  code  Multimode  Golomb  code 
Prediction 
error  rate  Parameter  Parameters Upper bound 

Document  (percent)  m  Compression  (ma,  mB, K 1 Compression G max 

IBM  Journal 5.85 8 2.93  (4,  64,  24) 3.8 1 4.36 
Jobshop  Chart A 2.37 16 5.75  (4, 128, 24) 6.59 8.15 
Jobshop  Chart B 1.35 16 8.8 1 (4,  128,  24) 12.33  15.15 

Table 4 Experimental results for three sample documents 

Document  Predictor 

IBM  Journal 7-pel finite 
memory 

7-pel fixed 
4-pel finite 

memory 

Jobshop  Chart A 7-pel fixed 

4-pel finite 
memory 

4-pel fixed 

Jobshop  Chart B 4-pel finite 
memory 

7-pel fixed 

4-pel fixed 

~- 

Prediction 
error rate 
(percent) 

Multimode  Golomb  code 

Purumeters 
(ma,   mp,  K )  Compression 

Upper bound 
G,,, 

4.79 

5.  I4 
5.  I6 

2.24 

2.30 

2.37 

1.20 

1.25 

1.35 

4.33 

4.13 
4.10 

6.75 
6.73 
6.68 

6.59 

12.92 

12.74 
12.68 
12.33 

4.82 

4.6 1 
4.57 

8.36 
8.36 
8.25 

8.15 

15.71 

15.65 
15.65 
15.15 

vantageous in a situation  where one may wish to  adap- 
tively change  the  code depending on  the  data being pro- 
cessed. 

It is evident  that  the efficiency of encoding  could be 
increased  by  approximating log, S (e) by more  than  two 
piecewise  linear  segments. This,  however, would in- 
crease  the complexity of the  encoder and decoder, which 
we feel is not desirable. We have  also not  considered 
the  dependency between  run-lengths. This refinement 
could be done by making a Markov model for  the run- 
lengths and  such a scheme might lead to higher com- 
pression.  Some work along these lines is discussed by 
Arps [8]. Such schemes unfortunately lead to more 
complicated  encoding and decoding. 
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