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Image  Data  Compression by Predictive  Coding 
I: Prediction  Algorithms 

Abstract: This paper deals with predictive coding techniques for efficient transmission or storage of  two-level (black and white) 
digital images. Part I discusses algorithms for prediction. A predictor transforms the two-dimensional dependence in the original  data 
into a form which can be handled by coding techniques for one-dimensional data. The implementation and  performance of a fixed 
predictor, an adaptive predictor with  finite memory, and an adaptive linear predictor are discussed. Results of experiments performed on 
various types  of scanned images are also presented. Part I1 deals with techniques for encoding the prediction error  pattern to achieve 
compression of data. 

Introduction 
Data  sources  such  as facsimile  transmission signals and 
digitized images to be stored in a computer memory  con- 
tain a substantial amount of redundancy. Source coding 
[ I ]  techniques  (also called data  compaction  or com- 
pression)  can be  used to efficiently encode  the  outputs 
of such  sources.  There  are  two  obvious applications of 
these  compression methods. The first is in communica- 
tion systems. By encoding the  source, we can  transmit 
the information over a  communication  channel in a 
shorter time  period. Alternatively,  we could use a channel 
with a smaller  bandwidth to  transmit  the  coded  data 
(hence  the often  used term “bandwidth compression”). 
The  second application is in storage  systems, which can 
be  used more efficiently by reducing the  amount of data 
to  be  stored. 

In this paper we discuss some theory  and  methods  for 
compressing  two-dimensional black and  white  image 
data  through  the  use of predictive coding. Part  I1  [2] 
describes encoding techniques designed to  achieve com- 
pression.  Before going into  detailed discussions  on  the 
particular approaches  taken,  we briefly review some of 
the  recent  progress in the general area of image compres- 
sion. Techniques in the  art of compressing  two-dimen- 
sional  image data can be classified into  two categories: 
1) time-domain (or  space-domain) encoding and  2) 
transform-domain  encoding. The time  domain techniques 
that  appear practical are mostly of the prediction-com- 
parison type.  This includes schemes like delta modulation 
and differential pulse code modulation [3].  Most  studies 
of such  systems  are based on  the classical  communication 

164 theory  approach.  The first information theoretic  treat- 

ment of this  subject was  done by Elias [4],  who called 
the  technique  “predictive coding.” In  predictive coding 
the  dependence  inherent in the  data  can be  removed by a 
good predictor  that  transforms  the original data  into a 
form  such  that  successive  data symbols are nearly in- 
dependent of each  other.  The transformed data  can then 
be encoded by techniques applicable to independent 
sources. Application of predictive coding to compression 
of pictorial data  has been reRorted by Wholey [ 51 and by 
Arps [ 61. Recent  results in the  theory of data  compres- 
sion systems  that  use prediction and interpolation have 
been discussed by Balakrishnan [7] and by Davisson 
[8]. Applications of their  studies to weather satellite 
pictures are  reported by Kutz  and Sciulli [9]. 

The transform-domain methods [ 10- 121 include the 
application of Fourier,  Hadamard-Walsh, Karhunen- 
Loeve,  and  other transforms. In all these  methods a 
block of data  samples  is  decomposed  into a set of coef- 
ficients of orthogonal functions,  and  the coefficients are 
transmitted.  Compression  of’data is obtained by elimi- 
nating insignificant coefficients or by reducing the  number 
of levels of quantization i n  the transform  domain. There 
is, of course,  some degradation in the  reconstructed 
image.  With the  advent of fast transform’ methods 13 - 
151 that  are particularly  suited for high-speed digital 
computers,  the  transform  techniques  have recently  re- 
ceived  considerable  attention. 

For  comprehensive  treatments of the  subject,  the 
reader is referred to  the  recently published books by 
Huang and Tretiak [ 161, Andres [ 171, and Rosenfeld 
[ 181, and to a  special issue of journal  papers [ 191. 

H. KOBAYASHI AND L. R. BAHL IBM I. RES. DEVELOP. 



Image-data compression systems with predictive 
coding 
In  the  present work our main interest lies in efficient 
source coding of two-dimensional digital image data, i.e., 
data  from  sources  that  are  discrete  both in space and in 
amplitude [20]. Typical examples are  the quantized 
values of facsimile scanner  output  and graphic  display 
data of computer  systems.  We limit ourselves  to  those 
cases  where  the  amplitude is quantized  to  just  two levels. 

Figure 1 illustrates a communication system  that  uses 
predictjve'coding. Assume a  two-dimensional data  source 
s(i, j ) ,  1 5 i 5 i, 1 5 j 5 J ,  in which the  value of each 
picture  element (pel) s can be either 0 (white) or 1 
(blackj.  We  can  expect  the value of pel s (i, j )  to  be close- 
ly related to  the values of its  neighboring  pels, s ( i  - 1, 
j -  l ) ,  s( i-  l , j ) ,  s( i-  l , j +  I), s ( i , j ~  1);etc.  (Fig. 
2 ) .  It  is  therefore possible to predict s (i, j )  with a high 
probability of success  from  the values of neighboring pels. 
This is the function of the  predictor in Fig. 1: The  set of 
point; on which the  predictor  bases  its prediction of the 
generic pel ( i ,  j )  is called the memory set M of the pre- 
dictor. For example, in the  case of tbe +pel predictor of 
Fig. 2,  the memory set is 

M =  {s(i- i , j -  l ) ,  s ( i -  l , j ) ,  

- .  

f .  

s( i -  l , j +   I ) ,  s ( i , j -  1)). (1) 

The  output i(i, j )  of the predictor  module is compared 
with the  actual value s ( i , j )  and  an  error signal e ( i , j )  is 
derived  from the  operation 

e ( i , j )  = s ( i , j )  @ t ( i , j ) ,  (2) 

where @ means  modulo 2 addition, an  operation  that can 
be  realized by an EXCLUSIVE OR circuit. 

If the  'tyo-dimensional  data s ( i ,  j ) .  are  read by raster 
scanning,  they are transformed into a  one-dimensional 
time series  denoted by s (n),' where n = ( i  - 1 )J + j  and 
1 f n 5 ZJ. The  sequence s ( ~ )  is first read into a  buffer 
memory. The 4-pel predictor of Fig. 2 is given at time 
n the  values s(n- 1); s ( q -  J + l ) ,  s(n - J ) ,  and 
s (n - J - 1)  from the memory and it generates s*(n), a 
predicted  value of s (n) . The original data s (i, j )  tend  to 
be higlily redundant so most  predictions are  found'to be 
correct.  This  results in an  error  pattem e ( n )  [or equiva- 
lently e ( i ,  j )  3 which is very  sparse in binary 1's. 

The  error signal is encoded by some'efficient data com- 
pression scheme  and is then  transmitted or put into a data 
storage  system.  At  the receiving end, or in retrieving the 
data  from a storage  system,  the  decoder  recovers  the  error 
signal from its  encoded form and  the original data  are re- 
constructed by passing e ( i , j )  into a circuit that  cmtains a 
predictor in its  feedback  loop  (Fig. 1). The  structure of 
this predictor and  its  prediction ?le should be identical 
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Figure 1 An image data  compression  system with predictive 
coding and decoding. 

s( i-1,j-I) s(i-l,j) s(i-l,j+l) 

Figure 2 Two-dimensional data  and their  prediction  based  on 
the neighbors. 

to  those of the  predictor  at  the  transmitter side. The s (i, j )  
are  reconstructed according to the  inverse  rule of ( 2 )  : 

s ( i , j )  = e ( i , j )  @ t ( i , j ) .  (3 1 
The  system  represented by Fig. 1 can be  extended  to 

multilevel (grey level) signals, e.g., the  case in which the 
s ( i ,  j )  take  on m different levels, 0, I ,  . . ., m - I .  The 
mod 2 additions in ( 2 )  and (3 ) should then be  replaced 
by mod rn subtraction  and mod m addition,  respectively. 
The prediction error  pattern e ( i , j )  is therefore  an m-level 
pattern, with few  non-zero values,  since  most  predictions 
will be  correct. 

The information in the  error signal e ( i , j )  is precisely 
the information in the original image s ( i , j )  because  either 
can  be obtained  uniquely  from the  other.  Note  that pre- 
diction  by itself does not achieve  any compression. 
However, a substantial difference in the efficiency of 
coding may occur depending on  whether  one  encodes 
s ( i ,  j )  or e ( i ,  j ) .  An efficient code for s ( i ,  j )  would re- 
quire  that a large number N of pels be encoded simul- 
taneously. This imposes two  requirements  on  the en- 
coding: 165 

IMAGE  DATA  COMPRESSION 



predictionrule 
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s ( i , i )  

Figure 3 An image data  compression  system  with  adaptive 
predictor. 

1. There must be  an  active memory that  stores  the  past 
N or  more  terms of s ( i ,  j )  . 

2. There must  be a codebook memory that lists the  code- 
words for all possible patterns of N  terms. The num- 
ber of entries in the  codebook is 2N. 

Furthermore, if each block is  encoded  independently, 
the  inherent  dependence  between  adjacent blocks is not 
exploited. In predictive  coding, on  the  other  hand,  the 
error  sequence e ( i , j )  is, in most cases,  approximated by 
the  output of a  memoryless (zero-memory)  source be- 
cause  the serial (or  spatial)  redundancy is removed  by 
the  predictor.  As  discussed in Part 11, this latter  result 
allows convenient encoding of data  without resorting to 
a large codebook. 

Prediction algorithms 

Predictors  and  criterion  for  optimality 
One problem in the design of a predictor  is  the  choice 
of the memory set.  Clearly, points adjacent  to  the point 
to be predicted are  the most useful and should  be  con- 
tained in the memory set.  We  also  restrict  the memory 
set to contain points that  have been scanned prior to  the 
point  currently being predicted.  (It is possible to con- 
struct look-ahead predictors which violate the  above 
constraint,  but  the  advantages, if any, of such  predictors 
have not  been  investigated.) I t  is advantageous  to  have 
as large a memory set  as possible, but  since  the com- 
plexity of the  predictor  grows with the size of the memory 
set, practical considerations generally limit the memory 
set  to  contain only  a  few  points,  generally less  than 10. 

For a given  memory set,  the "best predictor" is defined 
as one  that  requires  the minimum number of bits for  the 
transmission of its error  pattern.  However,  we  need a 
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Figure 4 Adaptive  linear  threshold  logic  predictor  with N = 4. 

purpose of predictive coding is to  remove  the redundancy 
from  the image pattern. If the  predictor  does a good job 
of redundancy removal the  error  pattern  can  be con- 
sidered to  be a completely random pattern. If we  make 
the  assumption  that  the  error  pattern is truly random,  the 
compression obtained by encoding the  error  pattern is 
determined only  by the prediction error probability. 
Therefore  we  choose  the minimization of prediction  error 
probability as  our criterion of optimality. In  practice, a 
predictor  does  not  remove all of the  redundancy in the 
image, only a substantial  portion of it. Consequently  the 
error  pattern is not completely random.  However, 
assuming the  error  pattern to be random is  the most 
pessimistic assumption  and  it gives us a lower bound 
on  the performance of the  compression system. Another 
justification for choosing the minimization of prediction 
error probability as  the optimality  criterion is its prac- 
ticality in analysis  and implementation. 

Dejnition A  predictor is called optimum if the prediction 
error  terms e (  i, j )  [or e(  n ) ]  contain,  on  the  average,  the 
least  number of l's, which identify prediction errors. 

If the size of the memory set is N (i.e., an  N-pel  pre- 
dictor),  the  set  can  take  on 2N different states  (or  values) 
which we denote by M,, k = 1, 2; ' ., 2N. 

Fixed  predictors 
Assume  that  the  data  sequence  is  stationary  and  we  are 
given the conditional  probability 

q( 1 / M , )  = Pr{s = 1 /memory  set = M , } ,  (4) 

for all k = 1, 2; . ., 2". We  further  assume  that prediction 
is performed pel-by-pel according to a fixed prediction 
rule. Then  we  obtain  the following theorem  for  an optimal 
fixed prediction  rule. 
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Theorem I If the memory set  takes  on  state Mk,  then 

0 if q( 1 IM,) < 0.5; 
1 if q( 1 IM,) 1: 0.5. 

The minimized probability of prediction error is given by 

fl 
P,= I: r (M,)  min {q(1lhfk), 1 - q(llMk)}, (6) 

where 

r(M,) = Pr {memory set = M,}. (7 )  

The proof of the  above  theorem is given by a straight- 
forward application of the well-known  Bayes'  decision 
rule  [20].  In  actual applications q( 1 I M,) should be 
obtained  empirically. 

The  appropriate  choice of a memory set must  be  left 
to  the designer's judgment since there  seems  to  be  no 
general way of defining an optimal  memory set.  However, 
one  can  see intuitively that  performance would be im- 
proved by expanding any given memory  set. This, in fact, 
can be  proven under  the  same  assumption  made in the 
theorem. We state this fact as a separate  theorem. 

Theorem 2 The probability of prediction error of an 
optimal fixed. predictor is not increased by expanding the 
memory  set. 

k = l  

The formal proof is given in [20]  and is lengthy; it is 
based on  the  concave  property of the function f (x) = 
min (x, 1 - x). 

One of the  disadvantages of a fixed predictor is  that 
the size of the decision  table grows exponentially  with 
N ,  and  hence  its dimension becomes huge  when N gets 
large. It is possible to reduce  the predictor  complexity 
to some  extent by  applying techniques  from switching 
theory,  such  as Karnaugh  maps [21 I or  the Quine- 
McClusky reduction  method [ 221. 

Adaptive  predictors 
A fixed predictor of the  type  discussed  above is justified 
if the  statistics of the  data [i.e., q( 1 IM,)] are known or 
available in advance (e.g., by prescanning)  and if the 
data  from  the  source  are stationary. The  adaptive pre- 
dictors provide  solutions that  are practical  when data 
statistics  are  unknown or nonstationary.  The  use of 
these  adaptive  predictors  requires  no  extra channel 
space:  The  predictor  at  the  receiver  operates in exactly 
the  same  manner  as  the  one  at  the  transmitter side,  and 
updating of its  prediction  rule can be done synchronously 
with that of the  transmitter  because  the  adaptation is 
controlled by the signal s( i, j )  , which is available at both 
ends of the  system  (Fig.  3). 

Adaptive threshold-logic predictor 
The  predictor  output s  ̂ forms a finite set of discrete levels 

Figure 5 Typical behavior of C,. 

(0 and 1 in our  case), so any of the  pattern classifier or 
discriminant functions  can  be used as a predictor  [23 1. 
The simplest type of adaptive classifier is a linear  learning 
machine or adaptive threshold logic unit (TLU). 

Let {x1, x2, . . ., x,} be values of data in the memory 
set of dimension N .  For example, in the  case of the 4-pel 
predictor of Fig. 4. these x's at time n are 

x, = s ( n  - l ) ,  x, = s ( n  - J  + l ) ,  x3 = s ( n  - J ) ,  and 
x4 = s ( n  "J + 1). (8)  

Define an ( N  + 1)-dimensional  vector x  by 

x = (1, XI, xz;. .> x*,), (9 1 
and  consider  the following linear  function of the  vector: 

N 

F (x) = i=1 wixi + wo = (w, x), 

where w is an ( N  + 1 )-dimensional vector, 

w = (wo, W1' w z 3 .  . .> WN), (11) 

and the wi's are real  numbers. For practical purposes  the 
wi's can be  integers. This condition is met automatically 
if the initial values of w and a of ( 13) are integers. Then 
the prediction is done according to  the following simple 
rule: 

This linear  predictor can  be  made  adaptive by the fol- 
lowing rule: The initial choice of the weight vector w may 
have any value. The w is modified only when  the predic- 
tion fails. That  is,  let  the new weight vector w' be 

w ' = (  
w + a x i f s =  1 a n d i = O ;  
w - a x i f s = O a n d i = l .  (13 )  

The  choice a 1 0 for  the coefficients determines  the sta- 
bility and  convergence  speed of the predictor. Several 
rules  for choosing a are known [24, 251. The simplest 
types  are a )  fixed increment rule, where (Y is  any fixed 
positive number, and b)  absolute  correction rule, where 
a is the smallest  integer greater than I (w, w) 1 / 1x1'. 

In its  usual  applications to  pattern recognition, the 
adaptation of this  discriminant function  is  done in a train- 
ing period that  precedes  the  test period.  Although  this 
operational mode is also applicable to  the problem at 
hand,  we  can  provide a more  attractive  mode in our 'ap- 1617 
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the small computers need to be backed up, they can have 
a link to  the large central computers. 

Since in many experiments the raw events can be con- 
verted easily into a more economical format, or frequently 
even rejected as useless after  the simplest geometrical 
checks, another way  of "stretching" the capacity of the 
on-line computers is to perform a maximum of simple 
logical operations on the  data before they enter the 
computer. This reduces the  amount of valuable memory 
taken up by buffers for useless information and leaves 
much more memory (and also time) for programs treating 
the useful data. The system designed for  the experiment 
on line to the 360/44 is an  attempt in this direction. 
Defining the center of a cluster of triggered wires in a 
wire spark chamber by special hardware is another. 

ist, for although a huge effort went into each program, 
the result was usually a program extremely efficient in 
execution time and space usage. With the arrival of  newer 
computers, with support of on-line applications even 
extending as  far as time-sharing systems, the tendency has 
been to program in machine language only those opera- 
tions which  would be extremely ineficient in a higher level 
language, for example handling the  input/output and 
buffering, and  to make use of the flexibility of the system 
and the high  level languages for most other tasks. However, 
in some applications it has been found that the high over- 
heads imposed by these systems, often written for process 
control applications, have put such restriction on the data- 
taking capacity as to outweigh the advantages given  by 
the flexibility. 
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plication. That is, there is no need to  set up a training 
period separate from the  test period. We can  operate this 
learning machine in an adaptive  mode all the time  without 
any interception or prescanning. 

So far we have discussed  only the linear  learning ma- 
chine  because of its simplicity. However, essentially all 
types of learning machines and discriminant  functions 
can be used as adaptive  predictors. A @ function [24] is 
defined by 

@(x) = w,+ w , f , ( x )  + w,f,(x) +...+ w,f,(x), (14) 

where &(x) ,  i = 1, 2, * . ., M ,  are  any real functions of x. 
For example,  they can be chosen  to  extract important 
features of patterns.  Another  class of pattern classifiers is 
“layered  machines” [24,25]. A  layered  machine is a net- 
work of TLUs, organized in layers. This  class includes 
the piecewise-linear discriminant  function  machines  and 
the “a-perceptron.” 

Adaptive  predictor with jinite memory 
In  the fixed predictor  discussed  previously,  an optimal 
prediction  table  must  contain one bit of information for 
each  state M ,  of the memory set, k = 1, 2; . ., 2N. The bit 
indicates  whether the conditional probability q(  1 / M , )  is 
greater than 0.5. But prior to setting up the decision  table, 
one  needs  to estimate q ( 1 / M , )  by prescanning or some 
other means. Now, by assigning a few extra bits to  each 
entry of this  decision  table,  we can develop a practical 
scheme that  does  not need prior knowledge of data statis- 
tics. We  associate with each  state M ,  a counter C,. Let 
each  counter  have L bits ( L  2 1 ) ; therefore C,  can count 
from o to zL - 1. 

The prediction  and adjusting algorithms  proceed as 
follows. For a given memory set M,, predict  according to 

After  the value of a pel is predicted, the  actual value at 
that pel is used to  update  the up-down counter C, as fol- 
lows: Its new value is 

min {c, + 1, 2L - 11 if s =  1, [ max {C,- 1,0} if s = O .  (16) 

Typical  behavior of C, is  illustrated in Fig. 5 in which a 
two-bit counter ( L  = 2) is chosen. The memory set takes 
a state M ,  at times n, ,  n,, n3, ’ . e, during which C,  moves 
either  up  or down  according to  the rule (16).  In this il- 
lustrative example a transition takes place from one re- 
gion to  another in which statistical  properties of the image 
patterns  are different: In region A q( 1 / M , )  appears  to 
be larger  than 0.5 and in region B, less  than 0.5. Predic- 
tion errors  occur  at times nl, 3, ns, and n9. The behavior 
of C, can be treated as a one-dimensional random walk 
with reflecting barriers  at C, = 0 and C, = 2L - 1 [26]. 

4-pel predictor 

7-pel predictor 

12-pel predictor 

Figure 7 Predictors  used in  the experiments. 

The  appropriate choice of bit-size L for  the  counter C, 
should be a compromise  between  two conflicting factors: 
If L is small, the value of C, is susceptible to irregular or 
noisy data;  on  the  other hand, if L is large,  it takes a large 
number of data points to  reach convergence and also  to 
accomplish a transition  from  one region to another. 

Many  interesting  variations of the update algorithm 
(16)  are possible. For example,  we could make the con- 
tents of all counters  decay with time to  the median value. 
Or, if the behavior of certain states is correlated, we could 
update  more than one  state  each time, and so on. How- 
ever,  we  have found  through  experiments that  the value 
of reducing the prediction error  rate by adopting  such 
variations  is negligible in comparison with the increased 
complexity of the algorithms. 

Experimental  results and conclusions 
The techniques of prediction  discussed in the  previous 
section have been  applied to  data from three different 
sources:  a page from the IBM Journal of Research and 
Development [Fig. 6(a)]  and two line-drawings from  a 
machine jobshop [Figs. 6(b) and 6(c)].  The size of the 
documents from which the  data were  obtained is 83 in. X 

1 1  in. and the scanning resolution is 125 pels per  inch, 
i.e., each pel is 8 mils (0.2 mm) square. 

Figure 7 lists the memory sets of the predictors  used in 
this  experimental  study.  When fixed predictors are  used, 
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20% or more of the entire page  is prescanned to derive an 
optimal predictor rule. Adaptive linear predictors are 
applied  with the initial setting wi = 0 for i= 0 ,  1; . ., N and 
no prescanning. Finite-memory adaptive predictors start 
with every counter set to half its capacity, i.e., C, = 2L", 
k =  1,  2;*., 2N. 

Figure 8 shows a portion of a scanned image s (i ,  j )  and 
the corresponding prediction error pattern e ( i , j )  when a 
4-pel adaptive linear predictor is used. The prediction 
error patterns obtained for the other types of predictors 
look quite similar to this example. Table 1 Summarizes 
the performance of the three predictors applied to the 
journal page  image  aild it clearly shows that the finite- 
memory adaptive predictors excel for this type of image 
data. 

Figure 9 shows plots of the prediction error rate of  4- 
and  7-pel adaptive predictors with finite memory as the 
counter size L is changed. The 7-pel adaptive predictor 
with L = 3 yields the lowest prediction rate, 4.79 percent. 

An adaptive linear predictor, on the other hand, does 
not yield  high performance. This seems to indicate that 
the linear constraint on a predictor is too restrictive. A 
substantial performance improvement is achieved by en- 
larging the memory set from N = 4 to N = 12, but the per- 
formance is  still not as good as that of the other types of 
predictors. Therefore, if one wants to build a learning- 
machine type of predictor, he should probably use piece- 
wise-linear or polynomial predictors. 

Type of predictor 

7-pel  finite  memory  adaptive ( L  = 3) 
7-pel  fixed  (prescanning) 
4-pel finitememory adaptive ( L  = 3)  
4-pel fixed 
12-pel  adaptive  linear (a = 1 )  
4-pel adaptive  linear (a = 1 )  

Prediction  error 
(percent) 

4.79 
5.14 
5.16 
5.85 
6.14 
7.22 

Table 2 Experimental  results on machine jobshop charts (125 
pels per inch). 

Prediction error (percent) 

Type of predictor ChartA Chart B 

7-pel  fixed 2.24 1.25 
4-pel finite-memory  adaptive 2.30  1.20 
4-pel  fixed 2.37 1.35 
12-pel  adaptive  linear (a = 1 ) 2.50 1.52 
4-pel  adaptive  linear (a = 1 ) 2.79 1.67 

Table  2 summarizes the results obtained on the ma- 
chine jobshop charts A and B. We observe again the 
superiority of the fifiite-memod adaptive predictor over 
the other types. The results from chart B show that the 
4-pel  finite  memory adaptive predictor surpasses even the 
7-pel  fixed predictor. 

Acknowledgments 
We express our thanks to L. S. Loh for his  programming 
assistance and to D. J .  Min, E. V. Eisein, K. Myer and 
F. Wood for providing us  with the scanned data used in 
our simulation study. Some of the work reported in this 
paper was done in collaboration with our colleagues, 
D. I .  Barnea and D. D. Grossman. We are also indebted 
to R. B. Arps for many  stimulating discussions on the 
subject. Finally we express our appreciation to P. E. 
Green, J .  Raviv  and M. G. Smith for the encouragement 
they gave us during the course of the work. 

References 
1 .  R. G. Gallager, Information  Theory  and  Reliable Com- 

munication, John  Wiley & Sons, Inc., New York, 1968. 
2. L. R. Bahl  and H. Kobayashi, "Image.Data Compression by 

Predictive  Coding 11: Encoding  Algorithms," ZBM J .  Res.  
Develop., 18,172  (1974), following  paper. 

3. H. R. Schindler, "Delta Modulation," IEEE Spectrum 7, 
69 (October 1970). 

IBM J .  RES. DEVELOP. 



h/ 4-pel finite-memory adaptive 

4-pel fixed 

0.05 

7-pel finitememory  adaptive 

1 O ’ O I  
4“ I I I I I 

1 2 3 4 5 6 I 

I L  - 
Figure 9 Prediction error rate p e  vs counter size L: experi- 
mental results from the journal page data. 

4. P. Elias, “Predictive Coding, Parts I and  11,” IRE  Trans. 
Informatioh  Theory IT-1,16 (March 1955). 

5.  J. S. Wholey, “The Coding of Pictorial Data,” IRE Trans. 
Information  Theory IT-7,99 ( 196 1 ) . 

6. R. B. Arps, “Entropy of Printed Matter  at the Threshold of 
Legibility for Efficient  Coding  in Digital Image Processing,” 
Report  No. 3 1, Stanford Electronics Laboratory, California, 
1969. 

7. A. V. Balakrishnan, “An Adaptive Non-linear Data Predic- 
tor,” Proc.  Nut.  Telemetry  Conf., Washington, D.C., May 
23-25, 1962, Paper No. 6-5. 

8. L. D. Davisson, “The Theoretical Analysis of Data Com- 
pression Systems,” Proc. IEEE 56,176  (1968). 

9. R. L. Kutz and J. A. Sciulli, “The Performance of an Adap- 
tive Image Data Compression System in the Presence of 
Noise,” IEEE Trans.  Information  Theory IT-14, 273 
(1968). 

10. W. K. Pratt, J. Kane and H. C. Andrews, “Hadamard Trans- 
form Image Coding,” Proc. IEEE 57,58  (1969). 

1 1 .  H. C. Andrews and W.  K. Pratt, “Transform Image Coding,” 
in Proceedings of the Symposium on Computer  Processing 
in Communications, Polytechnic Press of the Polytechnic 
Institute of Brooklyn, New York, 1970, pp. 63-84. 

12. H. C. Andrews and K. L. Caspari, “A Generalized Tech- 
nique for Spectral Analysis,” IEEE Trans.  Computers 

13. I.  J. Good,  “The Interaction Algorithm and Practical Four- 
ier Analysis,”J. Roy.  Stat.  Soc., Series B, 20, 361 (1958). 

14. J. W. Cooley and J. W. Tukey,  “An Algorithm for  the Ma- 
chine Calculation of Complex Fourier Series,” Math. 
Computation 19,297  (1965). 

15. J. E. Whetchel and D. F. Guinn,  “The Fast Fourier-Hada- 
mard Transform and Its Use in Signal Representation and 
Classification,” EASCON  Record, 1968, pp. 561-573. 

16. T. S. Huang and 0. J. Tretiak (eds.), Picture  Bandwidth 
Compression, Gordon and Breach Science Publishers, Inc., 
New York, 1972. 

17. H. C. Andrews, Computer  Techniques in Image  Processing, 
Academic Press, Inc., New  York, 1970. 

18. A. Rosenfeld, Picture  Processing  by  Computer, Academic 
Press, Inc., New York, 1967. 

19. Special issue on “Signal Processing for Digital Communica- 
tions,” IEEE Trans.  Communications COM-19, No. 6, 
1971. 

20. H.  Kobayashi and L. R. Bahl, “Image Compaction by Pre- 
dictive Coding: Fundamentals,” Research Report RC 3249, 
IBM Thomas J. Watson Research Center, Yorktown 
Heights, New York 10598, February 1971. 

21. M. Karnaugh, “The Map Method for Synthesis of Com- 
binatorial Logic Circuits,” Trans.  AIEE 72, Part I, 593 
(1953). 

22. E. J .  McCluskey, Introduction to the  Theory of Switching 
Circuits, McGraw-Hill Book Co., Inc., New York, 1965. 

23. H. Kobayashi, “Adaptive Data Compression System,” 
IBM Tech.  Disclosure Bull. 14, 1305 (197 1 ). 

24. N. J. Nilsson, Learning  Machines, McGraw-Hill Book 
Co., Inc., New York, 1965. 

25. K. S. Fu, “Learning Control Systems-Review and Out- 
look,” IEEE Trans.  Automatic  Control AC-15,210 (1970). 

26. W. Feller, An Introduction to Probability  Theory  and  Its 
Applications, Vol. I, 3rd ed., John Wiley & Sons, Inc., New 
York, 1968. 

C-19,16  (1970). 

Received April 25, 1973;  revised July 30,  1973. 

The authors  are located at the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights,  New  York  10598. 

171 

MARCH 1974 IMAGE DATA COMPRESSION 


