138

P. M. KOGGE

P. M. Kogge

Parallel Solution of Recurrence Problems

Abstract: An mth-order recurrence problem is defined as the computation of the sequence x,," * -, xy, where x; = f (a,, x,_,," * , x,_,) and
a, is some vector of parameters. This paper investigates general algorithms for solving such problems on highly parallel computers. We
show that if the recurrence function f has associated with it two other functions that satisfy certain composition properties, then we can
construct elegant and efficient parallel algorithms that can compute all N elements of the series in time proportional to [log,N']. The
class of problems having this property includes linear recurrences of all orders—both homogeneous and inhomogeneous, recurrences
involving matrix or binary quantities, and various nonlinear problems involving operations such as computation with matrix inverses, ex-

ponentiation, and modulo division.

Introduction

A common problem in applied mathematics is the com-
putation of a sequetice of N elements denoted x,," -+, x,,
given only a set of initial conditions (x,, -+, x_,.,) anda
set of equations relating each x; to m other elements of
the sequence. Such a problem is called an mth-order re-
currence problem. A common example is the description
of a discrete-time linear system where the state of the
system at time / is a linear function of the state at time
i — 1, namely:

x, is given

x,=Ax,+ B,

x;=A;x,_,+ B,

xy=Ayxy_ + B,. (1)

Such problems appear on the surface to be highly se-
quential; we first use the initial conditions to compute
one new x;, then using the new x; we compute x,, ,, and
so on until the desired sequence is computed. This pro-
cess is obviously well suited to standard single-instruc-
tion-stream, single-data-stream (SISD) computers. It is
not, however, an efficient process for use on the new
single-instruction-stream, multiple-data-stream (SIMD)
computers that are capable of performing many simul-
taneous operations. The purpose of this paper is to de-
scribe certain functional properties that, when possessed
by a given recurrence problem, allow the construction of
new parallel algorithms that take advantage of the proper-

ties of a SIMD machine. These new algorithms run in
time proportional to [log,N1 as compared with the time
proportional to N required by standard solutions. (The
notation [x] means the largest integer less than or equal
to x.)

Most previous work in this field has centered either on
very global aspects of parallelism, such as dependency
ordering [1], or on highly parallel solutions to very spe-
cific problems. Typical specific solutions include poly-
nomial evaluation [2], Poisson equation solution [3, 4],
mathematical programming problems [5], tridiagonal
equations [6], and minimax searches [7]. Although not
formally presented as such, other methods such as the
carry bypass adder [8] in reality represent direct imple-
mentations of parallel algorithms for specific recurrences.

A few general techniques for parallel solution of re-
currence problems were suggested by Stone [6] and
later developed into a general algorithm by Kogge and
Stone [9]. Those results, however, are largely special
cases of the results given in this paper.

Related topics include investigations of the numerical
stability of parailel algorithms [10] and the minimal
parallelism needed to solve recurrences [11,12].

Some of the concepts described in this paper were dis-
covered concurrently and independently by Trout [13].

Definitions and notation

In this section we define the type of parallel computer
assumed available, the general type of recurrence prob-
lem we consider for solution, and the notation used to
describe the algorithms we develop.

IBM J. RES. DEVELOP

s Parallel computer

The kind of pafallel computer assumed available is a
SIMD computer similar to that described in [14]. The
major characteristics of such a computer’s organization
are as follows:

1. There are p identical processors, each able to execute
the usual arithmetic and logical operatiors, and each
with its own memory.

2. The operations performed by each processor involve
at most two operands.

3. Each processor hasa distinct index by which it may be

. referenced by an instruction.

4. All processors obtain their instructions simultaneously
from a single instruction stream. Thus dll processors
execute the same instruction, but operate on data
stored in their own memories. o

5. Any processor may be “blocked” of “masked” from
performing an instruction. This mask may be set by
an explicit instruction directed to a processor by its
index or by the result of some global test instruction;
such as “‘set mask if accumulator is zero.”

6. Under program control all unmasked processors can
exchange data with each other over predeﬁned data
paths.

Figure 1 shows a diagram of a computer with the above
characteristics.

» Recurrence problem
For this paper we define a general recurrence problem
as follows:

Definition 1 The solution to an mth-order recurrence
problem is a sequence x,, - - -, x,, where initially we are
given

1. aset of m initial values {x,, -~ x_,. .}
2. a recurrence function (r function) f such that for all
L1Zi=N,

X=fa,x_, 5 X_w)s 2)

where a, is termed a parameter vector and is a set of
parameters independent of any X; and is referenced by
f during the computation of x,.

This definition allows efficient use to be made of a
SIMD computer’s capabilities. Each processor can use
the same instructions needed to evaluate f but on differ-
ent parameters and data.

The simple problem (1) fulfills the above definition.
Here

X =Ax_,

+B,
=a,(1)x,_, +a,(2)
=fla,x;_), 3)

MARCH 1974

Instructions

P, = Processing element i

M; = Memory for P; Instruction
* = Mask interpreter
Identical
instruction to
all processors
* * x
P, P, e e P,
J 4
§ N Data
) exchange
paths
" y
M, M, M,

Figure 1 Computérmodel.

where the parameter vector a, is the pair (4,, B,), and the
function f is an add and a multiply.

We note that the lengths of the parameter vectors may
vary from problem to problem. In the above example the
length of each a, is 2; for the problem

_ai(l) +a,(2)x, ,
- a,(3) + a,(4)x,_

i-1

the length is 4. However, for any particular problem the
length of each a, must be constant for all ;.

o Algorithm notation

The parallel algorithms developed in this paper are all
described in an AL.GOL-like notation. The major varia-
tion from standard ALGOL is found in descriptions of
those aspects of a prograin that would be directly affected
by execution on a SIMD computer. The primary differ-
ences are: '

1. Boldface variables denote lists of elements, with the
length of the list determined by the problem being
solved. Thus A= g(B, C) denotes a function g ap-
plied to two arguments B and C and returning as an
output the list A. » v

2. Arrays defined as parallel have one dimension (the
one defined by the *) stored across the processing
element memories, Thus if we have parallel array
A(*,1::5,1::6), the ith processor has a 5 X 6 array
A(i, 1,1) through A(i, 5, 6) in its memory.

3. An inequality of the form (M < i < N) following an
assignment statement indicates that the statement is
to be executed simultaneously for each value of index
in the specified range.

This particular notation is not meant to reflect what
exists, or should exist, in any real programming language

139

PARALLEL RECURRENCE SOLUTIONS

140

P. M. KOGGE

T=0

ag 2, ag a5 a, a3 a,

4= x5

Figure 2 The log-sum algorithm.

T =4 x;=f(a(8,8),%)

*0
g(a(8,4),a(4,4)) = a(8,8)

2(a(8,2),a(6,2)) =a(8,4) g(a(4,2),a(2,2)) =a(44)

ag a; ag ag a, a3 a, a;

Figure 3 Parallel calculation of x,.

Figure 4 Parallel calculation of x,,* - -, x,.

xg Xq xg x5 X4 X3 x Xy

g evaluations

designed for SIMD computers. It is simply a convenient
notation for expressing the general ideas behind the var-
ious algorithms.

General first-order algorithm

The simplest class of recurrence problems is the first-
order case in which x, depends only on x,_. Many of the
recurrence problems with known parallel solutions, such
as Horner’s rule for evaluating polynomials or the solu-
tion of (1), fall into this category. The classic parallel
solution to this type of problem is the “log-sum” al-
gorithm [15] for solving x, = a, + x;_,. The introduction
of parallelism into the solution of this recurrence stems
from the associativity of addition which allows us to re-
write the standard serial evaluation of, for example,

x,=a,+ (a,+ (a, +a)), (s)
as
x,=(a, +a,) + (a,+a,). (6)

This second formulation allows two processors to work
during the first step, one computing (a, + a,) and the
other computing (a, + a,). For arbitrary N, the generali-
zation of (6) allows N /2 parallel additions at the first
step, N /4 at the second, - -, and N/2* at the kth until,
at the [log,N]th step, x, is computed with one final ad-
dition. Figure 2 gives a diagram of this process for the
computation of x,.

Most recurrences, such as Eq. (1), are not associative
and consequently cannot be solved in such a direct fash-
ion. However, many of the most common r functions do
have related to them another function with an associative-
like property. In turn, this auxiliary function permits a
“log-sum”-like solution to a large part of the solution of
the original problem. This auxiliary function has as argu-
ments two parameter vectors and produces a new param-
eter vector as output. It is defined as follows:

Definition 2 An r function f is said to have a companion
function g (¢ function) if, for all x of the problem’s do-
main and all parameter vectors a, b,

fla, f(b,x)) =f(g(a,b), x). (7)
For example, the ¢ function for (1) is
g(a,b) = (a(1)b(1), a(1)b(2) + a(2)). (8)

All ¢ functions have the following two easily proved
properties:

Theorem 1 All ¢ functions are associative with respect to
their r functions; i.e., forall a, b, ¢, x,

f(g(a, g(b, c)), x) =f(glg(a, b), ¢), x). 9

Theorem 2 If f has a c function g, then any x; can be ex-
pressed in terms of any X 0=j<i=N,as

IBM J. RES. DEVELOP

Table 1 Applications of the FORA algorithm.

Companion function Examples
Problem class g(a, b) (D, = domain of variable r)
1. x,=f(a, x,_,) f{a,b) Lox,=A;x,_ } o . -
i fis associative 2. x,= A, + lxi » D, =D, = {m xm matrices}, m = 1
3. x= mm(Al, x_,) } -h —
4. x;=max(4;, x 11) D, =D, = real
5. x;= A, AND x,_,
6. x,= A, OR x;_, ,D,=D,={0, 1}
7. x;=A; XOR x;_,
8. x,=A;x,_,, D, =D, = {m X m Boolean matrices}
2. x,=f(a,(2), gla, (1), x,_,)) (h[a(1), b(1)], Lx=4x5. 48] 5 _p —p =real
i. f is associative fla(2), ga(1), b(2))] 2. x, =B AT T T
ii. g has a companion 3. x;= (4, AND x,_,) OR B, D, =D, =D, = {0, 1}
., function A 4 x = Alxl , + B, D, = {m X m matrices}
iii. g right-distributes D, =D, = {m X 1 vectors}
over f

3. x,= [a,(1) + a,(2)x,_,]
) [a 3)+ af(4)xl l]
i. +is any associative

and commutative
function
ii. - is any associative
function that
distributes over +
jii. forall x, y
(x . y)~l _ y—-lx—l
iv. x(oy ™) =1x.

(a(1)b(3) + a(2)b(1),

a(1)b(4) +a(2)b(2),

a(3)b(3) +a(4)b(1),
a(3)b(4) + a(4)b(2))

1. x,= (4, + Bx,_)(C;+ Dix,_) 7",
D =D, =D, =D, =D, = {m X m matrices},
m=1
2. x;=A,/(C, + D;x,_,) partial fraction expansion
3. x;= B, + A, /x,_, continued fraction expansion
4, x,= (A OR (B ANDx .)) AND

NoT (C; or (D, AND x,_,)), D, = Dypcn= {0, 1}

Special recurrence problems

Lox,=(a,()x,_, +a,(2))[m

=

ii.

x = (a,(Dx_* + a,(2))

(a(1)b(1),
a(1)b(2) + a(2))

(a(1)b(1),
a(1)b(2) +a(2))

Random number generator {see Knuth [20], p. 10)

xi =f(a(l, ’_.])7 xj)v

where

a(i,r)= {ai forr=1,

(10)

gla,gla,_,, - gla_, ., a))

forr > 1.

(11)

The existence of a ¢ function permits rapid construc-
tion of a parallel algorithm for the original problem. The
second theorem allows, for example, any x,,

x,=f(a,, f(a,, fa,, f(a,, x,)))),

to be rewritten as

x,=f(g(a, g(a,, g(a,, 2)))), x,

MARCH 1974

(12)

(13)

The associativity of g further allows this to be rewritten
as

x,=f(g(g(a, a,), g(a,, a,)), x,). (14)
The two terms g(a,, a;) and g(a,, a,) can be computed in
parallel.

As with the log-sum algorithm, this procedure can be
generalized to the solution of any x,. Exactly [log,N]
parallel g evaluations compute the parameter vector
a(N, N). A single f evaluation combines this vector with
x, to compute x,. The computation of x, in this fashion
is diagrammed in Fig. 3.

This procedure also extends to the simultaneous solu-
tion of the entire sequence x,," * , xy, as depicted in Fig. 4.
A set of N processors performs [log,N]| g evaluations

141

PARALLEL RECURRENCE SOLUTIONS

to compute the set of parameter vectors {a(i, D1 =
i = N}, and 4 single f évaluation computes the desired
sequence.

The following ALGOL-like program summarizes the
algoritim of Fig. 4. It is called FORA (First Order
Recurrence Algorithm).

procedure FORA;
begin
comment allocate one parameter vector per processor,
and initialize toa;;
parallel array A(*);
Ali)=3a, (1=2i=N);
cominent the followmg loop computes a(i, i);
for k =1 step 1 until [log,N1 do _
AG) =g(A®), AG—27"), (@ TT<i=N)
comment now apply the initial conditions;
x;=f(A), x,); (1=i=N);
end FORA.

The validity of this algorithm follows directly from
Theorems 1 and 2.

. Some examples
Table 1 lists some general classes of recurrence problems
that are suitable for solution by FORA. For each class,
the general companion function and particular examples
are given. ;

Class 1 in Table 1 COvers associative functions such as
+, X, max, and min, It is clear that all such functions
satisfy Definition 2 directly. In these cases the FORA
solutions are identical to direct modifications of the log-
sum algorithm.

The second class of recurrence problems listed in
Table 1 has the formf(a,x) =f(a(2), g(a(1),x)), where
f and g have certain functional properties. Suitable prob-
lems _inciude the introductory liriear problem (1) and
several highly nonlinear ones. This particular class of
problems has béen solved previously by Kogge and Stone
[9] who used the concept of recursive doubling.

The third class of problems in Table 1 represents
certain nonlinear problems with no previously known
genéral parallel solution. Stone [6] was able to solve
example 3 of this class with a parallel algorithm that is
faster than FORA. His algorithm, however, is based on
the recursive doubling solutiori of a second-order re-
currence that can itself be solved still faster by the gen-
eralization of FORA described in a later section.

* Minimization of execution time

As evidenced by Stone’s partial fraction algorithm,
FORA is not necessarily the fastest method to solve all
the problems it is capable of solving. For specific prob-
lems, or under certain conditions, modifications of FORA

P. M. KOGGE

or other algorithms can run in considerably less time than
a direct FORA implementation. This section describes
several such situations.

There are two ways of measuring the execution time of
an algorithm such as FORA: 1) counting only the num-
ber of (parallel) function evaluations and 2) actually
computing running time in terms of the relative time re-
quired to compute each type of function. The first ap-
proach is often used in theoretical arguments about the
complexity of an algorithm and is usually the approach
that lends most insight into the question of lower bounds.
The second approach is more pragmatic and is of most
interest when an algorithm is selected for implementation
on a redl computer.

In terms only of the number of parallel evaluatlons,
simple tree arguments based on combining the N param-
eter vectors a,, -+, a, and x, with only two-argument func-
tions indicate an absolute lower bound of & = [log,N + 1]
parallel function evaluations. FORA requires about & + 1
function evaldations (one f evaluation and [logzN g
evaluations) and so is quite close to the lower bound.

However, if more’ detail is known about the nature of
the f and g functions, a more accurate accounting of
function evaluations can yield somewhat different results.
For example, to solve the recurrence Eq. (1), FORA re-
quires approximately 2« + 1 multiplications and & + 1
additions. This is certainly an efficient implementation,
but it is not the fastest vpossible.. An obvious generaliza-
tion, shown in Fig. 5, solves the same recurrence with
only about o + 1 additions and o muitiplications. The
penalty for this speed, however, seems to be in the num-
ber of required processing elements. FORA requires N
processors, while the procedure in Fig. 5 requires about
i processors for each x,, for a total of N * /2 processors for
the same N-element sequence.)

The same procedure diagrammed in Fig. 5 can be ex-
tended to cover any recurrence satisfying Class 2 of
Table 1. Within this class one recurrence in particular
that has received extensive study is the carry equation
for binary addition of two binary numbers. Winograd
[16] and Spira {17] have developed bounds on the mini-
mum time to perform addition and Brent [18] has devel-
oped an approach similar to that showu in Fig. 5 for
solving the carry recurrence and, thus, for performing
addition in time close to Winograd’s bounds with only
N [1og2N 1 processors. (two-input logic elements). This
is better than the procedure of Fig. 5, both in terms of
time and the humber of processors. However, the applica-
bility of Brent’s approach to other problems solvable by
FORA is ari open question.

If estimates of the actual times required to do an for g
evaluation [denoted 7(f) and T(g) respectively] are
available, a modification of FORA can also decrease total
execution time. The number of function evaluation steps

IBM J. RES. DEVELOP

is higher than that for FORA, but the actual execution
time is less. As an example, if T(g) = 3T(f), a FORA
computation of x, requires T(f) +3T(g) =10 T(f) units
of time. A completely sequential evaluation of the same
x, requires 8T (f) units of time. However, a combined
parallel-sequential evaluation as pictured in Fig. 6 re-
quires five function evaluation steps, but only 47 (f) +
T(g) = 7T(f) units of time. This is less than for either
FORA or the straight sequential solution.

In the process shown in Fig. 6, the function g can be
used in parallel for any number of steps to compute new
sets of parameter vectors. After any of these steps,
parallel g evaluations can be replaced by sequential
evaluations of f applied to the g-computed parameter
vectors and a previously computed x;. Figure 6 repre-
sents the case in which only one parallel g evaluation
step is used. FORA, on the other hand, uses as many as
possible, [log,N'], followed by a single f evaluation. The
actual point at which the switch between g and f evalua-
tions occurs is completely open to choice. Consequently,
if T(f) and T (g) are known, this point can be chosen to
minimize total execution time. The following theorem
defines the optimal choice of this switch point.

Theorem 3 The computation of x, using k* parallel g
evaluations followed by sequential f evaluations is mini-
mized in total execution time when k* is either
flog,(N(log,2)T(f)/T(g))] or [log,(N(log,2)T(f)/
T(g))], whichever minimizes kT (g) + NT (f) /25

Proof Clearly, after k parallel g evaluations there are
still N/2" parameter vectors of the form a(j2"*, 2%). If
after the kth step we use only f evaluations, we need
T(f)N/ 2* more units of time. A sequential combination
of these vectors with the initial conditions gives a total
execution time of

kT (g) + T(f)N/2". (15)

Setting the derivative with respect to k& of (15) equal
to zero, we obtain

T(g) —T(f)N(log,22)2"=0 (16)
or
k*=log,(N(og,2)T(f)/T{(g)). (17)

Forcing £* to be an integer gives the result stated in the
theorem.

This theorem defines three regions for the value of k*:

1. When k* < 0, the all-serial algorithm is time-minimal;

2. when 0 < k* < @, a partial-serial, partial-parallel algo-
rithm is minimal; and

3. when k* = a, the all parallel FORA is minimal.

MARCH 1974

Addition

Figure 5 Fast computation of x, = 4,x,_, + B,.

Serial f
evaluations

Parallel g
evaluations

Figure 6 Minimal-time calculation of x;, when T(g) = 3T (f).

ag a; & as a, a3 a, a

These three regions translate into three regions of the
ratio T(f) /T (g):

1. T(f)/T(g) = 1/(Nlog,2) = 1.45/N: the serial algo-
rithm is minimal:

2. 1.45/N=21/Nlog2 <T(f)/T(g) < 1/log,2~ 1.45:
a combined algorithm is minimal; and

3. 1.45 & 1/log,2 = T(f)/T(g): an all-paralle]l algo-
rithm is minimal.

The same procedure used in Fig. 6 to compute x, alone
can easily be extended to compute the entire series
x,, "+ Xy with no loss in time. Figure 7 illustrates this
extension for the case N = 8. The following program sum-
marizes this procedure for any k* between 0 and o. It is
called FORAS (First Order Recurrence Algorithm
Serial).

143

PARALLEL RECURRENCE SOLUTIONS

144

P. M. KOGGE

Serial f
evaluations

Parallel g
evaluations
38 27 86 a5 34 a3 32 al
Figure 7 Minimal-time calculation of x,, -, x, when T(g) =
3T(f).
Xi—2q(k) Xi—2g(k) —2m+2
X; Xi—q(h) Xi—q(k) —m+1 Xi—2g(k) —m+1
-~ .

0]
ay a®

i—q(k) (k)
A gy ~m+1

(a)

Xi—2q(ky —2m+2

i Yi—gh) Fi—gy—m+1 Ti—2g(k) —m+1
* o o L\/_j
D
A (i—qy—m+1,0)
CE)
A (i—q(k).m—1)
a6+

(b)

Figure 8 (a) Dependencies in computation of x; after kth step.
(b) Dependencies in computation of x; at end of (k + 1)th step.

procedure FORAS;
begin parallel array A(*);
AG)=a, (1=i=N), _
comment now compute a(i, 2*") for all i
for k=1 step 1 until k* do
A(i) =g(A(), A —2"")), @' < i= N);
comment nOW compute x,," * -, Xyk+;
x=f(A),x,), (1= i< 2¥);
comment now compute groups of x,’s serially from pre-
vious groups. Each group has 2" elements;
forj= 28" step 2% until N — 2% do
X =fAG), x_p), (G<i=j+2");
end FORAS;

The validity of FORAS follows immediately from the
previous theorems.

General mth-order algorithm

The generality of the FORA algorithm stems from the
existence of a companion for the r function. A similar
situation exists for more general mth-order problems,
although in this case two auxiliary functions, rather
than one, are needed. These functions are defined as
follows.

Definition 3 An mth-order r function has a companion
set {g, h} if there are functions g and 4 such that for all
aga, -aandx, - x

> Vmo

Sflag, fla, X, x,) X5 Xgst % Xpu_y)

=f(g(ay, a,), X,, X5, "y X,) (18)
and
fag, fla, x5 x,), 5 fa,, x, 0 x,) (19)

= f(h(a, a,, a,," ", a,), X, " X,,).

The function‘ g is similar to the definition of a
companion function for a first-order problem; for ex-
ample, it allows x, to be expressed as a function of

X, 50" "' X;_p_, as follows:
x,=flay, x; .0 X)) (original recurrence)
= 1@, s X0 % Xyome)s Kias™ " Xin)

(substitution for x,_,)
(20)

The function & permits us to rewrite a recurrence in
which simultaneous substitutions are made for all un-
knowns as a singie f ¢valuation involving a new parameter
vector and the m common unknowns.

As with the first-order case, many of the problems en-
countered in practice have companion sets and are ame-
nable to the solution technique described in this section.
The general algorithm using these techniques is called
MORA (mth-Order Recurrence Algorithm).

In operation, MORA proceeds much like FORA, with
the computation at each step of a new set of parameter
vectors {a,"’|1 < i< N} having the following properties:

=flgla, a,_), %, 5o "% X y).

a,”=afor1=i<N, (21)
= F @O X g X gromn)
for g(k) <i= N, and (22)
X =f(ai(k), Xoo X_ps" "' X pyyy)
for 1=i= q(k), (23)
where
glk)=m2"+1—m. (24)

The general procedure for computing a,**"’ from a,*’
is illustrated in Fig. 8. In this figure, the arrows represent

IBM J. RES. DEVELOP

the dependency of a sequence element x;onm other x’s.
given the indicated parameter vector. To compute a,"""’
from ai(k) we cannot simply substitute the expressions
£OT X;_ygep™ " Xi_queyomer (IMVOIVING X500 X, 500y 5myn)
into the expression for x;. These expressions involve
2m — 1 unknowns while the function f can handle only
m different x’s. However, a sufficient number of applica-
tions of g in the fashion of equation (20) can produce
new parameter vectors that express each x, 0<j<

i—qlk)—j°
m — 1, in terms of the set {x; , ¢, »,, 0 =j=m— 1}
For example,

_ (k)
X qk)—m+2 _f(g(ai—q(k)—m+2’ By pote)mez)>

Xisqter-mirs " Kisaquo-omiz) - (25)

These new parameter vectors are denoted A“*"(r, j),
where

a® j=0
(k+1) . k)
ATV)y =1eC2le@”™, a,_) a,_ 0 1)s

ar-q(k)—j+1)’ j > 0. (26)

Once a set A*V(i—qk)~j, m—1—j), 0=<j=
m—1, of parameter vectors has been computed, the
secqnd function of the companion set, f, can be applied
asin Eq. (19) to yield a,**""
ai(k+1)= h(ai(k), ARG —qk), m— 1),

A(k+1)(i_q(k)—m+ 1,0)). (27)

This parameter vector expresses x; as

xi___f(éi(kﬂ)’ X (28)

Thus q(k+1)=2q(k) + m—1 or, using the initial
condition g(0) = 1,q(k+ 1) =m2“"' + 1 —m.

The recurrence (27).is the heart of MORA. Each
step of MORA uses it to compute in parallel a set
{a"'|1 = i= N}. When g{k). = N, the procedure stops,
and a single parallel f evaluation applied to these a,.‘k)’s
and the initial conditions {x," -, x } yields the entire
sequence x,, -, Xy.

There are, however, certain regions of i for each
value of k in which the recurrénce (27) must be slightly
modified. The first four of the following five regions are

illustrated in Figs 9(a) -9(d):

X

i~2qk)—m+1> i-2g(k)-2m+2).

—m+1

1=i=< qlk)

gy +1<i=qk)+m—1

Lqlky +m=i<2q(k)

2y +1=i=2qk)+m—2=qlk+1)—1
qlk+ 1) =0

We discuss each region separately, assuming that we are
computing a,“*".

MARCH 1974

X0 X m1

= ——

2T D _ B
r i
(a)
Xjmg(k) —m 1
Xy Xi—qe)y %o Ximm+1
) \ N 2
RO
t
(k+1) (k)
a; =gCgla;_gay i_gquy—17 "> Ay
(b)
Xy Xi—q(k) Xi—qk)y—m+1 Xg Xmm41
‘ - . L] v\ ';
(k) k)
ay; A k) —m1
(k)
2 i—qh
k1) _y (k) (k) o (R
a’; =Shay ayl a8 gy —md 1)
(c)
X Yi—qt) Yicq)—m+1 Ni—2906) Yo femt1
3 <_\r_§7/——\‘————3
(k)
a .
i (€3]
RREEFTE)
(k)
A gk —m+1
a(’f+1)

i

(d)

Figure 9 Regions of basic recurrence. (a) 1.=i= g(k), Re-
gion 1. (b) g(k) + 1 =i<gq(k) + m— 1, Region 2. (¢c) q(k) +
m=i=<2qk),Region3. (d)2qk) +1=i=2qk) + m—2=
gk + 1) — 1, Region 4.

Regionl 1=i= q(k)
Here a,"’ expresses x; directly in terms of Xy, % X_,,,,}

k+1) k)
thus a,“ " = a,"",

Region2 qlk)+1=i=glk)+m—1

As pictured in Fig. 9(b), in this region there is at least
one x;_,q 0= j= m— 1, that is already an initial con-
dition and as such does not allow any transformation
involving the function h. However, i — q(k) repeated
applications of g, as in Eq. (20), directly express x, in

terms of {x, - x_, .}

X =f(gl - glga®, & g Bi_gua)> T A
(29)

ST —g

This composition of g is simply the parameter vector
AV (i, i — q(k)) defined previously. Thus, to be con-
sistent with Eq. (26),

aTk‘H)ZA(kJrl)(l', l_q(k)) (30)

1

145

PARALLEL RECURRENCE SOLUTIONS

146

P. M. KOGGE

Region3 qk) +m=i=2q(k)

As pictured in Fig. 9(c), in this region all {a,_, ,*’|0
=ji=m-— 1}‘ directly express the corresponding x; ., ;s
in terms of {x,, -+, x_,,,}. Consequently, ai(’”” can be

computed directly using the 4 function as follows:

(31)

k41 k 3 K
2 O+)=h(ai() *) ())

i s A _ gy 2 Agi)—mat

Regiond 2qk)+1=i=2qk)+m—2

In this region some, but not all, of the ai_q(k)_j"”’s,
0<=j<m-—1, expresskxi_q(k)_j in terms of {x,, x_,, ",
X_psit- Those a,_q *"s that do not so express their
X;_qe)-; MUSE be transformed using g evaluations as
in the general case into parameter vectors that do.
The previously defined vector A*™"(i—q(k) —j,
i —2q(k) —j) does this. Thus we need to compute ai(k“’

from

a """ =h(a®, A" (i — q(k), i —2q(k)),
AY(i—qk) = 1,i—2qk) = 1), -+,
A" (= q(k) =1, 0), a_gg;, 0

(k+1)).

(32)

ai—q(k)—m-H
Region5 qk+1)<i<N
In this region a,“*"’ may be computed directly from (27).

It would seem from the above discussion that MORA
must have five separate subprogram segments—one for
each region. If, however, the definition of A*'(j, j) is
slightly modified to prevent referencing any a, r=90,
only two regions need be considered.

This new definition of A**"(j, j) is

a," for j=0,

A*™(, j—1) for j > 0 and
qgk)+1=i=qk) +j—1,

gAYV, j— 1), a;_ygys,) for j>0

(33)

A", j) =

and q(k) +j=<i= N.

The properties of this A*™(i, j) are given in the follow-
ing theorem, which can be proved by induction.

Theorem4 Foralliandj, 1= {= N,0=j=m—1,

‘ ai(k), for 1 =i= q(k),

gl 2(g(a", a_)s a_guya)> 5 8y)
AV =1 forglk) +1=i= qk)+j—1,
gl 2(g(a™, a_g)s B_ggoa) 5

yfor qk) +j=<i= N.

(34)

ai—q(k)—j+1
The following theorem defines the two regions that

must be used to compute all a,”*"’. Its proof follows from

Theorem 4 and the definitions of the five regions of i.

Theorem 5 For all k > 0,

A¥ G m—1)for 1< i< q(k) + m— 1,
(+1) 4 G+1)or _

ke _ hia,”" AT (i—qlk), m—1),

A¥ V(i —qk)—m+1,0)) for

glk)+ m=i=N. (35)

From the definition of A®’(i, j) and Theorem 5, we
can now construct MORA.

procedure MORA;
begin parallel array A(*,0::m — 1);
A(,0)=a, (1=i<N);
comment during the (k + 1)th iteration of the following
loop,
1. g= q(k) =m2*—m+1,
2. A(i, j)isthe A"V (i, j) defined in Eq. (33);
forq=1stepqg+m—1luntii (N—m+1)/2do
begin comment the next loop computes A(i, j),
j>0;forj=1step 1 until m— 1 do
begin A(i,)= A, j~1),(I<=i<q+j—1);
Al J)=g(AGj—1),
a_,) (+j< i< N);
end,
comment now compute A(i, 0) = a,
Eq. (27)
A, 0)=h(AG,0),Ali—g, m—1), -
Ai—g—m+1,0)),(g+m=i=N);
AL0O)=A01,m—1),1=i=g+m—1);

™)
4D sing

end,
comment now apply initial conditions to compute all
x;’s;
5 =f(AW0), x5 x_pyy) (1ZI=N);
end MORA;

The validity of MORA follows directly from Theorem
5 and the above discussions.

The amount of time required by MORA is obtained
directly. The outer loop is executed k times, where k is
the smallest integer such that N < m2* + 1 —m, or k=
[log,(N + m — 1) /m]. In each interation of this loop,
there are m — 1 calls on g and one call on 4. Thus the
total time is (m — 1)kT(g) + kT (h) + T(f).

MORA solution to the second-order linear recur-
rence

One of the most common problems in applied mathe-
matics is the solution of the three-term recurrence:

x=a(lx_, +a,(2)x,_,. (36)
The recurrence function in this case is
fla, x, y) = a(l)x+ a(2)y. (37)

1BM J. RES. DEVELOP

A companion set exists for this function, and is easily
computed by composition of the function with itself. The
g function, for example, can be observed from

fa, f(b, x,y), x) =[a(1)b(1) + a(2)]x+ a(1)b(2)y
=f([a(1)b(1) + a(2),
a(1)b(2)], x, y). (38)

Likewise, the A function can be derived from

fla, f(b, x,y), f(e, x,¥))
= [a(1)b(1) +a(2)e(1)]x
+ [a(1)b(2) +a(2)c(2)]y
= f([a(1)b(1) + a(2)e(1), a(1)b(2)
+a(2)e2)1, x,). (39)

Substituting these functions into MORA yields SORA,
a second-order recurrence algorithm. The following
program lists this algorithm in an ALGOL-like format.
The notation A (i, j) (k) refers to the kth element of the
parameter vector A(i,).

procedure SORA;
begin parallel array A(*;0::1);
A(i,0)=a, (1= i= N);
for q=1step g+ 1 until (N —1)/2 do
begin A(i, 1) =A(i,0), (1 =i=< gq);
A, 1) = (AG, 0)(1) a,_, (1) + A(i, 0)(2),
A, 0)(1) a_(2)), (g <i=N);
AU, 0)= (A 0)(1) A(i—gq, 1) (1)
+A®,0)2) Ali—g—1,0)(1),
A, 0)(1) A(i—q,1)(2)
+A@,0)(2) Ali—qg—1,0)(2)),
(g+1 <i=N);
A, 0)=AG 1), 1=<i=qg+1);
end,
x,= A, 0)(1) x,+ A, 0)(2) x_,, (1 <i=< N);
end SORA;

With an approximation of {log,(N +1)/2] as a — 1,
this algorithm requires 6cv — 4 multiplications and 3a — 2
additions to compute an N-element sequence.

SORA is not the only known parallel algorithm for
solving Eq. (36). There are at least two others (cf. Stone
[6]). The first is simply to express (36) as

X a, b||x, | X
X 1 0}lx,_, Xy

The parallel log-product algorithm on the matrices M,,- - -,
M, followed by a matrix-vector product of the form x, =
MM, _,---M) [xox_l]T computes the same sequence
in 8a — 6 multiplications and 4« — 3 additions. This is
roughly one-third slower than SORA.

MARCH 1974

Noting an observation by Euler [19], Stone [6] de-
rived an entirely different algorithm for solving (36) —
one based directly on the technique of recursive doubling
and the analytic solution to (36). Stone’s algorithm re-
quires about 8« — 4 multiplications and 3« — 1 additions,
faster than the matrix approach, but still slower than
SORA. . _

As can be seen from the above comments, SORA is
considerably faster than either of the other approaches.
Whether or not SORA is the fastest parallel algorithm
that solves (36) is an open, and intetesting, question:

Mth-order linear noniomogeneous recurrences
The most common recurrence encountered in practice is
the general mth nonhomogeneous recurrence:

xi‘:‘iai(j)xi_j‘i‘ﬁi(m-i-l), (41)

j=1
where a,(j) is the jth component of a,. This recurrence
has the companion set

a(l)b(j)k+a(j+ Dfor1i<j=m-—1,
g(a, b) (j) =4a(l)b{m) for‘j=m,
a(m+ 1) + a()b(m+ 1) for j=m+1,

and

- m

S a,(r)a,(j) for1 =j=m

r=1

h(ag - a,,,) J) =5

m

S a,(r)a,(m+1)

r=1

L t+a,(m+1)forj=m+ 1.

The only other known algorithms for solving such prob-
lems are generalizations of Stone’s second-order al-
gorithm [for the case when all a,(m + 1) equal zero],
and the solution of matrix products of the form

X, [a_,(1) a(m+ 1) |x.,
X, 1 0---0 0

i . X,

: — . i-m+1 . (42)
S| | 0010 |k,

1 0 0--0 1 !

As with the second-order case, both of these algorithms
appear to be slower than the MORA equivalent,

Conclusions

As demonstrated by the algorithms develbped in this
paper, the existence of composition properties in recur-
rence functions permits the direct construction of elegant
and efficient parallel programs for the solution of a wide

147

PARALLEL RECURRENCE SOLUTIONS

148

P. M. KOGGE

class of recurrence problems. This is of both theoretical
and practical importance. The demonstration of the use-
fulness of composition properties helps form a theoretical
basis for the understanding of parallelism and its applica-
tion to apparently serial processes. From a practical
standpoint, the definition of companion functions and the
standard formats of FORA and MORA allow a semi-
automated approach to the construction of parallel al-
gorithms. The test for the existence of a companion set to
a new recurrence function is relatively direct; observa-
tion and rearrangement of simple compositions of the
function with itself are usually sufficient. Further, it is not
hard to imagine that future compilers for SIMD com-
puters will assume many of these capabilities. Such a
compiler could take, for example, a Do loop in a FOR-
TRAN-like language, determine that the loop represents
the solution to some recurrence, use a package of aige-
braic substitution routines to test for the existence of a
companion set, and directly construct the appropriate
parallel program from the MORA template —all without
programmer intervention.

Several other crucial research topics are opened up
by the results of this paper, including searches for
other composition principles, analyses of numerical sta-
bility of these algorithms, minimal time for the solution
of recurrences, and the minimal parallelism needed to
solve them. Several starts into these areas have begun.
For example, the “cyclic reduction” technique {3, 4]
for the solution of Poisson’s equation suggests-a new
composition principle that computes sequences of ai(k)’s
expressing x, as

—) v
x=f(a;", Xi_qey Xieoquey ™" 5 xi—mq(k))' (43)

In terms of numerical stability, initial studies docu-
mented in the author’s thesis [10] show that bounds on
the absolute error in the algorithm SORA (and several
other parallel algorithms) grow at the same rate as that
derivable for a standard sequential solution. Other studies
{11,12] have placed lower bounds on the minimal paral-
lelism needed under certain circumstances to solve vari-
ous subclasses of recurrence problems.

Acknowledgments

This work is part of a Ph.D. thesis developed at Stanford
University under an IBM Resident Fellowship and
National Science Foundation Grant GJ1180. I thank
Professor H. S. Stone of Stanford University for his
continual advice and encouragement during the develop-
ment of the work described in this paper, and the Inter-
national Business Machines Corp. and the National
Science Foundation for their financial assistance. A sum-
mary version of this paper was presented at the Seventh

Annual Princeton Conference on Information Sciences
and Systems in March 1973.

References

1. R. Karp, R. Miller and S. Winograd, “The Organization of
Computations for Uniform Recurrence Equations,” J. ACM
14, 563 (1967).

2. 1. Munro and M. Paterson, “Optimal Algorithms for Paral-
lel Polynomial Evaluation,” Conference Record of 12th An-
nual Symposium on Switching and Automata Theory, IEEE
Pub. 71 C 45-C, pp. 132-139, 1971.

3. O. Buneman, “A Compact Non-iterative Poisson Solver,”
Report 294, Stanford University Institute for Plasma Re-
search, Stanford, California, 1969.

4. B. L. Buzbee, G. Golub and C. Neilson, “On Direct Meth-
ods for Solving Poisson’s Equations,” SIAM J. Numer.
Anal. 7,627 (1970).

5. P. A. Gilmore, “Structuring of Parallel Algorithms,” J.
ACM 15,176 (1968).

6. H. S. Stone, “An Efficient Parallel Algorithm for the Solu-
tion of a Tridiagonal Linear System of Equations,” J. ACM
20,27 (1973).

7. R. Karp and W. Miranker, “Parallel Minimax Search for a
Maximum,” J. Combinatorial Theory 4,19 (1968).

8. H. W. Gschwind, Design of Digital Computers, Springer-
Verlag, New York, N.Y ., 1967.

9. P. Kogge and H. S. Stone, “A Parallel Algorithm for the
Efficient Solution of a General Class of Recurrence Equa-
tions,” IEEE Trans. Computers C-22,786 (1973).

10. P. M. Kogge, “The Numerical Stability of Parallel Algo-
rithms for Solving Recurrence Problems,” Report 44,
Digital Systems Laboratory, Stanford University, Califor-
nia, September 1972.

11. P. M. Kogge, “Minimal Parallelism in the Solution of Re-
currence Problems,” Report 45, Digital Systems Labora-
tory, Stanford, California, September 1972.

12. Y. Muraoka, “Parallelism, Exposure and Exploitation in
Programs,” Report 424, Dept. of Computer Science, Uni-
versity of Illinois, Urbana, February 1971.

13. H. Trout, Parallel Techniques, Ph.D. Thesis, Dept. of Com-
puter Science, Univ. of Illinois, Urbana, Illinois, October
1972.

14. G. H. Barnes et al., “The ILLIAC IV Computer,” IEEE
Trans. Computers C-17,746 (1968).

15. D. Kuck, “ILLIAC IV Software and Applications Pro-
gramming,” IEEE Trans. Computers C-17, 758 (1968).

16. S. Winograd, “‘On the Time Required to Perform Addition,”
J.ACM 12,277 (1965).

17. P. Spira, “The Time Required for Group Multiplication,”
J.ACM 16,235 (1969).

18. R. Brent, “On the Addition of Binary Numbers,” I[EEE
Trans. Computers C-19,758 (1970).

19. L. Euler, Introductio in Analysin Infinitorum, Lausanne,
Sections 359-361, 1748.

20. D. E. Knuth, “Seminumerical Algorithms,” The Art of
Computer Programming, Vol. 2, Addison-Wesley Pub-
lishing Co., Inc., Reading, Mass., 1969.

Received March 9, 1973; revised October 18, 1973

The author is at the IBM Federal Systems Division Elec-
tronics Systems Center in Owego, New York 13827.

IBM J. RES. DEVELOP

