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Parallel  Solution of Recurrence  Problems 

Abstract:. An mth-order  recurrence  problem  is defined as the computation of the  sequence x,; . ., x N ,  where xi =f(ai, xi - , ;  . and 
ai,is some  vector  of  parameters. This  paper  investigates general algorithms for solving such  problems on highly parallel computers. We 
show that if the recurrence functionfhas associated with it two other  functions  that satisfy certain composition properties,  then we can 
construct  elegant  and  efficient  parallel  algorithms  that can compute all N elements of the  series in time proportional  to  [log,N].  The 
class of problems having this  property includes linear recurrences of all orders- both homogeneous and inhomogeneous, recurrences 
involving  matrix  or  binary quantities, and  various  nonlinear  problems involving operations  such  as  computation  with  matrix  inverses,  ex- 
ponentiation, and modulo division. 

Introduction 
A  common  problem in applied  mathematics is  the com- 
putation of a sequence of N elements  denoted xl,. . ., xN, 
given  only a set of initial conditions (xo; . ., x - ~ + ~ )  and a 
set of equations relating each xi to rn other  elements of 
the  sequence.  Such a problem is called ah mth-order re- 
currence problem.  A  common example is the description 
of a discrete-time linear  system  where  the  state of the 
system at time i is a linear function of the  state  at time 
i - 1, namely: 

x. is given 

x1 = A,xo + B ,  

xi = Aix i - l  + Bi 

xN = A N x N - ,  + B,. ( 1 )  

Such  problems  appear  on  the  surface  to  be highly se- 
quential;  we first use  the initial conditions to compute 
one new x i ,  then using the new xi we  compute xi+,, and 
so on until the  desired  sequence is computed.  This pro- 
cess is obviously well suited to  standard single-instruc- 
tion-stream,  single-data-stream (SISD) computers.  It is 
not,  however,  an efficient process  for  use  on  the new 
single-instruction-stream,  multiple-data-stream (SIMD) 
computers  that  are  capable of performing many simul- 
taneous operations. The  purpose of this paper is to de- 
scribe certain functional properties  that, when possessed 
by a given recurrence  problem, allow the  construction of 
new parallel algorithms that  take  advantage of the proper- 

ties of a SIMD machine. These new  algorithms  run in 
time  proportional to rlogN1 as  compared with the time 
proportional to N required by standard solutions. (The 
notation [x1 means  the largest  integer less  than  or equal 
to x . )  

Most previous  work  in  this field has centered  either  on 
very global aspects of parallelism, such  as  dependency 
ordering [ 1 1 ,  or  on highly parallel solutions to very spe- 
cific problems.  Typical specific solutions  include poly- 
nomial evaluation [2], Poisson equation solution [3, 41, 
mathematical programming problems [.5], tridiagonal 
equations [6], and minimax searches [7]. Although not 
formally presented  as  such,  other  methods  such  as  the 
carry  bypass  adder [8] in reality represent  direct imple- 
mentations of parallel algorithms for specific recurrences. 

A few  general techniques  for parallel solution of re- 
currence problems were suggested by Stone [6] and 
later  developed  into a  general  algorithm by Kogge and 
Stone [9]. Those  results,  however,  are largely special 
cases of the  results given in this  paper. 

Related topics include  investigations of the numerical 
stability of parallel  algorithms [ 101 and the minimal 
parallelism needed to  solve  recurrences [ 1 1,121. 

Some of the  concepts  described in this paper  were dis- 
covered  concurrently  and independently by Trout [ 131. 

Defiriitions and notation 
In this  section we define the  type of parallel computer 
assumed available, the general type of recurrence prob- 
lem we  consider  for solution, and  the notation  used to 
describe  the algorithms we develop. 
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Parallel  computer 
The kind of parallel computer  assumed available is a 
SIMD computer similar to  that described in [ 141. The 
major characteristics of such a computer’s organization 
are  as follows: 

1 .  There  are p identical processors,  each  able  to  execute 
the usual arithmetic  and logical operations,  and  each 
with its own  memory. 

2 .  The  operations performed by each  processor involve 
at  most two operands. 

3 .  Each  processor  has a distinct index by which it may be 
referenced by an instruction. 

4 .  All processors  obtain  their  instructions simultaneously 
from  a single instruction stream.  Thus all processors 
execute  the  same  instruction,  but  operate  on  data 
stored in their  own memories. 

5. Any  processor may be “blocked” or “masked” from 
performing an instruction. This mask, may be  set by 
an explicit  instruction directed  to a processor by its 
index or by the result of some global test instruction; 
such  as  “set mask if accumulator  is zero.” 

6 .  Under program  control  all  unmasked processors  can 
exchange  data with each  other  over predefined data 
paths. 

Figure 1 shows a diagram of a computer with the  above 
characteristics. 

Recurrence  problem 
For this paper we define a general recurrence problem 
as follows: 

Definition 1 The solution to  an  mth-order  recurrence 
problem is a sequence x l , .  . ., xN,  where initially we are 
given 

1. a set of m initial values {xo; . . , x - ~ + ~ } .  
2 .  a recurrence function (r function) f such  that  for all 

i , l Z i z N ,  

xi = f ( a i ,   x i - l , .  . ., ( 2  1 
where a, is termed a parameter  vector  and is a set of 
parameters  independent of any xj and  is referenced by 
f during the  computation of xi. 

This definition allows efficient use  to  be  made of a 
SIMD computer’s  capabilities. Each  processor can use 
the  same  instructions needed to  evaluate f but  on differ- 
ent  parameters and data. 

The simple problem ( 1 )  fulfills the  above definition. 
Here 

xi = Aixi-l  + Bi 

= ai( I ) X ~ - ~  + a i ( 2 )  

= f ( a i ,   x i - l ) ,  (3  1 

Instructions 

Pi = Processing  element i 
Mi = Memory for Pi 
* = Mask interpreter 

I I 

instruction  to 

Figure 1 Computer model. 

where  the  parameter  vector a, is  the pair (A, ,  E , ) ,  and  the 
function .f is an  add  and a multiply. 

We  note  that  the lengths of the  parameter  vectors may 
vary from problem to problem. In  the  above  example  the 
length of each a, is 2 ;  for  the problem 

the length is 4 .  However,  for  any particular  problem the 
length of each a, must be constant  for all i. 

Algorithm  notation 
Tlie parallel algorithms  developed in this paper  are all 
described in an  ALGOL-like notation. The major  varia- 
tion from standard ALGOL is found in descriptions of 
those  aspects of a  program that would be  directly  affected 
by execution  on a SIMD computer. The primary differ- 
ences  are: 

1. Boldface  variables denote lists of elements, with the 
length of the list determined by the problem being 
solved. Thus A = g ( B ,  C)  denotes a function g ap- 
plied to  two  arguments B and C and returning as an 
output  the list A. 

-2. Arrays defined as parallel have  one dimension (the 
one defined by the * ) stored  across  the processing 
element  memories. Thus if we have parallel  array 
A(* ,  1 :  : 5 ,  1 :  : 6 ) ,  the ith processor  has a 5 X 6 array 
A(i ,  1 ,   1 )  through A(i ,  5 , 6 )  in its  memory. 

3 .  An inequality of the form ( M  < i < N )  following an 
assignment statement indicates that  the  statement is 
to be executed simultaneously for  each value of index 
in the specified range. 

This particular  notation is not meant  to reflect what 
exists,  or should exist, in any real programming language 

MARCH 1974 PARALLEL  RECURRENCE 



T =  

T =  

T =  

T =  
as a7 as a5 a4 a3 a2 a ,=  x1 

Figure 2 The log-sum algorithm. 

Figure 3 Parallel  calculation of xg .  

Figure 4 Parallel  calculation of x ,  ; . ., xg. 

designed for SIMD computers.  It  is simply a convenient 
notation for expressing the general ideas behind the var- 
ious  algorithms. 

General first-order  algorithm 
The simplest class of recurrence problems is the first- 
order  case in which xi depends only on xi-1.  Many of the 
recurrence problems  with  known parallel solutions, such 
as  Horner’s rule for evaluating  polynomials or  the solu- 
tion of ( 1 ), fall into this  category. The classic  parallel 
solution to this type of problem is  the “log-sum” al- 
gorithm [ 151 for solving xi = a, + xi-l .  The introduction 
of parallelism into  the solution of this recurrence  stems 
from the associativity of addition  which  allows us to re- 
write the  standard serial  evaluation  of, for  example, 

x,=a,+   (a3+ (a ,+a , ) ) ,  ( 5  1 
as 

x4= (a, + a3) + (a, + all .  (6 1 
This second  formulation  allows two  processors  to work 
during the first step,  one computing (a, + %) and  the 
other computing (a, + ai ) .  For  arbitrary N ,  the generali- 
zation of (6)  allows N / 2  parallel additions at  the first 
step, N / 4  at  the  second,. ’ ., and N / 2 k  at the kth until, 
at  the [log,N]th step, xN is computed with one final ad- 
dition. Figure 2 gives a diagram of this process  for  the 
computation of x8. 

Most  recurrences,  such as Eq. ( 1  ) , are  not  associative 
and  consequently  cannot be  solved in such a direct  fash- 
ion. However, many of the most  common  r functions  do 
have related to them another function  with an associative- 
like property.  In  turn, this  auxiliary function  permits a 
“log-sum”-like solution to a large part of the solution of 
the original problem. This auxiliary  function has  as  argu- 
ments  two  parameter  vectors  and  produces a new param- 
eter  vector  as  output. It is defined as follows: 

Definition 2 An r  function f is said to  have a companion 
function g (c  function) if, for all x of the problem’s do- 
main and all parameter  vectors a, b, 

f(a,f   (b,  x ) )  =f (g (a ,   b ) ,  x). (7 )  

For  example,  the c  function for ( 1 ) is 

g(a ,  b)  = ( a ( l ) b ( l ) ,   a ( l I b ( 2 )  + a ( 2 ) ) .  ( 8 )  

All c  functions have  the following two easily  proved 
properties: 

Theorem I All c functions  are  associative with respect  to 
their r functions; i.e., for all a, b, c,  x, 

f k ( a ,  g(b, c ) ) , x )  =f ( s (g (a ,  b) ,  c ) , x ) .  (9) 

Theorem 2 Iff  has a c function g ,  then  any xi can  be ex- 
pressed in terms of any xj, 0 5 j < i 5 N,  as  
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Table 1 Applications of the FORA algorithm. 

Problem class 
Companion  function 

&'(a, b) 
Examples 

(D, = domuin of variable r )  

I .  x i  = f (a,, x i - ' )  
i. f is associative 

f (a, b )  1.  xi = Aixi- ,  
2. xi = A i  +xi-]  
3. xi = min(Ai, x i - ] )  

1, D, = D, = {m x m matrices}, m 2 I 

5 .  Xi = A i  A N D  X i - ]  

7. xi = A i  XOR x i - ]  
8. xi = AiXj-,, D, = D, = { m  X m Boolean matrices} 

2. x i =  f (a i (2) ,   g (a , ( I ) ,  x i - l ) )  
i. f is associative 

ii. g has a companion 

iii. g right-distributes 
function h 

over f 

3.  xi = [a,( I )  + ai(2)xi-,] 

i. +is any associative 
and commutative 
function 

ii. . is any associative 
function that 
distributes over + 

[ai(3) + ai(4)xi-,l" 

iii. for all x, y 
x Y )  

iv. x ( y y - ' )  = x. 

( . -1 = y-'x-' 

xi =f(a(i, i - j ) ,  xj), 

where 

The  existence of a c  function  permits  rapid construc- 
tion of a parallel  algorithm for  the original problem. The 
second  theorem allows, for  example,  any x*, 

x4 =f(a,,f(a,,f(a,,f(a,, x , ) ) ) ) ,  (12 )  

to be rewritten as 

x 4 = f ( g ( a , ,   ~ ( a , ,  g ( % ,  a , ) ) ) ,  x,,). (13 )  
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The associativity of g further allows  this to be  rewritten 
as 

x4 =f(g(g(a,,  a,),  g(a,,  a,) 1, x,,). (14) 

The two terms g ( a4, a,) and g ( a2, a,) can be computed in 
parallel. 

As with the log-sum algorithm,  this procedure  can be 
generalized to  the solution of any x,. Exactly  [lo&N] 
parallel g evaluations  compute  the  parameter  vector 
a ( N ,  N ) .  A single f evaluation combines this vector with 
x,, to  compute x,. The  computation of x8 in this  fashion 
is diagrammed in Fig. 3 .  

This  procedure  also  extends  to  the simultaneous  solu- 
tion of the  entire  sequence x,; . ., xN, as  depicted in Fig. 4. 
A set of N processors performs  [log,N] g evaluations 
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to compute the set of parameter vectors {a(i, i ) I  1 5 
i I N}, and a single f evaluation computes the desired 
sequence. 

The following ALGOL-like program summarizes the 
algorithm of Fig. 4. It is  called FORA  (First Order 
Recurrence Algorithm). 

procedure FORA; 
begin 

comment allocate one parameter vector per processor, 
and  initialize to a,; 

parallel  array A (  *) ; 
A ( i )  *a,, (15  i5 N);  
comhzent the following loop computes a( i ,  i ) ;  
f o r k  = 1 step 1 until [log,N],do 

comment now apply the initial conditions; 
xi = f (A( i ) ,  x,,) ,  ( 1  5 i 5 N ) ;  

A ( i )  g ( A ( i ) ,  A(i - 2'" 1 2 ,  (2*" < i 5 N); 

end FORA. 

The validity of this  algorithm  follows directly from 
Theorems 1 and 2. 

Some  examples 
Table 1 lists some general classes of recurrence pKoblems 
that  are suitable for solution by FORA. For each diass, 
the general companion function and particular examples 
are given. 

Class 1 in Table 1 covers associative functions such as 
+,. X, max,  and min: It is clear that all such functions 
Satisfy Definition 2 directly. In these cases the FORA 
solutions are identical to direct modifications of the log- 
sum algdrithm. 

The second class of recurrence problems listed in 
Table 1 has the formf(a, x )  =f(a(2),  g(a( l ) , x ) ) ,  where 
f and g have  cei-taih functional properties. Suitable prob- 
lems  inciude the introductory linear problem ( 1 i and 
several highly nonlinear ones. This particular class of 
problems has been solxed previously by  Kogge and Stone 
[9] who  used the concept of recursive doubling. 

The third class of problems in Table 1 represehts 
certain nonlinear problems with no previously  known 
general parallel solution. Stone [6] was able to solve 
example 3 of this class with a parallel  algorithm that is 
faste;  than FORA. His algorithm, however, is based on 
the recursive doubling solution of a second-order re- 
currence that can itself be solved  still faster by the gen- 
eralization of FORA described in a later section. 

.n 

Minimization of execution  time 
As evidenced by Stone's partial fraction algorithm, 
FORA is not necessarily the fastest method  to solve all 
the problems  it  is capable of solving. For specific prob- 
lems, or under certain conditions, modifications of FORA 

or other algorithms can An in considerably less time  than 
a direct FORA implementation. This section describes 
several such situations. 

There  are  twqways of measuring the execution time of 
an algorithm  such as  FORA: 1 )  counting  only the num- 
ber of (parallel) function evaluations and 2) actually 
computing  running  time in terms of the relative time re- 
quired  to compute each type of function. The first ap- 
proach is often used in theoretical arguments about the 
complexity bf an algorithm  and  is  usually the approach 
that lends most  insight into the question of lower bounds. 
The second approach is more  pragmatic  and is of most 
interest when an algorithm  is selected for implementation 
on a red computer. 

In teims only of the number of parallel evaluations, 
simple tree arguments based on combining the N param- 
eter vectors a,; . ., a, and x. with  only two-argument func- 
tions indicate an absolute lower  bound of a = [IoGN + 1 1  
parallel function evaluations. FORA requires about a + 1 
funetion evaldations (one f evaluation and [lo&Nlg 
evaluations) and so is quite close to the lower bound. 

However, if more detail is  known about the nature of 
the f and g functions, a more accurate accounting of 
function evaluations can yield somewhat different results. 
For example, to solve the recurrence Eq. ( 1 ), FORA re- 
quires approximately 2a + 1 multiplications  and a + 1 
additions. Tiiis is certainly an  efficient  implementation, 
but it  is  not the fastest possible.  An obvious generaliza- 
tion,  shown in Fig. 5, solves the same recurrence with 
only about iy + 1 additions and a multiplications. The 
penalty for this speed, however, seems to be  in the num- 
ber of requiied processing elements. FORA requires N 
processors, while the procedure in Fig. 5 requires about 
i processors for each xi ,  for a total of N2 / 2 processors for 
the same N-element sequence. 

The same procedure diagrammed in Fig. 5 can be ex- 
tended to cover any recurrence satisfying Class 2 of 
Table 1 .  Within this class one recurrence in particular 
that has received extensive study is the carry equation 
for binary addition of two  binary numbers. Winograd 
[ 161 and Spira [ 171 have developed bounds on the mini- 
mum  time to perform addition and  Brent [ 181 has devel- 
oped an approach similar to that shown in Fig. 5 for 
solving the carry recurrence and, thus, for performing 
addition in time close to  Winograd's  bounds  with  only 
N(log,N1 processors (two-input logic elements).  This 
is better than the procedure of Fig. 5 ,  both in terms of 
time  and the number of processors. However, the applica- 
bility of Brent's approach to other problems solvable by 
FORA is  an  open question. 

If estimates of the actual times required to do an f or g 
evaluation [denoted T ( f )  and T ( g )  respectively] are 
available, a modification of FORA can also decrease total 
execution time. The number of function evaluation steps 
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is higher  than that  for  FORA,  but  the  actual execution 
time is less.  As  an example, if T (g )  = 3T(f),  a FORA 
computation of x8 requires T (f) + 3 T ( g )  = 10 T (f) units 
of time. A  completely  sequential  evaluation of the  same 
x8 requires 8T (f) units of time. However, a combined 
parallel-sequential  evaluation as pictured in Fig. 6 re- 
quires five function  evaluation steps, but only 4T(  f) + 
T ( g )  = 7T( f )  units of time. This  is less than  for  either 
FORA or the straight  sequential  solution. 

In  the  process  shown in Fig. 6, the function g can be 
used in parallel for  any  number of steps  to  compute new 
sets of parameter  vectors.  After  any of these  steps, 
parallel g evaluations can be  replaced by sequential 
evaluations of f applied to the g-computed parameter 
vectors  and a previously computed xj. Figure 6 repre- 
Stnts  the  case in which only one parallel g evaluation 
step is used.  FORA,  on  the  other hand, uses  as many as 
possible, [log,N], followed by a singlefevaluation.  The 
actual point at which the switch  between g and f evalua- 
tions occurs is completely open  to  choice.  Consequently, 
if T (f) and T ( g )  are known,  this  point can be chosen  to 
minimize total execution time. The following theorem 
defines the optimal choice of this  switch  point. 

Theorem 3 The  computation of x N  using k*  parallel g 
evaluations followed by sequential f evaluations is mini- 
mized in  total execution time when k* is either 
rlog,(N(log,2)T(f)/T(g))l  or l lw, (N( loge2)T(f ) /  
T ( g ) ) ] ,  whichever minimizes k T ( g )  + NT(f)/2".  

Proof Clearly,  after k parallel g evaluations  there  are 
still N /2"  parameter  vectors of the form a(j2", 2')). If 
after  the kth step we use only f evaluations, we need 
T (f) N / 2" more units of time. A  sequential  combination 
of these  vectors with the initial conditions gives a total 
execution time of 

kT(g) + T(f)N/2".  (15)  

Setting the  derivative with respect  to k of (15) equal 
to  zero,  we obtain 

T ( g )  - T(f)N(loge2)2-"=O 

or 

k * =  l o g , ( N ( 1 0 g e 2 ) T ( f ) / T ( g ) ) .  

Forcing k* to be an integer  gives the result stated in the 
theorem. 

This  theorem defines three regions for  the value of k * :  

1. When k* 9 0, the all-serial algorithm is time-minimal; 
2. when 0 < k* < a, a  partial-serial,  partial-parallel algo- 

3. when k* 1 a ,  the all parallel FORA is minimal. 
rithm is minimal; and 

f 

A 4  AS A6 

Figure 5 Fast  computation of xi = Aixi- ,  + B,. 

T = 5  

T = 4  

T =  3 

T =  2 

T =  I 

T = O  

I c 
evaluations 
Serial f 

Parallel g 
evaluations 4 

'8 al '6  ' 5  '4 '3 ' 2  

Figure 6 Minimal-time calculation of xg  when T ( g )  = 3 T ( f ) .  

These  three regions translate into three regions of the 
ratio T ( f ) / T ( g ) :  

1. T ( f ) / T ( g )  5 l/(Nlog,2) M 1.45/N:theserialalgo- 

2. 1.45/NM 1/Nlog,2 < T ( f ) / T ( g )  < 1/10ge2m 1.45: 

3. 1.45 M 1 /log,2 5 T ( f )  / T ( g ) :  an all-parallel algo- 

rithm is minimal: 

a  combined  algorithm is minimal; and 

rithm is minimal. 

The  same  procedure used in Fig. 6 to  compute x N  alone 
can easily be  extended  to  compute  the  entire  series 
xl, . . ., x,,, with no loss in time. Figure 7 illustrates  this 
extension  for  the  case N = 8. The following program sum- 
marizes  this procedure  for any k*  between 0 and a. It  is 
called FORAS  (First  Order  Recurrence Algorithm 
Serial 1. 
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T = 5  

T = 4  

T = 3  

T = 2  

T = l  

T = O  

Serial f 
evaluations 

General mth-order  algorithm 
The generality of the  FORA algorithm stems from the 
existence of a companion for  the r  function.  A similar 
situation exists  for  more general  mth-order  problems, 
although in this case  two auxiliary  functions, rather 
than  one,  are needed. These  functions  are defined as 
follows. 

'8 '7 '6 ' 5  '4 '3 '2 '1 

Figure 7 Minimal-time calculation of xl, . . ., x, when T ( g )  = 
3 T ( f  1. 

a .  r - q ( k ) - m + l  

(a) 

X i - Z q ( k ) - Z m + 2  1 x i l q ( :  . .xi-t;(;;:l X i - Z q y - m i l  =/ 

( k +  1) 
( i - q ( k ) - m + l , O )  

( i - q ( k ) . m - l )  

a': + I) 

(b) 

Figure 8 (a) Dependencies in computation of xi after kth step. 
(b) Dependencies in computation of xi at end of ( k  + 1)th step. 

procedure  FORAS; 
begin parallel  array A ( *  ) ; 

A(i) = ai, (1 5 i5 N ) ;  
comment now compute a(i, 2'' " ) for all i ;  
fork = 1 step 1 until k* do 

A(i)   =g(A(i) ,A(i-2"")),  (2k-1 < i5 N ) ;  
comment now compute xl; ' ., XZk*; 
x,=f(A(i) ,x,) ,  ( 1  5 i5 2'*); 
comment now compute  groups of xi's serially from  pre- 

for j = 2 step 2"* until N - 2"' do 
vious groups.  Each  group  has 2k' elements; 

x i = f ( A ( i ) , x i - 2 v ) ,   ( j <  i 5 j + 2 " ( ) ;  

k' 

end  FORAS; 

The validity of FORAS follows  immediately  from the 
previous theorems. 

Definition 3 An mth-order  r function  has a companion 
set {g ,  h }  if there  are  functions g and h such  that  for all 
a,, a1; . ., a, and x,; . .,x,, 

f(a,,f(a,,x,,..~,x,),x,,x,,.~.,x,_,) 

=f(s (a , ,   a l l ,  xl, x2,"., X,,,) (18)  

and 

f(a,,f(a,,x,,~..,x,),...,f(a,,x,,..~,x,)) (19) 

=f(h(a,,  a,, $,. . ., am), x 1 ; .  ., x,). 

The function g is similar to  the definition of a 
companion  function for a first-order  problem; for ex- 
ample,  it allows xi to be expressed  as a function of 
xi-2,. . ., as follows: 

xi = f(ai, xi-,,. . ., (original recurrence) 

= f (ai, xi-*, . . ., 1,  * * ., x i - , )  

(substitution for xi-l) 

=f ( g  (ai,  a,-,), xi-2,. . ., 1. (20) 

The  function h permits us to  rewrite a recurrence in 
which simultaneous substitutions  are  made  for all un- 
knowns  as a singlefevaluation involving a new parameter 
vector  and  the m  common  unknowns. 

As with the first-order case,  many of the  problems en- 
countered in practice  have companion sets  and  are ame- 
nable to  the solution technique  described in this  section. 
The general algorithm using these techniques is called 
MORA  (mth-Order  Recurrence  Algorithm). 

In  operation,  MORA  proceeds much like FORA, with 
the computation at  each  step of a new set of parameter 
vectors  {ai(")[ 1 5 i 5  N }  having the following properties: 

aico' = ai for 1 5 i 5 N ,  (21 1 
( k )  

xi =f (ai > xi-p(k)> ' ' ' 9  Xi-g(k)-m+l) 

for q ( k )  < i l  N ,  and  (22) 
(IC 1 xi =f(ai , x,, x-,,. ., x-,+,) 

for 1 5 i5 q ( k ) ,  (23 1 
where 

q ( k )  = m2" + 1 - m. (24) 

The general procedure  for computing ai('+') from ai(') 
is illustrated in Fig. 8. In this figure, the  arrows  represent 
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the  dependency of a sequence element xj on m other x's. 
given the indicated parameter  vector. To  compute ai"'-'' 
from ata) we cannot simply substitute  the  expressions 
for xi-q(k) , .  . *, xi-q(k)-m+l (involving x ~ . ~ ~ ( ~ ) , '  . . 1 x i - z q ( k l ~ 2 m + 2 )  
into  the  expression  for x;. These  expressions involve 
2 m  - 1 unknowns while the function f can  handle  only 
rn different x's. However, a sufficient number of applica- 
tions of g in the fashion of equation ( 2 0 )  can  produce 
new parameter  vectors  that  express  each xi-q(kl-j,  0 < j  < I 

rn - 1 ,  in terms of the  set { x ~ - ~ ~ ( ~ ) - ~ + ~ - ~ ~ O  i j 5 m - l}. a ( ; + l ) , K ( .  . . K(a ( k )  i - q ( k ) 3  a i - q ( k ) - l ) . " . ,  a I )  

For example, 

s ' " m + l  

a') + = a i  ( k l  

( a )  

' ~ - q ( k ) " m + l  

x ,  ' i - q ( k 1  ' 0  '*--m+l 

7 - - 
\ h / 

Y 

( b )  

Xi-g(k)-m+Z =f(g(ai-g(kj-m+23 ai-zg(k)-m+2)' 
(kJ 

. . .  
xi-Zg(k)-m+l' Xi-2a(k)-2m+z). (25) 

These new parameter  vectors  are  denoted A'"+"(r, j ) ,  
where 

I j = o 
A"+"(r, j )  = g(. . g(g(a,'", at-q(k)),  ar-q(k)-l 1, . . ., 

ar-g(k)-j+l) j > 0. (26) 

once  a set ~ ( ~ ( + " ( i  - q ( k )  - j ,  m - 1 - j ) ,  o 5 j 5  
m - 1, of parameter  vectors  has been computed,  the 
second function of the companion set, h,  can be  applied 
as in Eq.  (19)  to yield 

ai('+ ) = h ( a i ( k ) , ~ ( k + l J ( i - q ( k ) , m -  I); . . ,  
A"+"(i - q ( k )  - rn + 1, 0 ) ) .  (27 1 

This  parameter  vector  expresses xi as 

xi =f(ai(P+l)* ~i"2*(k)"m+l' . . .  > ~ i - z q ( k ) - z m + z ) .  (28 1 
Thus q ( k  + 1 )  = 2 q ( k )  + ni - 1 or, using the initial 
condition q ( 0 )  = 1 ,  q ( k  + 1)  = h2k+1 + 1 - rn. 

The  recurrence ( 2 7 ) .  is the  heart of MORA. Each 
step of MORA uses it to  compute in parallel a set 
{ai(k'\l 5 il N } . ?  When q t k )  1 N ,  the  procedure  stops, 
and a single parallel f evaluation  applied to  these ai")'s 
and  the initial conditions {x; ,  . . ., yields the  entire 
sequence xl, .  ' ., xw 

There  are,  however, certain  regions of i for each 
value of k in which the  recurrence  (27)  must be slightly 
modified. The first four of the following five regions are 
illustrated in Figs 9 (a) - 4 (d) : 

, a+:-i(k) . ' ; - q < k ) l m + I ( k : ; 2 q ( ;  TJ,, , .'-<+I 

a i " q ( k )  

a i - q ( k )  - m +  1 

( k + l )  
a i  

(d )  

Figure 9 Regions of basic recurrence. (a) 1 5 i 5 q ( k ) ,  Re- 
gion 1. ( b )  q ( k )  + 15 i 5  q ( k )  + m - t ,  Region 2. (cj q ( k j  + 
rn 5 i 5 2 q ( k ) ,  Region 3.  (d)  2 q ( k )  + 1 5 i 5 2 4 ( k )  + m - 2 = 
q ( k  + 1 ) - 1, Region 4. 

Region I 1 5  i 5  q ( k )  
Here aitkJ expresses x i  directly in terms of x o , .  . ., x-m+,;  
thus aiOk+l J = ( I O  ai . 
Region2 q ( k )  + 1 5  i 5  q ( k )  + m - 1 
As pictured in Fig. 9 (b) ,  in this region there is at  least 
one xi-q(k)-j, 0 i j 5 rn - 1, that is already an initial con- 
dition  and as  such  does  not allow any transformation 
involving the function h. However, i - q ( k )  repeated 
applications of g, as in Eq. ( 2 0 ) ,  directly  express xi in 
terms of {xo;  . ., 

I .  1 5 i l  q ( k )  
2 .  q ( k )  + 1 i i i q ( k )  + rn - 1 
3. q ( k )  + m i is 2 q ( k )  xo; . ., (29) 
4. 2 q ( k )  + 1 i i i  2 q ( k )  + m - 2 = q ( k  + 1 )  - 1 This composition of g is simply the  parameter  vector 
5 .  q ( k  + 1)  i i. A"+"(i, i - q ( k ) )  defined previously. Thus,  to be  con- 

We  discuss  each region separately, assuming that  we  are 
sistent with Eq. ( 2 6 ) ,  

computing 

xi =f(g(. . . d g ( a ,  , ai-q(kJ,  aj-q(kl-l), . . a l l ,  (k 1 

a!k+ 1 1 - - 
1 A'"+"(i, i - q ( k ) ) .  (30) 145 
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Region 3 q ( k )  + m 5 i 5 2q(k )  
As pictured in Fig. 9 ( c ) ,  in this region all {ai-q(k)-j(k)10 
i j 5 m - 1 } directly express  the corresponding xi-q(k)-j's 
in terms of {xo,. . ., Consequently, can  be 
computed directly using the h  function as follows: 

( k + l ) =  ( h . )  ( k l  . . . (k  1 ai h ( a i  9 9 9 ai-q(k)-m+l 1' 

Region 4 2 q ( k )  + 1 5 i 5 2q(k )  + m - 2 
In this  region some,  but  not all, of the ai-dk)-j(L)'s, 
0 5 j 5 m - 1, express x ~ - ~ ( ~ ) - ~  in terms of {xo, x-,, . . ., 

x,-~(~.-~ must  be transformed using g evaluations as 
in the general case  into  parameter  vectors  that do. 
The previously defined vector A(k+')(i  - q ( k )  - j ,  
i - 2q(k )  - j )  does this. Thus we need to  compute ai(k+') 
from 

x-,+'}. Those ai-q(k)-j(k)' s that  do  not so express  their 

ai(k+') = h(a i (k l  A(k+') ( i -  q ( k ) ,  i -  2 q ( k ) ) ,  

A(k+ ' l ( i -  q ( k )  - 1 ,  i -  2q (k )  - l);.., 

( i  - d k )  - j ,  01, , , ( k + l )  , . . 

ai-p(k)-m+l 1' R + 1 )  

Region5 q ( k +  1 )  5 i 5  N 
In this region ai('+') may be computed directly from  (27). 

I t  would seem from the  above discussion that MORA 
must  have five separate subprogram segments-one  for 
each region. If,  however,  the definition of A("(i, j )  is 
slightly modified to  prevent referencing any a,., r 5 0, 
only two regions  need  be considered. 

This new definition of A('+')(i , j)  is 

( i ,  j )  = 

The  properties of this A ( k - l ) ( i , j )  are given in the follow- 
ing theorem, which can be proved  by  induction. 

Theorem4Forall iandj,  1 i i5 N , O 5  j 5   m -  1, 

i 

The following theorem  defines the  two regions that 
must be  used to  compute all Its proof follows  from 
Theorem 4 and  the definitions of the five regions of i .  

Theorem 5 For all k > 0, 

A ( k + l )  ( i , m - l ) f o r l Z i 5 q ( k ) + m - l ,  

q ( k )  + m 5  i i  N .  (35) 

From  the definition of A'"(i, j )  and  Theorem 5, we 
can now construct MORA. 

procedure MORA; 
begin  parallel  array A (*, 0 : : m - 1 ) ; 

A( i ,  0) =a, ,  (1 5 i 5  N ) ;  
comment during the ( k  + 1)th  iteration of the following 

loop, 
1. q = q ( k ) = m 2 k - m +  1, 
2. A( i ,  j )  is  the A'k+lJ(i ,  j )  defined in Eq. (33);  

f o r q = l s t e p q + m - l u n t i l ( N - m +  1 ) / 2 d o  
begin comment the  next  loop  computes A(i ,  j ) ,  

begin A ( i , j )  = A ( i , j -  l ) ,  (1 4 i5 q + j -  1) ;  
j > 0; f o r j =  1 step 1 until m - 1 do 

A ( i , j )  = s ( A ( i , j -  1 1 ,  
ai-q-j+l), ( q + j 5  i 5  N ) ;  

end; 
comment now compute ~ ( i ,  0) = ai"+'] using 

A ( i , O ) = h ( A ( i , O ) , A ( i - q , m - l ) ; . . ,  

A ( i , O ) = A ( 1 , m - l ) , ( I 5 i i q + m - l ) ;  

comment now apply initial conditions  to  compute all 

x i = f ( A ( i ,  O ) , X ~ ; ~ ~ , X - ~ + ~ ) ,  ( 1  5 i 5  N ) ;  

Eq. (27) 

A ( i - q - m + 1 1 , 0 ) ) , ( q + m 5 i i N ) ;  

end; 

xi's; 

end MORA; 

The validity of MORA follows  directly  from Theorem 

The  amount of time  required  by MORA is obtained 
directly. The  outer  loop is executed k times, where k is 
the smallest  integer such  that N < m2k + 1 - m, or k = 
[log, ( N  + m - 1)  / m ] .  In  each interation of this loop, 
there  are m - 1 calls on g and one call on h. Thus  the 
total  time is ( m  - l )kT(g)  + kT(h) + T(f). 

5 and the  above  discussions. 

MORA solution to the second-order linear recur- 
rence 
One of the most  common  problems in applied  mathe- 
matics is  the solution of the  three-term  recurrence: 

x, = ai( l)xi-' + ai(2)xi-,. 

The  recurrence function in this case  is 
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A  companion set  exists  for this function,  and is easily 
computed by composition of the function with itself. The 
g function,  for  example, can  be observed from 

f ( a , f ( b ,   x ,  Y ) ,  x) = [ a ( l ) b ( l )  + a ( 2 ) l x +   a ( l I b ( 2 ) y  

= f ( [ a ( l ) b ( l )  + a ( 2 ) ,  

a ( l ) b ( 2 ) 1 ,  x, Y ) .  ( 3 8 )  

Likewise,  the h function  can be  derived from 

f ( a , f ( b ,  x, y) , f ( c ,   x ,  Y ) )  

= [ a (   l ) b (  1 )  + a ( 2 ) c (   l ) ] x  

+ [ a ( l ) b ( 2 )  + a ( 2 ) c ( 2 ) l ~  

= f ( [ a ( l ) b ( l )   + a ( 2 ) c ( i ) ,   a ( l I b ( 2 )  

+ a(2)c(2)1 ,   x ,  Y ) .  ( 3 9 )  

Substituting these functions into  MORA yields SORA, 
a second-order  recurrence algorithm. The following 
program  lists  this algorithm in an  ALGOL-like  format. 
The notation A( i ,  j )  (k)  refers  to  the kth element of the 
parameter  vector A ( i ,  j ) .  

procedure SORA; 
begin parallel array A ( *  ; 0 : : 1 ) ; 
A( i ,  0)  = at, (1 5 i 5  N ) ;  
for q = 1 step q + 1 until ( N  - 1 )  / 2   d o  

begin A( i ,  1 )  = A( i ,  0) ,  (1 i i 5  9); 
A(i, 1)  = ( A ( i ,  0 ) ( 1 )   a i - q ( l )  + A( i ,  0 ) ( 2 ) ,  

A( i ,  0 ) ( 1 )  ( 4  < is N); 
A( i ,  0)  = ( A ( i ,  0 ) ( 1 )  A ( i -  q,  1 )  ( 1 )  

+ A ( i , 0 ) ( 2 )  A ( i - q -  l , O ) ( l ) ,  
A ( i , 0 ) ( 1 )  A(i -qq ,   1 ) (2 )  
+ A ( i ,  0)  ( 2 )  A ( i -  q - 1 ,  0) (211, 
( q +  1 < i5 N); 

A ( i , O ) = A ( i , 1 ) , ( 1 5 i Z q + l ) ;  
end; 

xi = A ( i ,  0)  ( 1 )  x. + A( i ,  0)  ( 2 )  x-1, ( 1  i i i N); 
end SORA; 

With an approximation of [log, (N + 1 ) / 2 ]  as a - 1, 
this algorithm requires 6 a  - 4 multiplications and 3a - 2 
additions  to  compute  an N-element sequence. 

SORA is not  the only  known parallel algorithm for 
solving Eq. ( 3 6 ) .  There  are  at  least two others  (cf.  Stone 
[ 6 ]  ). The first is simply to  express ( 3 6 )  as 

The parallel log-product  algorithm on  the matrices M,; . ., 
M,, followed  by  a  matrix-vector product of the form xi = 
(M,Mi-, . . . M,) computes  the  same  sequence 
in 8a - 6 multiplications and 4a - 3 additions. This is 
roughly one-third slower than SORA. 

Noting an  observation by Euler [ 191, Stone [ 6 ]  de- 
rived an entirely  different algorithm for solving ( 3 6 )  - 
one based  directly on  the technique of recursive doubling 
and  the  analytic solution to ( 3 6 ) .  Stone’s  algorithm re- 
quires  about 8a - 4 multiplications and 3a - 1 additions, 
faster  than  the matrix approach, but still slower than 
SORA. 

As can  be  seen  from  the  above  comments,  SORA is 
considerably faster than either of the  other  approaches. 
Whether  or  not  SORA is the  fastest parallel algorithm 
that solves ( 3 6 )  is an  open,  and interesting, question. 

Mth-order linear nonhomogeneous recurrences 
The most  common recurrence  encountered in practice is 
the general  mth nonhomogeneous  recurrence: 

where ai(j)  is  the  jth  component of a,. This  recurrence 
has  the companion set 

I a ( l ) b ( j )   + a ( j +  1 )  for 1 5 j 5  m -  1 ,  

g ( a ,   b ) ( j )  = a ( l ) b ( m )  for j -  m, 

a ( m +   l ) + a ( l ) b ( m +  1 )  f o r j = m +  1 ,  

and 

I r=l 

The only other known  algorithms for solving such  prob- 
lems are generalizations of Stone’s second-order al- 
gorithm [for  the  case when all ai(m + l ) equal  zero], 
and the solution of matrix products of the  form 

. I  X i - m + ~  jl f 1:;: 0 . . .  1 I::]. (42) 

As with the  second-order  case,  both of these algorithms 
appear  to be  slower  than the  MORA  equivalent. 

X i  a - t ( l )  . . .  a-,(m + 1 )  xi-, 

Conclusions 
As demonstrated by the algorithms  developed in this 
paper,  the  existence of composition properties in recur- 
rence  functions permits the  direct  construction of elegant 
and efficient parallel  programs for  the solution of a  wide 
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class of recurrence problems. This is of both theoretical 
and practical importance.  The  demonstration of the use- 
fulness of composition properties helps  form a theoretical 
basis for  the  understanding of parallelism and  its applica- 
tion to  apparently serial processes.  From a practical 
standpoint,  the definition of companion functions  and  the 
standard  formats of FORA  and  MORA allow  a  semi- 
automated  approach  to  the  construction of parallel al- 
gorithms. The  test  for  the  existence of a companion set  to 
a new recurrence function is relatively direct;  observa- 
tion and  rearrangement of simple compositions of the 
function  with itself are usually sufficient. Further, it is  not 
hard  to imagine that  future compilers for SIMD com- 
puters will assume many of these capabilities. Such a 
compiler  could take,  for  example, a DO loop in a FOR- 

TRAN-like language, determine  that  the loop represents 
the solution to some recurrence,  use a package of alge- 
braic  substitution routines  to  test  for  the  existence of a 
companion set,  and directly construct  the  appropriate 
parallel program  from the  MORA  template-all without 
programmer  intervention. 

Several  other crucial research topics are  opened  up 
by the  results of this paper, including searches  for 
other composition  principles, analyses of numerical  sta- 
bility of these algorithms, minimal time for  the solution 
of recurrences,  and  the minimal parallelism needed to 
solve them. Several  starts into these  areas  have begun. 
For  example,  the “cyclic reduction”  technique [3,  41 
for  the solution of Poisson’s equation suggests a new 
composition  principle that  computes  sequences of ai(le)’s 
expressing xi as 

xi = f ( a i ( k ) ,  . . .  x ~ - ~ ~ ( ~ ) ) .  (43 1 
In  terms of numerical  stability, initial studies  docu- 

mented in the author’s thesis [ 101 show  that  bounds  on 
the  absolute  error in the algorithm SORA  (and  several 
other parallel algorithms) grow at  the  same  rate  as  that 
derivable for a standard  sequential solution. Other  studies 
[ 1 1,121 have placed  lower bounds  on  the minimal paral- 
lelism needed  under  certain  circumstances  to  solve vari- 
ous subclasses of recurrence problems. 
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