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for  Some  Queuing  Systems 

Abstract: This  paper  presents  the  results of a rather  extensive study of the  accuracy of the diffusion approximation  technique as applied 
to queuing  models. The  motive for using the diffusion process approximation here  is  to  develop realistic  analytical  models of computing 
systems by considering  service  time distributions of a  general  form. We first review the theory of the diffusion approximation for a single 
server  and then develop a new and simplified treatment of a queuing  network system.  The  accuracy of this approximation  method is 
then  considered  for a wide class of distributional forms of service  and interarrival  times and  for various  queuing  models. The approxi- 
mate  solutions and  exact (or simulation)  solutions are  compared numerically in terms of the means and  variances of queue  sizes,  server 
utilizations, the  asymptotic  decrements of the distributions, and  the  queue size distributions  themselves. 

The  accuracy of the diffusion approximation is found to  be  quite  adequate in most cases  and  is considerably  higher  than that obtained 
by an exponential server model that is prevalent in computer  system modeling. 

1. Introduction 
The diffusion  approximation is an  attempt  to  overcome 
the limitations of exponential server queuing  models by 
considering  both the mean and  variance of the service 
time  distributions. It is based on  the  assumption  that 
queues  are  almost  always nonempty. The  central limit 
theorem is then  applied to  characterize  the fluctuations in 
the  queue lengths, and  the discrete-valued  queuing pro- 
cess is replaced by a continuous-path  Markov  process 
(also called a diffusion process) with  a similar distribu- 
tion of the infinitesimal increments. The probability  dis- 
tribution of this continuous  process is then described by 
a diffusion equation, which has  to be solved with appro- 
priate  boundary  conditions.  Applications of the diffusion 
approximation to queuing systems  have been discussed 
by Cox  and Miller [ 11, Gaver [ 2 ] ,  Newell [3], Gaver 
and Shedler [4], and Kobayashi [SI. 

This  paper  presents a simplified treatment of queuing 
networks  but  concentrates primarily on  an investigation 
of the  accuracy of the diffusion approximation by means 
of a consistent  set of examples. The single server  queue 
is considered in detail,  since it is the element  used in the 
treatment of networks. Specifically, exact analytical so- 
lutions for  the steady state  queue size distributions of the 
M / G /  1 and  the G I / M /  1 queues  are  derived.  In  the 
case of the M / G / 1 queue,  the Erlangian  distribution is 
used as a model for service more regular  than  completely 
random,  whereas  the hyperexponential  distribution is 
used as a model for long-tailed distributions.  In general, 110 
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the diffusion approximation leads  to favorable  results. Its 
accuracy  increases  as  the traffic intensity approaches  one, 
which is not unexpected from the  assumptions made. 

Analytical  solutions are difficult to obtain for queuing 
networks with  nonexponential holding times. An  exact 
solution for cyclic tandem  queues with one general server 
is reported in Appendix D, and it is used for  comparison 
purposes. In general, however,  one  has  to  resort  to simu- 
lation. To keep  the simulation time within reasonable 
bounds, relatively  simple examples of networks  are used. 
Again, in most cases a satisfactory agreement  between 
simulation and  the diffusion approximation was  observed. 

In  the  next section the diffusion approximation of the 
single server  queue  is briefly reviewed. Then a theory 
for queuing networks is introduced that is based on  the 
additional assumption  that  each  server may be  treated 
independently of the  others.  The  accuracy of the diffusion 
approximation of the  queue size  distribution of the single 
server  queue is evaluated next.  Simple examples of net- 
works  are  discussed,  and  results using the diffusion ap- 
proximation are  compared with some analytical results 
and  also with the  results of simulations.  Finally, the  re- 
sults  are summarized and  discussed from  a unifying point 
of view. 

Appendix A  summarizes definitions and  properties of 
the Erlangian and  the hyperexponential  distributions. 
Explicit  closed-form  formulas for  the steady state  queue 
size of the M / G / 1 queue with Erlangian and with  hyper- 
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exponential  service  time distributions  are given in Ap- 
pendix B. In  Appendix C Erlangian  input  and  general 
service time  distribution are  considered. A simple closed- 
form solution is given for  the E,/ G /  1 queue.  In  the last 
Appendix, D, the analytical  solution for cyclic  tandem 
queues with one  general  server is given in terms of the 
results of Appendices B  and C. 

2. Diffusion approximation for the single server 
queue 
We briefly review here  the basic assumptions leading to 
the diffusion approximation for  the GI / G /  1 (i.e., gen- 
eral  independent interarrival  time distribution/general 
service time distribution/a single server) queuing sys- 
tem. For a  more  detailed treatment,  see [ 51. 

Assumption of u normul  distribution for queue size 
fluctuations 
Let  AQ( t )  be the  change of queue length between  times 
t and t + A. Then,  for A sufficiently large, A Q (  t )  should 
be  approximately  normally distributed with 

E [ A Q ( t ) ] =  ( A - p ) A = P A ;  ( 1 )  

var[AQ(t)] G (C,A + C s p ) A  = aA,  ( 2 )  

where A is the arrival rate, p is the processing rate  (or 
the  inverse of the mean holding time), C, is the squared 
coefficient of variation of the interarrival  time T,, i.e., 
C, = Var[~,]h', and C, is  the squared  coefficient of varia- 
tion for  the  service time T,, i.e., C,  = var[~,]$. 

Replacement of the discrete process by a  continuous 
process 
The discrete-valued  queueing process Q( t )  is approxi- 
mated by a continuous-path  process x( t )  with  increment- 
a1 changes dx( t )  that  are normally distributed  with mean 
pdtand  variance adt, i.e., 

dx( t )  = pdt + z (  t )   ( a d t ) f ,  (3)  

where z( t )  is a white Gaussian  process. If there is no 
boundary  condition  imposed on x( t ) ,  then x( t )  is a 
Brownian motion with drift, which has a  probability  dis- 
tribution p (  x,, x; t )  satisfying 

where x, is  the initial value, and p(x,, x: t )dx= P { x z  
x( t )  5 x + dxlx(0) = x,}. 

Introduction of appropriute  boundary  conditions 
The diffusion equation is now solved with the boundary 
condition x ( t )  1 0  (reflecting barrier)  or p(x, ,  x; t )  = 0 
for x < 0. For the  stationary  case,  the time derivative in 
Eq. (4) is  set  to  zero.  Then  the  obvious  requirement 

J," p ( x , ,  x; m)dx = 1 leads to  the well-known stability 
condition p < 0 or h < p and  to  the boundary  condi- 
tion [ 11 

With this boundary condition,  the  steady  state solution 
of Eq. (4) ,  which is subsequently called p (  x ) ,  is uniquely 
determined to be 

Interpretation of  the  diffusion  process and adjustment 
for small queue sizes 
The steady-state solution of the diffusion process is the 
exponential  distribution of Eq. (6) .  We  now go back to 
the discrete-valued  queuing process  for which we in- 
terpret  Eq. (6)  as a geometrical  distribution of the 
queue size  variable n with the  same  decrement  factor 
exp(-2IbI / a ) .  By the very nature of the basic assump- 
tion (Le., the  use of the  central limit theorem), we cannot 
expect meaningful results  for small queue size n. For 
general  interarrival and  service time distributions, how- 
ever,  the probability of an  empty  queue is known to be 
exactly 1 - h / p .  We  then adjust  the geometrical  distri- 
bution at n = 0 and  use  exp(-2lpi/a)  as  the  decrement 
factor. If we denote  the  approximate  queue size  distribu- 
tion constructed accordingly by p (  n)  , we get 

i f n = O  

if n ?  1, 
P ( u )  = 

with 

where p = h / p .  

3. Diffusion approximation for queuing networks 
We consider  a  network with M single server  stations in 
which: 

I .  The holding time  distribution at  each  station m c [  1, M] 
has  the  mean p," (p, is the processing rate)  and 
squared coefficient of variation C,. 

2 .  Customers  (or  jobs)  make  instantaneous  transitions 
from  station m to  station m' with  probability O,,,. 
Probability I),,, is  independent of the  state of the sys- 
tem (i.e., the routing of each  customer is generated by 
a Markov chain  with  transition  matrix [ 01 ). 

3 .  In  the  case of an  open  network, a customer  arrives  at 
the network with rate p,, and the squared coefficient of 
variation is C,. A customer  joins  the mth station with 
probability eo, and  leaves  the  system from the  m'th 111 

DIFFUSION APPROXIMATION 



112 

station with probability 
venience,  tlie source is 
sink as station M + 1 ). 

o , , , ~ + ~  (for notational con- 
treated as station 0 and the 

If all service time distributions are exponential, then 
Jackson's theorem [6] applies,  which states that the 
joint queue size distribution p(n,, n,, . . ., nM) is the prod- 
uct of the M marginal distributions p,(n,): 

p(n,, n,,..., nM) = fl p;(n,). (9)  

In his recent paper [5], Kobayashi  proposed that queu- 
ing processes of a general  queuing  network  be  approxi- 
mated by a vector-valued  diffusion process. The inter- 
actions among  different  queuing processes are explicitly 
considired in the diffusion  equation in terms of the 
variance-covariance  matrix. He derived the joint queue 
size distribution, which is expressed in a product ford of 
the marginal queue size distributions. This solution  form 
suggests that we  may treat each server independently, 
provided that the interactions among  different server 
queues are appropriately taken into account. In this  sec- 
tion we develop a computationally  simpler (but perhaps 
less Cxact) approach than the method discussed in [ 53 : 
an approximate solution to the  marginal queue size  dis- 
tribution is computed, by applying  Eq. (7) individually 
to each- server and then deriving the joint queue size 
distribution. 

Y 

m=1 

- var[AD,] = variance of the number of departures per 1 
A unit  time G umCmpm, (12) 

where AD, denotes the increase in the cumulative  num- 
ber of departures during  the interval ( t, t + A).  

Arrival process at station m 
The arrival process is the superposition of the departure 
process of those servers m that have nonzero routing 
probabilities Therefore, the arrival rate is 

M 

where AA, is the change. in the  cumulative  number of 
ai-rivais during the interval (t, t + A ) .  Note that in the 
lower  index of the summation, m' = 0 applies f i r  an open 
network, whereas m' = 1 is for a closed  network. The 
expression for the variance  is  complicated by the fact 
that the randomness of the routing is an additional source 
of variation. We have 

- 1 var[AA,] = variance of the number  of arrivals during 
A unit time, 

M 
= 2 Var[AD,,,]u,,, (14) 

m'=O (or 1) 

where AD,,, is that part of the output stream of.sta- 
tion m', that is routed to station m. The expression for 

Departure and arrival processes 
var[AD,,,] (its derivation is  in Appendix A of [5]) is 

To 9PPlY formula (7 1 to each station 1, MI 9 we have 1 var[AD,,,] = variance  of the number  of arrivals 
to know the rate of the arrival process A(,) and the A from m' to m during  unit  time 
squared coefficient of variation C,',) of the interarrival 
time, as well as the processing rate p',) and the squared = [ (e,, - 1 )e,,m + 1 14,,,pmt. (15 )  
coefficient of variation for the processing  time Cs(,). 
Clearly The rate and the squared  coefficient of variation of the 

interarrival time  can now  be expressed as 

Subsequently  we  want to determine A(m)  and e,(,). We 
first concentrate on the departure process of station m 
and  then  turn our attention to the arrival process, which 
is the sum  of M ( M  - 1 for closed networks) departure 
processes weighted  with the routing  probabilities. 

Departure process of station m 
During  busy periods, the rate of the departure process is 
p i ,  and its squared coefficient of variation is C,. But the 
server is  busy  with  probability urn only (urn is server utili- 
zation). Accordingly,  the  mean  and  variance  have to be 
weighted  with urn; thus 

- E[AD,] = departure rate = u,p,, 1 
A 

and (16) 

where the approximation  used in Eq. ( 17) is, as is that 
of Eq. (2) ,  based  on the central limit  theorem as applied 
to the number of arrival epochs [ 1 1 .  

Open  networks 
For open networks in equilibrium, the arrival rate at sta- 
tion rn [Eq. (16)] is  completely determined by the ar- 
rival rate po = A'"' and  the  routing  probabilities { e } ,  
namely 
A(m) = ( 0 )  A em, (18) 
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where e,  is the  average  number of vistis to  station rn by 
a job during its lifetime. in the  system. If the  Markov 
chain [ 01. is irreducible, the  quantities e are uniquely  de- 
termined by 

em = go, + x e,,O,,,. (19) 
M 

m'= 1 

With the arrival rate A(,) at  server rn determined,  we ob- 
tain for  the  server utilization 

urn = e,h pm . ( 2 0 )  

(Note  that this result holds exactly independently of the 
forms of interarrival  times and  service  times.) By means 
of Eq. ( 19)  and  Eq. (20), the  expression  for Ca(m) can 
be simplified to 

C , ' ~ ' Z  1 + x (c,, - 1)e,,,2e,,e, . (21 1 

Now we apply Eq. (2 1 ) to  station m, giving the following 
expression  for  the  queue size  distribution for this station 

( 0 )  -1 

M 
-1 

m'=O 

where 

Closed  networks 
Two basic  problems exist in the analysis of closed  net- 
works: 

1. The  server utilization can  no longer be simply deter: 

2. The distribution is over a finite population N.  
mined via Eq. ( 2 0 ) .  

Closely  related to problem 1 is the  fact  that  the param- 
eters e are  no longer  uniquely determined,  since  the sys- 
tem of linear equations 

e, = e,,%,,, (24) 

has clearly  nonunique  solutions even if the matrix [ e ]  is 
irreducible.  If a set { e }  forms a solution, so does { y e }  for 
any scalar  constant y. At best  we  can say that 

M 

m'= 1 

There is no simple way of determining the  constant y .  If 
we  assume  that  at  least  one of the  parameters e,,,/p, is 
larger  than the  others, then the  server with  this service 
rate is the bottleneck of the system.  In  such a system, 
the utilization of the bottleneck server  goes  to 1 as 
N -+ 00. For a closed system with  bottleneck server k and 
sufficiently large population N ,  utilization of the  server is 
well approximated by 

-1 
u, = ek h e m p m  , where m = 1, 2 , .  . ., M .  ( 2 6 )  

A  different approach to obtaining approximate  values 
for  the utilizations, is to  'assume  an exponential server 
network. with the  same {p} and { e } .  The  problems  asso- 
ciated with the  estimations of the utilizations are dis- 
cussed  further in the  examples of section 5. I t  should be 
noted here  that'Gaver  and  Shedler  discuss in a recent 
paper [ 7 ]  a different way of "fitting" the diffusion ap- 
proximation. 

To deal witl? the finite population N ,  we make the  as- 
sumption that  for n 5 N the marginal distributions differ 
from  the limiting case N = 00 only by a proportionality 
constant. 

The suggested treatment of closed networks may now 

-1 

be  summarized as follows: 

Step 1 Estimate  the  server utilization ii,, m[ 1, M I ,  and 
use  these  estimates  to  compute X ( , )  according  to  Eq. ( 16) 
and  according to  Eq. ( 17). 
Step 2 Compute  the improper distributions  for m[O, N ] :  

Step 3 Compute  the  approximative  joint distribution  ac- 
cording to 

a(n, ,  n2; . . ,  nM)  = n - ~ k  N - 2 n,) p (n t ) ,  ( 2 8 )  

where n- is a normalization constant io be  chosen so that 
Eq. ( 2 8 )  is a proper distribution. 

( 
M-1  M-1 

m = l  c=1 

Before we  close this section;it is worthwhile to give 
an interesting interpretation of the  formalism introduced 
for  the  treatment of networks  (open or closed).  It is easy 
to verify that  the  assumption of independent marginal 
distributions of the  form of Eq. ( 2 7 )  is equivalent to  the 
solution of an exponential server  network with process- 
ing speed,  dependent  on  the local queue size n,. Such 
networks  have been analyzed by Jackson [ 6 ] .  The  speed 
of server m is  then found as a function of the local queue 
size n as follows 

--b,)-' i f n = O ,  
(29 

if n 2 0. 

Thus  the diffusion approximation  has  led'us  to a replace- 
ment of the original network  by  an  exponential  server 
network  with  suitably  chosen  queue-dependent  process- 
ing rates. These effective  processing rates  are  determined 
by the diff;sion  approximation and  depend  not only on 
the processing rates {p} but  also on the routing {e} and 
the  variance of the  service time distributions  expressed 
by {e}. 
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Figure 1 Cumulative service time distributions used in the ex- 
amples given subsequently. The parameter represents C,, the 
squared coefficient of variation. 

Table 1 Summary of parameters used in sample distributions 
depicted in Fig. 1. Parameter C, = the squared coefficient of 
variation. 

N O .  Service  time  distribution cs 
1 Hyperexponential 5 
2 Hyperexponential 2 
3 Exponential 1 
4 
5 

Erlang m = 2 0.5 
Constant (Erlang with m = m) 0 

c, = 0 

P 

Figure 2 Relative error of the mean queue size E, vs the server 
utilizationp in the M / G / l  system, E,= (Ern]  - E [ r i ] ) / E [ n ] ,  
where the parameter is C,, the squared coefficient of variation 
of service time. 

P 
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4. Accuracy of the diffusion approximation for the 
single server queue 
In this  section we first discuss  the  errors in the  mean  and 
variance of queue size and subsequently  give  compari- 
sons of the  approximate solution  with  some  known  an- 
alytical  results. The  assumed distribution functions for 
the  service times are  the Erlang  distribution as a model 
for  service  times  more regular than exponential  (Le., 
C < 1) and  the  hyperexponential distribution for  service 
times  with C > 1 .  

These  distributions  are defined in Appendix A. Ex- 
amples  that  are used  consistently  throughout the fol- 
lowing sections  are  depicted in Fig. 1 ,  and  their param- 
eters  are summarized in Table 1. 

M /  G /  1 queue 

Error in mean  queue size 
The mean queue size of the M /  G / 1 queue  is well known 
[81 as 

E[n] = p + !f (-) 1 + c, 
2 1 - p '  

where p = A/@ is  the  server utilization and C, = var[.r,] / 
E[T,]' is the  squared coefficient of variation of the ser- 
vice time  distribution. The mean queue size E[k] ob- 
tained by the approximation (7)  is 

E[h] = p /  1 - 6. ( 3 1 )  

A  plot of the relative error e, of the mean queue size is 
shown in Fig. 2 .  We make  the following observations: 

The relative error of the mean vanishes  as p -+ 1. 
The mean queue size E[h]  of the diffusion approxima- 
tion tends  to be an  underestimate  for  cases with C, < 1 
and  an  overestimate with C,  > 1. 
Although the relative error of the  mean  queue size may 
sometimes be quite large, the  absolute  error is always 
small. In  fact  it  is not difficult to  show  that  the  absolute 
error leal is bounded by leal 5 11 - C,l / 2  for all C, 1 0 
and  for all values of utilization factor p. The  upper 
bound is achieved when p = 1. The  above inequality 
does  not hold only for  the interval C, E [0.08, 1.061, 
for which it can be  shown that leal 5 0.08. 
Highest positive  values of e, are found for C, = 0 and 
p M 0.5, whereas  for C, > 1 the maximum of le,l is 
found at p = 0 and  increases with C,. 

Error in the  variance of queue size 
The  variance of the M / G /  1 queue  size distribution 
[8] is 
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Table 2 Relative error (in %) of variance of the  queue size 
e,' = (var [ n ]  - var [ h] ) / var [ n]  , where p is the  server utiliza- 
tion and C, the  squared coefficient of variation of service time. 

CS 
P 5 2 I 0.5 0 

0.4  -I95 -7 I -1 1 23 51 
0.6 -8 5 -3 5 -4 19 50 
0.8 -30 -12' -0.8 I O  28 
0.9 -13 -5 -0.2 4 14 

Table 3 Relative error of the  asymptotic  decrement: ( r  - p / r )  

c, 
P 5 2 I 0.5 0 

0.4 -17 -15 -6 15 75 
0.6 -5 -4 -1 6 32 
0.8 -I -0 .7  0.01 1.3 7 
0.9 - 0 . 2  -0.2 0.00 1 0.3 1.5 

where 0, = E [  (7, - h ) 3 ]  / E [ T , ] ~  and  as before C, = 
var[~,]/E[T,]~.   The variance of queue size  obtained 
from the diffusion approximation  solution is 

var[iz] =p(l  -Ap)/(l - b ) * ,  (33) 

with Ap = p - b. The  error of var[ A] follows  a pattern 
similar to  the  error of the mean  discussed above.  Some 
values of the  relative error of variance, E ~ ' ,  for various 
utilizations p are summarized in Table 2 .  The magnitude 
of the relative error I E,' I is found to be  consistently  higher 
than  corresponding values le,l for  the mean. 

Asymptotic slope of the  queue  size  distribution 
For a  wide class of holding time distributions,  the result- 
ing queue size distribution has  an exponential  tail, i.e., 
p , ,+ , /p ,  + r as n + 00. In  the  argument of section 2,  the 
quantity p was introduced as  an approximation of r. For 
the  distributions of Table 1, the  exact  values of r have 
been  obtained as a function of p.  The graphs of r and p vs 
p are shown in Fig. 3. The relative errors of b are sum- 
marized in Table 3. We find that 

The  quantity p tends  to be an  overestimate of r for 
C, > 1 and an  underestimate of r for C, < 1. 
Relative  and absolute  errors vanish as p + 1. 
For C, < 1 the  error is largest for C, = 0, and  for 
C, > 1 the  error  increases with C,. 

Figure 3 The  asymptotic  decrement r and  its approximation 
vs the  server utilization p in the M / G /  1 system.  The solid 

lines are  exact  values ( r )  , and  the  dashed  ones  are by the diffu- 
sion  approximation ( p ) .  The  parameters 0,  I ,  and 5 represent C,. 

Comparison of queue  size  distributions 
Analytic  expressions  for  the  queue, size distributions p (  n )  
have been  obtained for  the  distributions of Table 1. In 
the  cases of the 2-stage  Erlang  and the 2-stage  hyper- 
exponential distributions  for  the holding times, the  exact 
queue size  distribution is of the form 

p ( n )  = a l r ln  + a2rZn, (34) 

where r1 and r2 are  the  roots of a second-order polynomial 
(see  Appendix B ) ,  and al and a2 are  chosen  such  that 
p ( 0 )  = 1 - p and E p ( n )  = 1. 

The  observations  reported  above imply that 6 is a  good 
approximation for  the larger of the  roots, r l ,  which de- 
termines  the  asymptotic behavior. Here  we  are inter- 
ested in how well the diffusion approximation of the 
queue  size distribution, @ ( n )  of Eq. (7 ) ,  fits the  analytic 
form  for p (  n ) .  First we note  that p t n )  has only one geo- 
metric  term,  whereas p ( n )  for m-stage Erlang and  the 
m-stage hyperexponential  services  has in general m geo- 
metric terms.  Thus,  the  question is how fast  the  dominant 
term takes  over.  Inspection of the  graphs in Fig. 4 shows 
that this is usually the  case  for n 2 3. The  examples of 
Fig. 4 show quantitatively  what has been discussed 
above, especially that  the  error  gets  worse  for small p and 
extreme  deviations from the exponential  distribution 
(e.g., C, = 0 and C, 2 5).  
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Figure 4 (a)  The queue size distribution (in logarithmic scale) 
for the M/G/  1 queue (a), where the service time is hyperexpo- 
nential with C ,  = 5 .  The solid lines are  exact values, and the 
dashed ones are by the diffusion approximation. (b)  The queue 
size distribution (in logarithmic scale) for the M/ D/ 1, viz the 
service time is constant, i.e., C ,  = 0. 

YASHS 

Figure 5 The queue size distribution (in logarithmic scale) for 
the E, /M/l ,  i.e., C, = 0.5. For p = 0.9 the diffusion approxi- 
mation solution (dashed lines) and the exact solution (solid 
lines) are indistinguishable. 

I t  may be interesting to  note  the principal I iifference 
between  the  cases C, < 1 and C, > 1.  Compared  to ex- 
ponential service,  more regular service with C, < 1 fa- 
vors the  state n =  1 (one  customer being serviced),  and 
the tail of the  queue distribution falls off more rapidly. 
The  opposite  is  true  for  service with C, > 1 ; here n = 1 
is considerably less  probable  than in the  case of random 
service,  but the tail falls off less rapidly. 

E , / M / l  queue 
Even  for  the single server  queue,  the solution for non- 
Poisson input is difficult. However, a relatively simple 
solution is available for  the  case of Erlang distributed 
interarrival  times (see  Appendix C )  . A closed form solu- 
tion for  the  queue  size distribution exists  for 2-stage 
Erlang input  and exponentially distributed holding times 
(for  more  general  cases polynomial equations  have  to be 
solved).  This solution is of the  form 

I - P  for n =  0 
for n 1 1, 
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Table 4 Asymptotic decrement r vs server utilization p in 
E, / M /  1 and M / E, / 1 systems. Relative error is defined by 
( r - P ) / r  

0.4 0.3  12 15 0.275 -3 3 
0.6 0.515 6 0.496 -9 
0.8 0.745 1.4 0.740 -1.5 
0.9 0.870 0.3 0.868 -0.33 

Table 5 Exact asymptotic decrement r compared to of the 
diffusion approximation such that In 6 = -2( 1 - p )  / (C ,  + 
PC,)  = constant for each row. (The actual value of p is adjusted 
and varies from column to column.) 

E,/ M I  1 MI G I  1 
C, = 0.5 (C,= I )  

P c,= I c, = 2 C,  = 0.5 c, = 0 

0.4 0.414 0.376 0.351 0.326 
0.6 0.609 0.596 0.582 0.569 
0.8 0.803 0.800 0.796 0.793 
0.9 0.901 0.900 0.899 0.898 

L 2 I I I I I  

K a  2 I I I I I  

P 2c2 
(b)  

Figure 6 An open server network (a) and a closed net- 
work (b). 

where r is obtained as  the larger root of a quadratic equa- column).  We find from the  data of Table 5 that indeed 
tion (see  Appendix C ) .  Equation (35) is analogous to  the  exact solution is quite similar if the  quantity 21/31 / a  
the diffusion approximation  solution of Eq. (7) .  A  graph is kept  constant. 
of p ( n )  vs n is shown in Fig. 5 .  Values of rand  the rela- 
tive  error of compared  to r are summarized in Table 4 
for both the  Ez/ M /  1 and  the M/E,/  1 queues.  In general 5. Some examples of networks 
we make findings similar to the  case of the M / G /  1 In this  section we  consider  the  two  server  networks of 
queue. Fig. 6.  Such  networks may be  useful for  various applica- 

It  is interesting to  observe  that tions. For  example  server 1 may represent  the CPU and 

The effect of Erlangian  input on  the  queue  size dis- 
tribution is similar to  that of Erlang distributed holding 
times. The  asymptotic  decrements of the  two  systems 
converge  to  the common value  as p - 1 .  
The  errors in the mean and  asymptotic  decrement 
obtained by the diffusion approximation for  the 
Ez /M/  1 and  the M /  E,/ 1 queues  have different signs. 

server 2 a swapping  device. An  interactive  computer 
system  that may be  modeled by this  queuing system is 
described in [9], where it is pointed out  that  the  CPU 
time  distribution has a long tail, i.e., C, >> 1 (hyperex- 
ponential service time distribution).  Alternatively, 
server 1 may be the paging device  and  server 2 the  CPU, 
with each task requiring a (random)  number of time 
slices. 

Before we close  the section on  the single server  queue,  Subsequently, we compare  some analytical results, 
we want  to  answer  the  question of whether  the invariance as well as  some simulation results, with the diffusion 
of the diffusion approximation  (Eq. 7) with respect  to approximation to investigate the validity of the  approach 
changes in C,  and C, such  that C, + PC, = constant is described in section 3 ,  Le., separate  treatment of each 
supported by the analytical  results. For this purpose,  server. 
Table 5 gives the  asymptotic  decrement r for various 
systems  such  that 21/31 /CY = In fi  = constant  for  each row Open network 
(note  that  the utilization p itself is different  for  each  Let  us  consider  the  open network of Fig. 6(a).   For con- 117 
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Figure 7 Queue size  distributions at  servers 1 and 2 in the  open 
network of Fig. 6(a)  when the  system  parameters  are  those of 
Case A of Table 6 (a).  Solid lines are simulation results;  dashed 
lines, diffusion approximation  solutions. Queue size  distribution 
for  the  open network of Fig. 6 (a),  when the  system  parameters 
are  those of Case B of Table 6 (b) .  

AND  H. KOBAYASHI 

t 0.4t 
I o.2 t 
9 1  

p = 0.9 

I N -  

Figure 8 Utilization of server 1 (normalized by p )  vs  the num- 
ber of jobs N in the closed  network of Fig. 6 (b).  Server 2 is ex- 
ponential, i.e., C, = 1 and p = p, ( 1  - 0 )  / p , .  Solid lines are ex- 
act solutions; dashed lines, diffusion approximation  solutions. 

Table 6 Average  queue size for  the  open network of Fig. 6 (a) .  

Case A Case B 
pL1 = 0.9, p2 = 0.84 p1 = 0.95, p, = 0.89 

queue 1 queue 2 queue 1 queue 2 

simulation 6.84  3.22  13.3  4.5 
diffusion 
approx. 6.76  2.70 14.3 4.52 
error 1.5% 15% 6% 1% 

expon. 
servers 9 5.25 19 9 
error 30% 65 % 30% 100% 

We do not  know of any  analytic solution for this  net- 
work. Consequently we compare  the diffusion approxima- 
tion with  a  few  simulation results.  The  number of ex- 
amples  is restricted because simulation is costly and time- 
consuming. The following set of parameters  was  chosen: 
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Routing: O1 = 0.5, 8, = 0.1; 
Server 1 :  2-stage  Erlang, i.e., C, = 0.5; 
Server 2: Constant Service, i.e., C, = 0. 

Results  for  two different sets of values for p1 and p2 are 
given in Table 6 and in Fig. 7, leading to  the following 
observations: 

Mean  queue  sizes  (Table 6)  agree well. For compari- 
son,  results with an equivalent  network having expo- 
nential servers  are  also given. 
Comparison of the  queue size distributions  shows good 
agreement  for  the highly utilized server.  The fit is less 
satisfactory for  the second server, which has  constant 
service  time  distribution. Accuracy  gets consistently 
better  as  the utilizations of both  servers  are increased 
(e.g.,  Fig. 7(a)  vs Fig. 7 (b ) ) .  

Closed network 
We now turn our attention  to  the closed  network of Fig. 
6(b).  The formulas for arrival rate  and  squared coeffi- 
cient of variation, Eq. ( 16)  and  Eq. ( 17),  can  be  made 
more specific, i.e., 

A ( ' ) =  uZp2 ( 1  - e )  (40 1 
A'2' = ulpl + (C,  - 1 ) ( I  - e )  (41 1 
C,(l'= 1 + (C,-  1 ) ( 1 - 0 )  (42) 

ca(')= 1 + (c, - 1 ) ( 1  - e )  + (c, - 110. (43 1 
As already mentioned,  the difficulty in applying the 

diffusion approximation  to closed networks is the esti- 
mation of the  server utilizations,  which have to be  known 
a priori to  evaluate  these formulas. One possibility is to 
take  as  estimates  the values  obtained by an exponential 
server network with identical  routing and  the  same 
processing  rates. For example, we  have 

U , = p ( I  - & / ( I  - p N + l ) ;  (44) 

U 2 =  ( 1  - p " ) / ( I  -pNtl), (45) 

where 

p = p 2 ( 1  - e ) / P , '  (46 1 
and N is the  number of customers.  In  the sequel, we 
assume  that  server 2 is the bottleneck server (i.e., p < 1 ). 
Then,  apparently, ii, + p and U, + 1 as N - m. 

We first consider  the  example in which the second 
server  has exponentially distributed holding times. An 
analytical  solution for this case is known (see  Appendix 
D).  This solution has  the  property  that  the  queue size 
distribution is invariant to  changes in O and p, such  that 
( 1  - e)p2 = constant.  The diffusion approximation  as 
computed with the  above formulas does  not  show this 

0.4 

0.1 

0.04 

0.01 

N = 8  

0.4 I 

Figure 9 Queue size distribution of server 1 for the closed net- 
work of Fig. 6(b) with 0 = 0 and p = 0.9(a).  Server 2 is  ex- 
ponential, i.e., C, = 1 ,  and server I is hyperexponential with 
C, = 5. Solid lines are exact solutions; dashed lines, diffusion 
approximations. Queue size distribution of server 1 for the 
closed network of Fig. 6(b)  with 0 = 0 and p = 0.9  (b). Server 
2 is exponential, i.e., C, = 1 ,  and server 1 is regular, i.e., C, = 0. 1119 
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i 
4 8 

I n  - 
Figure 10 Queue size distribution of server 1 for the closed 
network of Fig. 6(b) obtained by simulation for different values 
of 0. The system parameters are C, = 0.5, C, = 0, p = 0.9, and 
N =  8. 

Table 7 Relative error  (in %) of the mean queue size and the 
utilization of server I .  The holding  time distributions of server 1 
are those of Table 1 and Fig. 1. Server 2 has exponential holding 
times. The estimated utilizations are obtained by the exponential 
server network. Restuls are for the diffusion approximation (a) 
and the exponential server approximation (b). 

N 
mean 

CI 1 
utilization 

4 8 1 4 8 

5 20 0.75 -2.5 20 6 3 
1 0.3 -0.025 -0.05 0.35 0.1 0.02 
0 -15 7.5 8 -15 -i.6 -0 .5 
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N 
mean  utilization 

c, 1 '4 8 I 4 8 

5 50 16 6 50 16 2.5 
1 0.3 -0 .025 -0.05 0.35 0.1 0.02 
0 -30 12 15 -30 2.5 2 

0.4 

0.1 

0.04 

h 

P 

'L 
9 

3 

F 

2 0.01 

'0 
" 0  

\ 
\ 

0"". 

0' \ 
2 4 6 

- 
Figure 11 Queue size distribution of server I for the closed 
network of Fig. 6(b). The system parameters are C, = 0.5, 
C, = 0, p = 0.9, N = 8, and 0 = 0.5. Solid  line  is the simulation 
result; dashed line is the'diffusion approximation with ic, and ii, 
according to Eqs. ' ( 9 3 )  and (44);  dotted line is the diffusion ap- 
proximation with ic, = 0.9 and '4 = 0.99. 

invariance. Generally, we  find the best results for 8 = 0 
(i.e., cyclic  tandem queues) and observe an increase in 
the error as 0 approaches one. 

We  now consider the results given in Fig. 8, Fig. 9, and 
Table 7: 

The utilization of server 1 as a function of the number 
of customers ,is plotted in Fig. 8. As mentioned above, 
u, += p as N 3 T. The approach to the limiting  value 
is fastest for C, = 0 and  'slows  with  increasing values 
of C,. In addition the more  balanced the system (i.e., 
with p close to 1 ) , the slower this convergence. 
The most accurate results are found for p close to 1 
(heavy traffic), C1 close to 1 (exponential service), 
8 close to 0. (no feedback), and N large. The errors 
increase as these quantities deviate from the ideal 
values. 

The  error in the mean changes its sign as N increases. 
For sufficiently laige N ,  the mean queue size of the 
diffusion approximation is lower. than the true value 
for C, < 1 and  higher for C, > 1. 
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Exact  distributions  and diffusion approximations  are 
shown in Fig. 9. An excellent fit is found for 0 = 0 and 
p = 0.9. It  is  quite  remarkable how well the special 
behavior of p ( N )  is  reproduced in the  approximate 
solution. However,  as mentioned above,  the fit gets 
worse  as 0 .+ 1 and  the special feature of p (  N )  tends 
to disappear. 
The  accuracy of the diffusion approximation increases 
as the  exact  values of the utilizations are  substituted 
for  the  approximations found by the exponential 
server network. 

As  the  last example, we  assume nonexponential hold- 
ing times for  both  serveis; specifically 

Server 1 : 2-stage Erlangian service times  with C, = 0.5 
Server 2: constant  service times  with C, = 0. 

That portion of the  output of the  second  server 
routed  to  the first server  has  interdeparture  times with  a 
geometric distribution that  approaches  the exponential 
distribution as p2 .+ ~0 and f? -+ 1 in such a way that 
(1 - B)p2 remains  constant.  Thus  for this limit we find 
again the solution of Appendix D. This is indeed  found 
in the simulation results of Fig. 10. Note  that this i s  an 
example of how the -routing process  generates additional 
variation. The diffusion approximation as  depicted in 
Fig. 11 gives best  results  for '0 = 0. However,  the  loss of 
accuracy  is more serious  than in the previously discussed 
example with C, = 1: This  is  due  to a much  higher  sen- 
sitivity of the  approximate solution to the  error in the 
imperfectly estimated utilizations GI and 6,. A  good  fit 
can be  obtained  by more  accurate values for L, and 4, 
as  shown by the  graphs of Fig. 1 1. An unsolved  problem 
is how such values may be  obtained. 

5. Conclusions 
The main purpose of this paper  is  to  assess  the  accuracy 
of the diffusion approximation to queuing systems.  Gen- 
erally, satisfactory  results  have been  found for reasonably 
highly utilized systems.  Throughout  the  examples  we find 
that: 

1. Accuracy is highest for C M 1, i.e., the exponential 
server  case.  It is of course  an  important  requirement 
that  the approximation,  designed to handle  general 
distributions, reproduces  the  one  case  for which an 
exact solution is known. The  errors grow as C deviates 
from  one. 

2. The  errors  go  to  zero  as  the utilizations approach one. 
This  is a consequence of the  use of the  central limit 
theorem leading to  the diffusion approximation. 

3. In all examples with  nonexponential distributions, 
the diffusion approximation yielded a mean and a 
variance of the Gueue sizes that  are considerably more 
realistic  than those obtained by an exponential server 

model. As a rule  the mean queue size tends  to be  low 
for  cases with C < 1 and high for  cases with C > 1. 

4. The  treatment of open  networks, which is based on 
the  assumption  that  each  server may be treated 
separately,  has proved  successful. The  most  accurate 
values for  mean  and  variance  are found for  the highly 
utilized servers. Of course, higher errors  have  to be 
tolerated for  the  less utilized servers in a network. 

5. In the  case of closed networks with a small number of 
customers,  the estimation of adequately  accurate 
utilizations  remains an unsolved  problem. In some 
cases (e.g.,  when the bottleneck server is exponential) 
utilizations  obtained by an exponential server model 
work satisfactorily. 

Finally it should be mentioned that  the computational 
complexity is small and  that a general computer  proiram 
capable of handling any  reasonable  number of servers 
may be  easily  implemented (e.g., in APL). There is 
therefore  considerable,  hope  that  such a program may 
prove a useful tool for design and  analysis of systems. 
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Appendix  A: Definition and properties of the m-stage 
Erlang and the m-stage hyperexponential distribu- 
tion 
The m-stage  Erlang  distribution  for a random variable 
r is 

with 

var [TI = 1 / mp', (A3 

C =  var [ 7 1 / ~ [ r ] ~ =  1 / m z  1. (A41 

Note  that  the  squared coefficient of variation is less than 
(or  equal)  to one. The exponential  distribution is the 
special case m = 1, whereas  becomes completely reg- 
ular as m -+ m. 

The hyperexponential  distribution of a random variable 
r is 

m 

F (  t )  = prob {i 5 t }  = 1 - 2 n-ke-"kt 
t=1 

withn-k?Oforallke[l,rn]andZn-k= 1. 

are found to be 
Mean,  variance,  and  squared coefficient of variation . .  
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Appendix B: Queue size distributions of the M/G/1 
queuing system 
T h e   M / G /  1 queue is among the  oldest solved  queuing 
problems with nonexponential  distributions. One solution 
method is known as  the imbedded Markov chain  method 
and  derives  the  queue size  distribution via the generating 
function U ( z )  = Xnp(  n )zn ,  which is given as [8, 101 

where $(s) is the Laplace-Stieltjes  transform of the 
service time  distribution 

For  the m-stage  Erlang  service-time  distribution, we have 

$[A(l--z)]=[(E+l)-Ez] , 
-m 

m  m 

which in the  case m + 00 (i.e.,  constant  service)  con- 
verges  to 

$[A( I - z ) ]  = exp [- p(1  - 211. (B4) 

In  the  case of the m-stage hyperexponential  service 
time  distribution defined by Eq.  (AS), $[A( 1 - z ) ]  be- 
comes 

where p k  = Alpk .  Generating function U ( z )  is in both 
cases  (except  for  constant  service) a rational  function 
in z. 

To obtain the  queue size  distribution, the generating 
function U ( z )  has  to  be  expanded  into a power  series. 
For rational functions,  such  an  expression is most easily 
obtained from its representation  as a partial  fraction 

ak 
m m  

U ( z )  = x " - x zi a k r i ,  (€36) 
k = l  - 'kZ i =O k = l  

where rk = zk-' and Izkl> 1 are  roots of the following 
characteristic  equations: 

for hyperexponential service.  (B8 1 

Both polynomials are of degree m + 1 and  have z,, = 1 
as a root. Then, by Rouche's  theorem,  there  are  exactly 
m other  roots  outside  the unit circle, Le., lzkl > 1 for 
kc [ 1 ,  m] . But ( z  - 1 ) is  'a common factor of the numer- 
ator  and  the  denominator of U ( z )  , which can  be  can- 
celled. Therefore  we find for  the probability distributions 

i.e., a  superposition of m  different geometric distribu- 
tions. 

Closed form  solutions may be  easily  obtained for 
2-stage  Erlang and 2-stage  hyperexponential service time 
distributions,  because then the polynomials of Eq. (B7) 
and  (B8)  are both  third order  and  reduce  to second order 
after cancellation of the common factor ( 1 - z) .  Some 
elementary  computations  show  these  quadratic  equations 
to be 

$2" - p ( p  + 4)Z + 4 = 0 
for 2-stage  Erlang  service, and (BIOI 

~ ] ~ z - ~ ~ ~ l + I ) ~ ~ , + l ~ - - l ~ + ~ ~ l + ~ , - ~ + + ~ = ~  
for 2-stage  hyperexponential  service. (B11) 

The  queue size  distribution then  becomes 

p ( n )  = alrln + a2r2", (B12) 

with r1 = zl-l and r2 = z2-l, and 

In  the  case of constant holding times, U ( z )  is a tran- 
scendental  function. The  queue size  distribution is found 
as  the coefficients of the  Taylor  series  around  the origin 
z = 0. Repetitive derivation of the generating  function 
is a tedious task. The solution,  which has been  obtained 
by the symbolic computation  system SCRATCHPAD 

[ l l ] , i s  
n 

p ( n )  = (1 - p )  x (-1y-j 
( j p y - j - l ( j p  + n - j )  

e'', 
j = 1  ( n  - j ) !  (B15) 

Appendix C: Queue size distribution of the  Em/G/l 
queuing system 
The single server  queue with m-stage Erlang distributed 
interarrival  times and holding times  with  general  distribu- 
tion F ( t )  = prob {T 5 b}  is equivalent  to  the following 
queuing system: 

1 .  Interarrival times are exponentially distributed with 
mean 1 / A .  

2. The  server  accepts only batches of m customers.  Ser- 
vice  time  distribution for servicing  a batch  is F ( t ) .  If 
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after  service completion the  queue size n’ is less than 
m, the  server idles until the  queue  has grown to m. 

The solution of the  latter  system by the method of the 
imbedded Markov chain is similar to  the solution of the 
M / G / 1 system.  The generating  function for  the  queue 
size  probabilities p‘ ( n )  (the primed  quantities are  for  the 
equivalent system) is found to be 

m-1 

( 1  - zm)$[mh( 1 - z ) ]  pr ( j ) d  

$[mh( 1 - z ) ]  - zm 
U ( z )  = (C1) 

where $(s)  is the Laplace-Stieltjes  transform of the  ser- 
vice  time  distribution. The  queue  size probabilities p’  ( j )  , 
jc  [0, m - I ] ,  are m unknown parameters of U (2). Since 
U ( z )  must  be  analytic in the unit  circle (Le., / z /  5 I ) ,  
these  parameters  are determined by equating the  numer- 
ator of U ( z )  to  zero  at all the  roots of the  denominator 
that  are inside the unit  circle.  According to Rouche’s 
theorem,  there  are  exactly m such  roots,  one being z = 1. 
The  parameters p’ ( j )  , jc[O, m - I ] ,  are  therefore unique- 
ly determined.  The  queue size p (  n )  of the original prob- 

lem is obtained by the relation n = (where n is the 

original queue size, n’ is the  queue size of the equivalent 
system  and [x] is the  greatest integer  less than x). In 
terms of the probabilities, this relation  becomes 

j=O 

[$I 

p ( n )  = P’(j). 
nfm-1 

(C2) 

A closed-form  solution is found for 2-stage  Erlang 
input  and  exponential service, in which case  the poly- 
nomial equation is of second order.  The solution,  which 
is easily obtained by elementary  algebra, is 

j = n  

p ( n )  = 

where 

r = 4p[ 1 

p2 : rate of server 2 (exponential) 
0 : feedback around  server 2 
N : number of customers: 

then the equivalent M / G  / 1 queue is given by 

F ( t )  : service  time  distribution 
P =  P, : rate of server 

N : size of waiting room. 
A = ( 1 - O)pz : arrival rate  (Poisson  arrivals) 

The analytic  solution of the M / G  / 1 queue with finite 
waiting room is known (see,  for example, Keilson [ 131 ). 
If p = ( 1  - O)p2/pl ,  then  the  queue size  distribution 
with finite waiting room N ,  p N (  n ) ,  is simply expressed in 
terms of the  queue size  distribution p ,  ( n )  of the uncon- 
strained M / G  / 1 queue.  The result may be cast  into  the 
following principles: 

1. The  shape of the distribution is not  affected for IZ < N ;  
more precisely, 

p,(n) = K,p_(n) ,  ( D l  1 
where K,  is a  proportionality factor. 

rate, Le., 
2. For equilibrium the inflow rate  equals  the outflow 

A [ 1  - P,(N)1 = pr1  - P,(O)I. (D2)  

3. p , ( n ) ,  0 5 n 5  N ,  is a  probability  distribution  (Le., 
adds up to  one). 

These  three conditions  uniquely specify the solution as: 

p , ( n )  = K,p_(n), for 0 5  n < N ,  (D3 1 

1 - P  for n = 0, 

p (  I - r)rn-l for n E 1, 

+ ( I  + 8p) t l - I .  (C4) 

Appendix D: Analytic solution for a cyclic network 
with one general and one exponential server 
A simple analytic solution for  the cyclic  network of Fig. 
6 (b )  is available by the equivalency principle due  to 
Kobayashi  and  Silverman [ 121. This principle states 
that  the cyclic tandem system with one exponential 
server  and  one  server with  general  distribution of service 
times is equivalent to  the M / G  / 1 queue with finite wait- 
ing room. If the  parameters of the cyclic  queuing system 
are 

F ( t )  : service time  distribution of server 1 
pcLI : rate of server 1 
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