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Calculations of Stable  Domain  Radii 
Produced by Thermomagnetic  Writing 

Abstract: Calculations are performed to  determine  the  stable  radius of a cylindrically  symmetric domain nucleated in magneto-optical 
films during  thermomagnetic  writing with a laser beam. A critical  bound on domain size is calculated which determines  whether  or not a 
domain of  given radius,  once  nucleated, will be  stable. The analysis shows that for a ferromagnetic  material  such as MnAIGe,  the  domain 
dimensions can grow beyond the local region of material  that is heated above the Curie  temperature. For ferrimagnetic  thin films having 
a compensation point, T,,,,, stability  depends on the difference  between  ambient  and  compensation  temperatures, AT = T ,  - T,,,,. 
With AT M 0, wall  energy  dominates and the  critical radius can be calculated  from R,  = u/ ( 2 M H , ) .  

Introduction 
Recent  experiments  on  thermomagnetic writing with 
lasers  on ferromagnetic  magneto-optic  materials have 
shown that switching of the local  magnetization  can  oc- 
cur  at  temperatures  lower  than  the  Curie  temperature 
[ 1-31. When  the coercivities are low at  temperatures 
close  to  the  Curie  temperature,  the switched spots  can 
grow  and encompass  areas  larger  than  those actually 
heated  above  the  Curie point.  Predicting the size of re- 
versed spots now becomes  more complex  than in the 
case of true Curie-point writing, and the magnetic forces 
tending to  expand  or  contract  the thermally  nucleated 
domain  must be considered.  Similar considerations of the 
forces  are  also  important  for thermomagnetic writing on 
ferrimagnetic  materials having compensation  points,  such 
as  GdIG  or  GdCo.  In this paper  we calculate these  forces 
on the cylindrically  symmetrical Bloch-domain wall sur- 
rounding a thermomagnetically  written  “bit” of reverse- 
magnetized  material and  determine  the ranges of bit 
radius  for which  a stable domain  exists. 

The  analysis  that follows is based on a bubble-type 
approach  such as given  by  Bobeck and by Thiele [4]. 
To describe  the bit, the simple  magnetic bubble model 
must be modified for  two  reasons: 1 )  The intrinsic mag- 
netization within the bit varies  with distance from the 
center  because of the laser beam  intensity profile, and 
2 )  the wall-motion coercivity is not negligibly small. The 
domain-wall  stability is  not  determined simply by a bal- 
ance  between strictly conservative  forces,  as  is  the  case 

for  the  conventional magnetic  bubble, but  results instead 
from the inability of those  forces  to  overcome  the local 
coercive potential. 

The  analysis  and  calculations performed here  are based 
on a specific set of assumptions: 

1 .  The stability theory in this  work is derived from a 
quasistatic  process  rather  than a dynamic  process. 

2. The stability  calculation  deals with radial stability for 
bubbles created by the  laser  beam,  whereas  bubbles 
may normally suffer elliptical instability as well. 

3. Beam heating is assumed  to  penetrate  the film material 
uniformly, and  the  temperature profile contains  no de- 
pendence  on  the z coordinate. 

4. The calculations here pertain to  pure Bloch walls. 

Other bubble-type  calculations directed  toward ther- 
momagnetically  written  bits have  appeared in the litera- 
ture. Schuldt  and  Chen [5] considered  the stability of 
bubbles in MnBi  with an  assumed wall coercivity of 250 
Oe.  They  assumed a uniform temperature  throughout  the 
film and calculated the maximum field that could be ap- 
plied in the  erase direction  without  reducing  domain size. 
Knowledge of this  critical field is important  for  the selec- 
tive erasure of information  stored  magneto-optically, 
since an excessively  large erase field would reduce  the 
readout signal from all the stored  bits. 

Esho  et al. [6] performed  a similar analysis. In addi- 
tion, their  experiments showed that  the wall coercivity 
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for MnBi decreased linearly  with  increasing film thick- 
ness. By including this  behavior for  the coercivity in their 
analysis, they  concluded that MnBi films should be  less 
than 700 A thick to  prevent  inadvertent signal loss during 
erasure. 

Neither of these  two  analyses,  however, considered 
the effects on  the wall forces produced  by  a  laser-pro- 
duced  temperature distribution in the magnetic thin film. 
The main purpose of this  paper is to calculate  the region 
of stable domain  radii in the  presence of a Gaussian ther- 
mal profile and  to  provide insight into  the  sizes of the do- 
mains produced by thermomagnetic writing. 

The  equations used in the  analysis  are  developed in the 
next section. Then  the  results of numerical  calculations 
are  presented  for  one ferromagnetic and  one ferrimag- 
netic  material having a compensation point. The param- 
eters of the  ferromagnet  are typical of MnAlGe [ 7 ] ,  and 
those  for  the ferrimagnet are  representative of GdCo [8]. 

Analysis of stable domain size 
At ambient  temperature  the material is assumed  to  have 
uniform magnetic properties  and  to  have sufficient uni- 
axial anisotropy  to  support magnetization  normal to  the 
plane. We  assume  that  at  some  instant of time the  laser 
produces a cylindrically symmetric  Gaussian distribution 
of temperature throughout the  thickness of the magnetic 
thin film. This local  heating nucleates  the  reversed do- 
main. Details of the nucleation process,  however,  are 
not considered  here. 

The  calculations of equilibrium domain  size (which is 
reached after  the  temperature profile is established) be- 
gin in the  same  manner  as  those of Bobeck for  the mag- 
netic  bubble. We  assume  that a bubble is already  present 
in the thin film and proceed to calculate the radial forces 
on  the domain wall. The  total  energy, Et ,  of a reversed 
cylindrical  domain in a film uniformly saturated down- 
ward relative to  the  same film without  a  reversed region 
is given  by 

E t =  2nRhUw(R) - ( d ( R )  - 4 r h H a  M ( p ) p d p ,  ( 1 )  1 
where uw ( R )  is  the domain-wall  energy per unit area in 
ergs/cm2,  and t d ( R )  is  the  magnetostatic, self-demag- 
netizing  energy  arising  from the distribution itself in the 
thin film of thickness h. If the radial coordinate  is indi- 
cated by r ,  it is assumed  that  the domain wall is positioned 
at r = R ,  and  a dummy variable, p, is used in the integral 
term arising from  the interaction between  the magnetiza- 
tion and  the  external  bias field, Ha. An integral is neces- 
sary because of the spatial  variation in magnetization pro- 
duced by the  laser-produced  temperature profile. In  the 
sign convention  adopted,  the unswitched  magnetization 
is negative and,  hence,  external biases that aid in thermo- 
magnetic  switching  (i.e., “write  bias”)  are positive in 
sign. 
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The  force  on  the domain wall may be found  by differ- 
entiating the total  energy  with respect  to  the domain  ra- 
dius, R ,  

-= 2~hu,(R) + 2 ~ R h [  ( a u , ( R ) / a R )  aR 

Although the usual assumption  for  bubbles is that u, is 
explicitly  independent of the wall curvature [ 4 ] ,  we note 
that, in general,  the wall energy is a  function of tempera- 
ture  and,  therefore,  must  depend implicitly on radius. The 
term a[d(R) / a R  is related to  the demagnetizing field 
(evaluated  at  the domain  wall) which is averaged  over 
the z coordinate [ 4 ] .  A more detailed  discussion of this 
z-averaged  demagnetizing field, p d ( R ) ,  is given in Ap- 
pendix B, and  the result is 

The positive terms in Eq. (2) tend to shrink  the  reversed 
domain, and the negative terms  tend  to  expand it. Note 
that the effect of the  external bias field is opposite  to  the 
conventional  bubble case. 

The stability  condition of usual interest in bubble ma- 
terials occurs when the  force given in Eq. ( 2 )  is exactly 
zero [ 4 ] .  Thus a stable domain can  exist  even in the ab- 
sence of a wall coercivity. On  the  other  hand, in magneto- 
optic materials for application to beam-addressable  stor- 
age,  large  coercivities are  encountered,  and  the size of 
the domain is determined  by a force  balance between the 
wall pressure  and  the “frictional force” of the  nonzero 
wall coercivity.  If the wall pressure is lower than  this 
coercivity force, no movement will take place and  the 
domain  size will be  stable. The stability  condition can be 
expressed in terms of fields by dividing the  forces in Eq. 
( 2 )  by 4 r R h l M ( R )  1 .  

Since  no sign is  attributed  to  the  coercivity,  we implicitly 
assume  that only the  absolute magnitude of the left- 
hand bracket is used in determining the regions of sta- 
bility, and  its sign indicates whether  the wall pressure 
tends  to  expand or compress  the domain. 

The regions of stability for various temperature profiles 
and material parameters  have been  calculated on a com- 
puter using Eq. ( 4 ) .  Since  the intrinsic  magnetization 
may become  zero if a ferrimagnetic  material is heated 
through the  compensation  temperature, or if a ferro- 
magnet is heated  above  the  Curie  temperature,  we  must 101 
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Figure 1 Variation of normalized magnetization and coercivity 
with temperature. The data  are  normalized to the room-tempera- 
ture values and  are typical of ferromagnetic MnAlGe films in the 
500- to 800-A thickness range. 

be careful not to divide by zero in the computations. 
Therefore, we multiply Eq. (4) by IM(R) I and solve for 
regions of stable radii in units of energy per unit  volume: 

5 IM(R)IH,(R). ( 5 )  

A Gaussian  temperature profile with variance 6, 

T ( r )  = T ,  + (T,,, - T,)exp - ( r / a ) ' ,  (6) 

is assumed present  at  some  instant of time. The  corre- 
sponding  radial distributions of magnetization and  coer- 
civity are  derived by combining  this temperature profile 
with measured data of M ( T )  and H , ( T ) .  Typical  data 
for ferromagnetic, polycrystalline MnAlGe  are  shown 
irl Fig. 1 .  These  data were tabulated  and  entered  as input 
into  the  computer,  and  the values of M and H ,  for a 
specific temperature  (and  radius)  were derived by 
linear  interpolation. 

To calculate uw, and au,/aR, we  make  use of the  func- 
tion 

(+,=4(K,A)i, ( 7 )  

where K ,  is the uniaxial anisotropy  constant  and A is the 
exchange  constant.  It  has been  shown that  for a wide 
range of temperatures in a uniaxial ferromagnet  the ani- 
sotropy  constant  is related to the magnetization, to first 
order, by a  third-power dependence [9] : 

The simplest assumption  for  the variation of the  exchange 
constant with magnetization is a second-power  depen- 
dence [lo].  Thus  the final expression  for wall energy 
becomes 

u, (M)  = u , O [ M ( T ) / M ( T , ) ] f .  (9) 

where u; is the value of wall energy in the  absence of 
the  temperature distribution. Since  the radial  distribu- 
tions  for magnetization are known from  the  tabulated 
data  and  the  temperature profile, we  can calculate the 
value of u, at any radius and  use numerical methods  to 
compute au,laR. For  the specific case  considered be- 
low, aa,/aR always  acts  to shrink the  reversed domain. 

Equation ( 1 1  ) is applicable to a ferromagnet  heated 
to  the  Curie point. For a  ferrimagnet we make  the simpli- 
fying assumption  that  the  compensation  temperature 
(and  the maximum temperatures  represented by the 
temperature profile) is  much  lower than the  Curie tem- 
perature.  Therefore,  the  anisotropy  and  exchange con- 
stants  are  taken  to be  independent of the  net magnetiza- 
tion for a range of temperatures  near  the  compensation 
point: 

uw = constant; 

aaw/aR = 0. (10) 

This assumption would not be valid if the magnetization 
of the sublattice  which controls  the anidotropy were not 
independent of temperature in the vicinity of T,,,,. 

Numerical calculations 

Ferromagnetic case 
First we consider a  ferromagnetic material. The  depen- 
dencies of coercivity and magnetization on  temperature 
used in the model are shown in Fig. 1 and  are  representa- 
tive of the magneto-optical  material MnAlGe. A Gaus- 
sian temperature profile with a peak temperature of 
440 "C was considered to illustrate the situation where 
the  Curie  temperature (M200") was  exceeded.  The fol- 
lowing parameters  were  also used [ 1 1 1  : 

u$= 1.0 erg/cm2  J/m2), 

M ( T , )  = 175 emu/cm3 (2 .2  X 10" W/mz)),  

H , ( T , )  = 3125 Oe (2.5 X lo5 A / m ) ,  

H a  = 500 Oe (4 X lo4 A / m ) ,  and 

h = 800 A. 

Figure 2(a) shows the various terms in Eq. ( 5 )  for do- 
main radii  up to 6 pm.  The  temperature  and rnagnetiza- 
tion profiles are  also  shown in Fig. 2(b).  Note  that  the 
demagnetizing term  and  the  term involving the applied 
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Figure 2 Plot of the  terms in Eq. ( 5 )  for a  ferromagnetic 
material. The peak temperature  was 440 “C. (a)  Curves showing 
both the  temperature  and magnetization profiles. Part of the 
film is above  the  Curie point  and M is reduced to zero. (b)  The 
sum of the left-hand terms of Eq. (5) is labeled MH,, ,  and  the 
intersection of this curve with M H ,  determines  the region of 
stable  domain  radii. 

external field are dominant. The positive terms involving 
the wall energy  and  its derivative  represent  forces  that 
attempt  to shrink the  domain,  and  the negative terms 
represent  expansive forces. 

At  the  bottom of the figure, both the sum of the left- 
hand terms in Eq. ( 5 ) ,  MHnet ,  and  the coercivity  term 
are plotted as functions of domain  radius. The inequality 
of Eq. (5)  is satisfied for all radii greater than the “critical 
radius” of 2.55 pm.  This  means  that  domains with radii 
greater than  this  value are  stable, and domains with radii 
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Figure 3 Plot of the  terms in Eq. ( 5 ) ,  similar to Figure 2, but 
for a peak temperature of 160 “C, which is below the  Curie tem- 
perature. 

less than  this  critical  radius will experience a net  force 
greater than the local  coercivity. In  fact,  the  force will 
expand the domain until the  force  equals  the coercivity 
at  the critical radius, R,, of 2.55 pm.  It is interesting to 
note  that  the  Curie point is exceeded only for radii less 
than 2.0 pm, but  nucleated domains will grow to 2.55 pm 
and occupy  regions of the film that  are significantly below 
the  Curie  temperature.  In  the  case of these calculations, 
the  temperature at  the critical radius,  hereafter called 
the critical  radius  temperature, is only 122 “C. 103 
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Figure 4 Variation of magnetization and coercivity with tem- 
perature for a ferrimagnetic material. The compensation tem- 
perature is 0 "C, and the coercivity is inversely proportional 
to the magnetization, i.e., M H ,  = 4000 erg/cm3. 

Table 1 Calculations for MnAIGe, showing  effect of external 
bias on critical radius and critical radius temperature. 

Coercivity 
Critical  at  critical 

Peak External Critical  radius  radius 
temp.  Variance, 6 bias, Ha radius, R ,  temp.  temp. 
("C) (ym)  (Oe)  (ym)  ("C)  (Oe) 
- 

440 2.134 500 2.55 122 623 
440 2.134 250 2.42 136 394 
440 2.134 0 2.22 163 179 

Table 2 Thermal profiles for determination of critical radii 
during a laser heating cycle up to 440 "C, for H a  = 500 Oe. 

Critical 
Time  Peak  temp.  Variance, S Critical  radius  radius  temp. 
(ns) ("C) ( r m )  (ym 1 ("C) 

50 150 1.896 0.96 121 
100 219 1.930 1.58  122 
200 301 2.01 1 2.01  123 
500 440 2.134 2.55  122 
600 252 2.337 2.1 1 122 
700 197 2.384 1.76 123 

The situation  with no portion of the film above  the 
Curie  temperature is shown in Fig. 3. A peak tempera- 
ture of only 160" was used in the calculation, and  the var- 

104 ious terms  are  shown  once again. The  terms involving 

wall energy have a different behavior  for very small radii, 
but the-applied field and demagnetizing field terms still 
dominate  for  the material .parameters  considered.  The 
critical  radius of ml .2  pm is less than the  previous  case. 
It is most interesting to  see,  however,  that  the critical 
radius  temperature is 122 "C, and  is  the  same  as  that ob- 
tained for  the  previous  temperature distribution.  Calcula- 
tions with other peak temperatures will yield a  variety of 
critical  radii at which a balance of forces  occurs,  but  the 
critical radius  temperature  associated with these radii 
will be 122" (withink2"). 

The critical  radius temperature,  for  the  parameters 
used in the  two  examples,  is controlled  by the  value of 
the  external bias, Ha. The  dominant energy term in the 
left-hand  side of Eq. (5) is the  one involving H a ,  and  the 
equation  for  the critical radius, R,, reduces  to H , ( R , )  

Ha. Thus,  the critical  radius temperature  for  the nu- 
merical examples could  be estimated by using Fig. l to 
determine  the  temperature rise necessary  to  reduce  the 
coercivity to 500 Oe. Accordingly, lower  external  biases 
imply higher  critical radius  temperatures. 

These  conclusions  are  further illustrated by the numer- 
ical results  presented in Table 1. These calculated results 
not  only  indicate the  error in the  approximate solution 
given above, but show  that  the critical radius, R,, in- 
creases with increasing external bias, as  one intuitively 
expects. 

To determine  the critical radii at  various  times  during 
a laser heating cycle, thermal profiles were  determined 
numerically froni  a  finite-difference  solution to  the  heat 
equation. The  laser  was  tumed off after 500 ns,  and  the 
temperature  distributions reflect heat flow into a semi- 
infinite substrate  and radial flow in the magneto-optical 
film. 

The  temperature profiles were then used in the mag- 
netic model and  a set of critical  radii and critical radius 
temperatures  were  determined  from , the  quasistatic 
theory given above.  These  results  are given in Table 2 
for  an  external bias of 500 Oe. 

During a laser  pulse,  the  largest critical  radius occurs 
at  the  instant of the  largest  temperature excursion. Thus, 
when a small domain is nucleated  during the heating part 
of the  cycle, it will continue  to  expand until the  laser is 
turned off. 111 the  example,  the maximum temperature 
rise occurs  at 500 ns, and  the domain expands  to 2.55 p.m. 
As cooling .begins, the critical radius  becomes progres- 
sively smaller. Since'domains with  radii  larger than  the 
instantaneous critical radius  are  stable,  the domain es- 
tablished at  the  moment of maximum temperature re- 
mains  during the balance of the cooling part of the ther- 
momagnetic writing cycle. 

A very important  question is the range of stable radii 
that  exists when the film returns  to  ambient  temperature 
and  the  external bias field used for writing is subsequently 
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Figure 5 (a) Plot of the terms  in Eq. ( 5 )  for a ferrimagnetic  material.  Parameters assumed in the calculation are given in the text. 
(b) Calculation with bias field H a  = 100 Oe and  critical  radius R ,  = 0.96  pm.  (c) Isothermal conditions with no external bias, Ha = 0 
Oe. The selfmagnetostatic term is small in comparison to the wall-energy term,  and R,  = 1.16 pm. 

removed. It is conceivable that  the  presence of a bias 
and  the  thermal profile can produce a bit that  is “condi- 
tionally” stable  for a set of parameters  and  becomes un- 
stable when those  external  factors  are  removed. 

We may estimate  the critical radius  for  the ferromag- 
netic  case  above  for  the  condition in whish there  are  no 
external influences. The largest  value for  the self-demag- 
netizing field is [4] H, = 4irM(T,) = 2200 G, and this 
value occurs  for  very small radii (i.e., R << h ) .  When 
the coercivity and demagnetizing field are multiplied by 
M ( T , ) ,  the  equation  for  the critical radius  becomes 
&,/2R, = 9.32 X lo5, or R ,  = 7.5 X cm. This  is 
much  smaller  than the critical radii calculated in Table 1 ,  
and  the conclusion is  that  the bit whose writing was simu- 
lated by the  calculations is not  “conditionally” stable  but 
persists  even when the film is removed from  the writing 
environment. 

Although the  question of conditional  stability does  not 
seem  to be a critical one  for  the  parameters  associated 
with the ferromagnetic cage, we now show  that it be- 
comes a central  issue  for ferrimagnetic  materials having 
a compensation point. 

Ferrimagnetic  case 
Consider a ferrimagnetic  material having a compensation 
temperature, T,,,,. For numerical computations we use 

parameters typical of thin films  of amorphous  GdCo, 
( x  4 )  [8], and we find that  the stability and minimum 
radius of thermomagnetically  written bits  are influenced 
by the difference between  the  ambient  and  compensation 
temperatures (i.e., AT = T ,  - T,,,,). 

As a specific example,  the functional dependencies of 
the magnetization and coercivity on  temperature shown 
in Fig. 4 were used. These  data  are  consistent with 
T,,,, = 0 “C, H ,  = 5000/ IT - T,,,,J, and 47;M = 10.6 x 
IT - T,,,,I. The magnetization-coercive force  product 
is a constant,  independent of temperature,  and is MH, = 

4000 erg/cm3 (4 X 10’ J/cm3).  The numerical results 
are indicated in Fig. 5 with the following additional 
parameters: 

u, = 1.0 erg/cm2 (lo-’ J./m’) 

6 = 2.134 pm 

h = 600 A 
T ,  = 20 “C 

T,,, = 120 “C 

H a =  100 Oe (8 X IO3 A / m )  

The results in Fig. 5 ( a ) ,  indicate that  the critical radius 
of interest is R, = 0.96 pm. Bits with radius R in the 
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Figure 6 Minimum,  bit  radius vs AT. The data points  indicated 
are results of a simple bubble calculation on a film of constant 
temperature, T,. When AT is small the forces on the bit are 
compressive  and  originate  from  the wall energy.  When AT is 
large  the forces  ,originate  from  the,selfmagnetostatic  energy and 
tend to  expand  the  bit. At intermediate values these two forces 
counteract one another and  smaller stable  bits  can  result. 

range 0.36 pm < R < R,  will expand until R = R,, and 
bits  with R < 0.16 pm will collapse and vanish.  Bits  in 
the region 0.16 pm < R < 0.36 pm  are  considered quasi- 
stable  because  any  perturbations which force  the radius 
out of this  range  are  not  met with a restoring force,  but 
will cause  the bit to  either vanish or  expand  to R = R,. 
Of course, bits  with R > R ,  are  stable  for  the  particular 
set of assumed parameters.  If T,,, = 120°C is the largest 
temperature applied  during the thermomagnetic writing 
process,  then R,  = 0.96 p m  is  the largest  radius one ex- 
pects during the heating  cycle. 

The  question of whether  the bit with R = 0.96 pm is 
stable  or  not  after  the film returns  to  the  ambient  tempera- 
ture  must now  be  examined.  With the write  bias H a  = 

100 Oe still applied to  the film, calculations  are obtained 
for T,,, = T ,  = 20 "C with the  result R,' = 0.83 pm. 
Since R ,  > R,', the bit is still stable. In this case, how- 
kver, M is only 17 emu/cm3 (2.1 X W/m2)),  and 
the wall energy term  dominates  Eq. (5). Therefore, bits 
smaller  than R,' will collapse to  zero radius. 

When the  external bias field is  removed, i.e., H a  = 0 ,  
the critical radius  becomes R," = 1.16 pm,  and  the  terms 
in Eq. (5) for this set of parameters  are shown in Fig. 
5 (c).  The wall-energy term clearly dominates,  and now 
since R ,  < R," the bit is  no longer stable  and vanishes. 

This example, in which a bit is established  when T,,, = 
120 "C, illustrates  the situation referred  to  above as "con- 
ditional stability." Thus  as long as certain,  nonstandard 
conditions  prevail  (i.e., the maintainence of a writing 
bias)  the bit is  stable,  but upon return  to  standard condi- 

tions of ambient  temperature  and  no  external fields, the 
bit becomes unstable. For  the conditions present in this 
example,  the instability causes  the bit to collapse  and 
vanish. We  have  observed this behavior in laboratory 
experiments with thin films  of GdCo in which an  exter- 
nal bias is required to maintain the  presence of small 
thermomagnetically recorded bits. If the  external writing 
bias is  increased during  recording, thereby enlarging the 
bits beyond a critical  size, the  reversed  domains  are re- 
tained  when the sample is removed from  the writing en- 
vironment. 

For T ,  = 20 "C and  the film parameters  used, it can be 
seen  from  the  results indicated in Fig. 5 (c)  that R = 1.16 
pm is  the smallest stable  spot  that  can be  thermomagneti- 
cally recorded. Any  smaller bits eventually  collapse un- 
der  the influence of the wall energy. 

In  the conditionally stable  case illustrated above,  the 
external write-bias provides a force tending to  expand  the 
bit and  counterbalances  the collapsing force of the wall 
energy. As a result small bits can temporarily  be  stabi- 
lized. A similar counterbalancing force  can be  realized 
by increasing AT. This  increases  the demagnetizing field, 
H d ,  arising  from the self-magnetostatic  energy because 
of the larger  values of magnetization. Larger  values of 
AT can be  obtained either by increasing the  ambient 
temperature, T, ,  or by altering the  compensation temper- 
ature, T,,,,. For  GdCo  the  compensation  temperature 
can be  conveniently  controlled by adjustment of the prep- 
aration conditions [8]. In  our calculations, however, it 
is  more  convenient  to  change T,.  

To investigate the minimum bit size for a range of 
AT it is necessary only to  compute  the critical  radii for 
the  isothermal  case ( T  = T , )  with H a  = 0. The  results 
of this  calculation are given in Fig. 6 for films of 400 A 
and 800 A. As expected, AT M 0 yields  critical  radii 
dominated  by wall energy forces  and  can be  calcu- 
lated from a,/2R: M M H ,  = 4000 ergs/cm3, (4 X IO2 
J/m3),   or R: M 1.25 pm. 

For  larger AT,  the counterbalancing effect of the self- 
magnetostatic energy  term is increased and smaller bits 
are possible. If AT is increased to large  values the self- 
magnetostatic term  becomes  dominant, with the result 
that  recorded bits grow  to unnecessarily  large radii. Con- 
sequently,  there  is a  value of AT between  the  two ex- 
tremes  that will support  the smallest  possible bit. 

Another  consequence of large AT has been observed 
in the laboratory.  Bits recorded thermomagnetically in 
this regime show irregular,  jagged boundaries,  and in 
some  extreme  cases break up  into multiple  domains. On 
the  other  hand, bits written in the AT M 0 regime gener- 
ally exhibit smooth, regular  boundaries. This effect is 
illustrated in the  photographs of recorded bits  shown in 
Fig. 5. In  each of the  three  cases illustrated an  attempt 
was made  to write the smallest bits possible  using a fo- 

IBM J. RES. DEVELOP. 



cused  GaAs laser. The transition  from  smooth  bits to 
irregularly shaped bits is quite clear, and the inability to 
write the smallest  possible spots in the AT M 0 regime 
is also indicated. 

Summary and conclusions 
Calculations  have been  performed to  determine  the  stable 
radius of a  cylindrically  symmetric domain, or bit, nu- 
cleated during thermomagnetic writing with a laser beam. 
A  ferromagnetic  material  with a second-order transition 
at  the  Curie  temperature  has been  used as  an  example, 
and it was  found that  the  temperatures existing at the 
critical  radius, R,, are  less than the  Curie  temperature. 
The  exact  temperature value depends  on  the  details of 
the variation of magnetization  and  coercivity with tem- 
perature and on  the  external bias. To first order,  the criti- 
cal radius  temperature is the  temperature  necessary  to 
reduce  the  coercive  force  to a  value  equal to  the  external 
bias. Higher biases, therefore, imply lower critical tem- 
peratures. 

Finally, the largest  critical  radius occurs  at  the moment 
of maximum temperature rise. Since  domains larger than 
the critical  radius are  stable,  the largest  domain estab- 
lished during the  laser pulse will remain stable during the 
cooling of the material after  the  laser pulse is removed. 

Calculations were also carried out  for a ferrimagnetic 
material with a compensation  point, T,,,, = 0 "C. The 
regions of stability depend  on AT, the difference between 
ambient  and compensation  temperatures. When AT X 0, 
the magnetization is small, and  the selfmagnetostatic 
forces  have little effect. The wall-energy forces  dominate 
and  the critical  radius, R:, may be  estimated from R: = 

IT,/ (2MH,) .  Bits with R < R: can  be  written in the 
presence of an  external bias,  but are considered  condi- 
tionally  stable because they  collapse and vanish under 
the influence of the wall-energy forces when the bias is 
removed. 

If AT is increased,  the self-magnetostatic forces  also 
increase and counteract  the collapsing forces arising 
from the wall energy. In this regime of A T ,  the smallest 
bits may be  written.  We have  observed,  however,  that 
when self-magnetostatic forces  are  important,  the bits 
assume irregular shapes in order  to minimize the total 
energy. With AT increased to still larger values,  the self- 
magnetostatic  energy  dominates. Bits with R < R ,  are 
subject  to  an expanding force  and grow until R = R,. For 
sufficiently large AT,  the bubble-type  model  used here 
fails because  the bit breaks up into several domains con- 
sistent with a "minimum-energy" configuration. 

For smooth-walled, well-defined bits, one should  strive 
to write  bits  with R ,  > R: = IT,/ ( 2 M H , )  and  operate 
in the regime where wall energy dominates.  In  order  to 
decrease R: in this regime (and  thereby  increase  areal 
storage  density)  one may try  to  increase H ,  by enhancing 
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A T  = IO" 

AT = 85" 

A T =  125' 

Figure 7 Thermomagnetically written bits on films of GdCo 
with different compensation temperatures.  Minimum-size bits 
were  written on films with AT = IO", 85", and 125", respectively, 
and the  photographs  show the appearance of the resulting  re- 
versed areas.  The bits for AT = 125" do not represent the 
smallest  possible bits but were limited by the  size of the  focused 
laser  beam. 

the uniaxial anisotropy [8], K .  Any  increase in K ,  how- 
ever, will also increase  the wall energy  since IT, C K .  
Thus, R: will decrease only slowly with increasing an- 
isotropy. 
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Appendix A: Calculation of demagnetizing  field 
Consider a right-handed  cylindrical coordinate system.  A 
right-circular  cylinder  defines  a  domain  with  magnetiza- 
tion reversed within its boundaries,  but with the mag- 
nitude of the magnetization  permitted to be  a  radially 
symmetric  function of space.  The perpendicular  com- 
ponent of magnetic field is calculated [ 121 from 



where 

r1; = r‘ + r‘’ - 2rr‘ cos (e - e’) + ( z  - 2’)’ 

and r is a  unit vector in the  direction of r12. Now, 

r k = (FIL/r l2)  * k = ( z  - z ’ )  /rlz 

and  the  expression  becomes 

H~ ( r ,  e, Z )  

If we note  that 

(A3 1 

Using the  coordinate transformation y = 0 - 8’ and 
the integral  identity 

lr (a + b cos y ) $ -  (a’- b2) o 

dY - f T  (a + b cos y ) ) d y  

(AS) 

we  obtain,  after  some manipulation, the following ex- 
pression for  the field: 

where 

t =  4rr‘ 
[ ( r  + rf)’ + 2’1 

and E ( x )  is  the  complete elliptic  integral of the  second 
kind. This  equation  reduces  to Bernal’s [ 131 Eq. (13 )  
when the field is evaluated in the plane z = q = h / 2 .  

The demagnetizing  energy can be  calculated from 

Ed = 3 [ lT M ( r ,  8, Z )  H I ( r ,  8, z)rdrdOdz. ( B l )  

For simplicity, consider only the first term in Eq. (A41 
with the  functional  form of the magnetization M ( r ,  0, z )  = 
- M , f ( r )  [ 1 - 2 u ( R  - r ) ] .  where M ,  is the  saturation 
value of magnetization, 

The first term  becomes 

M ~ ~ ( z - h ) f ( r ) [ l - 2 u ( R - r ) ] f ( r ’ ) [ l - 2 u ( R - r ’ ) ] r r ’ d r d 0 d r ’ d 0 ’ d z  

[i‘ + r” - 2rr’ cos (0 - 0’)  + (2- h)’$  
’ ( 8 2 )  

The  derivative of Eq. ( B 2 )  with respect  to  the wall ra- 
dius, a E d / d R  yields 

- M,2 JOZR I: 

By splitting Eq. (B3)  into  two separate integrals, and 
integrating by the variable  indicated in the  argument of 
the  respective  Dirac-delta  functions,  and by  recognizing 
the  symmetry of the resulting parts with respect  to  rand 
r’,  one may  recombine the  two  parts  into 

- 2M;Rf ( R )  [ r r f 
0 0  0 0 

(z -  h ) f ( r ’ )  [ l  - 2 u ( R  - r’)]r’dr’dOdO’dz 
[R2 + r“ - 2Rr’ cos (e - e‘) + ( Z  - h)’]+ 

. 034) 

Now when the  coordinate transformation (e, 6‘) -+ 
(0, y )  is made, with y = 8 - e’ and  after it is  and integrated 
over 8, this expression  becomes 
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(z  - h ) f ( r ’ )  [ 1 - 2u(R - r‘)]r’dr‘dydz 
[R2 + r” - 2Rr‘ cos y + ( z  - h)’];  

(B5) 

Finally, by re-ordering the order of integration we obtain 

[47rRhlM(R) I ]  d z { f  f n  
n n o  

M(r‘ ,  0, z )  ( z  - h)r’dr‘dy 1. (€36) 
[R2 + rrZ - 2Rr‘ COS y + (Z - h)’]$ 

The quantity in curly brackets can be recognized as the 
first  term  in the expression for the field [Eq. ( A 4 ) ]  eval- 
uated at the  wall  radius, R .  Thus, if we define p d  as the 
z-averaged demagnetizing  field  at the domain wall, 

dEd/aR=  [47rRhlM(R)I]  llh [ H,(R,z ,O)  dz;  

dEd/dR = 47rRhlM(R) 037 1 
n 
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