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Calculations of Stable Domain Radii
Produced by Thermomagnetic Writing

Abstract:

Calculations are performed to determine the stable radius of a cylindrically symmetric domain nucleated in magneto-optical

films during thermomagnetic writing with a laser beam. A critical bound on domain size is calculated which determines whether or not a
domain of given radius, once nucleated, will be stable. The analysis shows that for a ferromagnetic material such as MnAlGe, the domain
dimensions can grow beyond the local region of material that is heated above the Curie temperature. For ferrimagnetic thin films having
a compensation point, Teomp, Stability depends on the difference between ambient and compensation temperatures, AT = Ty — Teomp.
With AT & 0, wall energy dominates and the critical radius can be calculated from R, = o/ (2MH.,).

Introduction

Recent experiments on thermomagnetic writing with
lasers on ferromagnetic magneto-optic materials have
shown that switching of the local magnetization can oc-
cur at temperatures lower than the Curie temperature
[1-3]. When the coercivities are low at temperatures
close to the Curie temperature, the switched spots can
grow and encompass areas larger than those actually
heated above the Curie point. Predicting the size of re-
versed spots now becomes more complex than in the
case of true Curie-point writing, and the magnetic forces
tending to expand or contract the thermally nucleated
domain must be considered. Similar considerations of the
forces are also important for thermomagnetic writing on
ferrimagnetic materials having compensation points, such
as GAIG or GdCo. In this paper we calculate these forces
on the cylindrically symmetrical Bloch-domain wall sur-
rounding a thermomagnetically written “bit”’ of reverse-
magnetized material and determine the ranges of bit
radius for which a stable domain exists.

The analysis that follows is based on a bubble-type
approach such as given by Bobeck and by Thiele [4].
To describe the bit, the simple magnetic bubble model
must be modified for two reasons: 1) The intrinsic mag-
netization within the bit varies with distance from the
center because of the laser beam intensity profile, and
2) the wall-motion coercivity is not negligibly small. The
domain-wall stability is not determined simply by a bal-
ance between strictly conservative forces, as is the case

for the conventional magnetic bubble, but results instead
from the inability of those forces to overcome the local
coercive potential.

The analysis and calculations performed here are based
on a specific set of assumptions:

1. The stability theory in this work is derived from a
quasistatic process rather than a dynamic process.

2. The stability calculation deals with radial stability for
bubbles created by the laser beam, whereas bubbles
may normally suffer elliptical instability as well.

3. Beam heating is assumed to penetrate the film material
uniformly, and the temperature profile contains no de-
pendence on the z coordinate.

4. The calculations here pertain to pure Bloch walls.

Other bubble-type calculations directed toward ther-
momagnetically written bits have appeared in the litera-
ture. Schuldt and Chen [5] considered the stability of
bubbles in MnBi with an assumed wall coercivity of 250
Oe. They assumed a uniform temperature throughout the
film and calculated the maximum field that could be ap-
plied in the erase direction without reducing domain size.
Knowledge of this critical field is important for the selec-
tive erasure of information stored magneto-optically,
since an excessively large erase field would reduce the
readout signal from all the stored bits.

Esho et al. [6] performed a similar analysis. In addi-
tion, their experiments showed that the wall coercivity
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for MnBi decreased linearly with increasing film thick-
ness. By including this behavior for the coercivity in their
analysis, they concluded that MnBi films should be less
than 700 A thick to prevent inadvertent signal loss during
erasure.

Neither of these two analyses, however, considered
the effects on the wall forces produced by a laser-pro-
duced temperature distribution in the magnetic thin film.
The main purpose of this paper is to calculate the region
of stable domain radii in the presence of a Gaussian ther-
mal profile and to provide insight into the sizes of the do-
mains produced by thermomagnetic writing.

The equations used in the analysis are developed in the
next section. Then the results of numerical calculations
are presented for one ferromagnetic and one ferrimag-
netic material having a compensation point. The param-
eters of the ferromagnet are typical of MnAlGe [7], and
those for the ferrimagnet are representative of GdCo [8].

Analysis of stable domain size

At ambient temperature the material is assumed to have
uniform magnetic properties and to have sufficient uni-
axial anisotropy to support magnetization normal to the
plane. We assume that at some instant of time the laser
produces a cylindrically symmetric Gaussian distribution
of temperature throughout the thickness of the magnetic
thin film. This local heating nucleates the reversed do-
main. Details of the nucleation process, however, are
not considered here.

The calculations of equilibrium domain size (which is
reached after the temperature profile is established) be-
gin in the same manner as those of Bobeck for the mag-
netic bubble. We assume that a bubble is already present
in the thin film and proceed to calculate the radial forces
on the domain wall. The total energy, E;, of a reversed
cylindrical domain in a film uniformly saturated down-
ward relative to the same film without a reversed region
is given by

R
E,= 2nRho(R) — £4(R) — 4whHaf M(p)pdp, (1)
0

where o, (R) is the domain-wall energy per unit area in
ergs/cm’, and & (R) is the magnetostatic, self-demag-
netizing energy arising from the distribution itself in the
thin film of thickness A. If the radial coordinate is indi-
cated by r, it is assumed that the domain wall is positioned
at r= R, and a dummy variable, p, is used in the integral
term arising from the interaction between the magnetiza-
tion and the external bias field, H,. An integral is neces-
sary because of the spatial variation in magnetization pro-
duced by the laser-produced temperature profile. In the
sign convention adopted, the unswitched magnetization
is negative and, hence, external biases that aid in thermo-
magnetic switching (i.e., “‘write bias™) are positive in
sign.
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The force on the domain wall may be found by differ-
entiating the total energy with respect to the domain ra-
dius, R, ‘

6Et
— = 2mhow (R) + 27RA[ (30 (R) /3R)

— (3¢4(R)/OR)] — 4wRKhH M (R)|. (2)

Although the usual assumption for bubbles is that o, is
explicitly independent of the wall curvature [4], we note
that, in general, the wall energy is a function of tempera-
ture and, therefore, must depend implicitly on radius. The
term 8£4(R) /R is related to the demagnetizing field
(evaluated at the domain wall) which is averaged over
the z coordinate [4]. A more detailed discussion of this
z-averaged demagnetizing field, H4(R), is given in Ap-
pendix B, and the result is

0£4(R) /3R = 4mwRhH (R)|M(R)|. (3)

The positive terms in Eq. (2) tend to shrink the reversed
domain, and the negative terms tend to expand it. Note
that the effect of the external bias field is opposite to the
conventional bubble case.

The stability condition of usual interest in bubble ma-
terials occurs when the force given in Eq. (2) is exactly
zero [4]. Thus a stable domain can exist even in the ab-
sence of a wall coercivity. On the other hand, in magneto-
optic materials for application to beam-addressable stor-
age, large coercivities are encountered, and the size of
the domain is determined by a force balance between the
wall pressure and the “frictional force™ of the nonzero
wall coercivity. If the wall pressure is lower than this
coercivity force, no movement will take place and the
domain size will be stable. The stability condition can be
expressed in terms of fields by dividing the forces in Eq.
(2) by 4wRh|M (R)|.

[ 1 Fu(R) — H,

BO'W(R)_-__
2RIM(R)| T 2IM(R)]  oR ]

= H.(R). (4)

Since no sign is attributed to the coercivity, we implicitly
assume that only the absolute magnitude of the left-
hand bracket is used in determining the regions of sta-
bility, and its sign indicates whether the wall pressure
tends to expand or compress the domain.

The regions of stability for various temperature profiles
and material parameters have been calculated on a com-
puter ‘using Eq. (4). Since the intrinsic magnetization
may become zero if a ferrimagnetic material is heated
through the compensation temperature, or if a ferro-
magnet is heated above the Curie temperature, we must
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Figure 1 Variation of normalized magnetization and coercivity
with temperature. The data are normalized to the room-tempera-
ture values and are typical of ferromagnetic MnAlGe films in the
500- to 800-A thickness range.

be careful not to divide by zero in the computations.
Therefore, we multiply Eq. (4) by |M(R)| and solve for
regions of stable radii in units of energy per unit volume:

[UW(R) lao'w(R)

STy R MR H. = MGl

= [M(R)|H.(R). (5)
A Gaussian temperature profile with variance 8,
T(r) = Ta+ (Tmax'—Ta)exP_ (r/8)2’ (6)

is assumed present at some instant of time. The corre-
sponding radial distributions of magnetization and coer-
civity are derived by combining this temperature profile
with measured data of M(T) and H.(T). Typical data
for ferromagnetic, polycrystalline MnAlGe are shown
in Fig. 1. These data were tabulated and entered as input
into the computer, and the values of M and H, for a
specific temperature (and radius) were derived by
linear interpolation.

To calculate o, and do, /3R, we make use of the func-
tion

Tu=4(K,A)?, (7)

where K, is the uniaxial anisotropy constant and A is the
exchange constant. It has been shown that for a wide
range of temperatures in a uniaxial ferromagnet the ani-
sotropy constant is related to the magnetization, to first
order, by a third-power dependence [9]:

K,=K,'[M(T)/M(T,)7. (8)

The simplest assumption for the variation of the exchange
constant with magnetization is a second-power depen-
dence [10]. Thus the final expression for wall energy
becomes

aw(M) = o' [M(T)/M(T,) 1% (9)

where o, is the value of wall energy in the absence of
the temperature distribution. Since the radial distribu-
tions for magnetization are known from the tabulated
data and the temperature profile, we can calculate the
value of o, at any radius and use numerical methods to
compute do,/3dR. For the specific case considered be-
low, do,/0R always acts to shrink the reversed domain.

Equation (11) is applicable to a ferromagnet heated
to the Curie point. For a ferrimagnet we make the simpli-
fying assumption that the compensation temperature
(and the maximum temperatures represented by the
temperature profile) is much lower than the Curie tem-
perature. Therefore, the anisotropy and exchange con-
stants are taken to be independent of the net magnetiza-
tion for a range of temperatures near the compensation
point:

o = constant;

8oy /9R =0. (10)

This assumpﬁon would not be valid if the magnetization
of the sublattice which controls the anisotropy were not
independent of temperature in the vicinity of T comp.

Numerical calculations

» Ferromagnetic case

First we consider a ferromagnetic material. The depen-
dencies of coercivity and magnetization on temperature
used in the model are shown in Fig. 1 and are representa-
tive of the magneto-optical material MnAlGe. A Gaus-
sian temperature profile with a peak temperature of
440 °C was considered to illustrate the situation where
the Curie temperature (R200°) was exceeded. The fol-
lowing parameters were also used [11]:

o = 1.0 erg/cm’® (107 )/ m%),
M(T,) = 175 emu/cm’® (2.2 X 107 W/m’),
H(T,) =3125 Oe (2.5 X 10> A/m),
H, =500 Oe (4 x 10" A/m), and
h=800 A.

Figure 2{a) shows the various terms in Eq. (5) for do-
main radii up to 6 um. The temperature and magnetiza-
tion profiles are also shown in Fig. 2(b). Note that the
demagnetizing term and the term involving the applied
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Figure 2 Plot of the terms in Eq. (5) for a ferromagnetic
material. The peak temperature was 440 °C. (a) Curves showing
both the temperature and magnetization profiles. Part of the
film is above the Curie point and M is reduced to zero. (b) The
sum of the left-hand terms of Eq. (5) is labeled MH ., and the
intersection of this curve with MH, determines the region of
stable domain radii.

external field are dominant. The positive terms involving
the wall energy and its derivative represent forces that
attempt to shrink the domain, and the negative terms
represent expansive forces.

At the bottom of the figure, both the sum of the left-
hand terms in Eq. (5), MH ., and the coercivity term
are plotted as functions of domain radius. The inequality
of Eq. (5) is satisfied for all radii greater than the ““critical
radius” of 2.55 um. This means that domains with radii
greater than this value are stable, and domains with radii
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Figure 3 Plot of the terms in Eq. (5), similar to Figure 2, but
for a peak temperature of 160 °C, which is below the Curie tem-
perature.

less than this critical radius will experience a net force
greater than the local coercivity. In fact, the force will
expand the domain until the force equals the coercivity
at the critical radius, R, of 2.55 um. It is interesting to
note that the Curie point is exceeded only for radii less
than 2.0 wm, but nucleated domains will grow to 2.55 um
and occupy regions of the film that are significantly below
the Curie temperature. In the case of these calculations,
the temperature at the critical radius, hereafter called
the critical radius temperature, is only 122 °C.
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Figure 4 Variation of magnetization and coercivity with tem-
perature for a ferrimagnetic material. The compensation tem-
perature is 0 °C, and the coercivity is inversely proportional
to the magnetization, i.e., MH, = 4000 erg/cm’,

Table 1 Calculations for MnAlGe, showing effect of external
bias on critical radius and critical radius temperature.

Coercivity
Critical  at critical

Peak External  Critical  radius radius
temp. Variance, 8 bias, H, radius, R, temp. temp.
(°C) (um) (Oe) (um) (°C) (Oe)
440 2.134 500 2.55 122 623
440 2.134 250 2.42 136 394
440 2.134 0 2.22 163 179

Table 2 Thermal profiles for determination of critical radii
during a laser heating cycle up to 440 °C, for H, = 500 Oe.

Critical

Time Peak temp. Variance, 8 Critical radius radius temp.
(ns) (°C) (um) (um) (°C)

50 150 1.896 0.96 121
100 219 1.930 1.58 122
200 301 2.011 2.01 123
500 440 2.134 2.55 122
600 252 2.337 2.11 122
700 197 2.384 1.76 123

The situation with no portion of the film above the
Curie temperature is shown in Fig. 3. A peak tempera-
ture of only 160° was used in the calculation, and the var-
ious terms are shown once again. The terms involving

wall energy have a different behavior for very small radii,
but the applied field and demagnetizing field terms still
dominate for the material parameters considered. The
critical radius of /&21.2 um is less than the previous case.
It is most interesting to see, however, that the critical
radius temperature is 122 °C, and is the same as that ob-
tained for the previous temperature distribution. Calcula-
tions with other peak temperatures will yield a variety of
critical radii at which a balance of forces occurs, but the
critical radius temperature associated with these radii
will be 122° (within £2°). ‘

The critical radius temperature, for thé parameters
used in the two examples, is controlled by the value of
the external bias, H, The dominant energy term in the
left-hand side of Eq. (5) is the one involving H,, and the
equation for the critical radius, R., reduces to H.(R,)
& H,. Thus, the critical radius temperature for the nu-
merical examples could be estimated by using Fig. 1 to
determine the temperature rise necessary to reduce the
coercivity to 500 Oe. Accordingly, lower external biases
imply higher critical radius temperatures. ;

These conclusions are further illustrated by the numer-
ical results presented in Table 1. These calculated results
not only indicate the error in the approximate solution
given above, but show that the critical radius, R., in-
creases with increasing external bias, as one intuitively
expects.

To determine the critical radii at various times during
a laser heating cycle, thermal profiles were determined
numerically from a finite-difference solution to the heat
equation. The laser was turned off after 500 ns, and the
temperature distributions reflect heat flow into a semi-
infinite substrate and radial flow in the magneto-optical
film.

The temperature profiles were then used in the mag-
netic model and a set of critical radii and critical radius
temperatures were determined from the quasistatic
theory giveh above. These results are given in Table 2
for an external bias of 500 Oe.

During a laser pulse, the largest critical radius occurs
at the instant of the largest temperature excursion. Thus,
when a small domain is nucleated during the heating part
of the cycle, it will continue to expand until the laser is
turned off. In the example, the maximum temperaiture
rise occurs at 500 ns, and the domain expands to 2.55 um.
As cooling begins, the critical radius becomes progres-
sively smaller. Since domains with radii larger than the
instantaneous critical radius are stable, the domain es-
tablished at the moment of maximum temperature re-
mains during the balance of the coolmg part of the ther-
momagnétic writing cycle.

A very important question is the range of stable radii
that exists when the film réturns to ambient temperature
and the external bias field used for writing is subsequently
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Figure 5 (a) Plot of the terms in Eq. (5) for a ferrimagnetic material. Parameters assumed in the calculation are given in the text.

(b) Calculation with bias field H, = 100 Oe and critical radius R, = 0.96 gm. (c¢) Isothermal conditions with no external bias, H, = 0
QOe. The selfmagnetostatic term is small in comparison to the wall-energy term, and R. = 1.16 um.

removed. It is conceivable that the presence of a bias
and the thermal broﬁle can produce a bit that is “condi-
tio'nally”‘stable for a set of parameters and becomes un-
stable when those external factors are removed.

We may estimate the critical radius for the ferromag-
netic case above for the condition in which there are no
external influences. The largest value for the self-demag-
netizing field is [4] Hy = 4#M(T,) = 2200 G, and this
value occurs for very small radii (i.e., R < h}. When
the coercivity and demagnetizing field are multiplied by
M(T,), the eduatioh for the critical radius becomes
/2R =9.32 X 10°, or R,=7.5X 10" cm. This is
much smaller than the critical radii calculated in Table 1,
and the conclusion is that the bit whose writing was simu-
lated by the cal¢ulations is not “conditionally” stable but
persists even when the film is removed from the writing
environment. )

Although the question of conditional stability does not
seem to be a critical one for the parameters associated
with the ferromagnetic case, we now show that it be-
comes a central issue for ferrimagnetic materials having
a compensation point.

¢ Ferrimagnetic case

Consider a ferrimagnetic material having a compensation
temperature, Teomp- FOr numerical computations we use
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parameters typical of thin films of amorphous GdCoy
(x &2 4) [8], and we find that the stability and minimum
radius of thermomagnetically written bits are influenced
by the difference between the ambient and compensation
temperatures (i.e., AT = Ta — Teomp)-

As a specific example, the functional dependencies of
the magnetization and coercivity on temperature shown
in Fig. 4 were used. These data are consistent with
Teomp = 0°C, H. = 5000/ |T — Toompl> and 47M = 10.6 X
|T — Teomp)- The magnetization-coercive force product
is a constant, independent of temperature, and is MH, =
4000 erg/cm® (4 X 10° J/cm®). The numerical results
are indicated in Fig. 5 with the following additional
parameters:

o= 1.0 erg/cm” (107 1/m®)

8=12.134 um
h=600 A
T,=20°C
T nax = 120 °C

H,=100 Oe (8 X 10° A/m)

The results in Fig. 5(a), indicate that the critical radius

of interest is R, = 0.96 pum. Bits with radius R in the 105
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Figure 6 Minimuim bit radius vs AT. The data points indicated
are results of a simple bubble calculation on a film of constant
temperature, T,. When AT is small the forces on the bit are
compressive and originate from the wall energy. When AT is
large the forces originate from the selfmagnetostatic energy and
tend to expand the bit. At intermediate values these two forces
counteract one another and smaller stable bits can result.

range 0.36 um < R < R, will expand until R = R,, and
bits with R < 0.16 um will collapse and vanish. Bits in
the region 0.16 um < R < 0.36 um are considered quasi-
stable because any perturbations which force the radius
out of this range are not met with a restoring force, but
will cause the bit to either vanish or expand to R = R...
Of course, bits with R > R, are stable for the particular
set of assumed parameters. If Tmax = 120°C is the largest
temperature applied during the thermomagnetic writing
process, then R, = 0.96 um is the largest radius one ex-
pects during the heating cycle.

The question of whether the bit with R = 0.96 um is
stable or not after the film returns to the ambient tempera-
ture must now be examined. With the write bias H, =
100 Oe still applied to the film, calculations are obtained
for Trax= T,= 20 °C with the result R/ = 0.83 um.
Since R. > R, the bit is still stable. In this case, how-
ever, M is only 17 emu/cm® (2.1 X 107> W/m"), and
the wall energy term dominates Eq. (5). Therefore, bits
smaller than R.’ will collapse to zero radius.

When the external bias field is removed, 1.e., H,=0,
the critical radius becomes R,” = 1.16 wm, and the terms
in Eq. (5) for this set of parameters are shown in Fig.
5(c). The wall-energy term clearly dominates, and now
since R, < R/ the bit is no longer stable and vanishes.

This example, in which a bit is established when T ., =
120 °C, illustrates the situation referred to above as “con-
ditional stability.” Thus as long as certain, nonstandard
conditions prevail (i.e., the maintainence of a writing
bias) the bit is stable, but upon return to standard condi-

tions of ambient temperature and no external fields, the
bit becomes unstable. For the conditions present in this
example, the instability causes the bit to collapse and
vanish. We have observed this behavior in laboratory
experiments with thin films of GdCo in which an exter-
nal bias is required to maintain the presence of small
thermomagnetically recorded bits. If the external writing
bias is increased during recording, thereby enlarging the
bits beyond a critical size, the reversed domains are re-
tained when the sample is removed from the writing en-
vironment.

For T, = 20 °C and the film parameters used, it can be
seen from the results indicated in Fig. 5(c) that R =1.16
pm is the smallest stable spot that can be thermomagneti-
cally recorded. Any smaller bits eventually collapse un-
der the influence of the wall energy.

In the conditionally stable case illustrated above, the
external write-bias provides a force tending to expand the
bit and counterbalances the collapsing force of the wall
energy. As a result small bits can temporarily be stabi-
lized. A similar counterbalancing force can be realized
by increasing AT. This increases the demagnetizing field,
H,, arising from the self-magnetostatic energy because
of the larger values of magnetization. Larger values of
AT can be obtained ejther by increasing the ambient
temperature, T ,, or by altering the compensation temper-
ature, Teomp- For GdCo the compensation temperature
can be conveniently controlled by adjustment of the prep-
aration conditions [8]. In our calculations, however, it
is more convenient to change T ,.

To investigate the minimum bit size for a range of
AT it is necessary only to compute the critical radii for
the isothermal case (T = T,) with H,=0. The results
of this calculation are given in Fig. 6 for films of 400 A
and 800 A. As expected, AT &~ 0 yields critical radii
dominated by wall energy forces and can be calcu-
lated from o, /2R, & MH,= 4000 ergs/cm®, (4 X 10?
J/m®),orR & 1.25 um.

For larger AT, the counterbalancing effect of the self-
magnetostatic energy term is increased and smaller bits
are possible. If AT is increased to large values the self-
magnetostatic term becomes dominant, with the result
that recorded bits grow to unnecessarily large radii. Con-
sequently, there is a value of AT between the two ex-
tremes that will support the smallest possible bit.

Another consequence of large AT has been observed
in the laboratory. Bits recorded thermomagnetically in
this regime show irregular, jagged boundaries, and in
some extreme cases break up into multiple domains. On
the other hand, bits written in the AT & 0 regime gener-
ally exhibit smooth, regular boundaries. This effect is
illustrated in the photographs of recorded bits shown in
Fig. 5. In each of the three cases illustrated an attempt
was made to write the smallest bits possible using a fo-
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cused GaAs laser. The transition from smooth bits to
irregularly shaped bits is quite clear, and the inability to
write the smallest possible spots in the AT /& 0 regime
is also indicated.

Summary and conclusions .
Calculations have been performed to determine the stable
radius of a cylindrically symmetric domain, or bit, nu-
cleated during thermomagnetic writing with a laser beam.
A ferromagnetic material with a second-order transition
at the Curie temperature has been used as an example,
and it was found that the temperatures existing at the
critical radius, R., are less than the Curie temperature.
The exact temperature value depends on the details of
the variation of magnetization and coercivity with tem-
perature and on the external bias. To first order, the criti-
cal radius temperature is the temperature necessary to
reduce the coercive force to a value equal to the external
bias. Higher biases, therefore, imply lower critical tem-
peratures.

Finally, the largest critical radius occurs at the moment
of maximum temperature rise. Since domains larger than
the critical radius are stable, the largest domain estab-
lished during the laser pulse will remain stable during the
cooling of the material after the laser pulse is removed.

Calculations were also carried out for a ferrimagnetic
material with a compensation point, Tmp = 0 °C. The
regions of stability depend on AT, the difference between
ambient and compensation temperatures. When AT & 0,
the magnetization is small, and the selfmagnetostatic
forces have little effect. The wall-energy forces dominate
and the critical radius, R.’, may be estimated from R, =
ow/ (2MH,). Bits with R < R.” can be written in the
presence of an external bias, but are considered condi-
tionally stable because they collapse and vanish under
the influence of the wall-energy forces when the bias is
removed.

If AT is increased, the self-magnetostatic forces also
increase and counteract the collapsing forces arising
from the wall energy. In this regime of AT, the smallest
bits may be written. We have observed, however, that
when self-magnetostatic forces are important, the bits
assume irregular shapes in order to minimize the total
energy. With AT increased to still larger values, the self-
magnetostatic energy dominates. Bits with R < R, are
subject to an expanding force and grow until R = R,. For
sufficiently large AT, the bubble-type model used here
fails because the bit breaks up into several domains con-
sistent with a “minimum-energy’’ configuration,

For smooth-walled, well-defined bits, one should strive
to write bits with R, > R, = o,/ (2MH,) and operate
in the regime where wall energy dominates. In order to
decrease R, in this regime (and thereby increase areal
storage density ) one may try to increase H. by enhancing
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AT=125°

o o

Figure 7 Thermomagnetically written bits on films of GdCo
with different compensation temperatures. Minimum-size bits
were written on films with AT = 10°, 85°, and 125°, respectively,
and the photographs show the appearance of the resulting re-
versed areas. The bits for AT = 125° do not represent the
smallest possible bits but were limited by the size of the focused
laser beam.

the uniaxial anisotropy [8], K. Any increase in K, how-
ever, will also increase the wall energy since o, « VK.
Thus, R(.,0 will decrease only slowly with increasing an-
isotropy.
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Appendix A: Calculation of demagnetizing field
Consider a right-handed cylindrical coordinate system. A
right-circular cylinder defines a domain with magnetiza-
tion reversed within its boundaries, but with the mag-
nitude of the magnetization permitted to be a radially
symmetric function of space. The perpendicular com-
ponent of magnetic field is calculated [12] from
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H (r, 6,2)= (M k+3M-r)r-k)/r,} (A1)

12’
vol

where
2_ 2 2 , ’ 12
P =F +r"—2rr'cos (6—6)+ (z—2')
and r is a unit vector in the direction of r ,. Now,
r-k=(f,/r,) " k=(z—-2")/r,

and the expression becomes

H (r,0,2)

oo 2T , 2 ,
- ”_M<r31+3(z UM, g gy,
0“0 “o Y1 4T3 (AZ)

If we note that

d (z—2 1 3(z—2')
v 3 )= T3t
dz r12 12 r12
we can integrate over z’, and we find
H (r,6,2)

=J-oo J-Z‘n‘ M(rl)(z_h)rrdr/del
o Jo [P+rP—2rcos (0—6) + (z— h)z]%

_ f f" M(r')zr'dr’' d’ . (A4)
o Jo [F+r*=2r cos (6—6') + zz]%

Using the coordinate transformation y=6 — 6’ and
the integral identity

f (a+ b cos 'y)%d‘y
(1}

f" dy _ 1
o (a+bhcosy)l (&—b) (AS)

we obtain, after some manipulation, the following ex-
pression for the field:

HJ~ (r, 8, 2)
=4f°° M({r')(z— EQr'dr :
o [(r+r)P+ z—=h)I(r—r) + (z—h)*]2
4 J‘“ M(r')zE(£)r'dr
o [r+ 1Y +21[(r—r) + 212

) (A6)

where

f

[= 4rr
[(r+ 7)Y+ (z— h)*]

’

4rr
f= 5
[(r+7) +2]
and E(x) is the complete elliptic integral of the second

kind. This equation reduces to Bernal's [13] Eq. (13)
when the field is evaluated in the plane z = g = h /2.

Appendix B: Evaluation of the derivative of the de-
magnetizing energy
The demagnetizing energy can be calculated from

0 27 ph
Eq4 %f f f M(r, 0,2) H (r, 0, 2)rdrdodz. (B1)
0o Yo Yo

For simplicity, consider only the first term in Eq. (A4)
with the functional form of the magnetization M(r, 6,2) =
— M f(r)[1—2u(R —r)]. where M, is the saturation
value of magnetization,

0, x <0,
u(x)4=4%,x=0,
1,x>0,

IM(R)| = Mf (R).

The first term becomes
0 27 0 27 ~h
L]

0 0 [} 0 0

Mi (2 1) D11 = (R — 1] f(r) (1 = 2u(R — ) drdsdr'd'dz
[F 4+ 7" = 2r cos (8—6') + (z— k)]

(B2)

The derivative of Eq. (B2) with respect to the wall ra-
dius, 8E4/ dR yields

wILIL
{(Z— R f(r)[1 —2u(R—n]f(")S(R — r3‘)
[+ r*—2r cos (8—0') + (z— h)*]?

+ —=hfrSR—=r)f(r)1—2u(R— r'})]}
[F+r?=2m cos (0—0') + (z— h)*]?
X rr' drd0dy’ do’ dz. (B3)

By splitting Eq. (B3) into two separate integrals, and
integrating by the variable indicated in the argument of
the respective Dirac-delta functions, and by recognizing
the symmetry of the resulting parts with respect to r and
r', one may recombine the two parts into

sutwn [ [ f

Gz—hfF)[1—2u(R—F¥)]rdrdode dz ]
[R*+ r'* — 2Rr cos (0—0') + (z— b))

(B4)

Now when the coordinate transformation (8, ') —
(8, y) is made, with y= 60— 6’ and after it is and integrated
over @, this expression becomes
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—47M? Rf(R) f: f:ﬂf:

(—m)f(r)[1—2u(R—7r)]rdrdydz
[R*+ r*—2Rr cos y+ (z— h)z]%

(BS)

Finally, by re-ordering the order of integration we obtain

[47rRh|M(R)|]%fh dz{r fﬂ

M(r', 0,z) (z—h)rdr'dy }

3 (-

(B6)
[R®4r* —2Rr cosy + (z— h)*]?

The quantity in curly brackets can be recognized as the
first term in the expression for the field [Eq. (A4)] eval-
uated at the wall radius, R. Thus, if we define H, as the
z-averaged demagnetizing field at the domain wall,

h
OEJOR = [4xRAIM(R)|] 11h [ H,(R,2,0) e
0

8E4/0R = 4wRh|M (R)|H,. (B7)
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