P. Pistor

Stability Criterion for Recursive Filters

Abstract: A new criterion is derived that relates the stability of two-dimensional recursive filters to the properties of its cepstrum. It
provides a procedure for the decomposition of unstable recursive filters having nonzero, nonimaginary frequency response into stable
recursive filters. The optimal solution of the decomposition problem is discussed, including numerical implementation and nonrecursive
solutions. Several numerical examples show the potentialities and limitations of the rules for decomposition and for truncation of the

operators.
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Introduction

In the development of two-dimensional recursive filters
the two problem areas of main interest are the stability
criteria and the design of stable recursive filters. Except
for filters with very few samples, existing stability cri-
teria [1~-4] are difficult to apply and thus it has been
virtually impossible to translate these criteria into a
practical design procedure. Moreover, the criteria could
not be used to justify a design procedure [2] that appears
to provide stable recursive filters.

The present paper proposes a criterion that is based on
the relationship of the stability of recursive filters to the
absolute summability of certain operators called cepstra
[5]. The z transform of these operators-is given by the
logarithm of the z transform of the recursive filters. By
means of this criterion we treat a special design problem
[4] concerning the decomposition of unstable recursive
filters having nonzero and nonimaginary frequency re-
sponse into stable recursive filters. For the case of one-
dimensional filters this problem was solved by the de-
composition into minimum-delay and maximum-delay
operators [6, 7]. Our stability criterion leads to a proof of
the existence of a similar solution for the two-dimensional
case.

This paper is organized into five main sections: a com-
pilation, for reference purposes, of z transform relations;
a demonstration of the need for a decomposition pro-
cedure for zero-phase filters; a proof of the stability cri-
terion; a solution of the decomposition problem, includ-
ing methods of numerical implementation and related
nonrecursive solutions; and some numerical examples.
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Figure 1 Four directions of recursion from the four corners
of an input array. The input array is to be understood as a first-,
second-, third-, or fourth-quadrant function, depending on the
direction of the recursion.

Space domain operations and their z transforms
The z transform is a convenient means for characterizing
certain operations involving sampled functions. Some
relations [1-4, 8] needed for subsequent discussions are
summarized in this section.

* Z transform of two-dimensional functions
The z transform of a periodically sampled, two-dimen-
sional function

b={b, .} (1)
is defined by

B(z,2)= 3 Y bn.2"% (2)
m=—ow ﬂ=—oo

where z, and z, denote complex variables, and b,  is

understood to be zero for subscript pairs (m,n) that do

not belong to the definition set of b.

If b is defined for nonnegative subscripts only, it is
called a first-quadrant function [2] and is denoted by a
left superscript as
'b={'b,, .} =0 (first-quadrant function). (3)

n=0o
Similarly, second-, third- and fourth-quadrant functions
can be defined successively as

b= by ntmeor (4)

n=0

b= {by ) s (5)
n=0

b= {"b,, .} meo (see [9]). (6)
n=0

The z transform pairs in Egs. (7) - (12), denoted by <,
relate some basic spatial operations to operations in the
ztransform domain [2, 8]. These relations can readily be
improved by comparing terms of the same degree in z,
and z,.

Basic pair:
(b nt

Translation:

Brn't ={0panpt < B (20 2) = 2,2,°B(z,. 3,),  (7)

< Bz, z,)

Rotation through 180° around (0,0):
(b} =1{b_p_a} © B'(z,2)=B/z,1/z7), (8)

Reflection at axis m = 0 (column reversion):

(b} = b al

Reflection at axis n = 0 (row reversion):

<> B'(z,,2) =B(1/2,, 2,), 9)

(bt = {bp, o}
Weighting by row number:

< B'(z,, z,) =Bz, 1/z,),  (10)

tb,,' Y= (mb, .} < B'(z,z,)=2z/18/0z)B(z, z,),
(11)

Weighting by column number:

(b} =1{nb,,} < B'(z,z2,) =2(8/0z,)B(z, z,).

(12)
o Convolutional filters
The input-output relation of a convolutional filter f,
o=1isxf, (13)
where
017311 = E 2 im,nfp—m,q—n’ ( 14)
m=—w H=—c

is written in z transform notation as the product
O(z,,2,)=1(z,,2,) Fz,,2,). (15)

A formal proof of this equation may be found by the same
method as for Eqs. (7) - (12).

Definition 1
A filter is stable if and only if its response to any bounded
input is bounded.

For a convolutional filter the stability criterion [3,4],
Theorem 1, can be proved.
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Theorem 1
A convolutional filter is stable if and only if

o o

S D fmal < (16)

m=—o0 n=—co

Condition (16) means that the z transform of fis ab-
solutely convergent forall (z,, z,) € R,

R={(z2,):lz,| =1 A |g,| =1} (17)

o Recursive filters

The convolution of two discrete functions corresponds to
a multiplication of their z transforms, whereas the input-
output relation of recursive filters is characterized in the
z transform domain by the quotient [10]

O(z,, z,) =1(z,, 2,) / B(z,, 2,) = 1(z,, 2,)F (2, 2,). (18)

If O, 1, and B are replaced by first-quadrant functions
'0, ', and 'b with

1.

l =

1.
{ lm,n}osmsMi’ (19)

0=n =N;

1, _ g1
b= { bm,n}osmsM 4
0o=n SNb

(20)
the space domain algorithm corresponding to Eq. (18) is

1 _ 1, 1
%90 = lo,o/ bo,o’

. . . min (p,My) min (@:Np) L 1
0pe= (1/ bo,o)( he™ X by op—m,q—n)’
m:O n=0
(m,n) # (0,0)
(poa) €{(p,@):(p,q) # (0,0) A\ p=M;,Ap=N;}

min @M}  min (g.Np)

1op)q: (1 /1b0,0)< - > > 1bm’"lop_m’q_n),

(m. ) # (0,0). "
(p, q) € {(p, @):(p, @) # (0,0) A(p>M,

va> Nyl @D

These formulas strongly resemble the convolution al-
gorithm. In fact, they can be derived f;orri Eq. (14) by
replacing o, i, and f by ‘i, 'b, and ‘o, Ares‘pectively, and
solving for 1oM. .

To illustrate the use of Egs. (21), considgr thc input

, iiO’O :i,,,l iy 3 4 1
i= lil,O i1,1 11.1,2 =4 5 L,
By 'y i 11 0
which is to be recursively filtered by

;bz[‘bw 'bo’l]___[S 1]
by by, 1 of

1,0
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The output value to be determined first is ‘o, ,:

"000="ig0/'bgo=3/3=1.

To understand the operation of the last two formulas of
Eqgs. (21), we form the mask from 'b,

0 1
1 3,

and draw it across the matrices ‘i and ‘o synchronously.
In the output arrays 'o of the following examples, the
symbol * designates elements not yet determined. The
numeral 3 refers to the value just computed. The other
entries of the mask form a dot product with the output
values to which they refer. These values must be known,
of course, from former steps. The result of the dot product
is subtracted from the input value indicated by 3, and this
result is then divided by 'b, .

The examples that follow demonstrate the computation
of ‘o, ., 0, 0, and "o, .

[0 0.0 0o o o ,ﬂ

0d314 1) fogise ly =

on43s 1| Joness | 1,0

0 Li_1- o) fo te e x| %(4_].]_1.0..().0):1;
b o 0o oflo » + ] R

[o 00 0] o0 o]

0,3 4 1fJo 1 . = 1 _

00475 1{.joarre s 00~

0 IL13-1- 0 o re3e o] 1 . —_n.
el b ] #1—=1-1-1-0-0-0)=0;
[6 0.0 o] 6 0. .0 0]

03 4 1] o1 . 1o, =

04 5 o1 s o« 3,0 00) 0
oo 0 fooos s ] 1Ho—1-0—1-0—0 - = (:
oroso ol fors3e +] 3(0 1-0 1-0 ’
[0 0. 0_0] o 0o o]

0 304110 [tori. 1o =

o arssi)po o iraaaf 1,1

0 Lio i 0] Jo Lo_ e s %(5_1.1_1.1_1.0):]'
o o o o] o o + ]

Equations (21) describe the so-called causal recursion
[4], in which the recursive operator 'b starts from the
NW corner of an input array, as indicated in Fig. 1.
Similar algorithms can be derived for functions i, o, and
b defined on the other quadrants. The equations describe
noncausal recursions, i.e., recursions that start from the
NE, SE, and SW corners of an inbut array. Any non-
causal recursion, however, can be transformed to the
causal recursion. For instance, the noncausal recursive
filtering of an input % by an operator % is transformed to a
recursion with an operator lb simply by rotation of func-
tions % and ®» through 180°. Because of Eq. (8), such
rotations correspond to a replacement of (z,, z,) by
(1/z,, 1/z,). The transformation of *i and *b thus corre-
sponds to the transition from

0,(z,,z,) =1,(z,, 2,) / By(z,, 2,) (22)
to

0,(1/z,,1/2,) =1,(1/z,, 1/2,) /B, (1/2,, 1/2z,) (23)
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in the z transform domain. This input-ouput relation is
equivalent to

0,(z,,z,) =1,(2,,2,) /B, (2, 2,). (24)

For illustration, the input

is recursively filtered by

3 3
[ P[0 1)
o1 Theg 1 3
Instead of performing the appropriate noncausal re-
cursion, which would start from the lower-right input
element 31'0’0, we rotate °i and °b, obtaining the functions

'i and 'p discussed in the preceding example. From the
intermediate result,

100’0 100’1 100)2 100,3 1 1 0 0
101’0 101)1 101,2 101,3~ I 1.0 0

1 _ | 030 05y Op5 Opy 100 00

o= | 1 1 1 . = 00 0 O ,
03,0 03 1 03,2 03,3

we obtain the final result by inverting the above rotations
as

oo o
—_—— O
—— O

Similarly, the replacement of z, by 1/z,, or z, by 1/z,,
respectively, corresponds to the transition of the other
noncausal recursions to the causal recursion.

If we put

L I,m=n=20;
Iy = O = (25)
0, else,

the recursive algorithm (21) yields the convolutional
filter 'f, equivalent to the recursive filter 1/B,(z,, z,) =
F,(z,, z,). According to theorem 1, the stability of these
filters may be related as indicated in theorems 2, 3, and
the subsequent discussion.

Theorem 2
A causal recursive filter 1/B,(z,, z,) is stable if and only
if there exists a stable filter 'f such that 'f * 'b = 8.

Farmer and Bednar [3] have given a stability cri-
terion for recursive filters. This criterion comprises that
of Shanks [2], which is confined to operators 'p with a
finite number of sample points.

Theorem 3
The causal recursive filter

0

2 1bm,nz1mzzn>’ (26)

n=90

F(z,,2,) = 1/B,(z;, 2,) = 1/<

iMs

where

2 |1bm,n
n=0

is stable if and only if

B,(z;,z,) # 0 (28)

< oo (27)

M s

m=0

for all (z,, z,) € D,, where
Dl = {(Zl’ Zz): ‘z1‘| =1A lzzvl =1} (29)

The foregoing discussion shows how noncausal re-
cursions can be transformed to the causal recursion. The
following corollary is thus evident.

Corollary 1

Let the /th-quadrant function ‘b (I=2, 3, 4) be a stable
convolutional filter. Then the noncausal recursive filters
1/B,(z,,z,) are stable if and only if B,(z, 1/z,),
B,(1/z,,1/z,), and B,(1/z,,z,) are nonzero for all
(z, z,) €ED,.

The functions that meet the conditions of Theorem 3
and Corollary 1 are characterized by Definition 2.

Definition 2

A one-quadrant function 'p is called recursively stable if
and only if 'b is a stable convolutional filter and 1/B,(z,,
z,) is a stable recursive filter, either causal or noncausal.

o Two-dimensional cepstrum

We consider once more a function b and its z transform:
{bput < Blz,,2,). (30)
By formally taking the logarithm of B we obtain
B(z,,z,) =In B(z, z,). (30")

The cepstrum of b, i.e., b, is a function whose z transform
is given by B(z,, z,):
{bpnt < Bz, 2) =In B(z,, 2,). (30")

According to Egs. (30), (307), (30"), (13),and (15), we
find, for the input-output relation o =i * f of a convolu-
tional filter,
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O(z,, 2,) =1(z,,2,) + Fz,, 2,),

which in turn leads to the additive relation in the cep-
strum domain,

6=i+7 (31)

Similarly, the input-output relation (18) of a recursive
filter is given by a difference in ‘;he cepstrum domain,

6=1i—b. (32)

The problem stated in the next section is solved by
means of cepstra.

Decomposition of unstable, recursive, zero-phase
filters into stable recursive filters

We consider a real-valued discrete function c¢ with a
limited number of sample points, in which

c= {Cm,n}|m|sz M. =a" (33)

In|=2 N;=8

Its z transform is of zero phase and non-negative for all
(2, 7,) ER:

Im [C' (4, v)] =0, (34)
C'(u,v) >0, (35)
where

a B
Cr (M, U) — 2 2 Cm,"e—‘l‘n]ume—Z‘n’]vn J R f__'l‘
m=—a n=—f8

=C(zp 3)y,, ,)ER" (36)
Equations (34) and (36) imply central symmetry of ¢:
Cm,n = C—m,—n' (37)

Functions as specified in Eq. (33)ff. are found with re-
cursive filters F(z,, z,) = A(z,, z,)/C(z,, z,) [11] for
the enhancement of images degraded by noise and by
linear shift-invariant geometric distortion.

Because of Eq. (37), ¢ is not a one-quadrant function.
However, because ¢ has a limited number of sample
points, it can be transformed by translation to any quad-
rant function. Thus the term 1/C(z,, z,) could be as-
sociated with four different recursive filters. None, how-
ever, would be stable.

Proof By translation, the following z transforms orig-
inate from ¢ [see Eq. (7)]:

C,(z,, 2,) = 2,2 Cl(z,, 2,), a=2M,B=2N, (38)

C,(z,,2,) =23 Clz, 2,), (39)
Cy(z,2,) =22 " Clz,2), (40)
C,(z,2)=2""2"C(z, 2,). (41)

According to Theorem 3 and Corollary 1, the recursive
filters associated with these z transforms are unstable if a
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pair (z,, z,) € D, exists such that
C (2, 2,) =C,(z, 1/2,)
=C,(1/2,1/2,)=C,(1/z,2,) =0. (42)

By defining z, = 1, the existence of such a pair is proved,
if a z, =w, |w] = 1, can be found, which solves simul-
taneously the equations

« B
4'Clzp, =3 3 ¢, =2G(z)=0, (43)

m=—-o n=—f

B
a—m
2 Connla
s

a n=-—,

3,°C(1/z, 1) =

m

=2G(1/z) =0. (44)

I

Since it can be concluded from the central symmetry of
¢ that

a 8
Giz)= Y > Cunly =G (1/2), (45)
m=—q n=—f
Eqgs. (43) and (44) are identical. If they are solved by
z, = 0, the sought pair is (0, 1). If not, Eq. (45) shows
that every root z, = w has a corresponding root z, = 1/w.
Thus a pair (z,, z,) € D, can always be found, solving
Eqgs. (42), and therefore no recursively stable operator
can be obtained from ¢ by translation. '

In the one-dimensional case, unstable recursive filters
1/B(z,), with no poles on the unit circle, can be de-
composed into stable filters that recurse in opposite
directions. Therefore the question arises whether,
analogously, the unstable filter 1/C(z,, z,) can be decom-
posed into four stable filters that recurse in four dif-
ferent directions. More precisely, we ask for recursively
stable one-quadrant functions 'k, °k, °k, and *k such that

4

1/C(z, 2,) =[] 1/K, ' (z,,2,)- (46)
=1

In a way similar to the solution for the one-dimensional
case [12], we find a solution to this problem by trans-
forming Eq. (46) to the cepstrum domain [viz., Eq. (30)],
=3 1. (47)
1

M =
)

The results of the next section indicate how to decom-
pose ¢ and how to use the resulting functions to compute
the operators that are sought.

Stability criterion for recursive filters based on two-
dimensional cepstra

Let us assume that 'b is a first-quadrant function that
is recursively stable. This assumption implies, from
Theorems 1, 2, and 3 and Definition 2, that

i i l‘fm,nl <OO, (48)

m=0 n=0
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'boxf={8,.}, (49)

B (z;,2,) # 0, (z,z,) € Dy, (50)
S bl <. (51)
m=0 n=0

From these facts we conclude that B, (z,, z,) = In B, (z,,
z,) can be uniquely expanded into the power series

uMS

2 Bm,nz1mz2n (52)

for all (z,, z,) € D,.

First we consider the case (z,, z,) € D,,

D,= {(21’12): |21| < 1A |Zg| < 1} (53)

On this set B, (z,, z,) isregular [13],due to Eq. (51),and
consequently B (z,, z,) is regular, too, because B, (z,, z,)
is nonzero [condition (50)]. Thus a unique expansion
(52) of B, exists. The coefficient 150’0 of this power series
is readily determined by evaluating

B, (z,,2,) =In B (z,, ;) (54)
for (z,, z,) = (0, 0):

'boo=1n"by,. (55)

0,0

To find the other coefficients we differentiate Eq. (54)
with respect to z, and z, and replace 1/B, (z,,2,) by F,(z,,
Z,):

zl(a/azl)él(zl’ Zz) = Fl(zl’ Zz) 21(6/621)31(11’ Zz)’

(56)

(8/92,)B,(z,, ) = F, (2, 2,) 2,(8/62,)B, (2,5 2,)-
(57)

According to Eqs. (11), (12), (13), and (15) these re-
lations correspond to

(b=t * 'y} (58)
and
(06} = {fuud * (104}, (59)

or, explicitly written,

" P q

be=3 S (m/P)bpyfym g  PFO (60)
m=0 n=0

- P g

b= 3 S (n/q) bmnfpmqn, qg # 0. (61)
m=0 n=0

We prove now that the power series defined by Egs.
(52), (55), (60), and (61) is absolutely convergent and
equal to B, (z,, z,) for all (z,, z,) € D, — D,. From Egs.
(60) and (61) we find that, forall (z, z,) € D,,

N ¢
b 12P11271= 3 (/@) I'by,| ['fygoal

gq=1 n=0

N N .
> X
p=0 g=0

# (0,0),

p

=)
)
2

q
S (m/p) 'yl I'fyomgenl

n=

+
M =
Mz

=
il

-

£y
i

<
3
Il

o
<

1 1
I'Bnl [ genl

IA
M=
M=
M=
M =

=
i
<
2
i
=
3
Il
(=3
=
li
(=3

Mz

ol 3

A
M =
Mz

m=0 n=0 p=0 q=0
and thus
> 3 16,4l Il 121 =3 S Pl S S Il <
p=0 ¢=0 m=0 n=0 p=0 g=0
(p,q) # (0,0), (z,z,) €D,

(for left-hand part only). (62)

In Eq. (62) we have used the stability of 'f [Eq. (48)]
and'b [Eq. (S1)].
With the intermediate notation

3

E(Zv Zz i 2 Z zzn’ (63)

m=0 n=0

it remains to be proved that

E(z,, z,) = B,(z;, 2,)

for all (z,, z,) € D, — D,. Because E(z,, z,) and B,(z,,
z,) are given by power series that are absolutely conver-
gent for all (z,, z,) € D,, it follows from Abel’s second
theorem [14] that

lim [B, (™", z,) = B,(pe™™, 2,)1=0 (64)
P>

and

Jlim [E(e™™, z,) — E(pe™™™, 2,)1=0 (65)

for any fixed (u, z,) with
(,z2,) € {(u, 2,): 0= u= 1A |g| <1}=Q

From (64) we conclude [referring to condition (50) and
the continuity of the logarithm] that

hm [B (™", 2,) —

B (pe”™", 2,)1=0 (66)
p—1-0

for any (u, z,) € Q. When (66) is subtracted from (65),
B,(z,, z,) = E(z,, 2,) (67)
for all (z,, z,) € {(z,, )|z, 1= 1 A |z,| <1}

Repeating the argument for z, = exp (—2wju) and
z,= p exp (—2mjv), where u and v are any fixed values,
we finally find

B,(z,, 2,) =E(2,, 2,)> (22 2,) € D, (68)

IBM J. RES. DEVELOP.




Thus the convolutional stability of '5 is a necessary
condition for 'b to be recursively stable. We prove now
that this property is also a sufficient condition. Again,
we first consider the set D,. On D,, B,(z,, z,) is regular
because of Eq. (62), and because B, (z,, z,) = exp[B, (z,,
z,)] is regular, too, the identities

z,(8/93z,) B,(z,, z,) = B,(z,, z,) 2,(8/8z,) B,(z,, 2,)
(69)

and

2,(8/8z,) B,(z,» 2,) = B, (2,5 2,) 2,(8/dz,) Bl(zl’ z,)
(70)

relate the absolutely convergent power series. These
identities yield relations similar to Eqs. (60) and (61):

(m/P) 'bpyn'bymaqn P#*0, (71

M=

o
Il

byq

=

M M
=
g

=

bq

(n/Q) by by g 470 (72)
i

3
i
=]

n;

For (p, q) = (0,0) we find, from Eq. (55),
1b(),O = exp (IBO,O)' (73)

[

With ‘b as defined by Egs. (71)-(73), we have the

8

B,(z,z,)=exp [B,(z,,2,)1= % 3 6,2 2" (74)
m=0 0

n
identity for all (z,, z,) € D,. We prove now that (74) is
even valid for all (z,, z,) € D,. To do this it is sufficient
to find a power series that is equal to B, (z,, z,) and abso-
lutely convergent for all (z,, z,) € D,.

Since B, (z,, z,) is given as a power series that is, by
assumption, absolutely convergent for all (z,, z,) € D,,
and the expansion of exp (x) is absolutely convergent
for all |x] < «, the expansion

explB, (2, 5)1 = 3 & [,z 21

o

2
6" (75)
=0

=§0 (1/1) (mio

is also absolutely convergent for all (z,, z,) € D,. Thus
Eq. (75) can be rearranged as

n

exp[B,(z,2)1=3 3 a,,2,"2", (76)
m=0 n=0

where

ap,= a,,"” (77)

[=1,2,- (78)

JANUARY 1974

A =8, (79)

Therefore the expansion (74) is valid and absolutely
convergent for all (z,, z,) € D,. It is evident from the
definition that B,(z,, z,) is nonzero on D,. Theorem 4
summarizes the previous results.

Theorem 4. The quantity

{bntm=o

nz0

is recursively stable if and only if there exists a power
series

bz "2, (80)

M s
s

0 n=0

3
I

that is absolutely convergent and equal to In B (z,, z,)
forall (z,,z,) € D,.

Theorem 4 remains applicable to noncausal recursive
operators '»,1=2,3, 4, if they are transformed to a first-
quadrant function by the operations (10), (8), or (9),
respectively. This leads to Corollary 2.

Corollary 2

The Ilth-quadrant function lb, in which [ = 2, 3, 4, is re-
cursively stable if and only if In [B,(z,, 1/z,)], In
[B,(1/z,, 1/z,)], or In [B,(1/z,, z,)], respectively,
is equal to a power series of the form (80) that is abso-
lutely convergent for all (z,,z,) € D,.

From Theorem 4 and Corollary 2 it is evident that the
decomposition problem in the previous section can be
solved if the cepstrum ¢ of ¢ can be decomposed [see
Eq. (47)] into one-quadrant functions 'k, in which [ =
1, 2, 3, 4. These are stable convolutional filters. In the
next sections it is proved that the decomposition is pos-
sible because of the properties of c.

Solution of the decomposition problem

~ Existence of a set of solutions

The cepstrum ¢ is readily obtained by evaluating the z-
transform of c on R. We first have

2M‘. ZNC
C'(u,v)=1In [ S cua e‘”f‘“'"*"")]. (81)
m=_2Mc n=—2Nc

Since €' is real and positive [Eqs. (34) and (35)], the
logarithm in Eq. (81) presents no problem. It is easily
verified that all partial derivatives of ¢’ (u, v) are con-
tinuous. Thus, for all « and v, €' (u, v) is given by the
Fourier series expansion [15]

C'luvy=3 3 ¢, e e, (82)
m=—o N=-0n

2

The coefficients ¢, , that make up the cepstrum ¢ are
obtained from
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l :
Epn= f f ' (u, v) ™™ dudy, (83)
]

From the properties of C'(u, v) and from Eq. (83) it
follows that

. .
Cm,n - C—m,—n‘

(84)

Repeated integration by parts permits proof of the in-
equalities :

|60l = @ < =, (85)
|60,n| = 0‘/"2, n#0, (86)
€l = a/nt’, m # 0, (87)
6l = @/ (m"n?), m#0An%0. (88)

Thus any decomposition

E="%+%+%+% (89)
of ¢ into one-quadrant functions yields functions ' that
meet the conditions of Theorem 4 or Corollary 2. Conse-

quently each of these decompositions corresponds to a
set {'k: I=1,2,3, 4} of recursively stable functions.

& Problem of an optimal solution

As Egs. (71) and (72) show, the final solution {'k: /=
1, 2, 3, 4} may consist of functions with an infinite num-
ber of nonzero sample values. It would be advantageous
to find such a decomposition of ¢ which guarantees func-
tions 'k with a minimum finite number of nonzero sample
values such that

1/C(z;,2,) =[] [1/K (2}, 2,)] (90)
=1

is true, at least in a good approximation. This is also dis-
cussed in the following section on the truncation problem.
The author does not have such a decomposition pro-
cedure to offer for ¢. Some recommendations, however,
seem reasonable. First, because ¢ is centrally symmetric,
the decomposition should be such that

1Igm,n = 3Ie—m,—n (9 1 )
and
Kp ="k (92)

If, in addition, ¢ (and consequently ¢) is symmetric with
respect to the axes m = 0 and n = 0, the following rela-
tions should hold:

Yoy ="Ky o n=0, (93)
Kom =Ko n=o, (94)
Yy =k  m=0, (95)
Ko ="k gr m=0. (96)

It might be of interest that the problem of optimal de-

composition of ¢ would become simple if

m#0An#0 (97)

Cpn =0,
Such cepstra occur if and only if ¢ is separable, that is, if
Cn = Sl (98)

Equation (98) means that the two-dimensional decom-
position problem is reduced to the decomposition of a
column vector s and a row vector h into minimum and
maximum delay operators [6, 12]. These operators cor-
respond to the cepstra

{é(),()’ é|’oa 62,0’ o '}’ (99)
t- €y (S 0}

and

{0, Copr Coo™ 71 (100)
£ 6y €5,_1» O}, respectively.

s Truncation problem

As pointed out in the previous section, the decomposition
of ¢ may result in operators ‘% having an infinite number
of sample points. If these operators are to be impie-
mented numerically, some truncation of the operators
becomes mandatory. This truncation means not only that
the decomposition (90) becomes an approximate one
but also that the recursive stability of the operators %
may be affected. Theorem 5 guarantees that there exist
truncations for recursively stable operators 'k such that
the resulting operators 'k remain recursively stable.

Theorem 5
We assume that the power series

B (z,2)=3 3 'b,.2,"%" (101)

m=0 n=0
is absolutely convergent and nonzero forall (z,,z,) € D,.
There then exists a pair M, N, such that

myony

|BI(ZI, 12)| = E 2 lbm,nzlmzzrﬂ > 0

m=0 n=0

(102)

for all (m,, n)) € {(m,, n,): my>M, An > N;} and
forall (z,,z,) € D,.

The proof of this theorem is based on the uniform con-
vergence of the power series (101). The extension of the
theorem to functions other than those in the first quadrant
is straightforward.

To find constraints on the truncation parameters to be
applied on 'k, in which [ = 1, 2, 3, 4, we consider (M, +
1) X (N, + 1) subarrays of 'k and *k; (M, + 1) X (N, +
1) subarrays of 2k and *k; and a (4M,+ 1) X (4N, + 1)
array c¢. The cascaded convolution of the subarrays
yields an array with [2(M | + M,) + 1] X [2(N, + N,) +
1] sample points. It contains an array as large as c, if
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(M, +M,) =2M, (103)
and
N,+ N, Z2N,. (104)

For arrays ¢ symmetric with respect to the axes m = 0
and n= 0, the relations (93) - (96) apply. In this case the
constraints on the truncation parameters are

M, =M,=M, (105)
N,=N,=N,. (106)
It is our experience [11] that the truncation conditions

M,=M_, N,=N, (107)

may give satisfactory results. If Eqs. (107) hold, the de-
composition of ¢ means a saving of filter coefficients
which ranges from 36 percent (M= N, = 1) to 75 per-
cent (M, > © AN, = x),

e Numerical implementation

This section comments on the computation of &, on the
decomposition procedure, and on the application of the
decomposed recursive filter.

To determine ¢, Egs. (36), (81), and (83) must be
evaluated. This is done by Fast Fourier Transform
(FFT) techniques [16] as indicated in Fig. 2. The func-
tions {C,, .} and {C‘m’"} are sampled versions of C’ (u, v)
and C'(u, v), whereas { is an aliased version of the de-
sired result ¢ [12]. The degree of aliasing can be con-
trolled by the rate at which C’ (u, v) is sampled.

The function £, truncated at the Nyquist subscripts
+my, and + Ry, is decomposed according to

Lo ="k +"R+%%+ %, (108)
where « are approximations of operators k.

Since £, exhibits the same symmetries as ¢, the decom-
position should be performed according to (91) and (92).
This decomposition has the advantage that only 'k and
‘% have to be determined. The values *k and *k are
obtained by rotating the subscript planes through 180°.

The computation of an (M, + 1) X (N, + 1) array
'k from 'R should be performed in three steps. First
lko’o is obtained by Eq. (73). Then the row vector

{lko,n}lsnle
is determined by Eq. (72), and finally the submatrix

1.
{ Km’n}lsmSMl
OSnSNl

is obtained by Eq. (71). The same procedure is applied to
4 A
K—m,n}mso

n=o

to obtain

4.
{ K—m,n}m50'
n=0

JANUARY 1974

(cm,n) Direct (Cpp ) In
FFT
¢ {m'") Inverse ‘ Cmn !
-
FFT

Figure 2 Block diagram of the approximate cepstrum trans-
form for evaluation of Eqs. (36), (81), and (83). The transfor-
mation in the first step of the decomposition procedure.

Recursive Rotate by
L ] filtering NW, 0 » 1}?&):.3?‘1 >
by 1, shift into
vk 7 1st quadrant
SE,
/ A J
Reverse
columns NW
1 shiftinto \L/ L/ )
1st quadrant
Recursive
filtering ¢ N
A by (4
(-
NE,

Figure 3 Block diagram of the decomposition procedure.

The block diagram in Fig. 3 resumes the decomposition
of c.

It should be recalled that the result only approximates
the sought functions 'k. The approximation errors stem
from the aliasing exhibited in { and also from the trunca-
tion applied to 'x, =1, 2, 3, 4.

According to the discussions of Egs. (22), (23), and
(24), the input-output relation

O(z,z,) =1,(z,,2,)/C(z,, 2,)
= ({[ll(zl'y Zz)/kl(zl, Zg)]/Kz
X (z,, 2) }/ )y (2,5 2,))/ K, (2,5 2,) (109)

can be evaluated only by implementing the causal recur-
sive algorithm. Figure 4 demonstrates how this can be
done. It is clear (see [2]) that the computation of the
intermediate results is to be stopped after the output
values have decayed to reasonably small numbers.
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c Determine ? Decompose
—————{  approximate —p by
cepstrum quadrants
4R I 1
Y ‘
tIi{r:ﬂect into YR s | 2;1);))132 ;EZ%S
t - , (72),
quadrant (4]
4,
Femad ]
Reflect into 4% Rotate
fourth through
quadrant 180°
l l Y
4 n 2 % 3 % 1;

Figure 4 Implementation of the decomposed recursive filter
1/C(z,, z,). The superscripts of the intermediate filter results
indicate the proper position of the upper-left corner of the array.

~ Nonrecursive solutions

Instead of decomposing 1/C(z,, z,) into a cascade of
recursive filters [see Eq. (90)], a decomposition into
convolutional filters might be preferred:

1/C(z, 2,) = F (2, 2,)F, (2, 2,)F, (2, 2,)F (2, 2,).
(110)

The corresponding functions lf can also be determined

from the cepstra %,1=1, 2,3, 4. It is sufficient to dem-

onstrate this for 'k and 'f. The operator 'k is assumed to
be recursively stable. From

In (1/K,(z;,2,)) =InF (z,, z,) (11D
we have
—k="f (112)

Thus, replacing b by (<'%) and 'b by 1f in Eqgs. (71),
(72), and (73), we find

1fo,o = €xp (_lkAo,o)’ (113)

1 P 7 ~

fp,q=_2 2 (m/P)km,,,fp_m, a-n’ p#0, (114)
m=1 n=0

1 P ? ~

foa="2 2 W/ Dkyufpmgw 470 (115)
m=0 n=1

The decomposition (110) is preferred over (90) if it
requires a lower number of filter weights for the same
accuracy.

Alternatively to Egs. (113), (114), and (115), the
least-squares approximations of ‘f could be determined
from 'k, | = 1, 2, 3, 4, by the Wiggins algorithm [2].

Numerical examples
As pointed out in the previous section, the problem of the
optimal decomposition of a recursive operator ¢ consists
in finding an appropriate decomposition of ¢ and an ap-
propriate truncation of the resulting operators. In this
section it is demonstrated that the procedure character-
ized by the decomposition rules (93) and (96) and the
truncation rules (105)-(107) may be the optimal de-
composition procedure. We also discuss examples of
unsatisfactory results obtained by these rules.

The operators ¢ that we discuss are synthesized from
one-quadrant operators with 2 X 2 samples. The reasons
are that

1. The optimal decomposition is, a priori, known ex-
actly in two cases.

2. Since the occurring one-quadrant operators have only
a few samples (2 X 2, 3 X 3, 4 X 4), their recursive
stability can readily be checked.

An example of practical interest could also have been
discussed, namely the computation of recursive filters
for the enhancement of radioscintigraphic images [11,
17]. The decomposition rules mentioned here were able
to specify a near-optimal solution for this problem. How-
ever, this example is not well suited to point out the po-
tential and shortcomings of these rules.

& Example 1
Consider a function c,

c="% * %k * %k + 'k, (116)
where
K= Kemon ="K = Ky mZ0,n=0.(117)

With the recursively stable function [4]

y, 100090 <

k"[oao 0.85} ’ (118)
1

we have

0.68850 2.7639 4.15082 2.7639 0.68850
2.76390 11.0930 16.65830 11.0930 2.76390

= 14.15082 16.6583 25.01520 16.6583 4.15082 <.
2.76390 11.0930 16.65830 11.0930 2.76390
0.68850 2.7639 4.15082 2.7639 0.68850)(119)

7

In both (118) and (119) the vertical and horizontal ar-
rows indicate the axes m =0 and n = 0, respectively.

From the construction of c¢ it is clear that ¢ is to be de-
composed according to Eqgs. (93)-(96). In addition,
the 3 X 3 result
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The operator 'k is recursively stable since it can be

shown that the z transform of (121) is nonzero for all
(z,, z,) € D,. The proof is based on the properties of the

upper left 2 X 2 subarray of '«.

1.0000 0.9000 —0.9E—~6 | —
0.9000 0.8500 —0.6E—6

—0.4E—6 0.2E—6 —0.8E—7

|

(120)

Equation (121) does not have such a distinct cutoff
beyond m =1, n =1 as does (120). Thus the truncation

rules (105)-(107) cannot be expected to yield opera-

shows that ihe truncation rules (105) -~ (107) are appli-

cable, since 'k is identical to 'k except for entries in the

third row and column, which may be neglected.

tors 'k, [ =1, 2, 3, 4, which, when convolved in a cas-

cade, would result in a good approximation c,pp, of c.
Even with 4 X 4 operators, the approximation is not quite

* Example 2

satisfactory, as a comparison of ¢ and a subarray of
€ = Cappr — ¢ demonstrates [See Eq. (122)].

We modify the operator (119) by adding the spike func-

25.0152 is replaced by

25.2903. Contrary to example 1, no decomposition of ¢

tion 0.011 8. That means c,,

!

Because the operators « are to be used for recursive

filtering, the approximation error function e might be

is now known a priori. However, because this ¢ exhibits
the same symmetries as the function ¢ in the first ex-

inappropriate to characterize the quality of the decom-

position of c. Alternatively, ¢ can be recursively filtered

ample, it can be expected that Eqs. (93) - (96) describe

the optimal decomposition of ¢. Similar to Example 1 the
decomposition can be characterized by one operator,

by these operators. If the decomposition is a good one,

the result ¢ should resemble a delta function. As the sub-

matrix (123) demonstrates, the solution given by Eq.

(121) does this job fairly well.

e.g., 'k. As a 4 X 4 result we find

In this example a 5 X 5 function ¢ is presented which can
be decomposed into four 2 X 2 operators. However, the
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decomposition procedure (93)-(96) is inadequate to
provide these operators. Let

0.72250 2.8305 4.14922 2.6973 0.65610
2.83050 11.2267 16.65830 10.9593 2.69730
¢={4.14922 16.6583 25.01840 16.6583 4.14922 | «.
2.69730 10.9593 16.65830 11.2267 2.83050
0.65610 2.6973 4.14922 2.8305 0.72250

1 (124)

The function ¢ has been constructed by the cascaded
convolution

c="k*k* %k * %, (125)
where
lkm,,, = 3k_m,,n, m=0,n=0, (126)

and 'k is given by Eq. (118).

From Eq. (125) it is evident that our procedure is not
adequate to find the optimal decomposition of c. In the
cepstrum domain this is reflected by the fact that ¢ is
identically zero for all

mn)€{lmn:m>0An<0Vvm<0An>0}
(127)

For illustration a subarray of the approximate cepstrum
¢ is given here.

fsub =

[-0.3280506 0.0000012 —0.0000008 —0.0000002 0.00600004
0.4860004 —0.0000013  0.0000008 0.0000001 —0.0000003

—0.8100015 0.0000028 —0.0000022 0.0000013 —0.000001 1
1.7999992 —0.0000015 0.0000008 0.0000001 —0.0000003

—0.0000005 1.7999954 —0.8099970 0.4859967 —0.3280469 | <
1.7999992 0.0799982 —0.0719988 0.0647995 —0.0583197

—0.8100015 —0.0179969 0.0631976 —0.0554384 0.0485987
0.4860004 0.0647983 —0.0554389 0.0473463 —0.0403558

L0.3280506 —0.0583183  0.0485989 —0.0403555 0.0333769J

1 )

In spite of the aforementioned inadequacy it is inter-
esting to decompose ¢ using Egs. (93) - (96). This means
that we look for a decomposition according to

c="% = 2k (129)

rather than according to Eq. (125). It can be concluded
from (125) and (127) that ’k’ and ‘%’ are 2 X 2 operators
where :

k' = Ky Ko (130)
and
Yomn' =K - (131)

The operators 'k’ and *k’, however, may be of infinite
size since 'k’ could be obtained by recursively filtering
'K« 'k with )

2
{ km,—n, }méo'
n=0

(132)

The numerical results are in accordance with these facts.
Operator “i has a distinct cutoff beyoﬁd m=1,n=—1,
whereas '« slowly decays in the lower right submatrix,
thus making a larger matrix desirable:

[ 1.000000 0.899998 —0.536E—6 —0.238E—6| <
L. 0.899999 0.889996 —0.113E—~5 0.477E—6
—0.113E—5 0.358E—6 0.001600 —0.001440 ’

|—0.477E—6 0.596E—6 ~0.001440  0.001296 |
) ' (133)
—0.238E—6 —0.536E~6 0.899998  1.000000 | «

2. 0.617E—6 —0.100E—S 0.809996  0.899999

0.772E—7 —0.185E—6
| 0.249E—6 —0.442E-7

0.458E—6 —0.113E—S5
0.812E—6 —0.477E—6|
T (134)

Nevertheless, the performance of this solution is not
so far from the optimum. This property can be seen from
the arrays ey, [Eq. (135)] and Oguy [Eq. (136)], which

(128) have the same meaning as in Example 2.

€sup =

~0.726528E-09  ~0.300764E-09  -D.322484E-09 -0.620 -13  -0.106655E~12 0.486984E-19 0.282767E-19
-0.814738E-09 ~8.7346515—1o ~0.3520076-09 -0.437 -12  -0.488424E-12 0.381983 E~18 0.448300E-19
-0.104863 E-02 W102956 -0 5 0.804396E-06 0. 568 -06 0.201465E-06 -0.211685E-12 -0.531997E-13
-0.198347E-02 0.459036E-06 0¢ 162494E-05 0.170 -05 0,666931E~06 -0.520017E-12 ~-0.167008E-13
-0.987053E-03  ~0.324249E-34 -0.643091E-05 0.149 -05 0.111582E~05 -0.194287E-09  -0.322311E-09
-0.183105E-03 =-0.120163E-D3  -0.400543E-04 -0.105 -05 0.149877E~05 -0.218226E~10 ~-0.458015E-09
-0.244141E-03 ~0.183105E-03 -0.998497E-03 ~0.198 -02  ~-0.104823E-02 0.102559E-08 ~0.649578E-09 | «
-0.167847E~03 ~-0.123978E-)3 -0.202656E-02 -0.430 -02 -0.233192E~02 0.178572E-08 ~-0.208588E-09
-0-988001£-03  -0.202274E-D2  -0.133297E-02  -0.727 -03  -0.445602E-03 0.304066E-09 0+108114€-08
-0.198347E=02 <-0.430326E-02 -0.726894E~03 0. 348 -2 0.188940E-02 -0.143340E-08 0+ 469635E-09
~0.104854E-02 -0.233199E-02  -0.445418E-03 0.188 -02 0.104969€-02  -0.817241E-09  -0.278076E-09
~-0.814738E-09 0.542428E-09 Q.290420£-08  -0.391 -Q9  -0.170395E-08 0.192376E-14 -0,626138E-16
~0.726528E-09 -0.307082E-09 0.148589E-08 0. 446 -09  -0.556149E~09 0.495778E-16 0.147329E415

-
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F 0.280967E-02 0.504769E-05 0.624132E-05  ~0.154875E-03 0.714838E-03  -0.105378E-02 0.119510E-02
-0.312973E-02 0.308633E~04 ~0.490645E-04 0.217502E-03 ~0.835808E-03 0. 120684E-02 -0.135821E-02
0.3415186-02 -0.385113E-14 0.772769E-04 -0.276761E-03 0.951070E-03 -0.136687E-02 0.152817E-02
-0.354451E-02 -0.892836E-04 0.404467E-05 0.267829E-03  -0.101446E-02 0.146519E~02 =-0.164298E-02
0.332886E-02 0.519752E~03  ~-0.343769E-03 0.272589€-05 0.875956E~-03  =-0.139354E-02 0.160498E-02
-0.250447E-02 -0.148699E-)2 0.115089E-02 -0.662563E-03 -0.376550E-03 0.999450E-03 -0.127663E-02
0.697545E-03 0.332353£-D2 -0.272302E-02 0.199929E-02  -0.724934E-03  -0.653226E-0% 0.461661E-03
0.164124€-02 -0.561980E-)2 0.469004E~02 -0.368012E-02 0.212960E-02 -0.114058E-02 0.599022E-03
-0.525562E-02 0.904012E-02  -0.764826E-02 0.624158E-02 ~0.432133E-02 0.305477E-02 -0.229894E-02
0.100776E 01  ~0.114254E-)1 0.965816E-02 -0.794142E-02 0.573437€-02 -0.426973E-02 0.337229E-02 |

-0.109169E-01 0.143818E-)1  -0.121632E-01 0.100813E-01 -0.754331E-02 0.584474E-02 -0.%717361E-02
0.861964E-02 -0.114250E-21 0.837923E-02 -0.561539E-02 0.377813E-02 -0.267009E-02 0.207850E-02
-0.649787E-02 0.874132E-)2  -0.503256E-02 0.179719E-02 -0.643940E-03 0.827004E-04 0.863849E-04
0.438516E-02 -0.614329E-02 0.3210136-02 ~-0.719524E-03 ~0.411731E-05 0.267322E-03 -0.248437E-03
-0.298584E-02 0.437045€-02 -0.212724E-02 0.266846E-03 0.143739E~03 ~-0.210926E-03 0. 884780E-04
0.208619E-02 -0.316373E-22 0.1517656-02 -0.178681E-03 -0.225013E-04 -0.193318E-0% 0.178318E-03
-0.149566E-02 0.229929E-D2  -0.116076E-02 0.247772E-03  -0.170123E8-03 0.251862E-03 -0.398289E-03
0.102591€-02 ~0.156502E-)2 0.8552976-03 -0.290920E-03 0.272346E~03  -0.347115E-03 0.4526935-03

| -0.544717E-03 0.816697E-D3 -0.477380E-03 0.208324E-03  -0.208049E-03 0.249972E-03  -0.303273E-03

t
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Concluding remarks 4. T. S. Huang, “Stability of Two-dimensional Recursive Fil-
An unstable recursive filter with a finite number of co- ters,” IEEE Trans. Audio and Electroacoustics AU-20, 158

. . . . (1972).
e'fﬁcw'nts always has an infinite number of decomposi- 5. The original form of the cepstrum transformation was the
tions into four stable recursive filters, provided it has a power spectrum of the logarithm of a power spectrum. See
nonzero frequency response with zero phase. The de- B. P. Bogert, M. J. B. Healy, and J. W. Tukey, “The Que-

bility i d in thi frency Alanysis of Time Series for Echoes,” in Proc. Symp.

cqmp9s1b1 ity 1s proved in this .paper by means of a new on Time Series Analysis, M. Rosenblatt, ed., John Wiley
criterion that relates the stability of a recursive filter to and Sons, Inc., New York, 1963, Ch. 15, p. 209. Through-
the properties of its cepstrum. One might say that this out the present paper the (complex) cepstrum transforma-

bili .. d h f Shanks. h h tion is used as introduced by Oppenheim et al. [12].
stability criterion, compare .to that of Shanks, has t € 6. J. L. Shanks, “Recursion Filters for Digital Processing,”
advantage of being constructive, i.e., it permits the speci- Geophysics 32,33 (1967).
fied filter to be decomposed as exactly as is desired. 7. E. A. Robinson, Statistical Communication and Detection,

T . . d: Hafner Press, New York, 1967, Chs. 6 and 7.

WO questions remain unanswered: 8. Ibid., App. 2.

1. Und h .. .. bl 9. The positive direction of the m axis is downward, and the

. Under what suppositions is it pOSSl. e to decompose n axis points to the right. Compare with Fig. 1. This choice

exactly an unstable recursive filter into stable recur- has been made following the usual subscripting of matrix

sive filters that have a minimum finite number of co- elements (see also [l, 2]). In another convention [4] the

. . . m axis points to the right and the » axis is directed down-

efficients; and what is the number of these coefficients? ward.

2. If such a decomposition exists, how can it be found? 10. Usually, recursive filters are defined as 4(z,, z,) /B(z,, z,).

However, because I(z,, z,) - A(z,, z,) can be interpreted as

In spite of these unanswered questions, the results the input to a recursive filter F (z,, z,) = 1/B(z,, z,), A(z,,
given here are of practical value, as can be seen from the z,) =1 may be_ a.ssumed Wltl}out loss of generality.

.. R . K . 11. P. Pistor, “Digital Processing of Scintigraphic Images by
application of two-dimensional recursive filters to radio- Two-dimensional Recursive Wiener Filters,” Report
scintigraphic images [11, 17]. These filters have their 70.12.006, IBM Deutschland Heidelberg Scientific Center,
theoretical foundation in the results of this paper. 1970. .

this pape 12. A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, Jr.,
“Nonlinear Filtering of Multiplied and Convolved Signals,”
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