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Stability  Criterion  for  Recursive  Filters 

Abstract: A new criterion is  derived  that  relates  the  stability of two-dimensional  recursive filters to the  properties of its  cepstrum. It 
provides a procedure  for  the  decomposition of unstable  recursive  filters  having  nonzero,  nonimaginary  frequency  response into stable 
recursive  filters.  The optimal solution of the  decomposition  problem is discussed, including  numerical  implementation and nonrecursive 
solutions.  Several  numerical  examples show the  potentialities and limitations of the rules  for  decomposition and for  truncation  of the 
operators. 
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Introduction 
In  the  development of two-dimensional recursive filters 
the  two problem areas of main interest  are  the stability 
criteria  and  the design of stable  recursive filters. Except 
for filters with very few  samples, existing stability cri- 
teria [ 1 -41  are difficult to apply and  thus  it  has been 
virtually impossible to  translate  these  criteria  into a 
practical  design  procedure. Moreover,  the  criteria could 
not be  used to justify a design procedure  [2]  that  appears 
to provide stable  recursive filters. 

The  present  paper  proposes a criterion that  is based on 
the relationship of the stability of recursive filters to  the 
absolute summability of certain  operators called cepstra 
[ 5 ] .  The z transform of these  operators-is given by the 
logarithm of the z transform of the  recursive filters. By 
means of this criterion  we  treat a special  design  problem 
[4] concerning the decomposition of unstable  recursive 
filters having nonzero and nonimaginary frequency re- 
sponse  into  stable  recursive filters. For  the  case of one- 
dimensional filters this  problem was solved by the de- 
composition into minimum-delay and maximum-delay 
operators [6, 71. Our stability  criterion leads to a proof of 
the  existence of a similar solution for  the two-dimensional 
case. 

This  paper  is organized into five main sections: a com- 
pilation, for  reference  purposes, of z transform relations; 
a demonstration of the need for a decomposition  pro- 
cedure  for zero-phase  filters; a proof of the stability cri- 
terion; a solution of the decomposition  problem, includ- 
ing methods of numerical  implementation and related 
nonrecursive  solutions;  and  some numerical  examples. 50 
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Figure 1 Four  directions of recursion from  the  four  corners 
of an  input array.  The input array  is  to  be  understood  as a first-, 
second-,  third-, or  fourth-quadrant function,  depending on  the 
direction of the recursion. 

Space  domain  operations  and their z transforms 
The z transform is a convenient means for characterizing 
certain  operations involving sampled  functions. Some 
relations [ 1-4,8] needed  for  subsequent discussions are 
summarized  in  this  section. 

Z transform of two-dimensional  functions 
The z transform of a periodically sampled, two-dimen- 
sional function 

b = {b,,J ( 1 )  

is defined by 
m m  

B(z , ,  q) = x x bm,nZlmZ,n, (2) 
m=-m n=-m 

where z ,  and z,  denote complex  variables, and b,,n is 
understood to be  zero  for  subscript pairs (m ,n )  that  do 
not belong to  the definition set of b. 

If b is defined for nonnegative subscripts only, it is 
called afirst-quadrant  function [2] and is denoted by a 
left superscript  as 

‘b  = {lbm,n}m=o (first-quadrant function). (3 1 

Similarly,  second-,  third- and  fourth-quadrant  functions 
can be defined successively as 

n=O 

2b = {2b,,nl,z0, (4) 
nro  

‘b=  {‘b } m,n m r w  ( 5  1 
nsn 

4b = {4bm,nlmr0 (see [91). (6) 

The z transform  pairs in Eqs. (7 )  - (12),  denoted by e, 
relate some  basic  spatial operations  to  operations in the 
z transform domain [ 2, 81. These relations can readily be 
improved by comparing terms of the  same  degree in z ,  
and z,  . 
Basic  pair: 

nkn 

{ b m , n J  - B (Z’ ,  z,) 
Translation: 

{bm,n’l ={bm-a,n-81 ++ B‘( z l ,  z,) = zIaz,PB(z,, z , ) ,  (7 )  

Rotation through 180” around (0,O) : 

{bm,n’}  = {b-,,-J - B’(Z1, z,) = B ( l / z , ,  J / Z , ) ?  ( 8 )  

Reflection at  axis m = 0 (column reversion): 

Convolutional  filters 
The input-output  relation of a  convolutional filter f ,  

o = i *   f ,  (13) 

where 

is written in z transform  notation as  the  product 

0 ( z 1 , z , ) = I ( z , , z , )  F(z , , z , ) .  (15 )  

A formal proof of this  equation may be found by the  same 
method as  for  Eqs. (7)  - ( 12). 

Definition I 
A filter is stable if and only if its response  to  any bounded 
input is bounded. 

For a  convolutional filter the stability  criterion [3,4], 
Theorem 1, can  be proved. 
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Theorem I 
A convolutional filter is stable if and only if 

Condition ( 16) means  that  the z transform off is ab- 
solutely convergent  for all (zl, 2,) E R ,  

Recursive  filters 
The convolution of two  discrete  functions  corresponds  to 
a multiplication of their z transforms,  whereas  the input- 
output relation of recursive filters is characterized in the 
z transform domain by the  quotient [ 101 

O(z l ,  z , )  = Z(zl,  z,)/B(z,, z,) = z(zl,  z,)F(z,,  z,). (18) 

If 0, I ,  and B are replaced by first-quadrant functions 
'0, li, and ' b  with 

the  space domain  algorithm corresponding  to Eq. ( 18) is 

lO0,O = lio,o/lbo,o~ 

which is to be  recursively filtered by 
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The  output value to  be  determined first is 

= bo,o = 3 / 3  = 1 .  1.  1 

To understand the  operation of the last two formulas of 
Eqs. (2  1 ) , we form  the mask from ' 6 ,  

0 1  
1 3 ,  

and draw it across  the  matrices ' i  and '0 synchronously. 
In  the  output  arrays lo of the following examples,  the 
symbol * designates  elements  not  yet determined. The 
numeral 3 refers to  the value just  computed.  The  other 
entries of the mask  form  a dot  product with the  output 
values to which they  refer. These values must be known, 
of course, from former steps. The result of the  dot  product 
is subtracted from the input  value  indicated by 3 ,  and this 
result is then  divided by 'bo,o. 

The  examples  that follow demonstrate  the computation 
1 1  of lol,o, o , , ~ ,  03,0 and ' o ~ , ~ .  

Equations (2 1 ) describe  the so-called causal recursion 
[4], in which the  recursive  operator ' b  starts from the 
NW corner of an  input  array,  as indicated in Fig. 1 .  
Similar algorithms can be  derived for  functions i ,  0, and 
6 defined on  the  other  quadrants..The  equations  describe 
noncausal recursions, i.e., recursions  that  start from the 
NE, SE, and SW corners of an input array.  Any non- 
causa! recursion,  however,  can be  transformed to  the 
causal  recursion. For  instance,  the noncausal  recursive 
filtering of an  input 'I' by an operator ' b  is transformed to a 
recursion  with an  operator ' b  simply by rotation of func- 
tions ' i  and 3b through 180b. Because of Eq. (8) ,  such 
rotations  correspond  to a replacement of (zl, 2 , )  by 
( 1 / z l ,  1 /zJ .  The transformation of "i and ' b  thus  corre- 
sponds  to  the transition  from 

STABILITY  OF RECURSIVE FILTER,S 



in the z transform  domain. This input-ouput  relation is 
equivalent to 

~ ' ~ Z , , Z , ~ = ~ , ~ Z , , Z , ~ / ~ , ~ z , , z , ~ .  (24) 

For illustration, the  input 

7 . 3 .   3 .  
1-2,--2 l h - 1  l - 2 , o  0 1  

3i = 
3 .  3 .  3i-1,0]= 3 . [; ; ;] 

10,-2 10,-1 10,o 

is recursively filtered by 

Instead of performing the  appropriate noncausal  re- 
cursion, which would start  from  the lower-right input 
element we  rotate 3i and 3b, obtaining the  functions 
' i  and ' b  discussed in the preceding  example. From  the 
intermediate result, 

1 
0 =  

1 1 0 0 . .  
1 1 0 0 . .  
0 0 0 0 . .  
0 0 0 0 . .  

. .  

we obtain the final result by inverting the  above  rotations 
as 

. .  . 

o =  

Similarly, the  replacement of z ,  by 1 /z,, or z, by 1 /z,, 
respectively, corresponds  to  the transition of the  other 
noncausal recursions  to  the causal recursion. 

If we put 

1. - 
lm,n - 'm,n = 

the recursive 

I , m = n = O ;  

0, else, 

algorithm ( 2  1 ) yields the convolutional 
filter 'f, equivalent  to  the  recursive filter l /Bl (z l ,  z,) = 

F ,  (z1, z,). According to  theorem 1, the stability of these 
filters may be  related as indicated in theorems 2 ,  3, and 
the  subsequent discussion. 

Theorem 2 
A causal  recursive filter 1 / B ,  (zl ,  z,) is stable if and  only 
if there  exists a stable filter 'fsuch  that 'f * ' b  = 6. 

Farmer  and Bednar [3] have given  a stability cri- 
terion for  recursive filters. This  criterion  comprises  that 
of Shanks [2], which is confined to  operators ' b  with  a 
finite number of sample points. 

Theorem 3 
The causal recursive filter 

F(z, ,  z,) = l /Bl (z l ,  z,) = 1 / (  x 'bm,nz,"z,"), ( 2 6 )  

where 

m m  

m=O n=O 

I1'rn,nI < 00 

m m  

m=O n=O 

is stable if and only if 

Bl(zl, z,) # 0 ( 2 8 )  

for all (zl, z,) E Dl, where 

Dl = {(z,, z,): 1z,I 5 1 A I z , ~  5 11. (29) 

The foregoing discussion shows how  noncausal  re- 
cursions  can  be transformed to  the  causal recursion. The 
following corollary is  thus evident. 

Corollary 1 
Let the  lth-quadrant  function 'b ( 1  = 2 ,  3, 4) be  a  stable 
convolutional  filter. Then  the noncausal recursive filters 
l /B l ( z l ,  z,) are  stable if and only if B,(z,, l / z2 ) ,  
B 3 (  l /z, ,  1 /z,), and B4( l / z l ,  z,) are  nonzero  for all 
(zl, z,) E D l .  

The  functions  that meet the conditions of Theorem 3 
and Corollary 1 are  characterized by Definition 2.  

Dejinition 2 
A one-quadrant  function 'b is called recursively stable if 
and  only if 'h  is a stable convolutional  filter and 1 /B , ( z , ,  
2,) is a stable  recursive filter, either causal or noncausal. 

Two-dimensional cepstrum 
We  consider  once  more a function b and its z transform: 

{hm,J - B (zl,  z,). (30) 

By formally taking the logarithm of B we obtain 

g(z , ,  z,) = In ~ ( z , ,  z 2 ) .  (30') 

The  cepstrum of b, i.e., 6, is a  function  whose z transform 
is given by B ( z l ,  z2) :  

{imJ - (zl, z,) = In B (zl,  z,). ( 3 0") 

According to  Eqs. (30),   (30') ,   (30),   (131, and (151, we 
find, for  the input-output  relation o = i * f of a convolu- 
tional filter. 
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a z , ,  z,) = i ( Z l ,  z,) + F ( Z , ,  z , ) ,  pair (z,,   z,) E D l  exists  such  that 

which in turn  leads  to  the  additive relation in the  cep- C ,  ( z , ,  z,) = C,  ( z , ,  1 / z , )  

(3 By defining z,  = 1, the  existence of such  a  pair is proved, 
Similarly, the input-output  relation ( 18) of a recursive if a z,  = w, I w'( 5 1, can be found, which  solves simul- 

filter is given by a difference in the  cepstrum  domain, taneously the  equations 

& = i - b .  
" . .  

U P  

(32) Z l a C ( Z 1 ,  1 )  = cm,nz, - Z ; C  ( z , )  = 0, (43) a+m - 

The problem stated in the  next section is solved by m=-a n=-f l  

means of cepstra. 

Decomposition of unstable, recursive, zero-phase = Z1% ( 1 /zl) = 0. (44) 
filters into stable recursive filters 
We  consider a  real-valued discrete function c with a e that 

Since it can be concluded  from the  central symmetry of 

limited number of sample  points, in which 
a P  

= ' iCm,n)lmlsZ M (33) G ( z , )  = c. cm,,zl - G ( I / z , ) ,  (45 1 m -  

I n l s ,  N:=P m=-m n = - P  

Its z transform is of zero phase  and  non-negative for all 
( z , ,  z,) E R :  

Im  [C ' (u ,  u ) ]  = 0 ,  (34) 

C ' ( u ,  u )  > 0, (35) 

where 

= C(ZP &,, Z , ) E R .  (36) 

Equations  (34)  and  (36) imply central symmetry of e:  

= (37) 

Functions  as specified in Eq.  (33)ff.  are found  with re- 
cursive filters F ( z , ,  z , )   = A ( z , ,  z , ) /C( z , ,  z ,)  [ I l l  for 
the  enhancement of images degraded by noise and by 
linear  shift-invariant  geometric  distortion. 

Because of Eq. (37),  c is not a one-quadrant function. 
However,  because c has a limited number of sample 
points, it can be  transformed by translation to any  quad- 
rant function. Thus  the  term 1 / C ( z , ,  z,) could be as- 
sociated with four different recursive filters. None, how- 
ever, would be  stable. 

Proof By translation, the following z transforms orig- 
inate  from c [see Eq. (7 )  ] : 

Eqs.  (43)  and  (44)  are identical. If they are solved by 
z ,  = 0, the sought  pair is (0, 1 ) .  If not,  Eq.  (45)  shows 
that  every  root z ,  = w has a corresponding  root z ,  = 1 / w. 
Thus a  pair (z , ,   z , )  E D l  can  always be found, solving 
Eqs.  (42),  and  therefore  no recursively stable  operator 
can  be obtained  from c by translation. 

In  the one-dimensional case, unstable recursive filters 
1/B ( z , ) ,  with no poles on  the unit  circle, can  be  de- 
composed  into  stable filters that  recurse in opposite 
directions. Therefore  the  question  arises  whether, 
analogously, the  unstable filter 1 / C ( z , ,  z,) can be  decom- 
posed into  four  stable filters that  recurse in four dif- 
ferent directions. More precisely, we ask for recursively 
stable  one-quadrant  functions ' k ,  , k ,  ' k ,  and 'k such  that 

4 

1 /C(Z,, ZJ = n 1 / q l  ( z , ,  z , ) .  (46 1 
1=1 

In a way similar to  the solution for  the one-dimensional 
case [ 121, we find  a  solution to this  problem by trans- 
forming Eq.  (46)  tothecepstrumdomain [viz., Eq.  (30)], 

4 

6 = ,q,. (47 1 
I =  1 

The  results of the next  section  indicate how to decom- 
pose P and how to  use  the resulting functions  to  compute 
the  operators  that  are sought. 

cl(Z1, Z Z )  = Z l a Z z  c ( z ~ ,  Z Z ) ?  2 M r $  P =  2Nr (38) Stability criterion for recursive filters based on two- 

Let us assume  that ' b  is a  first-quadrant  function that 

P 

C,(Z,, z,) = z ,  z, C(Z,, z , ) ,  a -P (39) dimensional cepstra 

C,(Z,, z,) = Z1-aZ2P C(Z , ,   z , ) .  (41  Theorems 1 ,  2 ,  and 3  and  Definition 2 ,  that 
c, (z , ,  z,) = z , - y  c (z , ,  z , ) ,  (40) is recursively  stable. This  assumption implies,  from 

According to Theorem 3 and Corollary 1 ,  the  recursive 
filters associated with these z transforms  are  unstable if a m = ~  n=o 

I1-tm,nI < ~3 

c o r n  
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' b  * 'f= (49 1 

B,(z,, z,) f 0, (z,, z,) E Dl, (50) 
m m  

C, I1bm,nI < m. ( 5 1 )  
m=o n=O 

From  these  facts we conclude  that  8,(z,, z,) = In B,(z,, 
z,) can be  uniquely expanded  into  the  power  series 

5 E 16m,nZ;Z; ( 5 2 )  
m=O n=O 

for all (zl, z,) E Dl. 
First  we  consider  the  case (z,, z,) E D,, 

D,  = {(z,, z,): Iz,I < 1 A Iz,I < 1 1 .  (53) 

On this setB,(z,,z,)  isregular  [13],duetoEq.  (5l),and 
consequently B ,̂ (zl, z,) is regular, too,  because  B,(z,, z,) 
is  nonzero [condition (SO)]. Thus a unique  expansion 
( 5 2 )  of 8 ,  exists.  The coefficient of this power  series 
is readily determined by evaluating 

8,(z, ,  z,) = In B,(z,, z,) (54) 

for (z,, z,) = (0, 0 ) :  

bo,o = In (55) 

To find the  other coefficients we differentiate Eq. (54) 
with respect  to z, and z, and replace  1 /Bl  (zl, z,) by F ,  (z1, 

1 -  

Z,) : 

z,(a/az,)B,(z,, z,) = F1(zl, 2,) z,(a/az,)B,(z,,  z,), 

z,(a/az,)8,(z,, z,) = F , ( z , ,  z,) z,(a/az,)B,(zl~ z z ) .  

(56) 

(57) 

AccordingtoEqs. ( 1 1 1 ,  (121 ,  (131,and  (15)  thesere- 
lations correspond  to 

{m'6m,n> = {'fm,,,I * { m l b m , n I  (58) 

and 

{n16m,nI = tlr,,n> * {n1bm,n>3 (59 1 

or, explicitly written, 
P P  

lhP,&= c. (m/P) lbm,nt fP-m ,q-n>  P # 0 (60 1 

16P,q= 2 (n/q)lbm,nlfP-m,q-n' q # 0. (61 1 

m=O n=O 

P P  

m=O n=O 

We prove now that  the  power series  defined by Eqs. 
( 5 2 ) ,  (55 ) , (60),  and ( 4  1 ) is absolutely convergent  and 
equal to  8,(z,, z,) for all (z,, z,) E Dl - D,. From  Eqs. 
(60)  and  (61)  we find that,  for all (z,, z,) E Dl, 

N N  N O  

N N P Q  

5 C,  C, C, C, I1bm,nI 
p = o  q=o m=O n=O 

N N  N N  

5 C, l lbm,nl  C, 
m=O n=O p=o  q=o 

IYp,ql' 

and  thus 

( P ,  4) + (0, 01, (z,, z,) E Dl. 
(for left-hand part  only). ( 6 2 )  

In  Eq. ( 6 2 )  we  have  used  the stability of y [Eq. (48)] 
and ' b  [Eq. (Sl)] .  

With  the  intermediate notation 

m=O n=O 

it  remains  to  be proved that 

E(z,, z,) = B , ( Z , ,  z,) 
for all (z,, z,) E Dl - D,. Because E(z,, z,) and B,(z,, 
z,) are given by power series that  are absolutely conver- 
gent  for all (z,, z,) E Dl, it follows from Abel's second 
theorem [ 141 that 

lim [ B ,  z,) - B ,  (pe-2rr'u, z,) I = 0 

and 

p- ' I4  

lim [E(e-lTju, z,) - E(pe-,"j', z,)] = o 
p-' 1 4  

for  any fixed ( u ,  z,) with 

(u ,z , )  E { ( u ,  z , ) : O 5  u 5  1 A I Z , ~  < 1 ) = Q .  

From  (64)  we  conclude [referring to condition (50) and 
the continuity of the logarithm] that 

lim 18, (e-'*ju, z,) - 8 ,  (pe-zR'u, z,) 3 = o (66 1 
p-' 1 4  

for any (u, z,) E Q .  When (66) is subtracted  from  (651, 

8,(z1, z,) = E(z,, z,) (67) 

for all (z , ,   z , )  E {(zl, z,): Iz,'I 5 1 A l ~ l  < 1). 

Repeating the  argument  for z, = exp (-2.rrjz.4) and 
Z, = p exp ( - 2 ~ j u ) ,  where u and u are any fixed values, 
we finally find 

i,(Z,, z,) = E(z , ,  zJ, (Z1? z,) E D,. 
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Thus  the convolutional  stability of '6 is a necessary 
condition for  'b  to  be recursively  stable.  We prove now 
that this property is also a sufficient condition.  Again, 
we first consider  the  set D,. On D,, i l ( z l ,  z,) is regular 
because of Eq. (62) ,  and  becauseB,(z,,z,) = exp[b,(z,, 
z,)] is regular, too,  the identities 

z,(a/az,)  B,(z,, z,) = B,(z,, z,) z,(a/az,)   i , (z, ,  z,) 
(69 1 

and 

z,(a/az,) B,(z,, z,) = B,(z,, z,) z,(a/az,) f i l(zl ,  z,) 
(70) 

relate  the absolutely convergent  power series. These 
identities yield relations similar to Eqs. (60)  and  (61 ): 

P P  

Ib,,,= x ( m l p )  '6m,n'bp-m,q-n. P f 0 ,  (71) 
m = ~  n=n 

P P  

'bp,q= x ( n / q )  'bm,n bp-m,g-n' 4 f 0. (72) 
m=O n = l  

For ( p ,  q )  = (0,O) we find, from Eq. ( 5 5 ) ,  

'bna = exp ( ' 6 0 , n ) .  (73 1 
With 'b as defined by Eqs. (71)-(73),  we  have  the 

B'(z,, z,) = exp  [B,(z,, z,)I  = x x 1bm,n~lm~2n  (74)  
m m  

m=o n=o 

identity for all (zl, z,) E D,. We prove now that  (74) is 
even valid for all (zl, z,) E D l .  To do this it is sufficient 
to find a power series  that is equal  to  B,(z,, z,) and  abso- 
lutely convergent  for all (zl, z,) E D l .  

Since i l ( z l ,  2,)  is given as a power  series  that is, by 
assumption, absolutely convergent  for all (zl, 2,) E D l ,  
and  the  expansion of exp ( x )  is absolutely convergent 
for all 1x1 < 00, the expansion 

m , m  m \ 1  

is also absolutely convergent for all (zl, z,)  E D l .  Thus 
Eq.  (75 ) can  be rearranged as 

m n  

where 

(77) 

am,n(') = ( 1  / I )  C x ' ,. 
m n  

p=n p=o 
bm-p,n-p 

(79 1 
Therefore  the expansion (74) is valid and absolutely 

convergent  for all (zl, z,) E D l .  It is evident from the 
definition that  B,(z,, z,) is nonzero  on D l .  Theorem 4 
summarizes the previous results. 

Theorem 4. The  quantity 

{'bm,n)mro 
n20 

is recursively stable if and only if there  exists a power 
series 

E 16m,nZlmZ2n (80) 
m=O n=O 

that is absolutely convergent  and  equal  to In B,(z,, z,) 
forall  (z,,z,) E Dl. 

Theorem 4  remains  applicable to noncausal recursive 
operators 'b, I = 2, 3,  4, if they are  transformed  to a first- 
quadrant function by the  operations ( l o ) ,  (8),  or (9), 
respectively. This  leads  to Corollary 2.  

Corollary 2 
The Ith-quadrant  function 'b, in which I = 2, 3, 4, is re- 
cursively  stable if and only if  In [B,(z,, l /z,)] ,  In 
[B,(l/z,,  l / z 2 ) l ,  or In [B,(l/z,,  z,)l,  respectively, 
is equal to a power  series of the form (80) that  is  abso- 
lutely convergent  for all (zl, z,) E D l .  

From  Theorem 4 and Corollary 2 it is evident  that  the 
decomposition  problem in the previous section  can  be 
solved if the  cepstrum c  ̂ of c can be decomposed  [see 
Eq. (47)] into one-quadrant functions 'k: in which I = 
1, 2, 3, 4. These  are  stable convolutional filters. In  the 
next sections  it is proved that  the decomposition is pos- 
sible because of the  properties of c. 

Solution of the decomposition problem 

Existence of a set of solutions 
The  cepstrum c  ̂ is readily  obtained by evaluating the z- 
transform of c on R .  We first have 

Since C' is real and positive [Eqs.  (34)  and  (35)],  the 
logarithm in Eq. (8 1 )  presents no problem. It  is easily 
verified that all partial derivatives of C' ( u ,  u )  are con- 
tinuous. Thus,  for all u and u, ef (u ,  u )  is given by the 
Fourier  series  expansion [ 151 

(82)  

The coefficients c^m,n that  make up the  cepstrum 2 are 
obtained  from 65 
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From  the  properties of C ' ( u ,  u )  and  from  Eq. (83) it 
follows that 

em,,, = c*-m,-n. (84) 

Repeated integration by parts  permits proof of the in- 
equalities 

l t o , o l  4 a < w, (85 

16.0,nl f f / n z ,  n # 0,  (86) 

I f m , o I  5 a / m 2 ,  m # 0,  (87) 

I t m , , I  I a / ( m 2 n 2 ) ,   m Z O A n Z 0 .  (88) 

Thus any  decomposition 

C * = ' k ^ + Z i + 3 & + 4 k ^  (89) 

of 6 into  one-quadrant  functions yields functions 'i that 
meet the  conditions of Theorem 4 or Corollary 2. Conse- 
quently each of these  decompositions  corresponds to a 
set { 'k:  I = 1 ,2 ,3 ,4}  of recursively stable functions. 

Problem of an  optimal  solution 
As Eqs. (7  1 )  and (72) show,  the final solution {'k: 1 = 

1, 2,  3, 4 )  may consist of functions with an infinite num- 
ber of nonzero sample  values. I t  would be  advantageous 
to find such a decomposition of c* which guarantees func- 
tions ' k  with a minimum finite number of nonzero sample 
values  such  that 

4 

1/C(Zl, z2) = n [1/K,(z,, z2) l  (90) 
I = ,  

is  true,  at  least in a good approximation. This  is  also dis- 
cussed in the following section on  the  truncation problem. 
The  author  does not have  such a decomposition pro- 
cedure  to offer for 6. Some  recommendations,  however, 
seem reasonable. First,  because c* is centrally symmetric, 
the decomposition  should  be such  that 

k,,,, = 'i+,-,, (91) 
1 "  

composition of 6 would become simple if 

c^m,n =_ 0,  m Z O A n Z 0 .  (97 1 
Such  cepstra  occur if and only if c is separable,  that  is, if 

(98) 

Equation (98) means  that  the two-dimensional  decom- 
position  problem is reduced to  the decomposition of a 
column vector s and a row  vector h into minimum and 
maximum  delay operators [6, 121. These  operators  cor- 
respond to  the  cepstra 

c m , n  = smhn. 

{to,o' c^l,o, t,,o'. . . } t  (99) 

(. . ., c^-,,o' t-l,o, 01 

and 

(0 ,  eo,,, eo,,; . (100) 

f . .  , c0,-,, A to,-,, 0}, respectively. 

Truncation problem 
As pointed out in the previous section,  the decomposition 
of c may result in operators 'k having an infinite number 
of sample  points.  If these  operators  are  to be imple- 
mented  numerically, some  truncation of the  operators 
becomes  mandatory.  This  truncation  means  not only that 
the decomposition (90) becomes  an  approximate  one 
but  also  that  the  recursive stability of the  operators 'k 
may be  affected. Theorem 5 guarantees  that  there  exist 
truncations  for recursively stable  operators 'k such  that 
the resulting operators 'k remain recursively  stable. 

Theorem 5 
We assume  that  the  power  series 

Bl(z , ,  z,) = x 'bm,,zl z, 

is absolutely convergent  and  nonzero  for all (z, ,  z,) E Dl. 
There  then  exists a pair M,,   N,  such  that 

I ~ , ( z , ,  z,)I = 2 1bm,nz,mz2~1 > 0 (102) 

m m  
m n  (101) 

m=O n=O 

m l  "1 

m=O n=O 

and 

k,,,, = 'i-,,,+,. (92) for all (z l , z , )  E Dl. 

If, in addition, c (and  consequently 4 is symmetric  with vergence of the power series ( l o l  ). The extension of the 

for all (m, ,  n,)  E { (ml ,  n,):  m, > M, A n, > Ni} and 

The proof of this theorem is based  on  the uniform con- 

theorem  to  functions  other  than  those in the first quadrant 
is straightforward. 

2 ^  

respect  to  the  axes m = 0 and n = 0 ,  the following rela- 
tions should hold: 
1 -  - 4 ^  
ko,n  - ko,n*  n 1 0, (93 To find constraints  on  the  truncation  parameters to be 

2 -  3 -  applied on ' k ,  in which 1 = 1 ,  2,  3, 4, we  consider (MI + 
ko,n  = ko,n' n 5  0, (94) 1 )  X (N, + 1 )  subarrays of ' k  and 3k;  (M, + 1) X (N, + 
km,o = km,ot m 2_ 0 ,  (95) 1 )  subarrays of ' k  and 4k;  and a (4M, + 1 )  X (4N, + 1 )  

3 "  4 '  array c .  The  cascaded convolution of the  subarrays 
km,o = km,o,  m 4  0. (96) yieldsanarray with [2(M, + M,) + 1 1  X [2(N1 + N2) + 

I "  2 ^  

66 It might be of interest  that  the problem of optimal  de- I ]  sample  points. I t  contains  an  array  as large as c ,  if 
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(MI + M , )  1 2M,  (103) 

and 

N ,  + N ,  3 2N,. (104) 

For arrays c symmetric with respect  to  the  axes m = 0 
and n =  0, the relations (93) - (96) apply. In this case  the 
constraints  on  the truncation parameters  are 

MI = M ,  E M,,  (105) 

N ,  = N ,  E N,. (106) 

It  is our  experience [ 1 I ]  that  the  truncation conditions 

MI = M,,  N ,  = N ,  (107) 

may give  satisfactory  results.  If Eqs. (107) hold, the de- 
composition of c means a saving of filter coefficients 
which  ranges  from  36 percent ( M ,  = N ,  = 1)  to 75 per- 
cent ( M ,  + 00 A N ,  + m ) .  

Numerical  implementation 
This section comments on the computation of 6, on  the 
decomposition procedure, and on  the application of the 
decomposed  recursive filter. 

To determine 6, Eqs. (36),  (81), and (83) must  be 
evaluated. This is done by Fast  Fourier  Transform 
(FFT) techniques [ 161 as indicated in Fig. 2. The func- 
tions {Cut,+} and {e,,,} are sampled  versions of C ' ( u ,  u )  
and C' (u ,  u ) ,  whereas r^ is an aliased  version of the de- 
sired  result c* [ 121. The  degree of aliasing can be  con- 
trolled by the  rate at which C' ( u ,  v) is sampled. 

The function [, truncated  at  the  Nyquist  subscripts 
-+ mNy and & nNy, is decomposed according to 

= ' i  + *r i  + 3i + 4i, (108) 

where K are  approximations of operators k. 

Since ttr exhibits the  same  symmetries  as 6, the  decom- 
position  should  be  performed  according to  (9 1 ) and  (92). 
This decomposition has  the  advantage  that only 'K and 

K have  to be determined.  The values 3 K  and 'K are 
obtained by rotating the  subscript planes  through 180". 

The computation of an ( M I  + 1 )  X ( N ,  + 1 )  array 
'K from 'ri should be performed in three  steps.  First 
K,," is obtained by Eq. (73). Then  the row vector 

4 .  

1 .  

{'Ko,n}lzzns.v, 

is determined by Eq. (72), and finally the  submatrix 

{ 'Km,n) lrrnsMI 
OsnSN1 

is obtained by Eq. (7 I ) . The  same  procedure  is applied to 

{4'-rn,n}m50 
n5O 

{4K-,,n1rn50. 

to  obtain 

nrO 

JANUARY 1974 

I 

Figure 2 Block diagram of the approximate  cepstrum trans- 
form for evaluation of Eqs. ( 3 6 ) ,   ( S I ) ,  and (83) .  The transfor- 
mation in the first step of the decomposition procedure. 

I I 
Recursive Rotate by 
filtering 180" and 

shift into 
1st  quadrant 

SEO 

Ir I i  

Reverse 
columns 

1st quadrant 

"+ \J * -6 f shift into 

I 
Recursive 
filtering 

S T  by 4 i k-m,n t 
NE, 

Figure 3 Block diagram of the  decomposition  procedure. 

The block diagram in Fig. 3 resumes  the decomposition 
of c. 

It should  be  recalled that  the result  only approximates 
the sought functions 'k .  The approximation errors  stem 
from  the aliasing exhibited in 5 and  also  from  the  trunca- 
tion applied to ' K ,  l =  l ,  2, 3, 4. 

According to  the  discussions of Eqs.  (22),  (23),  and 
(24), the input-output  relation 

O(Z,, z,)  = f , ( z , ,  ZJ /C(Z,, ZJ 

-- ( { [ ~ , ( z , ,  Zz)/K,(z,, zZ)l/K, 
x (z , ,  G)>/K3(Z,, Zz))/K4(z1, 22) (109) 

can be  evaluated  only by implementing the  causal recur- 
sive  algorithm. Figure 4 demonstrates how this can be 
done.  It is clear  (see  [2])  that  the  computation of the 
intermediate results is to  be  stopped  after  the  output 
values  have  decayed  to reasonably small numbers. 87 
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fourth 
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f t t  t 
4t 2ic ' R  

Numerical  examples 
As pointed out in the previous section,  the problem of the 
optimal  decomposition of a recursive  operator c consists 
in finding an  appropriate decomposition of c^ and an  ap- 
propriate truncation of the resulting operators.  In  this 
section it is  demonstrated  that  the  procedure  character- 
ized by the decomposition rules (93) and (96) and  the 
truncation rules (105) - (107) may be the optimal de- 
composition  procedure.  We also  discuss  examples of 
unsatisfactory results obtained by these rules. 

The  operators c that  we  discuss  are synthesized  from 
one-quadrant  operators with 2 X 2 samples. The  reasons 
are  that 

1.  The optimal  decomposition is, a priori,  known  ex- 
actly in two  cases. 

2. Since  the occurring one-quadrant  operators  have only 
a few samples (2 x 2, 3 X 3 ,  4 X 4 ) ,  their recursive 

Fieure 4 Implementation of the  decomposed  recursive  filter stability can readily be  checked. 
1 /yC(z,, z2). The  superscripts of the intermediate filter results 
indicate the Drouer Dosition of the upper-left  corner of the array. An  example of practical interest could also  have been . - .  _ _  

discussed, namely the computation of recursive filters 
for the  enhancement of radioscintigraphic  images [ 1 1 ,  
171. The decomposition  rules  mentioned here  were  able 

Nonrecursive solutions to specify  a  near-optimal  solution for this  problem. How- 
Instead of decomposing 1 / C  (zl, z,) into a cascade of ever, this  example is not well suited to Point out  the PO- 
recursive filters [ see  Eq. (90)], a  decomposition into  tentid  and shortcomings of these 
convolutional  filters might be  preferred: - 

Example 1 
Consider a  function c, 1/C(Z,, z,) = F1(z1, Z,)F,(Z,, Z,)F1(Z1, Z2)F4(Z1' Z'). 

(110) 

The  corresponding functions 'f can  also be determined 
from  the  cepstra 'i, 1 = 1 ,  2, 3 ,  4. It is sufficient to dem- 
onstrate this for ' k  and 7. The  operator ' k  is assumed  to 
be recursively  stable. From 

In ( l / K , ( z , ,  z , ) )  =In  F,(z,,  z,) ( 1 1 1 )  

c = ' k  * ' k  * 3k * 4k,  ( 1  16) 

where 

lkm,n = 'km,+, = 3k-,,-n - 4k-m,n, 

With the recursively stable function [41 

- m l O , n l O . ( 1 1 7 )  

(112) ' k = [  1 1.00 0.90 
0.90  0.85 ' 

Thus, replacing '6 by (-'& and ' b  by 'f in Eqs. (7   l ) ,  L T  
(72),and  (73),wefind 

we have 

J 

'f,,, = exp ( 1 1 3 )  

'fP,, = -x 2 (m/p)im,nfp-m, Q-n, P f 0,  ( 1  14) 
P Q  ! YP,, = -2 x (n/dim,nfp-m,Q-n> q # 0. ( 1 1 5 )  0.68850  2.7639  4.15082  2.7639  0.68850 1 ( 1  19) 

0.68850  2.7639  4.15082  2.7639  0.68850 
2.76390 11.0930  16.65830  11.0930 2.76390 

P Q  2.76390 11.0930  16.65830  11.0930 2.76390 
m=1 n=O c =  4.15082 16.6583 25.01520 16.6583 4.15082 e. 

m=O n=l  
t 

The decomposition ( 1 10) is preferred over (90) if it 
requires a lower  number of filter weights for  the  same In both ( 1  18)  and ( 1  19) the vertical and horizontal ar- 
accuracy. rows indicate the  axes m = 0 and n = 0,  respectively. 

Alternatively to Eqs. ( 1 1 3 ) ,  (114), and (lis), the From  the  construction of c it is clear  that 6 is to  be  de- 
least-squares  approximations of 9 could  be determined composed  according to Eqs. (93) - (96). In addition, 

~ 68 from ' k ,  1 = 1 ,2 ,3 ,4 ,  by the Wiggins algorithm [2]. the 3 X 3 result 
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1.0000 0.9000 -0.9E-6 +- 

1 K =  [ 0.9000 0.8500 -0.6E-6 
-0.4E-6 0.2E-6 -0.8E-7 I 

t (120) 

shows that ihe truncation  rules (105) - (107)  are appli- 
cable,  since ‘K is identical  to ‘k  except for  entries in the 
third row and  column, which may be neglected. 

Example 2 
We modify the operator ( I  19) by adding  the  spike  func- 
tion 0.01 1 8. That means co,o = 25.0152 is replaced by 
25.2903. Contrary to  example I ,  no  decomposition of c 
is now known a priori. However, because this c exhibits 
the  same symmetries as  the function c in the first ex- 
ample, it can be expected  that Eqs. (93) - (96) describe 
the optimal decomposition of P. Similar to  Example 1 the 
decomposition  can be characterized by one  operator, 
e.g., ‘ k .  As a 4 X 4 result we find 

t (121) 

The  operator ‘K is recursively  stable  since it can be 
shown  that  the z transform of (12 1 ) is nonzero  for all 
(zl, z,) E Dl. The proof is based  on  the  properties of the 
upper left 2 X 2  subarray of ‘K. 

Equation (12 1 ) does not  have  such  a  distinct cutoff 
beyond m = 1, IZ = 1 as  does ( 120).  Thus  the truncation 
rules (105) - (107)  cannot be expected to yield opera- 
tors ‘ K ,  1 = 1, 2, 3, 4, which, when convolved in a cas- 
cade, would result in a good approximation cappr of c. 
Even with 4 X 4 operators, the  approximation is not  quite 
satisfactory, as a comparison of c and a subarray of 
e = cappr - c demonstrates  [See  Eq.  (122)]. 

Because  the operators ’K are  to be used for recursive 
filtering, the  approximation error function e might be 
inappropriate to  characterize  the quality of the decorn- 
position of c. Alternatively, c can be recursively filtered 
by these  operators. If the  decomposition  is  a good one, 
the  result i, should resemble  a  delta  function. As the  sub- 
matrix (123)  demonstrates, the solution given by Eq. 
( 12 1 ) does this job fairly well. 

9 Example 3 
In this example  a 5 X 5 function c is presented which can 
be decomposed  into  four  2 X 2  operators. However, the 

esu11 = 

0.172424E-02 
0 -474548  E-02 

f 

0.105697E-32 
-0.143818E-32 
-0.104905E 00 

-0.556574E-0 1 
-0.145703E D O  

-0.724792E-04 

-0.734329E-34 
0 e170898 E-3 2 

-0.556555E-31 
-0.145703E 00 
-0.104905E D O  
-0.143818E-32 

0.105697E-02 

0.357122E-04 
0.239717E-03 

-0.509612E-01 
-0.312095  E-01 

-0.397092E-01 
-0.556641E-01 

-0.556622E-01 
-0.749350E-01 

-0.397084E-01 
-0.509611E-01 
-0.312094E-01 

0.357112E-04 
0.239716 E-03 

-0.403976E-04 
0.1714926-03 
0.193911E-02 

-0.509626E-01 
-0.423922E-02 

-0.145707E 00 
-0.200217E 00 

-0.509624E-01 
-0.145707E 00 

-0.423913E-02 
0.193914E-02 
0.171492E-03 

-0.403980  E-04 

-0.189802  E-04 
0.145821E-04 
0 a2199  17  E-02 
0.193903E-02 

-0.312099E-01 
-0.104906 E 00 

-0.104906E 00 
-0.147882E 00 

-0.312098E-01 

0.219918E-02 
0.193906E-02 

0.145820E-04 
-0 -189803E-04 

-0.189372E-05 
0.851596E-07 

0 -145812E-04 
0.171491E-03 
0.357172E-04 

-0.143816 E-02 

-0.143817E-02 
-0.264567E-02 

0.357162E-04 

Om 1458  10E-04 
0.171490E-03 

-0.189371E-05 
0.851621E-07 

0.851477E-07 
0.160910E-06’ 

-0.189804E-04 
-0.403971E-04 
0.239724E-03 
0.105699E-02 

0.105699E-02 
0.159267E-02 

0.239723E-03 
-0.403977E-04 
-0.189804E-04 

0.851517E-07 
0.160911E-06. 

c 

- 0 ~ 6 1 3 3 6 3 E - 0 2  
0.864866E-02 

-0.113625E-01 
3.137227E-01 

-0 .143766t -01  

-0 -826582 E-03 
0 .  111293E-01 

0.130282E-02 
-0.292059E-03 

0.100263E 01 
-0.178754E-03 

-0.458554E-03 
0.110793E-02 

0.105644E-01 
-0.135230E-01 

-0.956113E-02 
0.124684E-01 

0.615787E-02 
-0.286662E-02 

t 

-0.474950t-32 
0.617515k-)Z 

-0.759114E-02 
0.861436E-32 

-0-852288E-32 

-0 -602300E-3 3 
0.641693E-07 

0.475957E-33 
-0.172962E-32 

-0.158190E-32 
-0.246092E-5 3 

-0.128206E-03 
0.248553E-3 3 

0.573408E-32 
-0.750595E-52 

0.715635E-02 
-0 -558962E-3 2 

0.355146E-32 
-0.155308E-02 

-0 .159342t -02  
0 .160198t -02  

-0-138257E-02 

-0.121410E-03 
0.873944E-03 

-0.559615E-03 
-0.240482E-03 

0.405336E-03 
0.530685E-03 

0.113352E-02 
0.431565E-03 
0.222650E-03 

-0.107241E-02 
0 -348056 E-04 

0.575967E-03 
-0.334558E-04 
-0 .232351t -03  

0.229146E-03 
-0 .903530t -04  

-0.367183E-03 
0.143817E-03 

-0.74339YE-03 
0.597621E-33 

0-554047E-03 
-0.187813E-03 
0. 724b08E-06 

-0.218473E-03 
-0.46c’Y68t-03 
-0.619821E-03 
-0.276147E-03 
- 0 ~ 1 3 7 9 4 l E - 0 3  

-0.347991E-03 
0.243648E-C3 

0.846770t-03 
-0.Y65414E-03 

-0.515Y32E-03 
0. 8CCI 52E-03 

0 .221738t -03  

-U.787302E-O4 
d.139719E-03 

-0 -646202E-04 
3.291746E-03 

-0.524485E-03 
0 -497826 E-03 

-0.609808E-03 
-0.176470E-03 

~x.624410E-02 
C.107933E-01 

-0.891139E-03 
3.601419E-02 

-0.32121YE-03 
0.494597E-03 

-6.538528E-03 
0.365733E-03 

-0.181203E-03 
0.734335E-04 

-0.299074E-04 

-0.713078E-04 
0 .994637t -04  

-0.825182E-04 
-0.321593E-04 

0.280924E-03 
-0.529216E-03 

-0.676552E-04 
0.648627E-03 

-0.829096 E-02 
-0.139117E-01 
-0.792788E-02 

0.356984t-03 

-0.497626E-03 
C.814399E-03 

-0.199897E-05 
0.219587E-03 

-0 .965190t -04  
0.954887E-04 

-0 -449883 E-04 

-0.522314E-04 
0.121408E-04- 

0.954837E-04 

-0.319643E-04 
-0.957433E-04 

0.295783E-C3 
-0.738702E-05 

0.817899E-03 
0 A 3 2 2 4 4  E-02 

0.776092E-02 
0.131143E-C1 

0.237607E-03 
-0.966814E-03 

0.315906E-03 
0.955981E-05 

-0.117244E-03 

-0.740222E-04 
0.113540E-03 

0.321043E-04. 

(123) 69 
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decomposition procedure (93) - (96) is inadequate  to 
provide  these  operators.  Let 

2.8305 4.14922 2.6973 0.65610 
11.2267 16.65830 10.9593 2.69730 
16.6583 25.01840 16.6583 4.14922 
10.9593  16.65830 11.2267 2.83050 
2.6973 4.14922 2.8305 0.72250. 

+. 

t (124) 

The function c has been constructed by the  cascaded 
convolution 

'km,n = 3k-m,-n, m 1 0, n E 0, (126) 

and ' k  is given  by  Eq. ( 1 18). 
From  Eq. (125) it is evident  that  our  procedure  is not 

adequate  to find the optimal  decomposition of c. In  the 
cepstrum domain  this is reflected by the  fact  that 6 is 
identically zero  for all 

( m ,  n j  E { ( m ,  n): m > 0 A n < 0 V rn < 0 A n > O}. 
S127) 

For illustration a subarray of the  approximate  cepstrum 
g is given here. 

10.3280506 0.0000012 -0.0000008 -0.0000002 0.0000004 
0.4860004 -0,00000 13 0.0000008 0.0000001 -0.0000003 

-0.8100015 0.0000028 -0.0000022 0.00000l3 -0.000001 1 

- 

1.7999992 -0.0000015 0.0000008 0.0000001 4.0000003 
-0.0000005 1.7999954 4.8099970 0.4859967 4.3280469 + 

1.7999992 0.0799982 -0.0719988 0.0647995 4.0583197 
-0.8100015 4.0179969 0.0631976 -0.0554384 0.0485987 

0.4860004 0.0647983 4.0554389 0.0473463 4.0403558 
--0.3280506 -0.0583 183 0.0485989 -0.0403555 0.0333769- 

t 
(128) 

In spite of the aforementioned  inadequacy it is inter- 
esting to  decompose c using Eqs. (93 ) - (96). This  means 
that we look for a decomposition  according to 

c = 'k' Y ' k t  Y 3kt 4k' (129) 

rather  than according to  Eq. (125). I t  can  be  concluded 
from (125) and (127) that 'k' and 4k' are 2 X 2 operators, 
where 

2km,n' = 'km,03ko,a (130) 

and 
4 ,- '  

The  operators 'k' and ' k ' ,  however, may be of infinite 
size  since 'k' could be obtained  by  recursively filtering 
'k Y ' k  with 

{2km,-n' >ma,. (132) 

The numerical results  are in accordance with these  facts. 
Operator ' K  has a distinct cutoff beyond IV = 1, n = -1, 
whereas 'K slowly decays in the  lower ,right submatrix, 
thus making a larger matrix desirable: 

km,n - k-m, -n ' .  (131) 

nsO 

1.000000 0.899998 -0.536E-6 -0.238E-6 +- 

0.899999 0.889996 -0.1  13E-5  0.477E-6 
4 . 1  13E-5  0.358E-6 0.001600 -0.001440 ' 

I K =  I -0.477E-6 0.596E-6  -0.D01440 0.001296 1 
K =  [ 

t (133) 

-0.238E-6 -0.536E-6 0.899998 1.000000 + 

2 .  0.617E-6 -0. IOOE-5 0.809996 0.899999 
0.772E-7  -0.185E-6 0.458E-6 -0.113E-5 
0.249E-6 -0.442E-7 0.8 1qE-6 -0:477E-6 I . 

(134) 

Nevertheless,  the  performance of this  solution is not 
so far  from  the optimum. This  property  can  be  seen from 
the  arrays esub [Eq. (135)] and bsub [Eq. (136)], which 
have  the  same meaning as in Example 2. 

t 

(135) 
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0.504769E-05 

-0.385113E-34 
0.308633E-94 

-0.892836E-04 

-0.148699E-32 
0.519752E-33 

0.332353E-02 
-0.561980E-3  2 

-0.114254E-31 
0.904012E-02 

-0.114250E-31 
0.1438ME-3 1 

-0.614329E-02 
0.874132E-32 

-0.316373E-32 
0.437045E-32 

-0.156502E-32 
0.229929E-02 

0.816697E-03 

-0.490645E-04 
0.624132E-05 

0.772769E-04 

-0; 3431696-03 
0.404467 E-05 

0.115089E-02 
-0.272302E-02 

0.469004E-02 
-0.764826E-02 

-0.121632E-01 
0.965816E-02 

0.837923E-02 
-0.503256E-02 

0.321013E-02 
-0.212724E-02 

0.151765E-02 
-0.116076E-02 

0.855297E-03 
-0.4773a0~-03 

t 

Concluding remarks 
An  unstable  recursive filter with a finite number of co- 
efficients always  has  an infinite number of decomposi- 
tions  into  four  stable  recursive filters,  provided it has a 
nonzero  frequency  response with zero phase. The de- 
composibility is proved in this paper by means of a  new 
criterion that  relates  the stability of a recursive filter to 
the  properties of its cepstrum.  One might say  that this 
stability criterion,  compared to that of Shanks,  has  the 
advantage of being constructive, i.e., it permits the speci- 
fied filter to be decomposed  as  exactly  as is desired. 

Two  questions remain unanswered: 

1. Under what  suppositions is it possible to  decompose 
exactly  an  unstable  recursive filter into stable recur- 
sive  filters that  have a minimum finite number of co- 
efficients; and what is the number of these coefficients? 

2. If such a decomposition exists, how can it be found? 

In spite of these  unanswered  questions,  the  results 
given here  are of practical  value, as  can be seen from the 
application of two-dimensional recursive filters to radio- 
scintigraphic  images [ 1 1 ,  171. These filters have their 
theoretical foundation in the  results of this  paper. 
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