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Numerical Calculation of Normal Modes for
Underwater Sound Propagation

Abstract: Hartree’s method for calculation of atomic wave functions is applied to the Schroedinger-like normal mode equation for
underwater sound propagation. Rapid convergence was obtained for the twelve normal modes at five Hertz with a typical velocity profile.
The normal modes are given, along with an example of the pressure field, and a means for numerical calculation of the near field modes is

suggested.

Introduction

The ray theory for propagation of underwater sound be-
comes inapplicable when the wave length is commen-
surate with the spatial fluctuations of the sound speed. In
this case the sound pressure field propagating from a
single-frequency point source can be found from the
wave equation if one knows the sound velocity and
density of the medium throughout the region of interest,
as well as the location of the region’s boundaries. This
problem can be solved numerically by finite difference
methods [1]. One would like, however, to find closed-
form solutions to the propagation equations. If found,
they usually offer improved insight into the physics of the
processes involved.

Much work along these lines has been done. Ep-
stein [2] found closed-form hypergeometric solutions to
a particular form of velocity profile having no lower
boundary. Pekeris [3] solved the propagation problem
for a constant velocity profile with several discontinuities.
Other solutions have been found following previous work
in radio wave propagation [4].

A useful formal solution to the problem has been found
in terms of the normal modes [2,4-12]. If the velocity
profile is a function only of depth, the wave equation is
separable into functions of depth and functions of range.
The functions of range are the well-known Hankel func-
tions. If one can ignore the near field, the functions of
depth are the normal mode functions, which are solutions
to a Schroedinger-like equation. One need, then, only
solve a one-dimensional differential equation similar to
that for. the forced vibrations of a nonuniformly suspended
string.

JANUARY 1974

Both exact and approximate solutions for the normal
modes have been obtained [2,4, 6, 13]. Pedersen and
Gordon [7] use Airy functions, which are solutions for a
piecewise linear velocity profile. Nicholas [10] uses
Hermite functions for a parabolic profile and applies
perturbation theory to approximate solutions for other
profiles. Williams [11,12] solves for a constant velocity
profile and uses perturbation theory to obtain approxi-
mate solutions for other profiles.

The approach in this paper is to solve the Schroedinger-
like normal mode equation with a method used by Har-
tree and others [14-17] to calculate atomic wave func-
tions. With this shooting method one can compute, with
relative ease, the normal modes to any desired accuracy
for any depth-dependent velocity profile. It is possible to
include density in the equations so that the characteris-
tics of the bottom can be more accurately modeled. No
formal comparison was made between this and alternative
methods of computing sound pressure fields. However,
information on the accuracy and convergence properties
is presented to give other researchers an idea of the ap-
propriateness of the method for their applications.

Basic equations
The homogeneous sound wave equation, in a region with
no source, is given by {3-6,10,13]

(1)

where ¢ is the velocity potential, ¢ is time, V* is the La-

UNDERWATER SOUND PROPAGATION




54

placian operator, and ¢ is the sound velocity. The dis- .

placement rate dd/dr¢ and pressure p are related to ¢ by

od_
FTRA (2)
and
d
p=pa—?, (3)

where d is the displacement vector, V is the gradient op-
erator, and p is the density, which is constant except for
possible discontinuities. At any boundary for which ¢ or
p is discontinous, the pressure must be continuous; i.e.,

0% _ 99,
Py ot P TR 4)

and the velocity normal to the boundary must be con-
tinuous; i.e.,

n-Vé, =n- Vo, (5)

where the subscripts 1 and 2 indicate the two sides of the
boundary and n is a vector normal to the boundary.

The field near a simple harmonic point source is given
by [3-6,13]

N

o(r, z, 1) =— -
[F+ (z—2z)7]

o=

1
c(z,)

X V2 cos w{r — F+(z— 20)2]%}, (6)
where r and z are cylindrical coordinates, ¢ is assumed to
be a function only of z, w is angular frequency, and the
source coordinates are (r, z) = (0, z,). The coefficient §
is, from (3) and (6),

_RIP(R. 2, )

7
P (7)

where R is some distance close to the source, the bar in-
dicates a time average, and p is a function only of z. One
chooses the cylindrical system with the origin at the water
surface so that z represents depth and r represents range.

The point source expression (6) satisfies the inhomo-
geneous equation [2,5,10,12]

[ ——‘—‘9—2] (.2 1)

c(z)® of
=—258—(rr18(z—z0) V2 cos wt, (8)

where 8(r) and 8(z — z,) are Dirac delta functions. The
object of subsequent analysis is to find a solution to (8)
that matches the required boundary conditions.

The sound field ¢(r, z, t) can be represented conven-
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iently by the complex spatial function ¢s(#, z) that appears
in the expression

o(r, z,1) = Re [V2 S ¢(r, 2) exp (—iwt)], 9)

where Re indicates that the real part is to be taken. The
field near a simple harmonic point source is

exp {i C(aéo) ¥+ (z— zo)g]%}

P(r, 2) = - ) (10)
[ + (z = 2,) )7
and the equation to be solved becomes
2
[liri+a—2+k2(z)] w(r,2)
r or or 0z
=220 5, ), (11)

where the V* operator has been expressed in cylindrical
coordinates and

k(z) = w/c(2). (12)

Let v(a, z) be the Bessel transform [6,18] of ¢(r, z)
such that

00

Y(r, z) =f v(a, z) Jylar)a da. (13)

0

When one puts (13) into (11) he obtains

r {[_az +i+ kZ(Z)] ve, z)}Jo(ar)a do

0 azz

——Z{S(Tr)ﬁ('z——zo). (14)

Because the Bessel transform implies

Fla')= fw [fw F(a) J,(ar)a da] J(a'r)r dr, (15)

0 0

one may multiply (14) by J,(a'r)r dr and integrate to get

[—~a2+ s +k2(z)]v(a,z) =-28(z—2z,), (16)

&z
which is an equation for the forced vibration of a non-
uniformly suspended string.
Let v be the sum of a continuous part w and a discrete
part u:

via, z) = wla, 2) + Y a,(a)u,(z). (17)
Let u,(z) be the eigenfunctions of

d | s .
[—;+k (z)]u,,(z) =y, u,(2), (18)
dz

which is a Schroedinger equation. One can require

fw un(z)un’(z)dz=6nn’ (19)

0
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and

0

fm u,,(z)[—a2+ai2—+k2(z)]w(a, 2)dz=0, (20)
Z

because the u,(z) are discrete eigenfurictions of the left
side of (16) and the (e, z) can be expressed in terms of
orthogonal continuous eigenfunctions of the left side of
(16). Now, putting (17) into (16), multiplying by ,(z),
and intergrating over z from 0 to %, one gets

a,(a) (" +v,") =2 u,(z,), (1)
which, when solved for a, (a) and used in (17), gives
u,(z,)

vie, 2) = wle, 2) +23 ———
n & —%Y,

u,(2). (22)

Putting this into (16), one obtains the following equa-
tion for the continous part:

[5—; + K (2) — aZ]W(“’ 2)

==28(z—zy) +2 3 u,(zy)u,(z). (23)

When one solves (18) and (‘23) for u and w, he may put
them into (17) and (13) to obtain

b(r, 2) =f wla, z)J (ar)ada

+2 Zfo M 4, (2y) 1, (2). (24)
n o =,

Now, because J,(ar)=3i[H," (ar) — H," (—ar)],
where H," (ar) is a Hankel function, one may write

2[” Jo(ar)ada_J'w H,"(ar)ada
0 2 2 aZ

2
@ — Yy e —yn

=iaH," (y,r), (25)

where the path of integration was taken to be consistent
with the radiation condition [4,6,12,13,18],and H,"’ (i)
= (. The final solution is, therefore [4-7,9,10,12,13,19],

00

w(r, 2) =f w(a, z) J,(ar)ada

0

+im > H\ " (y,riu, (z,)u,(2). (26)

In summary, the pressure field is implied by (3), (7)
and (9). One first solves the eigenvalue problem (18) for
v, and u,(z) by a conventional method, such as the shoot-
ing method. This gives the discrete part of s in (26). The
continuous part can usually be igriored in the far field
[(11-131. If one wishes to calculate the continuous part,
however, he may do so by numerically integrating (26)
overa and (23) over z.
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Shooting method
The eigenfunctions «,(z) of (18) are solutions to the
Schroedinger-like equation

d 2 2 '
[—.;+k (z)]u(z)—vu(z). (27)

dz
This equation can be solved numerically with a shooting
method which has been used successfully [14~-17] to
calculate atomic wave functions.

The boundary conditions on u(z) are given by (4) and

(5):

P, = p,it, (28)
and

du, du,

& T d (29)

Although it is not necessary to do so, it will be assumed
that p is constant over the semi-infinite interval 0 <
z < w0, At z = 0 (the surface), the pressure is assumed to
be zero. This implies #(0) = 0 as a boundary condition.
1t is also required that u (=) = 0.

These two boundary conditions imply that solutions of
(27) exist only for certain discrete values of ¥". One
tries different values of y° in succession and numerically
intégrates (27) from the left () and from the right (ug)
until these two solutions and their derivatives match at a
fitting point. This point z; is chosen near the rightmost
zero of ¥° — k*(z). Because the starting values from the
left and right are chosen to match the boundary condi-
tions, one has solutions for «(z) and ¥°.

One desires a variation in yz, ie., 8(72), to cause the
quantity (1/u)(du/dz) to match on the left and on the
right of zy. This may be stated in variational notation as
follows:

1 du, 1du) (1 duyg 1 duR>
(”L dz >F+ 8(“1, dz )F_ (”R dz >F+ 8(“1{ dz /¢ (30)

First, take the variation of (27),

2
A Su+ Kou = ub(y*) + du. (31)
dz
Multiplying (31) by u, (27) by 6u, and subtracting, one
obtains

2 2
W8 (y) =ud—.8u—6ud—‘u
4 d7 d7
zdiz (ub“é—tzl—z—bz’ 8u>. (32)

Now, integrating (32) on the left and taking note that
u; (0) = 0, one gets
1 du,

8(v") J:)zF u'dz = lth(zF)rS(u—L 4z )F. (33)
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Sound speed (km/s)

Depth (km)

Figure 1 Sound speed profile.

Table 1 Eigenvalues vy, of the twelve normal modes.

n Eigenvalue (km™)

20.97752000
20.81573370
20.68162562
20.56654163
20.46806597
20.37328392
20.26305241
20.12940776
19.97451506
10 19.80292468
11 19.61546118
12 19.41695439

OO~ RWN—

n=1

Uy
f=1

2+

u3(10_2 m*2)

-3 L ! | i

Similarly, on the righi, one obtains

oy [ gyt 1 dug
307 | il = (3= G2).. (34)

One can now solve (30), (33) and (34) for§(y*):
o0 =), ~ () )/

[ 21 fF w'ldz + 21 J uRZdz}, (35)
u, (zg) Jo up (zr)

*F

which gives the change in ¥* required to improve the
match of (1/u)(du/dz) at zz. The integrals in (35) can
be calculated by numerical integration at the same time
as u;.(z) and uz(z). They can also be used to normalize
u(z).
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Depth (km)

Figure 2 Normal mode functions n = 1,2,3.

The infinite integral from z; to % can be handled in the
following manner. Assume that the velocity is constant in
the bottom boundary material, i.e., 1 (z) = kg for
zr < zg =< z < », Then (27) can be solved exactly in this
region:

ug(z) = up(zg) exp [_(72 - sz)%(Z —z8)],
¥ > k. (36)

Note that ug () = 0 is satisfied. The integral in (35) can
therefore be calculated with the aid of (36).

Results
The shooting method just described was used to calculate
the normal mode functions u,(z), i.e., the eigenfunctions,
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for a sound speed profile given by Williams {12]. This
profile is shown in Fig. 1. Note that the sound speed in
the bottom is 1.62 km/s. One hundred points were taken
from the speed curve and Eq. (27) was numerically in-
tegrated with a fourth-order Runge-Kutta method and a
step size of 0.1 km at a frequency of 5 Hz.

The integrals in (35) were calculated from the left and
from the right, as were u;(z) and ug(z), with Runge-
Kutta integration. The starting values on the left were
u . (0) =0 and (du,./dz),_,= 1, the initial slope being
arbitrary. The slope was normalized after each iteration.
The starting values on the right were ug(zg) = 1 and
(a'uR/afz)z:zB as determined by (36). The value of ux(zz)
was normalized after each iteration. The normalization of
the function «,(z) satisfies (19) and was easy to perform
using the integrals calculated for (35). Equation (35)
gave fairly rapid convergence, i.e., 5 to 10 steps for the
desired accuracy.

Twelve eigenfunctions u,(z), i.e., normal mode func-
tions, and their associated eigenvalues y, were found.
The eigenvalues are shown in Table 1. The first three
eigenfunctions are also shown in Fig. 2. No more than
twelve discrete modes are possible for this case.

A sample calculation of the sound pressure field was
made with the source at a depth of 0.1 km, the field point
at a depth of 1.2 km in the sound channel, and a range of
50 to 150 km. Equation (26) was used to perform the
calculation. The continuous near-field term was ignored
and the Hankel function was approximated with

H,"(y,r) ~ \/;3: exp [i(ynr ——Z—)]. (37)

The results are shown in Fig. 3.

Accuracy

Given that there is no error in the integration of Egs. (27)
and (35), the difference in y between successive itera-
tions is a measure of error as well as of convergence
[20]. This difference became less than 10~ percent
(ten place accuracy) and remained so for all modes.

The equations, however, were integrated numerically
by the standard fourth-order Runge-Kutta method. An
estimate of the integration error can be obtained by ex-
amining the size of the fifth-order term and its effects.
This gave an error of less than 10~ percent in u for the
lower-order modes. Typically, for a Rayleigh quotient
such as Eq. (35), the error in the eigenvalue is of second
order if the error in the eigenvector is of first order. This
implies an error in y of less than 107° percent for the
lower-order modes. For the twelfth and highest mode, the
error was estimated to be less than about one percent for
u and, correspondingly, less than 0.01 percent for y.

A step size of 0.1 km was used for the integration,
which implies a total of 50 steps for one iteration of each
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Figure 3 Sound pressure field at 5 Hz; source depth 0.1 km;
field depth 1.2 km.

mode. A maximum of ten iterations per mode was re-
quired. Because there were twelve discrete modes, and
twelve only, this gives a total of 6000 numerical integra-
tion steps for the entire calculation at 5 Hz. At higher
frequencies one must decrease the step size proportion-
ately as the minimum wave length (wave length of the
highest order mode) decreases. The total number of
discrete modes present is also proportional to the fre-
quency. These two facts imply that the number of cal-
culations increases with the square of the frequency, e.g.,
for 50 Hz, 600 000 integration steps would be required if
one desired to calculate all of the approximately 120
modes.

Equation (35) could also be applied to piecewise exact
solution methods [7], thus eliminating numerical inte-
gration error. The numerical approach, however, has the
advantage that complex velocity profiles may be more
easily specified. One does not have to conform the pro-
file to a limited set of straight line regions, for example.
Each intermediate integration step in such a region can
have a different value of velocity.

One can improve the accuracy of the numerical ap-
proach by simply increasing the number of steps or by
using more efficient integration techniques, e.g., variable
step Runge-Kutta or Adams methods. In the application
of Eq. (35) by numerical integration, no problem was
encountered with convergence or the identification of
modes, as was reported with Newton’s method for finding
eigenvalues in piecewise exact solutions [7].

57

UNDERWATER SOUND PROPAGATION




58

Concluding remarks

Hartree’s iterative shooting method was found to be use-
ful in calculating normal mode eigenfunctions at low fre-
quencies, e.g., 5 Hz. When the Runge-Kutta or a similar
integration method is used, there is no limitation on the
shape of the velocity profile. The profile can be described
and the mode functions can be calculated as precisely as
desired. It is possible to include density in the equations,
so that the characteristics of the bottom can be more ac-
curately modeled.

The sound field in Fig. 3 can be considered to be only
representative of any real field. The errors in describing
and measuring such quantities as the sound speed, even
though small, can change the function in Fig. 3 consider-
ably.

The curve does show what general properties one
would expect to find in a real field. For example, it is
possible for the sound energy received from a source to
drop 60 dB in 5 km at 5 Hz. Such low energy points are
extreme, but infrequent. ’

This method assumes the velocity to be a function of
depth only. If one wishes to be more realistic and in-
clude range dependence, he must turn to other methods
[1,8].

Expressions for the numerical calculation of the near
field modes appear in (23) and (26). Such calculations
were not done in this study, but are relatively straight-
forward.
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