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Numerical  Calculation of Normal  Modes  for 
Underwater  Sound  Propagation 

Abstract:  Hartree's  method for calculation of atomic wave functions is applied to the Schroedinger-like normal mode equation for 
underwater sound propagation.  Rapid convergence was obtained for the twelve normal modes at five Hertz with a typical velocity profile. 
The normal modes are given, along with an example of the pressure field, and a means for numerical calculation of the near  field modes is 
suggested. 

Introduction 
The ray  theory for propagation of underwater sound be- 
comes inapplicable  when the  wave length is commen- 
surate with the spatial  fluctuations of the sound  speed. In 
this case  the sound pressure field propagating from a 
single-frequency  point source  can be  found  from the 
wave  equation if one knows the sound  velocity  and 
density of the medium  throughout the region of interest, 
as well as  the location of the region's boundaries. This 
problem can  be solved numerically by finite difference 
methods [ 1 1 .  One would like, however,  to find closed- 
form  solutions to  the propagation  equations. If found, 
they usually offer improved insight into  the physics of the 
processes involved. 

Much work along these lines has been done. Ep- 
stein [2] found  closed-form  hypergeometric  solutions to 
a particular form of velocity profile having no lower 
boundary. Pekeris [3]  solved the propagation  problem 
for a constant velocity profile with several  discontinuities. 
Other solutions have been  found following previous work 
in radio wave propagation [4]. 

A useful  formal  solution to  the problem has been  found 
in terms of the normal  modes [2 ,4 -  121. If the velocity 
profile is a function  only of depth,  the wave  equation is 
separable  into  functions of depth  and  functions of range. 
The  functions of range  are  the well-known Hankel func- 
tions. If one  can ignore the  near field, the  functions of 
depth  are  the normal mode  functions, which are solutions 
to a  Schroedinger-like  equation. One  need,  then, only 
solve a one-dimensional differential equation similar to 
that for. the forced  vibrations of a nonuniformly  suspended 
string. 

Both exact  and  approximate solutions for  the normal 
modes have been  obtained [2 ,4,6,13] .  Pedersen and 
Gordon [7] use Airy functions, which are solutions for a 
piecewise linear velocity profile. Nicholas [ 101 uses 
Hermite  functions  for a  parabolic profile and applies 
perturbation  theory  to  approximate solutions for  other 
profiles. Williams [ 1 1,121 solves  for a constant velocity 
profile and  uses  perturbation  theory  to  obtain approxi- 
mate solutions for  other profiles. 

The  approach in this paper  is  to  solve  the Schroedinger- 
like normal  mode equation with a method  used by Har- 
tree  and  others [ 14- 171 to calculate atomic  wave func- 
tions. With this  shooting method  one  can  compute, with 
relative ease,  the normal modes  to any desired  accuracy 
for  any  depth-dependent velocity profile. I t  is possible to 
include density in the  equations so that  the  characteris- 
tics of the  bottom  can be more  accurately modeled. No 
formal comparison  was  made  between this and  alternative 
methods of computing  sound pressure fields. However, 
information on  the  accuracy  and  convergence  properties 
is presented  to give other  researchers  an idea of the ap- 
propriateness of the method for  their applications. 

Basic  equations 
The homogeneous  sound wave  equation, in a region with 
no  source, is given by [ 3 - 6,10,13] 

where is the velocity  potential, t is time, V2 is the  La- 53 
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placian operator,  and c is the sound  velocity. The dis- 
placement rate a d / a t  and  pressure p are related to + by 

and 

a+ 
P = P a t '  

where d is  the displacement vector, V is the  gradient op- 
erator,  and p is the  density, which is constant  except  for 
possible  discontinuities. At any  boundary for which c or 
p is  discontinous,  the  pressure must  be continuous; i.e., 

and  the velocity  normal to  the  boundary  must be  con- 
tinuous; i.e., 

n . V+, = n . V+*, ( 5 )  

where  the  subscripts 1 and 2 indicate the  two  sides of the 
boundary and n is a vector normal to  the  boundary. 

The field near a simple harmonic  point source is given 
by [3-6,131 

+ ( r ,  z ,  t )  = 
S 

[ 9  + ( z  - Z , ) ' ] t  

X *cos o { t  -" [r' + ( z  - z,)'$}, (6) 

where r and z are cylindrical coordinates, c is assumed  to 
be a function  only of z, o is angular frequency,  and  the 
source  coordinates  are ( r ,  z )  = (0, z,). The coefficient S 
is,  from ( 3 )  and (6 ) ,  

c (z,) 

where R is some  distance  close  to  the  source,  the  bar in- 
dicates a  time average,  and p is a  function only of z. One 
chooses  the cylindrical system with the origin at the  water 
surface so that z represents  depth  and r represents range. 

The point source  expression (6) satisfies the inhomo- 
geneous equation [2,5,10,12] 

- - -1 + ( r ,  z ,  t )  
1 a' 

c(z) '  at' 

= -2s + 6 ( z  - z,) -cos wt,  ( 8 )  
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where 6 ( r )  and 6 ( z  - z,) are  Dirac  delta functions. The 
object of subsequent  analysis is to find a solution to ( 8 )  
that  matches  the required boundary conditions. 

The sound field + ( r ,  z ,  t )  can  be  represented  conven- 

iently by the  complex spatial  function $( r ,  z )  that  appears 
in the  expression 

+ ( r ,  z,  t )  = Re [ a s  $ ( r ,  z )  exp ( - io t ) l ,  (9)  

where  Re indicates that  the real part  is to be taken.  The 
field near a  simple  harmonic  point source is 

and  the  equation  to be  solved becomes 

where  the V' operator  has been expressed in cylindrical 
coordinates  and 

k ( z )  = o / c ( z ) .  (12) 

Let u(a, z )  be the Bessel  transform [6,18] of $ ( r ,  z )  
such that 

+ ( r ,  z )  = 1 u(a, z )  J , (a r )a  da. (13) 

When one  puts ( 13) into ( 1 1 ) he  obtains 

Because  the Bessel transform implies 
r m  r rm 1 

F(a ' )  = J, LJ F ( a )  J,(ar)a da J o ( a ' r ) r   d r ,  (15 )  
0 J 

one may multiply (14) by J , (a ' r ) r   d r  and integrate to get 

(16) 

which is  an  equation  for  the  forced vibration of a non- 
uniformly suspended string. 

Let u be the  sum of a continuous  part w and a discrete 
part u:  

u(a, z )  = w ( a ,  z )  + a,(a)u,(z) .  
n 

Let u,(z) be  the eigenfunctions of 

which is a  Schroedinger equation.  One  can  require 

1 u,(z)u,,(z)dz = 6,,, 
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and Shooting method 

6 [ a z  1 
because  the u,(z)  are  discrete eigenfunctions of the left [5+ k~(Z) ] l l (Z )  = Y " U ( Z ) .  (27 
side of (16) and the w ( a , z )  can be expressed in terms of 
orthogonal  co&nuous  eigenfunctions of the  left side of This equation can be solved numerically with a shooting 
(16).  Now, putting (17) into (16), multiplying by u, (z ) ,  method which has been used s~ccessf~ l lY [ 14- 171 to 
and  intergrating over z from 0 to co, one  gets calculate atomic  wave functions. 

The boundary  conditions on 11 ( z )  are given by (4)  and 

aZ The eigenfunctions u,(z)  of ( 18) are solutions to  the 
u,(z) -aZ + Y + ~ * ( Z )  ~ ( a ,  z )dz=O,  (20) Schroedinger-like equation 

a,(a) ( - 2  + yn') = -2 u,(z,), (21 )  (5):  

which, when solved for a n ( a )  and used in ( 17), gives 
P1"I = PZL', (28) 

Putting  this into  (16),  one  obtains  the following equa- 
tion for  the  continous  part: 

[-& d Z  + k"z) - ,.],,(a, i) 

= "2 * ( z  - z,l + 2 u,(z,)u,(z). (23) 
n 

When one  solves (18)  and  (23)  for u and w, he may put 
them  into (17)  and  (13)  to obtain 

$ ( r ,  z )  =I w ( a ,  z ) J , (ar )ada  

(24 

and 

du,  du, 
dz  dz ' 

_" - 

Although it is not necessary  to  do so, it  will be  assumed 
that p is constant  over  the semi-infinite interval 0 < 
z < a. At z = 0 (the  surface),  the  pressure is assumed to 
be zero.  This implies u ( 0 )  = 0 as a  boundary  condition. 
It is also required that u ( m )  = 0. 

These two  boundary  conditions imply that solutions of 
(27)  exist only for  certain  discrete values of y'. One 
tries different values of y 2  in succession and numerically 
integrates (27) from the left (ul.) and  from the right (uR)  
until these  two solutions  and  their derivatives match at a 
fitting point. This point z F  is chosen  near  the rightmost 
zero of $ - k2 ( z ) .  Because the starting  values  from the 
left and  right are  chosen  to match the boundary  condi- 
tions,  one  has solutions for u ( z )  and y 2 .  

One  desires a  variation in y 2 ,  i.e., 6(y')), to  cause  the 
quantity ( 1 / u )  ( d u l d z )  to match on  the left  and on the 
right of zF. This may be stated in variational  notation as 
follows: 

where  the path of integration was  taken  to be consistent  First, take the variation of (27) ,  
with theradiationcondition [4,6,12,13,18],andH,'"(ioo) 
= 0. The final solution  is, therefore  [4-7,9,10,12,13,19], - d2 6~ + k'Su = uS(y') + ~ ' S U .  

dz' 

$ ( r ,  z )  = 6 w ( a ,  z )  J , (ar )ada  Multiplying ( 3  I )  by 11,  (27) by 6u, and  subtracting, one 

+ ~ , " ~ ~ y , r ~ u , ~ z , ~ ~ n ~ z ~ .  (26) 
obtains 

n 2 2  dZ  
u* (y )=u , *u -6u -  d2u 

In summary, the  pressure field is implied by (3 ) , (7) dz dz' 
and (9).  One first solves  the eigenvalue  problem ( 18) for 
y ,  and u,(z)  by a conventional method, such as  the shoot- 
ing method. This gives the  discrete part of $ in (26).  The 
continuous part can usually be ignored in the  far field 
[ 1 I - 131. If one wishes to calculate the  continuous  part, 

= d (us & - & *,). 
dz  dz  dz (32) 

Now, integrating (32)  on  the left and taking note  that 
uI,(0) = 0, one  gets 

however,  he may do so by numerically integrating (26) a($) JF u,dz= u ~ ' ( z F ) 8  . 
over a and  (23 ) over z. 0 (:L, % )F 

(33) 
56 
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Figure 1 Sound speed profile. 

Table 1 Eigenvalues yn of the twelve normal modes. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

20.97752000 
20.81573370 
20.68162562 
20.56654163 
20.46806597 
20.37328392 
20.26305241 
20.12940776 
19.97451506 
19.80292468 
19.615461 18 
19.41695439 

3 

I DepthW) 

Figure 2 Normal mode functions n = 1,2,3 

Similarly, on  the right, one  obtains 

Onecannow solve (30),  (33)  and  (34)  for8(-y2): 

(34) 

[" J'" u:dz + - 6 u;dz], (35) 

which  gives the  change in y" required to  improve  the 
match of ( l / u )  ( d u l d z )  at zF. The integrals in (35)  can 
be  calculated by numerical  integration at  the  same time 
as uL(z)  and u,(z). They  can  also be  used to normalize 

uL2(zF) 0 u: (ZF) 

U(Z). 

The infinite integral from zF to m can be  handled in the 
following manner. Assume  that  the velocity is  constant in 
the bottom  boundary  material, i.e., k ' ( z )  = kBZ for 
zF < zB 5 z < m. Then  (27)  can be  solved  exactly in this 
region: 

Note  that uR(m) = 0 is satisfied. The integral in (35)  can 
therefore  be calculated  with the aid of (36). 

Results 
The shooting  method just  described  was used to calculate 
the normal  mode functions u, ( z ) ,  i.e., the eigenfunctions, 
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for a sound  speed profile given by Williams [ 121. This 
profile is shown in Fig. 1 .  Note  that  the sound  speed in 
the bottom is 1.62 km/ s. One  hundred points were  taken 
from  the speed curve  and  Eq.  (27)  was numerically in- 
tegrated with a fourth-order  Runge-Kutta method and a 
step size of 0.1 km at a frequency of 5 Hz. 

The integrals in (35)  were calculated  from the left and 
from the right, as  were u L ( z )  and u R ( z ) ,  with Runge- 
Kutta integration. The starting  values on  the left were 
uL(0 )  = 0 and ( d ~ ~ / d z ) , , ~ =  1 ,  the initial slope being 
arbitrary.  The slope was normalized after  each iteration. 
The starting  values on  the right were u R ( z B )  = 1 and 
( d ~ ~ / d ~ ) , = , ~  as  determined by (36) .  The value of uR(zB)  
was normalized after  each iteration. The normalization of 
the function u,(z)  satisfies (19) and  was  easy  to perform 
using the integrals  calculated for  (35).  Equation  (35) 
gave fairly rapid convergence, i.e., 5 to 10 steps  for  the 
desired accuracy. 

Twelve eigenfunctions u,(z), i.e., normal  mode  func- 
tions, and their  associated eigenvalues y ,  were  found. 
The eigenvalues are shown in Table 1 .  The first three 
eigenfunctions are  also shown in Fig. 2. N o  more than 
twelve  discrete modes are possible for this case. 

A  sample  calculation of the sound pressure field was 
made with the  source  at a depth of 0.1 km, the field point 
at a depth of 1.2 km in the sound channel, and a range of 
50 to 150 km. Equation (26) was  used to perform the 
calculation. The  continuous near-field term was ignored 
and the  Hankel function  was approximated with 

Ho"'(y,r)  M exp [i(y,r -:)I. 
The  results  are  shown in Fig. 3. 

Accuracy 
Given  that  there is no  error in the integration of Eqs. (27) 
and  (35),  the difference in y between  successive itera- 
tions is a measure of error  as well as of convergence 
[20]. This difference  became less than IO-' percent 
(ten place accuracy)  and remained so for all modes. 

The  equations,  however,  were integrated numerically 
by the  standard  fourth-order  Runge-Kutta method. An 
estimate of the integration error can  be  obtained by ex- 
amining the size of the fifth-order term  and its  effects. 
This  gave  an  error of less than percent in u for  the 
lower-order modes.  Typically, for a Rayleigh quotient 
such  as  Eq.  (35),  the  error in the eigenvalue is of second 
order if the  error in the eigenvector is of first order.  This 
implies an  error in y of less than lo-' percent for the 
lower-order  modes. For  the twelfth and highest  mode, the 
error was  estimated to  be  less  than  about  one  percent  for 
u and, correspondingly, less than 0.0 1 percent  for y .  

A step size of 0.1 km was  used for  the integration, 
which implies a total of 50  steps  for  one iteration of each 

"Y ,r 
(37) 
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Figure 3 Sound pressure field  at 5 Hz; source depth 0.1 krn; 
field depth 1.2 km. 

mode. A maximum of ten  iterations  per mode was re- 
quired. Because there  were twelve discrete  modes,  and 
twelve only,  this  gives a total of 6000 numerical  integra- 
tion steps  for  the  entire calculation at 5 Hz.  At higher 
frequencies  one must decrease  the  step size  proportion- 
ately as  the minimum wave length (wave length of the 
highest order  mode)  decreases.  The total number of 
discrete  modes  present  is  also proportional to the fre- 
quency. These  two  facts imply that  the  number of cal- 
culations increases with the  square of the  frequency, e.g., 
for  50  Hz, 600 000 integration steps would be  required if 
one desired to calculate all of the approximately 120 
modes. 

Equation  (35) could also be  applied to piecewise exact 
solution methods  [7],  thus eliminating numerical inte- 
gration error.  The numerical approach,  however,  has  the 
advantage  that complex  velocity profiles may be more 
easily specified. One  does not have  to conform the pro- 
file to a limited set of straight line regions, for example. 
Each intermediate  integration step in such a region can 
have a different  value of velocity. 

One can improve  the  accuracy of the numerical  ap- 
proach by simply increasing the number of steps or by 
using more efficient integration  techniques,  e.g.,  variable 
step  Runge-Kutta  or  Adams methods. In  the application 
of Eq.  (35) by numerical  integration, no problem was 
encountered with convergence or the identification of 
modes, as  was  reported with Newton's method for finding 
eigenvalues in piecewise exact solutions [7]. 97 
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Concluding remarks 
Hartree’s iterative  shooting  method was found to be  use- 
ful in calculating  normal  mode  eigenfunctions at low fre- 
quencies, e.g., 5 Hz. When the  Runge-Kutta  or a similar 
integration  method is used,  there is no limitation on the 
shape of the velocity profile. The profile can  be described 
and  the mode  functions can be  calculated as precisely as 
desired. It  is possible to include  density in the  equations, 
so that  the  characteristics of the bottom can be  more  ac- 
curately  modeled. 

The sound field  in Fig. 3 can be  considered to be  only 
representafive of any  real field. The  errors in describing 
and measuring such  quantities  as  the sound speed,  even 
though small, can change  the function in Fig. 3 consider- 
ably. 

The  curve  does show what general properties  one 
would expect  to find  in a  real field. For example, it is 
possible for  the sound  energy  received  from  a source  to 
drop 60 dB in 5 km at 5 Hz.  Such low energy  points are 
extreme,  but infrequent. 

This method assumes  the velocity to be  a  function of 
depth only. If one wishes to-be more  realistic and in- 
clude range dependence,  he must turn  to  other  methods 
[1,81. 

Expressions  for  the numerical  calculation of the  near 
field modes appear in (23) and ( 2 6 ) .  Such calculations 
were not done in this study, but are relatively straight- 
forward. 
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