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Potential Distribution of an 
lnhomogeneously  Doped MIS Array 

Abstract: A numerical method is  used  to obtain the potential distribution of a two-dimensional,  inhomogeneously  doped MIS array 
under pulse voltage operation. The  effects  of interface charge and of impurity doping and its locations on the surface potential profile are 
presented.  The technique is useful for designing an appropriate surface potential profile for ion-implanted charge-coupled devices. 

Introduction 
In  an ion-implanted charge-coupled device [ 13, the mi- file for ion-implanted charge-coupled devices.  Results 
nority carriers  are moved along the silicon surface by PO- are obtained that  show  the effects on  the surface  potential 
tential wells formed by MIS (metal-insulator-semicon-  distribution due  to surface charges, relative  location of 
ductor)  capacitors with the  substrate nonuniformly doped  the highly doped implanted region under  the  electrode, 
along the surface.  When the  surface potential profile is and substrate doping in the  interelectrode region. 
properly  designed, a heavily ion-implanted region pre- 
vents  the  carriers from moving backward, so that in- Mathematical model 
formation  can  be  transformed  unidirectionally. The ef- Consider a general  n-electrode MIS array,  as shown in 
fectiveness of such a barrier  and  the  transfer speCd  of the Fig. 1. The ith electrode  has width Wj* and is located 
device  depend critically on  the  surface potential  distri-  a distance hi* above  the silicon surface. (The  superscript 
bution. The potential  distributions of several  semicon- * indicates an unnormalized quantity.)  The  upper  and 
ductor  devices  have been  studied [ 2  - 51. However,  these lower  half-spaces are filled with S O ,  and silicon, respec- 
analyses were limited to  either a junction FET device tively. For  convenience,  the bulk substrate  is  assumed  to 
or a MOSFET (metal-oxide-semiconductor field-effect- be  p-type and  to be doped  to a  density N A B * .  The ion- 
transistor)  device with uniformly doped  substrate. implanted or deffused region has a dopant density 

The  present  paper  describes a numerical tecHnique to NA* (x*, y* ). When  positive voltage pulses  are applied to 
study  the two-dimension  potential  and charge distri- the  electrodes,  the silicon surface is depleted.  The time 
bution of an MIS array. Using  a Green’s  function,  the  constant  associated with the  transport of the majority 
finite-difference method can  be  applied only to  the silicon 
region. Using the conventional procedure,  the finite- 
difference  method is applied both to  the silicon region and 

electrode  shapes,  oxide  thicknesses  and  electrode  gaps 
can be analyzed using the  same  computer program. Fur- 
thermore, this approach can  be  easily extended  to  analyze L*;j-;,;j 
the time-dependent charge  transfer phenomenon, but this sio, vn Y* 

topic is reserved for a future paper. The  technique is 
useful for designing an  appropriate surface  potential  pro- 

to  the oxide  region. With the  Green’s  function, various Figure 1 MIS array with nonuniformly doped substrate. 
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Figure 2 Potential at ( x ,  y )  due to a  line  charge  at (xf ,  y ' ) .  

carriers is the dielectric  relaxation  time of the  substrate, 
typically on the  order of lo-" s for a 10-n-cm p-type sili- 
con  substrate [ 6 ] ,  so the majority carriers  are  able  to 
follow the applied voltages and are in quasi-equilibrium 
at all times. The time constants associated with the supply 
of the minority carriers by diffusion and  generation- 
recombination  processes in the depletion region, how- 
ever,  are much longer compared to  that of the applied 
voltage pulse. Thus,  the minority carriers in the original 
well remain unchanged both in magnitude and position 
after  the voltages  have  been applied. Since the majority 
carriers  are always in equilibrium (to a first approxima- 
tion),  there is  no  hole current in the  substrate.  Therefore, 
from the continuity  equation for hole current, 

and the Einstein  relation, 

D , = p p q ,  
kT 

the hole density in the substrate becomes 

qh 
kT P* ( x * ,   y * )  = po*e , 
" 

where q is the magnitude of the electronic  charge, D, the 
hole diffusion coefficient, pp the hole mobility, k the 
Boltzman constant, T the temperature,  and po* a  con- 
stant. The total  charge  density p* (x* ,  y * )  in the silicon 
is the sum of the holes p* (x* ,  y* ), electrons n* (x* ,  y* ), 
and ionized impurity atoms NA* (x*, y* ), or 

The impurity atoms are assumed to  be fully ionized, 
and N A * ( x * ,  y * )  = NAB* in the bulk substrate.  Further 
simplification is  made by assuming that the  electron 
density,  except  for  the externally  injected electrons 
Ne* (x*), is small compared to  the density of ionized 
impurity atoms. This simplification is a good assumption 
because the electron density is given approximately by 
n i l / N A * ( x * ,  y * ) ,  where ni is the intrinsic carrier  con- 
centration; this is much smaller  than NA* (x*, y * ) .  Fur- 

thermore, far from the surface, the  substrate must be 
neutral. If we neglect the electron  density, po* is then 
given by NAB*.  The total  charge  density (4) becomes 

f * ( x * ,   Y * )  = q[NAB*e - N A * ( x * ,   y * ) l  
" 

9+* 
kT 

+ S ( Y * )  q [ N s * ( x * )   - N , * ( x * ) I ,  ( 5  1 
where  the  effective immobile surface charge  density 
N s * ( x * )  and  the  injected  electron  density N e * ( x * )  are 
included. They  are  assumed to be confined to  the silicon 
surface  with infinitesimal thickness. The function S ( y * )  
is the  Dirac delta  function. 

The potential +*(x*, y * )  satisfies the  Laplace  and 
Poisson  equations in the  upper and lower half-spaces, 
respectively; i.e., 

v2+* = 0, y* 3 0; ( 6 )  

v'+* = -p* ( x * ,  y * )  /ESi*, y* 5 0, (7 )  

with the boundary  conditions, 

+ - i - .  + , MS* on the  ith electrode; (8)  

+* -+ o as (x*' + y*')+ -+ m, ( 9 )  

where Vi* is the  applied voltage on  the ith electrode  and 
+MS* is  the  work  function difference between the metal 
and the bulk silicon substrate. 

The permittivities of silicon and  oxide are cSi* and 
cox, respectively. No space charge  is  assumed to  exist in 
the oxide. On the silicon-oxide boundary,  the potential 
and the tangential electric field are continuous;  the 
normal electric field is discontinuous by 

* - y * ,  - v *  - 

= - q [ N s * ( x * )  - N , * ( x * ) ] .  (10) 

By defining the following normalized quantities, 
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The boundary  conditions (8) and (9)  become Vj’ = + ( x ,   h j )  

+ = Vi’ on  the ith electrode,  (15) 

+ --f o as (X’ + yz)+ -+ 00. (16) 

On  the silicon-oxide boundary, 

+ ( x ,  O+) = 4 ( x ,  0-1 ; (17) 

Numerical method 
Equations  (12)  through (19) are solved  numerically. 
We begin with an  assumed initial charge distribution in 
the silicon and calculate  the  surface potential  by use of 
a Green’s function. A finite-difference method is then 
used to calculate the potential  distribution, and  hence  the 
charge  distribution, in the silicon. After  the new  charge 
distribution is obtained,  the whole process is repeated. 
The iteration continues until a  self-consistent  result is 
obtained. 

In normalized systems  the  Green’s function,  Fig. 2, 
which is the potential at position ( x ,   y )  due  to a  unit line 
charge  at position (x‘, y ‘ ) ,  can be  obtained  by the image 
method [ 5 ]  as 

y 3 0, y’ 3 0 ;  (20) 

G,,(x ,  Y I X ‘ ,  Y ’ )  

- - ( 2e ) ln[(x-x’)2 + ( y - y ’ ) 2 ~ l ,  
4T& 1 + E  

y 3 0,  y’ i 0. (21 1 
With (20)  and  (2 I ) ,  the  potential at point (x, y )  in 

the  upper half-space is given by 

Equation  (23)  cannot be  solved  analytically. To solve 
it numerically, we approximate  the  electrode  charge dis- 
tribution by a  piecewise-linear  distribution: 

X k ( Z i , k + l )  - H ( Z i , , ) ] ,  i =  1, 2;.., n,  (24) 

where H ( x )  is the  Heaviside  step function.  Substituting 
(24)  into  (23)  and requiring that  (23) be satisfied at 
points ( . Z j , l  h j ) ,  1 = 1 ,  2,.  . ., rn, we obtain 

n m  

where 

The function ti,, is the  Kronecker  delta function. 
The rnn simultaneous  linear equations  (25)  have rnn 
unknown qi,k, which can  be easily solved if p ( x ,  y )  is 
known. After  the  electrode charge  distribution is deter- 
mined, (24) is substituted back  into (22) with y = 0 to 
obtain the surface  potential  distribution. 

In the silicon region, ( 1  3 )  and (14)  are solved by the 
finite-difference method. The lower  half-space is super- 
imposed on a grid system,  as shown in Fig. 3. Equation 
( 13) is approximated by its  finite-difference form, 

where q i ( x )  is the  charge distribution on  the ith electrode 

charge distribution in the silicon is known, the  electrode ” 

be satisfied, or by solving the following integral  equations: at grid point (x i ,  y j ) ,  where 

and Zi,m - Zi, l  is the width of the ith electrode. If the kj + kj+1 kj+ 1 (+ i , j  - kj +i,j-l [(+i,j+l - 4i.i) I 2 

- p .  . = - e LJ - N A ( x i ,   y j )  

- 

charge distribution can  be obtained by requiring that  (22) 1 2 3  [ -+. ’ 1 (27) 
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Figure 3 Grid system of the  substrate. 
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Figure 4 Equipotential contour of a two-electrode MIS array. 

The previously  calculated surface potential  distribu- 
tion is used as a boundary condition of ( 13). The semi- 
infinite lower  half-space is approximated by a  large  rec- 
tangular region bounded by x = xl, x = xI,, y = 0,  and 
y = y,. The boundary is  chosen large enough so that  the 
region outside of  it  is neutral  when the voltage is ap- 
plied, or 

+(x*, Y )  = 4(q, Y )  = + ( x ,  Y , )  = 0;  

p = o ;  y f y , ; X 2 x L ; x i x l .  (29) 

Successive over-relaxation is used to  solve  (27). Af- 
ter the  potential  distribution is obtained,  the silicon sur- 
face potential is refined using the new silicon charge 
distribution. The iteration continues until a preset cri- 
terion is reached for  the  surface potential.  When  sub- 
stituting the new surface  potential to calculate the new 
silicon potential  distribution, an under-relaxation and a 
judicious selection of initial surface  potential are required 
over  the region far  away from the  electrodes  and  the sur- 
face charge. The reason for this is that  these potentials 
are very  sensitive to  the overall charge imbalance  during 
the iteration. The overall  charge converges  to  zero  even- 
tually. Elsewhere a direct substitution is made. The 
convergent  property of the method is not  investigated 
here, but the method usually converged within ten itera- 
tions of surface potential for  the  cases  computed. 

The integrals in (26) can be evaluated analytically [SI. 
The  double integrals in (22)  and ( 2 5 )  are evaluated  nu- 
merically. A trapezoidal  rule is used in the y' integration. 
In  the x' integration, all charge  distributions along the 
x' direction are approximated  by  piecewise-linear  distri- 
butions  with exact pi,j at (xi, yj). ThE resultant integrals 
can be  evaluated  analytically. The s h e  approximation 
applies  also  to  the integrations involving N s  and N e .  

Numerical results 
The  above formulation takes  into  acount not  only the 
effect of depletion of majority carriers  on  the  surface,  but 
also any  accumulation-depletion  phenomenon of the 
majority carriers  due  to  the inhomogeneity of the sub- 
strate.  The built-in potential of any high-low junction 
is automatically  calculated.  Based on this approach,  the 
typical  equipotential contour  and  the surface  potential 
profile in the  absence of externally  introduced charges 
are shown in Figs. 4 and 5, respectively. The maximum 
allowable  injected signal charge level is then limited by 
the difference between  the  surface potential of the  deep 
well D under  gate 2 and  the backflow barrier height A 
at  the p+ region under  gate 1 .  The  electrodes  are 3 pm 
in width and  are  separated by 2.5 p.m. The effective  sur- 
face  charge  density, 3 X 10" e cm-', where e is the elec- 
tron  charge  and will be  set  to  one  hereafter  for simplicity, 
is assumed  to  exist uniformly from -3.5 to 6 pm, i.e., 
along the  entire length of the  two  adjacent MIS capacitors 
and the  interelectrode region. The heavily doped regions 
under  the metal electrodes  extend in the y*  direction to a 
junction  depth yj* from-2.5 pm  to 1.5 pm and  from 3 pm 
to 4 pm and  are  doped uniformly to a depth of 0.35 pm. 
The  net charge  distribution in the  absence of signal 
charges  is shown in Fig. 6. The heavily doped region 
under  gate  2, which has a higher  voltage  applied  than 
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that  for gate 1, is  almost completely depleted,  whereas 
that  under  gate 1 is only partially depleted.  The majority 
carriers  can be seen  to  deplete and  then to  accumulate 
across  the  p+-p  junction. 

To have an efficient information-bearing  charge  (elec- 
tron)  transfer,  any accumulation of holes near  the sur- 
face along the  channel  has  to be prevented,  because  the 
information  can be degraded  through  electron-hole  re- 
combinations. In  the  example  shown  here,  the  surface 
of the p+ region under gate 1 is depleted,  and  the  corre- 
sponding  depletion width is still larger  than the channel 
depth within which the  electron  transfer  takes place. If 
the undepleted region lies inside the  electron channel 
depth, a higher applied  potential  must  be  used to increase 
the depletion region and  to  prevent electron-hole  recom- 
binations. 

The surface  potential  distributions of the  same  device 
with two effective interface charge  densities  are shown 
in Fig. 5. For  the effective charge density of 10” cm-’, 
the  interelectrode potential barrier B is higher  than bar- 
rier A due  to  the heavily doped region under  gate 1. The 
minority carriers in this case  cannot  be  transferred com- 
pletely to  the  gate 2 region. To  decrease  the  barrier  the 
effective surface charge density must be  kept high. On 
the  other hand, for  the  device  to  be compatible with 
MOSFET technology, the  surface  charge density  must 
be kept  low;  thus  the  interelectrode spacing  must be 
reduced. 

Figure 7 shows  the surface  potential distributions  due 
to different  positioning of the heavily doped region 
under  the gate electrodes. When the heavily doped region 
lies partially outside  the  gate region, the  barrier  cannot be 
manipulated effectively by the applied  voltage. To lower 
the  barrier potential effectively with an applied  voltage, 
these heavily doped regions  must  be  kept  inside the gates. 

Another application of the analysis is to  estimate  the 
isolation  between adjacent charge-coupled device chan- 
nels. The effect of interelectrode doping on  the inter- 
electrode potential  barrier is  shown in Fig. 8.  For  the 
phase voltages, oxide  thickness,  and  interelectrode spac- 
ing shown in the figure, the  interelectrode  space  acts  as 
an isolator between  the two electrodes with a doping 
density of l O I 7  ~ m - ~ .  If the doping  density is reduced,  the 
barrier is reduced.  The  amounts of barrier lowering due 
to different  doping thicknesses  are  also shown in Fig. 8 

Summary 
The numerical  method  used to obtain the potential dis- 
tribution of a  two-dimensional  inhomogeneously doped 
MIS array  under pulse voltage operation has been de- 
scribed. The mathematical model takes into account  both 
the effect of accumulation-depletion of majority carriers 
on the two-dimensional high-low junction and the effect 
of depletion of majority carriers on the  surface.  The an- 
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Figure 5 Effect of surface  charge  on  surface  potential distri- 
bution. 

Figure 6 Net  charge  distribution of the  two-element  MIS ar- 
ray  shown in Fig. 4. 

alytic  method  can be readily used for designing a  suitable 
potential profile for a charge  transfer  device  and  to  de- 
termine the isolation  between MIS arrays. 
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Figure 8 Effect of interelectrode doping density  on  surface 
potential  distribution. 
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