Potential Distribution of an

Inhomogeneously Doped MIS Array

Abstract: A numerical method is used to obtain the potehtial distribution of a two-dimensional, inhomogeneously ddped MIS array
under pulse voltage operation. The effects of interface charge and of impurity doping and its locations on the surface potential profile are
presented. The technique is useful for designing an appropriate surface potential profile for ion-implanted charge-coupled devices.

Introduction

In an ion-implanted charge-coupled device [1], the mi-
nority. carriers are moved along the silicon surface by po-
tential wells formed by MIS (metal-insulator-semicon-
ductor) capacitors with the substrate nonuniformly doped
alorig the surface. When the surface potential profile is
properly designed, a heavily ion-implanted region pre-
vents the carriers from moving backward, so that in-
formation cdn be transformed unidirectionally. The ef-
fectiveness of such a barrier and the transfer speéd of the
device depend critically. on the surface potential distri-
bution. The potential distributions of several semicon-
ductor devices have been studied [2-5]. However, these
analyses were limited to either a junction FET device
or a MOSFET (metal-oxide-semiconductor field-effect-
transistor) device with uniformly dopéd substrate.

The present paper describes a numerical techinique to
study the two-dimension potential and charge distri-
bution of an MIS array. Using a Green’s function, the
finite-difference method can be applied only to the silicon
region. Using the conventional procedure, the finite-
difference method is applied both to the silicon region and
to the oxide region. With the Green’s function, various
electrode shapes, oxide thicknesses and electrode gaps
can be analyzed using the same computer program. Fur-
thermore, this approach can be easfly extended to analyze
the time-dependent charge transfer phenomenon, but this
topic is reserved for a future paper. The te‘chnique is
useful for designing an appropriate surface potential pro-
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file for ion-implanted charge-coupled devices. Results
are obtained that show the effects on the surface potential
distribution due to surface charges, relative location of
the highly doped implanted region under the electrode,
and substrate doping in the interelectrode region.

Mathematical model

Consider a general n-electrode MIS array, as shown in
Fig. 1. The ith electrode has width W;* and is located
a distance /;* above the silicon surface. (The superscript
* indicates an unnormalized quantity.) The upper and
lower half-spaces are filled with SiO, and silicon, respec-
tively. For convenience, the bulk substrate is assumed to
be p-type and to be doped to a density N,gz*. The ion-
implanted or deffused region has a dopant density
N,*(x*, y*). When positive voltage pulses are applied to
the electrodes, the silicon surface is depleted. The time
constant associated with the transport of the majority

Figure 1 MIS array with nonuniformly doped substrate.
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Figure 2 Potential at (x, y) due to a line charge at (x', y').

carriers is the dielectric relaxation time of the substrate,
typically on the order of 107" s for a 10-Q-cm p-type sili-
con substrate [6], so the majority carriers are able to
follow the applied voltages and are in quasi-equilibrium
at all times. The time constants associated with the supply
of the minority carriers by diffusion and generation-
recombination processes in the depletion region, how-
ever, are much longer compared to that of the applied
voltage pulse. Thus, the minority carriers in the original
well remain unchanged both in magnitude and position
after the voltages have been applied. Since the majority
carriers are always in equilibrium (to a first approxima-
tion), there is no hole current in the substrate. Therefore,
from the continuity equation for hole current,

Jo* (x*,y*) = —qDVp* — qu,p*Vo* =0, (1)
and the Einstein relation,

kT
Dy = pp 7’ (2)

the hole density in the substrate becomes

_ 4o
P*(x*, y*)=pre ", (3)

where g is the magnitude of the electronic charge, D, the
hole diffusion coefficient, u, the hole mobility, k& the
Boltzman constant, T the temperature, and p,* a con-
stant. The total charge density p* (x*, y*) in the silicon
is the sum of the holes p* (x*, y*), electrons n* (x*, y*),
and ionized impurity atoms N * (x*, y*), or

p* (x*, y*) = q[p* (x*, y*) — n* (x*, y*)

= Na* (%, y*)1. (4)

The impurity atoms are assumed to be fully ionized,
and N,*(x*, y*¥) = N,p* in the bulk substrate. Further
simplification is made by assuming that the electron
density, except for the externally injected electrons
N *(x*), is small compared to the density of ionized
impurity atoms. This simplification is a good assumption
because the electron density is given approximately by
n'/Na*(x*, y*), where n; is the intrinsic carrier con-
centration; this is much smaller than N, * (x*, y*). Fur-
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thermore, far from the surface, the substrate must be
neutral. If we neglect the electron density, p * is then
given by N ,z*. The total charge density (4) becomes

_ 3¢
p* (x*, y*) = q[Nap*e " — Ny*(x*, y*)]
+8(y*) g[Ng*(x*) — N*(x*)], (5)

where the effective immobile surface charge density
Ng*(x*) and the injected electron density N.*(x*) are
included. They are assumed to be confined to the silicon
surface with infinitesimal thickness. The function §(y*)
is the Dirac delta function.

The potential ¢* (x*, y*) satisfies the Laplace and
Poisson equations in the upper and lower half-spaces,
respectively;i.e.,

Vip* =0, y*=0; (6)
Vip* = —p* (x*, y*) [eg*,  y* =0, (7)
with the boundary conditions,

o* =V* =V*— dys* on the ith electrode; (8)
¢* > 0as (x** + y**)f > o, (9)

where V' * is the applied voltage on the ith electrode and
dus™ is the work function difference between the metal
and the bulk silicon substrate.

The permittivities of silicon and oxide are €g* and
€ox, Tespectively. No space charge is assumed to exist in
the oxide. On the silicon-oxide boundary, the potential
and the tangential electric field are continuous; the
normal electric field is discontinuous by

Lt
O yE prmos O OY* im0
=—q[Ng*(x*) — N*(x*) ]. (10)

By defining the following normalized quantities,

o= (BTY, Xy
D — quAB* H x_)\D’ Y—AD,
I
— h* Y =
N*(x*, y*) Ng*
NA(x’ Y) - NAB* s NS_)\DNAB*’
Ne* er*
= - = 11
Ne ApN a5*’ ¢ eg*’ (an

the normalized differential equations to be solved become

Ve=0, y=0; (12)
Vé=—p(xy), »y=0, (13)
with

p(x,y) =e® = Nulx, y) +8(») [Ns(x) = No(x)]. (14)
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The boundary conditions (8) and (9) become
¢ =V, on the ith electrode, (15)
¢ — 0as (x> +y°)7 > =, (16)

On the silicon-oxide boundary,

é(x, 0+) = $(x, 0—); (17)
dp(x, 0+)  8p(x,0—)
ax  oax (18)
Ip(x, 0+)  9¢(x,0—)] _
o P - R | e () = Nu0)). (19)

Numerical method

Equations (12) through (19) are solved numerically.
We begin with an assumed initial charge distribution in
the silicon and calculate the surface potential by use of
a Green’s function. A finite-difference method is then
used to calculate the potential distribution, and hence the
charge distribution, in the silicon. After the new charge
distribution is obtained, the whole process is repeated.
The iteration continues until a self-consistent result is
obtained.

In normalized systems the Green’s function, Fig. 2,
which is the potential at position (x, y) due to a unit line
charge at position (x’, y’), can be obtained by the image
method [5] as

G (x ylx's y')
== =+ =)
4me

_1-
1+e

€ 0l (x — x')* +(y+y>]}
=0,y =0; (20)

G,(x, ylx', y")

=_,L(1+8)1n[(x—x) + =y,

4re
yz0,y=0. (21)

With (20) and (21), the potential at point (x, y) in
the upper half-space is given by

n Zi,m
o0 =3 [ 406, (5 b, )
i=1

Ziy

1] 0
+f fp(x’,y’)Glz(x,yIX’,y’)dx’dy’,(22)

where g,(x) is the charge distribution on the ith electrode
and Z, —Z,  is the width of the ith electrode. If the
charge distribution in the silicon is known, the electrode
charge distribution can be obtained by requiring that (22)
be satisfied, or by solving the following integral equations:
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V) =o(x k)

n Zi,m
-3 J’ 0, )G, (x, hy|x', h)dx
=1

Zin
+ff p(x', ¥)G ,(x, hlx', ¥y )dx'dy',

Z. =x=27.

= ms J= 1,200 n0 0 (23)

Equation (23) cannot be solved analytically. To solve

it numerically, we approximate the electrode charge dis-
tribution by a piecewise-linear distribution:

! D1 — Dk

q;(x) =% [qi,,,+z’ —

k=1 isk+1

(x—Zi,k)}

[H(Zl o) — H(Zi,,c)], i=1,2,-n  (24)

ik

where H (x) is the Heaviside step function. Substituting
(24) into (23) and requiring that (23) be satisfied at
points (Zj,l hj), l=1, 2, -, m, we obtain

Vo= | e G2, i,y dvay

—a0 ©

0

j=1,2,-nm I=1,2,---, m, (25)
where
lek akl)J] lkl )
Z e 1 1k
X G\ (Z;, hj|x, h)dx'
)J’lk+1 _( x’—Z‘ )
km 1k+l Zi,k
Z; hj|x , hy)dx'. (26)

The function §,,, is the Kronecker delta function.
The mn simultaneous linear equations (25) have mn
unknown ¢, ., which can be easily solved if p(x, y) is
known. After the electrode charge distribution is deter-
mined, (24) is substituted back into (22) with y=0 to
obtain the surface potential distribution.

In the silicon region, (13) and (14) are solved by the
finite-difference method. The lower half-space is super-
imposed on a grid system, as shown in Fig. 3. Equation
(13) is approximated by its finite-difference form,

o () - ()]

T 1+

4 3 _+_2k'+1 [(d’i,ﬂkl: d)i,j) _ <¢i,j _I(fbi,j—l)]

) J J
—p=— [eﬂbi,j ~ Nl yj)] 27)

at grid point (x;, y;), where
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Figure 3 Grid system of the substrate
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Figure 4 Equipotential contour of a two-electrode MIS array.

b, ;= d(x;, ;)
li=x;— X1
kayj_yj_l- (28)

The previously calculated surface potential distribu-
tion is used as a boundary condition of (13). The semi-
infinite lower half-space is approximated by a large rec-
tangular region bounded by x = x,, x = x, y = 0, and
y = yn. The boundary is chosen large enough so that the
region outside of it is neutral when the voltage is ap-
plied, or
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d(x, y) =d(xy, y) =d(x, y,)=0;
p=0; YE YV XZT X5 X=X, (29)

Successive over-relaxation is used to solve (27). Af-
ter the potential distribution is obtained, the silicon sur-
face potential is refined using the new silicon charge
distribution. The iteration continues until a preset cri-
terion is reached for the surface potential. When sub-
stituting the new surface potential to cdlculate the new
silicon potential distribution, an under-relaxation and a
judicious selection of initial surface potertial are required
over the region far away from the electrodes and the sur-
face charge. The reason for this is that these potentials
are very sensitive to the overall charge imbalance during
the iteration. The overall charge converges to zero even-
tually. Elsewhere a direct substitution is made. The
convergent property of the method is not investigated
here, but the method usually converged within ten itera-
tions of surface potential for the cases computed.

The integrals in (26) can be evaluated analytically [5].
The double integralé in (22) and (25) are evaluated nu-
merically. A trapezoidal rule is used in the y’ integration.
In the x’ ihtegration, all charge distributions along the
x' di‘rectioir‘l are approximated by piecewise-linear distri-
butions with exact p, ; at (x; ¥;)- ThE:) resultant integrals
can be evaluated analytically. The sdme approximation
applies also to the integrations involving Ng and N..

Numerical results

The above formulation takes into acount not only the
effect of depletion of majority carriers on the surface, but
also any accumuiation-depletipn phenomenon of the
majority carriers due to the inhomogeneity of the sub-
strate. The built-in potential of any high-low junction
is automatically calculated. Based on this approach, the
typical equipotential contour and the surface potential
profile in the absence of extei‘nally introduced charges
are shown in Figs. 4 and 5, respectively. The maximum
allowable injected signal charge level is then limited by
the difference between the surface potential of the deep
well D under gate 2 and the backflow barrier height A
at the p” region under gate 1. The electrodes are 3 um
in width and are separated by 2.5 um. The effective sur-
face charge density, 3 X 10" e cm™, where e is the elec-
tron charge and will be set to one hereafter for simplicity,
is assumed to exist uniformly from —3.5 to 6 um, i.e.,
along the entire length of the two adjacent MIS capacitors
and the interelectrode region. The heavily doped regions
under the metal electrodes extend in the y* direction to a
junction depth y* from—2.5 um to 1.5 wm and from 3 um
to 4 um and are doped uniformly to a depth of 0.35 um.
The net charge distribution in the absence of signal
charges is shown in Fig. 6. The heavily doped region
under gate 2, which has a higher voltage applied than

IBM J. RES. DEVELOP.




that for gate 1, is almost completely depleted, whereas
that under gate 1 is only partially depleted. The majority
carriers can be seen to deplete and then to accumulate
across the p-p junction.

To have an efficient information-bearing charge (elec-
tron) transfer, any accumulation of holes near the sur-
face along the channel has to be prevented, because the
information can be degraded through electron-hole re-
combinations. In the example shown here, the surface
of the p* region under gate 1 is depleted, and the corre-
sponding depletion width is still larger than the channel
depth within which the electron transfer takes place. If
the undepleted region lies inside the electron channel
depth, a higher applied potential must be used to increase
the depletion region and to prevent electron-hole recom-
binations.

The surface potential distributions of the same device
with two effective interface charge densities are shown
in Fig. 5. For the effective charge density of 10" cm™,
the interelectrode potential barrier B is higher than bar-
rier A due to the heavily doped region under gate 1. The
minority carriers in this case cannot be transferred com-
pletely to the gate 2 region. To decrease the barrier the
effective surface charge density must be kept high. On
the other hand, for the device to be compatible with
MOSFET technology, the surface charge density must
be kept low; thus the interelectrode spacing must be
reduced.

Figure 7 shows the surface potential distributions due
to different positioning of the heavily doped region
under the gate electrodes. When the heavily doped region
lies partially outside the gate region, the barrier cannot be
manipulated effectively by the applied voltage. To lower
the barrier potential effectively with an applied voltage,
these heavily doped regions must be kept inside the gates.

Another application of the analysis is to estimate the
isolation between adjacent charge-coupled device chan-
nels. The effect of interelectrode doping on the inter-
electrode potential barrier is shown in Fig. 8. For the
phase voltages, oxide thickness, and interelectrode spac-
ing shown in the figure, the interelectrode space acts as
an isolator between the two electrodes with a doping
density of 107 cm™. If the doping density is reduced, the
barrier is reduced. The amounts of barrier lowering due
to different doping thicknesses are also shown in Fig. 8

Summary

The numerical method used to obtain the potential dis-
tribution of a two-dimensional inhomogeneously doped
MIS array under pulse voltage operation has been de-
scribed. The mathematical model takes into account both
the effect of accumulation-depletion of majority carriers
on the two-dimensional high-low junction and the effect
of depletion of majority carriers on the surface. The an-
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Figure 5 Effect of surface charge on surface potential distri-
bution.
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Figure 6 Net charge distribution of the two-element MIS ar-
ray shown in Fig. 4.

alytic method can be readily used for designing a suitable
potential profile for a charge transfer device and to de-
termine the isolation between MIS arrays.
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