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Register  Assignment  A1gorith.m for Generation of 
Highly  Optimized  Object  Code 

Because  novel techniques  are used in the global assignment procedure, it is described in detail.  Experimental results with a prototype 
implementation are presented in which object code improvements on the  order of 25 percent  over a production optimizing compiler were 
obtained. No attempt was made  to  assess manpower costs of a final implementation  nor to weight them  against  expected improvements 
in generated  code. 

1. Introduction 
The register  assignment process in compilers is gener- 
ally divided  into local and global phases, primarily be- 
cause of the much greater difficulty of global  assignment. 
The dividing line may vary  among methods, but the 
basic criterion is the same: that local assignment operate 
in a restricted  context, in which enough information is 
available to make  correct decisions. These decisions at 
the  same  time should have a high likelihood of improv- 
ing the efficiency of the  code  generated.  In global assign- 
ment,  one  must  chose between  doing  something  very 
rudimentary,  such  as a one-to-one  assignment of select- 
ed  items to registers, or going to  considerable pains to 
get enough  information for a more nearly  optimal ap- 
proach. Day [ 11 has  shown, using random  data,  that  the 
second  alternative offers potential for substantial gains 
in efficiency. In  spite of the pioneering work of Yershov 
[2] in this  direction, the practical  application of ad- 
vanced global register  assignment techniques in the 
western world has been limited. One  reason  for this is 
undoubtedly the complex interaction  between local and 
global assignment. (Yershov’s work was motivated pri- 
marily by storage economy  and did not  have this con- 
straint.) 

Because of its restricted context, local  assignment is 
likely to  have  greater payoff than global assignment. It is 
both  faster and more likely to  result in the right deci- 
sions (from  the point of view of efficiency of the gener- 
ated code).  Thus,  to  the  extent  that local and global as- 
signment procedures  compete  for registers,  preference 
should be given to  the  former.  This  was indeed  done in 

the design of the  IBM  System/ 360 FORTRAN H compiler 
[3] ,  in which local assignment  for a region (loop) 
of the program is completed and  then  the remaining 
unused  registers are assigned globally on a  one-to-one 
basis. In  fact, it is not clear how a more  sophisticated 
approach  to global assignment, such  as  Day’s “many-to- 
few” algorithm [ 11, can  be  used effectively in an envi- 
ronment in which local registers  have been  completely 
bound. One  appears  to  be  faced with a dilemma: Either 
give  priority to local  assignment and sacrifice the bene- 
fits of an ambitious  global  assignment scheme,  or  do 
global assignment  first, using a relatively  sophisticated 
many-to-few strategy  and reserving a fixed number of 
registers for a subsequent local assignment  procedure. 

This  paper  describes a register  assignment  method 
that resolves  this dilemma. The  approach is basically to 
separate local  register  optimization into allocation and 
assignment phases, with global  assignment  intervening. 
Local allocation  claims all register resources needed for 
local  communication without  the  premature binding that 
would  impede global assignment. This binding is com- 
pleted later, during the local  assignment phase, consis- 
tently with the  results of global  assignment. In  the local 
register  optimization phases, relatively  straightforward, 
but possibly highly machine-dependent,  techniques are 
used. These  are not discussed in great detail. The global 
assignment  algorithm, however, is applicable to  any 
machine with  multiple registers,  and novel  techniques 
are  used; it is described in considerable detail  and illus- 
trated by an example. 
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A prototype implementation of the proposed  register 
assignment  method in the  context of the FORTRAN H 
compiler is described, and some experimental  results are 
presented. Limitations of the  prototype  are outlined, 
indirectly suggesting the magnitude of a  production im- 
plementation. However,  no  attempt is made to  assess 
the tradeoff between  anticipated  improvements in object 
code  and  the  cost of  final implementation. 

2. Register assignment strategy 
A basic block (or simply a block)  is defined as a se- 
quence of nonbranch instructions followed by a (possi- 
bly null)  sequence of conditional branches, followed op- 
tionally  by an unconditional branch. Register  assignment 
is customarily  broken into local, or intrablock,  assign- 
ment  and global, or  interblock, assignment. The  reason 
for this  dichotomy is probably that local assignment is 
easier  than global assignment. However,  the  two pro- 
cesses  are so interrelated that  neither can  be done well 
independently of the  other. To  resolve this  dilemma,  let 
us, for a  program  point p and a data item x ,  distinguish 
allocating a  register for x at p from assigning a specific 
register  to x at p .  The  former  action implies a  decision 
that x is  to reside in some register  at p without specify- 
ing which one.  Thus  the  consistency of an allocation at p 
is dependent only on  the  count of available  registers at p 
being greater than  zero. 

The register  assignment process is then  broken  into 
the following three  steps: 

1. Local allocation 
2. Global (allocation and) assignment 
3. Local assignment. 

This organization  permits local allocation to be given 
priority over global assignment  without  unnecessarily 
impeding it by  premature binding of registers. 

3. Context for global assignment 
The principal concern of this paper is the global assign- 
ment  phase.  Its functional  specifications are described in 
this section;  to a large extent  they  determine  the division 
of local  register  optimization between  the local alloca- 
tion and  the local  assignment phases.  More details about 
a specific implementation of these  phases  are given in 
section 12. 

The  inputs required for global  assignment may be 
summarized as follows: 

1. Instruction  text  and  dictionary 
2. Count of available  registers at  each program  point 
3. Control flow information 
4. Live variable  information at  selected points. 

To  describe  these  components in greater detail, a few 
definitions are required. 

We  speak of the  instants  between  the execution of 
successive instructions as program points and  distin- 
guish the point after  the  last instruction of a  basic  block 
b (the end of b )  from  the  point before the first instruc- 
tion of any  successor b’ of b (the beginning ofb‘ ). 

We will have occasion to  refer  to program points in 
their control flow context.  The corresponding flow graph 
is obtained from the  customary graph (whose  nodes  are 
basic blocks) by replacing each basic block by all of its 
points,  connected in their  linear  order. 

We assume  that  there is a hierarchical  decomposition 
of the flow graph into strongly connected, nested  sub- 
graphs, called regions. These  are used  for the redistribu- 
tion of load and  store  instructions in an inner-to-outer 
direction. These regions should thus ideally be correlat- 
ed with execution frequency in the obvious way and 
would normally be the  same regions  used for  other loop- 
oriented  optimization techniques,  such as  backward mo- 
tion of loop-invariant expressions and  strength reduc- 
tion. A point or  another region is said to be immediately 
contained in region R if it is a subgraph of R but  not of 
any  subregion of R .  

A region R ,  in addition to being a  mere  subgraph, has 
certain points  distinguished as entries corresponding to 
the beginnings of the  blocks of R with a predecessor 
outside of R ,  and exits, corresponding  to  the  ends of the 
blocks of R with a successor  outside of R .  An  entry p of 
region R is assumed to  have a unique predecessor p’ not 
in R ,  called the entry target of p .  Moreover, p’ has p as 
its  unique sucessor  and  has  the  same immediately con- 
taining region as R .  Similarly an  exit q of R is assumed 
to  have a unique successor q’ not in R ,  called the exit 
target of q. Moreover, q‘ has q as its  unique predecessor 
and has  the  same immediately containing region as R .  
These restrictions are  motivated primarily by conve- 
nience and can  always  be met, if necessary, by introduc- 
ing empty blocks. 

A track is defined as a nonrepeating  sequence of pro- 
gram  points, each of which is a successor (in the  context 
of the flow graph) of the preceding point in the se- 
quence. The  track is said to be closed if its first point is a 
successor of its  last point. 

A data item x is said to  be live at a point p if there  is a 
track T from p to a point of possible use (e.g., a load) of 
x ,  such  that  no  store of x occurs between  points of T .  
(The term used in [3]  is  “busy.”)  In [4], an efficient al- 
gorithm is given for  determining  where items are live. 
Sometimes the liveness of x at p is defined as requiring 
additionally that  there  be a track from  a store of x to p .  
We  refer to this as  the restrictive definition. It is valid 
only under certain assumptions.  Static  data in a p L / I  or 
FORTRAN subprocedure,  for  instance, must in general be 
assumed  to  have a store  at  the procedure entry in order 
for this definition to apply. 21 



Instruction text and  dictionary 
The instructions are partitioned  into  basic  blocks and 
are  expressed in a form identical to  that of the  object 
machine language except  that specific registers are not 
assigned. An  operand of an instruction i in block b may 
be  either  the result of a prior instruction in b or a data 
item,  as  represented by a dictionary entry.  The  latter 
alternative would normally occur only for an.  operand 
(such  as  that of a  load or store)  that must  be in storage. 
(Options such as  RR  vs  RX referencing in System/360 
computer  architecture  are  discussed in more  detail in 
section 12.) This implies,  in  particular, that  for a data 
item to be  used as a register  operand of i ,  it must  be the 
subject of a load instruction in b the result of which 
would be  referenced by i .  Similarly,  unless an  instruction 
has a  storage result,  its  result, in order  to be  assigned to 
a variable x, must be  the  subject of a store instruction 
referencing x .  We assume  that all questions of intrablock 
communication of values in registers have been  resolved 
at  the allocation  level,  i.e., that local  allocation is com- 
plete. Thus global assignment  for  data item x need be 
concerned  at most  with the elimination (or  motion) of 
one load and one  store of x in any basic block. 

Available  register count 
The second  essential input  for global assignment con- 
sists,  for each  program point p ,  of the  count RAVAIL 
( p )  of registers  available at p .  These  counts  must reflect 
the  results of local  allocation. Thus RAVAZL ( p )  is the 
number of registers in the machine minus the  number of 
ordered pairs ( i ,  i' ) of instructions (in the block contain- 
ing p )  such  that i and i' are separated by p ,  and i f  refer- 
ences  the result of i .  

Control flow information 
The control flow information  required for global assign- 
ment  consists basically of the possible successors of 
each basic block and of the regions  described above. 

Live variable information 
For each  exit  target q' of each region R we require  the 
list of data items that  are  referenced in R and are live at 
9'. If the restrictive definition of liveness is used, then 
such a list is also  required  for  each  entry target of R .  

The  ouput of global assignment consists of the pro- 
gram text in the  same  form  as  on input except  that  cer- 
tain  loads  and stores may have been  marked for dele- 
tion, others may have  been inserted in entry  and  exit 

a block b may have  certain registers reserved  for passing 
data items  through b ,  even though  they are  not refer- 
enced in b.  The available  register counts in RAVAZL, 
though no longer needed  after global assignment,  are 
maintained throughout  the  process  and reflect its results. 
This is done  because global assignment is in part a con- 
tinuation of the allocation  process. Assignments  are 
made only when  an interblock  communication is in- 
volved, and at any two points  taking  part  in a communi- 
cation of values of a data item x, the  same  register  must 
be  assigned to x for  each.  Thus all interblock  matching 
has been  resolved  during global assignment. 

4. Global assignment strategy 
The classical approach  to global assignment for a data 
item x in a region R involves the assignment of a single 
register to x at  least  at  each point of R at which x is live. 
This clearly permits all loads and  stores of x to  be re- 
moved  from R ,  given that x is loaded at the  entry  targets 
and  stored  at  the  exit  targets of R at which it  is live. 
Some classical methods of global assignment are dis- 
cussed in [ 11. Considerably greater freedom  is  obtained 
by allowing individual  loads and  stores of x to be  re- 
moved  from R even though  not all such loads and  stores 
can be  moved. We  next  describe a method for doing 
this: 

1. Regions are  processed in an inner-to-outer order. 
Loads  and  stores  deposited at entries  and  exits of a 
region R are  considered  for removal from  the imme- 
diately containing region. 

2.  The first step in processing a region involves the 
computation of bit vectors, called status  vectors, 
which are  used to record  the  status of allocation and 
assignment. 

3. For a given region R ,  all loads and  stores of a data 
item x are  processed together. The  order in which 
data items are  processed is significant; however, pro- 
cessing order  is not addressed in this paper  beyond 
commenting that  reference  frequency should  proba- 
bly be an  important  factor.  The processing of x in R 
consists of the following subphases: 

a. Load  motion This involves  processing the  loads 
of x sequentially, moving each  one  for which a 
consistent  assignment can be  found,  based  on  the 
status  vectors.  Because  the processing order may 
be significant, the most  frequently executed  loads, 
ifknown, should be considered first. 

targets, and the  result  register of certain instructions b. Store  motion Stores of x are  processed  sequen- 
may have been  assigned.  Specifically,  any load that  has tially as in load motion. Their motion depends 

22 been  marked for deletion and any  instruction whose re-  partly on  the  results of load motion. 
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c. Reservation, or status  update This involves  re- 
cording the effect of the  load-store motion for x on 
the  status  vectors,  as well as updating the register 
counts in RAVAZL. 

5. Underlying concepts for load-store motion 
A live  exit for  data item  x in region R is defined as  an 
exit of R at whose exit target  x is live. A live exit  for x 
corresponding to exit q plays a role  analogous to  that of 
a load of x at  the point q and may be  thought of as a 
dummy load at this  point. 

The location of an instruction i is the point immedi- 
ately following i and  denoted loc ( i )  . 

Given points p and q of region R and a data item x, we 
say that p is  in the affect (RJ) relation to q, denoted 
AFFECT (p,q,R,x),  if there is a  track  from p to q in R 
not  containing any redefinition (e.g., store) of x. Live 
exits  and  the affect relation play a central role in store 
motion, because  to move  a store i of x out of R,  it is 
necessary, in effect; to remove the live exits of x (con- 
sidered as loads of x)  to which loc ( i )  is  in the affect 
(R,x) relation. 

A point p is called a register  point for  data item x if p 
is the point  immediately following an instruction whose 
result is  in a  register, and is the  current value of x, i.e., it 
would be correct  to  insert a store of this  result  into x as 
the next  instruction. In particular, the point following a 
load of x would be a register point for x. A  register  point 
for x is used to eliminate subsequent loads of x in the 
manner in which, in global common expression elimina- 
tion (e.g., as in [ 5 ] ) ,  one instance of an  expression is used 
to eliminate  a subsequent  one computing the  same value. 

Given a point p in a region R and a data item x, we 
define the register  requirement  set for removing from  R 
a load of x at p ;  abbreviated  RR(R,x,p),  as  the  set of 
points q in R such  that  there is a track from q to p not 
containing a register  point for x. In  fact,  the removal of 
such  a  load  can  be  effected by maintaining x in a register 
in RR(R,x,p)  and, if necessary, loading it at  the  entry 
target of any entry in RR  (R,x,p). If the  restrictive defi- 
nition of liveness (section 3 )  is used, then loads  are only 
needed at  those  entry  targets  at which x is live. 

Let q be the location of a store of x in R, and let 
p1; . ., p ,  be the  locations of  all the loads  and live exits of 
x in R to which q is in the affect (R,x) relation. The  store 
at q can  be  removed from R by removing all these  loads 
from R, maintaining x in  a  register in each of the register 
requirement sets  RR  (R,x,p,), . ’ ., RR  (R,x,p,) and stor- 
ing x at  each exit target of K corresponding to  one of the 
live exits p j  of x. 

A load or live exit L of data item x in region R is re- 
ferred  to  as absol~rtely  infeasible for removal from R if 
the corresponding register requirement set  RR (R,x,loc 
( L ) )  contains  a  point p at which no registers are avail- 

able, i.e.,  RAVAZL(p) = 0. A specific register r is said 
to be available to L if r has not received any specific as- 
signment in RR  (R,x,loc(L) ) .  Prior to global assignment, 
this would normally be true of all registers. 

A block b is transparent if RAVAZL(p) > 0 for all p 
in b. Data item x is a potential initial quantity for b if x is 
used before it is defined in b and if RA VAZL(p) > 0 for 
all p between  the beginning of b and  the first register 
point of x in 6. The significance of the potential initial 
quantities forb  is that only the  loads  for  these  items in b 
can  be candidates  for load motion, because  any  other 
loads are  absolutely infeasible. Similarly, x is a potential 
terminal  quantity for b if x has a  register  point  in b and 
RAVAIL(p) > 0 for all p between the  last  such point 
and the  end of b.  The  fact  that x is a potential  terminal 
quantity for b can  thus be  used to  extend  the register 
point for x in b to  the  end of b when this is required for 
removing a  load  in some  other block. 

6. Bit vector definition 
For a region R ,  we define  a  number of Boolean vectors 
spanning the  loads and live exits  immediately  contained 
in R, i.e., having a coordinate  for  each  such load  and live 
exit. These  are called R-vectors and are partitioned into 
subvectors by data item. The  subvector of R-vector V 
whose coordinates  correspond  to loads and live exits of 
a data item x is called an [ (R ) ]x-vector, and is denoted by 
V ( x ) .  In  case V is itself indexed,  say V ( j ) ,  its x-vector 
is denoted V ( j , x ) .  We  also  have occasion to use unim- 
bedded x-vectors, i.e., those not  contained in any  R- 
vector. In defining these  vectors, we use L to  denote both 
a load (or live exit) and  its  corresponding R-vector  (or 
x-vector)  coordinate.  The  data item loaded by L is denot- 
ed item (L). 

For  each basic  block b immediately  contained in re- 
gion R,  we define the  R-vectors: 

RRB ( b )  , whose  Lth  coordinate indicates  membership of 
the beginning of b in RR(R,item(L),loc(L)), and 
RRE(b) ,  whose Lth  coordinate indicates  membership 
oftheendofbinRR(R,item(L),loc(L)).  

Among the  register requirement sets  for  the different 
loads and live exits L,; . ., Ln of a data item x in region 
R ,  it is important  for assignment consistency  to know 
which pairs of such  sets mutually intersect.  This is con- 
veniently represented by the x-vectors: 

ZNT(x,Lj),  whose L,th coordinate indicates that RR 
(R,x,loc(Lj))  intersects with RR(R,x,loc(L,))  for 15 
j Z n , t T k S n .  

For interrogation of individual x-vector  components, 
we make use of the x-vectors UNZT(x,L), which have 
zero in all but the  Lth  coordinate position. 23 



from  R. 
For  each specific register r ,  the  R-vector RNA ( [ R , ] r )  

represents by its Lth coordinate  the nonavailability of 
register r to  the load or live exit L. These  vectors (in 
contrast  to A I F )  are normally all zero  prior  to global 
assignment,  because  no specific assignments have oc- 
curred. A specific assignment to r in general rules out 
the  use of r for  certain  loads of other  items, which is 
reflected  by modifying RNA ( r )  appropriately. 

For  each basic block b in region R ,  we define the  R- 
vector NPT(b) ,  whose Lth  coordinate indicates that 
the  data item x associated  with the load or live exit  L 
was  not a  potential terminal quantity  for b at  the  outset 
of global  assignment for  R.  Thus, by definition, NPT(b)  
need not be  updated as allocation proceeds in R. 

7. Global assignment for a single data item in an 
innermost region 
The  essence of the global assignment for a data item x in 
a region  R may be seen by considering the  case in which 
R has  no subregions. 

As  can  be  observed in sections 4 and 5, the  central 
operation in global  assignment is  that of moving a single 
load (or live exit) L of data item x from  R. As described 
in section 5, this  involves finding a register r available in 
RR(R,x,loc(L)).  It may be,  however,  that  another load 
L' of x has a  register requirement  set intersecting that of 
L. In this case  we would, in order to move both L and 
L',  need a common  register for  both  unless register 
move  instructions were introduced.  Since  the  latter al- 
ternative may nullify the benefit of load motion, we re- 
ject  it, though a few register moves may be required  dur- 
ing local  assignment. 

Given  any  set U of loads of x to  be  moved, let U be 
partitioned into  sets U , ,  ' .  ., Urn  such  that  for  each k 
there is a unique register r, to which x has been  assigned 
at  loc(L)  for all L E U,. We call the  set P =  { ( r l , U l ) ,  
. . ., (rm,  Urn) } a direct  partial  assignment for x. The gen- 
eral  requirement  to avoid register  moves is that P be 
consistent, in the  sense  that if L and  L'  are in distinct 
U,, then  RR(R,x,loc(L))  and  RR(R,x,loc(L'))  are dis- 
joint. 

Consider now the problem of moving a load L of x not 
in U .  If RR(R,x,loc(L)) is disjoint from all of the U,, 
any register  available in RR  (R,x,loc  (L) ) may be cho- 
sen. In  general,  however, we must  do  some merging to 
preserve  consistency.  For  convenience  we  order  the  set 
P so that,  for some  index 1 (0 5 1 5 m ) ,  U ,  intersects 
RR(L,.x,loc(L))  for 1 5  k 5 I but not for 1 < k f  m. Let 
U t  = {L} U U ,  U... U U,.  It  is  necessary  for consis- 

24 tency  to find a common  register r' for all members of U ' .  

necting L top. 
Let us consider how to find r'. We  assume this is done 

simply by trying all registers in a specific order, called 
the register  trial  sequence for x in R.  This  sequence 
need not include  registers inappropriate  for x (such  as 
floating-point registers if x is  not a floating-point num- 
ber).  Let sl, . . ., s, be this  sequence. Some  criteria  for 
choosing the  sequence  for different data items are dis- 
cussed in section 9. It is convenient  to  represent  the reg- 
isters in a direct partial assignment  for x by their  indices 
in the register  trial sequence  for x. We call the result an 
indirect  partial  assignment. In  these  terms,  the problem 
we  are addressing is how to find j '  such  that register si ,  is 
available in RR(R,x,loc(L'))  for all L' E U ' .  Of course, 
this  could  be done simply by  trying j '  = 1 ,  . . ., n. How- 
ever, if we let j k  be  the register  trial sequence index of r, 
for 1 f k f 1 ,  it suffices to  try j t  = max ( 1  j l ;  . .,j,); . ., n. 
For if j ,  = max ( j , ;  . .,j,), then,  because  the  same reg- 
ister trial sequence was used in  obtaining j,, it is the 
minimum index for which s. is available for  the  elements 
of U .  , so no smaller  index can suffice for all elements of 
the larger set U ' .  

Now we are  ready  to  summarize  the connecting algo- 
rithm  discussed above in a more specific form, using the 
bit vectors described in section 6. Given a register  trial 
sequence s,; . ., s,, a  partial  assignment P = { ( j I ,U l ) ;  . ., 
( j m , U m ) }  for x, where  the Ui are  interpreted as x-vec- 
tors,  and a  load or live exit L of x, the  procedure CNCT 
(L,P)  attempts  to  connect L to P ,  i.e., to replace P by a 
partial  assignment including L. 

3k 

'k 

Procedure CNCT  (L,P) 

1. Order P so that  for  some 1 (0 5 15 m ) ,  
U ,  A I N T  (x ,L)  # 0 for 1 f k i 1, 
and U ,  A INT(x,L) = 0 for 1 < k 5 m. 

2 .  Let U' = UNIT  (x,L) V U ,  V. . . V U,.  
3 .  Fork = max( l,j,; . .,j,); . ., n, do: 

if U' A RNA(s,,x) = 0, then  replace 
P by ~ ~ j , + , , ~ , + , ~ , ~ ~ ~ ,  (jrn,Urn), ( k , U ' ) )  and  return. 

4. Return in failure (L  cannot  be  connected  to P ) .  

Given a register  trial sequence s for x, load motion for 
x is accomplished simply by initializing the partial as- 
signment P to  the  empty  set  and successively invoking 
CNCT(L,P) for  the loads  L of x that  are  not  absolutely 
infeasible  (i.e., are  such  that  UNIT(x,L)  AAIF(x) = 0). 

The motion of a store S is done  as follows: 

1 .  If there is a load L of x such  that AFFECT(loc(S)),  
loc(L),R,x)  and L could not be removed during load 
motion, S cannot be removed. 
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2. Otherwise  let L,; . ., L, be the live exits  (and  loads, if 
any) satisfying AFFECT(loc(S),loc(Lj),R,x), which 
may still be movable,  and  let P be the  current partial 
assignment (based  on load-store  motion  up to this 
point). 

3. Let P’ = P, and  apply  CNCT(P’,Lj)  forj = 1; . ., k .  
4. If each application was successful, S can  be  removed. 

5. Otherwise S cannot  be removed. 
Let P = P’. 

After load-store  motion and assignment have been 
determined for x, the  reservations implied by this  assign- 
ment  must  be carried  out.  This involves 

1 .  Allocation  by  counting and 
2. Assignment of specific registers at block boundaries. 

In addition to  the information recorded locally (e.g., 
RAVAIL and the assigned  result registers), it is  neces- 

3 .  Block b may cease  to be transparent.  In this case 
RRE(b)  A NPT(b)  is oRed into AIF, because this 
causes  any load  L of an item x that  is  not referenced 
in b to  become absolutely infeasible if the  end of b is 
in RR(R,x,loc(L)).  Note that if x is referenced in b 
but is not a potential terminal quantity of 6 ,  L would 
already be absolutely  infeasible, so that  the bit vector 
operation is still correct. 

Let A = { (r , ,Ul),  ..., (rm,U,,,)} be the assignment 
generated by load-store motion for x, where  the x-vector 
U ,  represents  the  loads and live exits of x that  were as- 
signed to register r,. The reservation implied by A is car- 
ried out by performing the  procedure  RSRV(6)  for  each 
block b in R. 

Procedure  RSRV ( b )  
For i  = 1 to m do: 

sary to  update  the A I F  vector (based on  step 1 )  and  the 
RNA vectors  (based  on  step 2) ,  because  these  are  what 
control  the  load-store motion and assignment for subse- 
quent  data items. 

Allocation  by  counting takes  one of three  forms  for 
data item x in a block h: 

1 .  If Uj  A RRE(b,x) # 0 then  (the  last register  point of 
x in b was  used in moving one of the  loads of x )  do: 
a. If x is a  potential terminal quantity in b then  do: 

i. Terminalize x in b. 
ii. Assign rj as  the result  register of the instruc- 

tion last defining x in b. 
1. Initializing This  occurs when x is a potential initial 

quantity forb  and  the corresponding  load is  removed. 
It involves decrementing  RAVAIL(p)  for  each point p 
from the beginning of b to  the first register  point of  x. 

2. Terminalizing This  occurs when x is a potential ter- 
minal quantity for b and its  last  register  point in b is 
used to  remove a  load or live exit elsewhere. I t  in- 
volves  decrementing RAVAIL(p)  for  each point p 
from this  point to  the end of b. 

3. Passing through This  occurs when x has  no register 
point in b ,  but b is transparent  and is on a track  from 
such  a  register  point elsewhere  to a load or live exit 
being removed. It involves  decrementing  RAVAIL ( p )  
for all points p in b. 

Allocation by counting in block h can affect  the  abso- 
lute infeasibility status,  as reflected by the  R-vector 
AIF, in one or more of the following three  ways  when 
RAVAIL goes to  zero  at some  point in b: 

1.  One  or  more  data  items  can  cease  to be potential ini- 
tial quantities for b. For  each such data item x,  RRB 
(b , x ) ,  which contains only the single load L of x in b, 
is oRed into AIF (x),  because L is now absolutely 
infeasible. 

2. One  or more data  items  can  cease to be  potential 
terminal  quantities for b. For  each  such  data item x, 
RRE(b,x) is oRed into AIF (x),  because this causes 
any load L of x that  has  the end of b in RR  (R,x, 
loc( L )  ) to  become absolutely infeasible. 

iii. oRRRE(b)  intoRNA(rj). 
iv. Update AIF  as  required (see 1 - 3 above) : 

b. Else  (x is not referenced in b )  do: 
i. Pass x through b. 

ii. Reserve rj as a  pass-through  register of 6.  
iii. OR RRE ( b )  V RRB ( b )  into  RNA ( r j ) .  
iv. Update AIF  as  required (see 1 - 3 above). 
v. Return. 

2. If Uj  A RRB(b,x) # 0 then (a load of x in b was 
moved)  do: 
a. Initialize  x in b. 
b. Assign rj as  the result  register of the initial load of 

x in b ,  which, though it is marked  for deletion, is 
left as a place  holder for local  assignment. 

c. ORRRB(b)  intoRNA(rj); 
d. Update AIF as required (see 1 - 3 above). 

8. Computation of RRE, RRB, and INT vectors 
The first step in computing the  RRB  and  RRE  vectors 
for a region R (as defined in section 6)  is to  select a  set 

that  the  graph x resulting  from the removal of the  ei 
from  R has  the following property: x has  no closed 
tracks  that  are  not totally  contained in proper subregions 
of R .  The method of [6] always produces regions for 
which this can be  achieved for n = 1. For  the  present, 
we assume  that R contains no proper subregions. Thus, 
the graph x is acyclic  (has no closed tracks),  and its 25 

{ e , ,  . . .  , e,,} of edges of the control flow graph of R so 
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Figure 1 An example for global assignment in an innermost 
region ( 3 - 6 ) .  

Figure 2 Effect of local allocation  on status. 
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nodes  (basic  blocks)  can  be topologically sorted, i.e., 
given a linear order b,, . . ., b,, such  that if bi  is a  prede- 
cessor of bj, then i < j .  

Then apply the following steps: 

1. For 1 5  j 5  m do: 
a. Set  the Lth component of RRB(bj)  to 1 if L is a 

potential initial load in bj, else  to 0 (the beginning 
of b is in RR(R,item(L),loc(L)) if item(L) is a 
potential initial quantity of b ) .  

b. Set  the  Lth  component of RRE(bj)  to 1 if L is a 
live exit  corresponding to  the end of bj, else  to 0 
(the end of b is in RR(R,item(L),loc(L)) if it is 
the exit  corresponding to L ) .  

2. Repeat n + 1 times: 
a. F o r j  = m, m - 1; . ., 1 do; 

i. OR RRB(b,)  into  RRE(bj)  for  each  successor 
b, of bj in R, including those corresponding to 
removed  edges (if the beginning of b, is in 
RR  (R,item(L),loc ( L ) ) ,  then so is the end of b j ) .  

ii. OR RRE(bj) A NPT(bj) into  RRB(bj) (if the 
end of b is  in RR(R,item(L),loc(L)), then so 
is the beginning of b if item@) is not  referenced 
in b).  

This algorithm strongly resembles  that used in [5] to 
compute  the bit vectors  for global  redundancy elimina- 
tion,  and  it  has a similar justification. See also [7], in 
which it is viewed as solving  linear Boolean equations. 
The algorithm  results, in general, in register  requirement 
sets  that  are larger than those defined in section 5, be- 
cause  an item may not  be  a  potential  terminal  quantity of 
b even though it is referenced in b. However, this can 
only occur  for a load or live  exit that is absolutely in- 
feasible, so that  there is no  net effect of the inaccuracy. 

For  its application in store motion, the affect (RJ) 
relation is conveniently represented by an  x-vector 
AFCT(b,x)  for each block b of the region R whose Lth 
coordinate has  the  truth  value of the relation AFFECT 
(end(b),loc(L),R,x). Such a vector  is required  only if x 
is stored in R. By appending AFCT(b,x)  to  RRE(b) 
for all such x, and by  appending similar x-vectors 
AFCTNPT(b,x)  to  NPT(b) and AFCTRRB(b,x)  to 
RRB(b) and initializing them  appropriately, the  above 
iterations  also  compute  the  AFCT(b,x)  vectors. Specifi- 
cally, AFCT(b,x) and AFCTRRB(b,x)  are initialized 
exactly  as  the  corresponding  vectors  RRE(b,x)  and 
RRB(b,x)  are in step 1 above,  whereas  AFCTNPT(b,x) 
is set  to all zeros if x is redefined in b and  to all ones  other- 
wise. 

The AZF vector is first set  to all zeros if we assume 
that only  loads  corresponding to potential initial quanti- 
ties  have  R-vector  coordinates.  Then,  for each block b 
in R that is not transparent, RRE(b)  A NPT(b)  is oRed 
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into A I F ,  because if RR(R,item(L),loc(L))  contains 
the  end of b, then L is absolutely infeasible unless item 
(L) is a  potential  terminal quantity for b. 

The intersection vectors  are computed as follows: 

1. Initialize ZNT(x,L)  to all zeros  for all x  and all loads 

2 .  For  each block b and  each  data item x in R do: 
L o f x  in R. 

a. Set  RREl = RRE(b,x). 
b. If x is both a potential initial and  a  potential  termi- 

nal quantity in b  corresponding to a single load 
L in b, then OR RRB(b,x) into RREI.  (At this 
point, RREI represents  the  set of loads of x 
whose register requirement  sets  have a common 
point in block b. ) 

c. For  each  component L of an  x-vector, if the  Lth 
component of RREl  = 1 ,  then OR RREI into I N T  
( x , L ) .  

9. Example 
The global assignment algorithm has been described  for 
a region with no subregions. The  reader may now  con- 
sider its application to  the example  shown in Figs. 1 and 
2. The region R consists of the blocks 3, 4, 5, and 6. By 
removing the  edge  from block 6 to block 3, all closed 
tracks in R are eliminated,  and the blocks are topo- 
logically sorted.  The only entry block is 3, with entry 
target 2. Both 4 and 6 are exit  blocks with exit  targets 8 
and 7, respectively. The indicated control flow would, of 27 
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Figure 4 Results of iteration for RRB's and RRE's. 

course,  require  branches in addition to  the instructions 
shown.  The variables that  are live on  entry  to  the exit 
targets  are listed. The box to  the right of each block in R 
is used in Figs. 2 and 5-10 to illustrate the allocation  and 
assignment status of the block.  A character  under a par- 
ticular  variable u in such a box indicates that a  register 
has 'been  allocated for u at  the  corresponding point. New 
allocations (i.e., changes from  the prior state  depicted) 
are indicated  by x's, old ones by *'s.  We assume  an  object 
machine with  four  registers of a single type. The register 
availability count  at  any point is  thus  four minus the num- 
ber of characters in the  corresponding row of the  appro- 

28 priate box. Figure 2 shows the effect of local allocation: 

a and b have been  maintained in registers between  suc- 
cessive references in block 3. A global assignment of u to 
register r is indicated by r a t  the  appropriate block bound- 
ary (beginning or  end)  under  the u. 

Figures 3 and 4 show  the bit vectors before and  after 
application of the algorithm of section 8 for computing 
RRB and RRE with n = 1. In addition to  the register re- 
quirement  components  as defined in section 6, we have 
included, to  the right of the slash, the uflect component, 
as suggested in section 8, for computing the affect relation 
needed for  store motion. Each  R-vector  (section 6)  is 
separated by spaces  into  its  component x-vectors. An 
x-vector is labeled by  variable, and  its bit positions are 
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Figure 8 Results of processing b; register trial sequence = 
3,4,1,2. 

Observe  that  RR(R,d,loc(3))  and  RR(R.dJoc(6)) 
must be regarded as intersecting because  the load in 
block  3  can  only be moved by using the register  point of 
d after  the load  in  block 6, so that by the principle of 
consistency  (section 7) they  must be  assigned the  same 
register. Note  that AIF and  RNA  are initially zero  and 
the register  trial sequence s is ( 1,2,3,4,). We  move the 
loads of d in numerical order. Initially the partial  assign- 
ment P is empty. The application of CNCT(3,P) re- 
turns with P = { (  1,{3j)}.  In applying CNCT(4,P) 
we get, in step 1, 1 = 0, so in step 2 ,  U' = {4},  and step 
3 returns with P = {(1,{3}),(1,{4})}.  On  return  from 
CNCT(S,P),  P = { (  1,{3}),(  1,{4,5})},  and  after CNCT 
(6,P), P = { (  1,{3,4,5,6}) j. The only store of d in R 
is in block 3, and it is in the affect (R,d) relation to all 
loads and live exits of d, as  seen from the affect com- 
ponent of RRE(3,d) in Fig. 4. Because all the  loads 

have been  successfully moved,  the  store motion  pro- 
cedure calls for  the  attempted motion of the live exists 7 
and 8, using CNCT.  These  are  successful,  and  the final 
value of P is {(1,{3,4,5,6,7,8})}.  The load store motion 
for d is completed  by following the  instructions in sec- 
tion 5, which call for a load of d to  be inserted at  the  end 
of block 2 and  stores  at  the beginnings of blocks  7 and 8. 
The reservation for d now is accomplished  by  a  straight- 
forward  application of RSRV(b) for b = 3,4,5,6,  which 
has  the effect of initializing and terminalizing d in each 
block. The effects on RAVAIL, AIF, and RNA are 
shown in Fig. 5.  

In Fig. 6,  observe  that  the  one occurring in AZF for  the 
load of e in block 3 is a result of e ceasing to be  a  poten- 
tial initial quantity in this  block. In Fig. 7 ,  the  ones in 
AIF for  both  loads of a result from  its ceasing to be a 
potential  terminal quantity  for block 3 .  
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Figure 9 Results of processing f register  trial  sequence = 
3,4,1,2. 

Finally, Fig. 10 shows  System/360-like  code gener- 
ated during the local  assignment phase. A register trial 
sequence  for r beginning with register 4 would have in- 
hibited the  subsequent motion of the  stores  off. 

The  interested  reader is encouraged  to  try this  exam- 
ple with variations in the  number of registers, the  order 
of processing of variables, and  the register  trial  se- 
quences. 

10. Global assignment for outer  regions 
Suppose region R immediately contains region R ' .  Then 
when global  assignment for R takes  place,  it  has already 
been  completed for R ' ,  at  least in the  sense  that all loads 
and  stores  that  are  to be removed from R' have been 
removed. While glQbal assignment for R proceeds basi- 
cally as described in sections 7 and 8, the  presence of 
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Figure 10 Generated  code. 
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R' must  be accounted  for in each of the  three principal 
subphases-  vector  computation,  load-store motion, and 
reservation. 

With respect  to  load-store motion, the completed as- 
signment of R' to some extent  forces,  or implies, certain 
specific assignments in R ,  because of the principle of 
consistency introduced in section 7.  In  the first place, 
any load inserted into  an  entry target of R' upon  remov- 
al from R' clearly  has its assignment implied by that in 
R ' .  In the  second  place, if there is a  register  point in 
R' at which x has  a specific assignment  and which is to 
be  used in removing a load L of x from R ,  then by the 
principle of consistency  the assignment of L would be 
implied. In  more formal terms,  suppose P' is the final 
assignment of x in R ' ,  L is a load (or live exit) of x in 
R,  q' is an exit of R ' ,  q is the exit  target of q', L' is the 
corresponding live exit  for x, and q is in R R  ( R , x , l o c ( L ) ) .  
If there  exists ( v , U )  in P' such that I N T ( x , L ' )  A CJ # 0, 
then L has  the implied assignment v in R. 

Other  situations,  such  as fixed subroutine  interfaces, 
may have a similar effect. Whatever  the  source. we ex- 
press this effect for  each  data item x in the  same  form  as 
a partial  assignment for x in R. Thus  an implied ussign- 
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rnent for x in R is a set IA = { ( j i , U i ) ,  ..., ( j m , U m ) } ,  
where the j ,  are indices of the register  trial sequence s 
for x in R  and U ,  is the (R)  x-vector representing the 
loads and live exits of x in R that must  be  assigned to s. 
if they are  removed. 

The application of the  above criterion for determina- 
tion of the implied assignment may lead to inconsisten- 
cy, i.e., a load L common to U k  and U ,  with j ,  # j,. 
However, this  situation is assumed  to  have been  handled 
by making L  absolutely  infeasible in R. 

It is primarily in this context  that  the  choice of the 
register trial sequence  seems significant, because it can 
be used to  reduce  the likelihood of such  inconsistency 
arising. Suppose,  for  instance,  that prior to  any global 
assignment, we determine  the processing order of the 
data items in each region, using reference  frequency  or a 
similar  criterion. Let N be the  number of registers in the 
object machine.  Provisionally  assign the first N data 
items (in processing order) of the  outermost region to 
registers 1 through N. Then  repeat  the following process 
for all remaining regions S' in an  outer-to-inner  order: 
For  each of the first N data items  x of S', if x has a pro- 
visional assignment in the region S immediately contain- 
ing S', give it the  same provisional  assignment in S'; 
otherwise provisionally assign x to any  register not pro- 
visionally assigned in S to  any of the first N data items of 
S'. These provisional assignments, having been  obtained 
prior to global assignment, can be  used to  determine  the 
register trial sequences.  In particular, whenever a data 
item x has a  provisional  assignment to register r in R,  r 
should be first in the register  trial sequence  for x in any 
region R' immediately  contained in R. 

In the presence of an implied assignment IA = 

{ ( k l , W i ) ,  . .., (kD,W, , ) }  for x in R ,  the basic  function 
performed by the CNCT procedure in load-store motion 
(section 7 )  is performed by the procedure CNCTIA 
(L.P,IA),  where P = { ( , j l , U , ) .  ..., ( j m , U m ) }  is the  cur- 
rent partial assignment for x in R, s the register  trial 
sequence  for x in R,  and L the load (or live exit) being 
moved. 

' k  

Procedure CNCTIA  (L,P,IA) 

I .  First  determine  whether  the assignment of L is 
forced, i.e., whether  UNIT(x,L) A W ,  # Ofor  some q 
( 1 5 4 5 p ) .  If  so, then do  the following: 
a. Partition P as in CNCT so that  for some 1 

(Or 15 r n )  
U i  A I N T  (x,L) f 0 for 1 5 i 5 1, and 
Ui A INT  (x,L) = 0 for 1 < i 5 rn. 

b. If j i  > k for some i 5 I ,  then  return in failure 
(since  the implied assignment would have  already 
been tried in vain for  one of the  intersecting loads). 

c.  Let U'  = UNIT(x.L) V U ,  V . .  . V Ul. 

BEATTY 

d. If U t  A RNA(s  x)  = 0 then do: 
k; 

i. ReplacePby{(j,+,,U,+,),.~.,(jm,Um),(kq,~')}. 
ii. OR INT(x,L)  into W,. 

iii. Make  inconsistent implied assignments in- 
feasible, Le., OR W ,  A W i  into AIF(x)  for 
l i i Z p , i # q .  

iv. Return. 
e.  Return in failure. 

2. Apply CNCT(L,P).  

In addition to register  reservation in blocks immedi- 
ately  contained in R,   as  described in section 7, the load- 
store motion in R may require additional  reservation in 
the  contained region R'.  This would be the  case,  for in- 
stance, if an  exit target q of R'  were in RR  (R,x,loc  (L) ), 
where L is a load (or live exit) of x  moved  from R ,  and 
no register  had  been  reserved for x at  the corresponding 
exit. We call this secondary  reservation in R ' ,  and it has 
one of two  forms: 

1. Data item  x may be passed  through R', i.e., a register 
is reserved  for x throughout  R'.  This  can only happen 
when R'  is  transparent  and x has  no register  point in 
R '  but is required to be in a  register at  some exit of R'. 

2 .  Data item  x may require a purtial reservation in R'. 
This  can happen  when  x  has  a  register point in R '  and 
is required to be in a  register at  some  exit of R '  for 
which the  corresponding live exit of x is "uncovered," 
i.e., cannot be  removed  based on prior reservations 
in R'. 

While passing  through can be  handled rather simply, 
secondary partial reservation  requires essentially the 
same  status information and  processes  as primary reser- 
vation (as discussed in section 7 ) .  For this reason it 
may be  preferable simply to  suppress  the motion of any 
load in R that would necessitate  secondary partial reser- 
vation  in a contained region. This could be done by  mak- 
ing such  loads absolutely infeasible. This key to carrying 
out a secondary partial  reservation to  produce x in a reg- 
ister  at  an exit q' of R '  is provided by the live exit L' of 
x corresponding to 4'. (If x is not live at  the exit  target q 
of 4' ,  there could be  no load-store  motion in R  requiring 
x to be  in a register at 9 . )  Specifically, the  reservation  is 
just  that required to  remove  L' from R',  i.e., a register is 
needed in the  set S = RR(R',x,loc(L')). 

Next we consider  the role that  the  contained region R '  
plays in the computation of the  RRB,  RRE,  and  INT 
vectors  for  R.  For  most  purposes  R'  can be  considered 
as a node (basic  block) of R whose  predecessors  and 
successors  are  the  entry  and  exit  targets of R'.  It may  be 
regarded as  one of the bj in the linear order defined in 
section 8. If no  secondary partial reservation is being 
made,  the basic  algorithm for computing RRB  and  RRE 
(section 8) can  stand  unchanged, given  only that  the 

IBM J .  RES. DEVELOP. 



vectors  are  properly initialized for  the  nodes  corre- 
sponding to  contained regions. Specifically, if b is  the 
node for R ' ,  then R R B ( b )  and R R E ( b )  are initialized 
to  zero  and N P T ( b )  is set  to  one in coordinate L if and 
only if item ( L )  is not referenced in R ' .  

In  case  secondary partial reservation is used,  the role 
of NPT for  the  contained region R' is played  by an R- 
vector J U M P  for  each entry-exit  pair of R' .  Let p' be an 
entry of R' and p its  entry  target in R .  Let ql'; . ., q,' be 
the  exits of R' and q,, . .., q, their exit targets in R .  
We define the R-vector J U M P ( p , q j )  with a one in com- 
ponent L if L corresponds  to  data item x and the R'-  
vector R R B ( p ' )  has a one in the  component  corre- 
sponding to  the live exit of x at qj. Then  the iteration for 
R R E  at block p has  the form 
OR J U M P ( p , q j )  A R R B ( q j )  into R R E ( p )  f o r j =  I;.., k .  

For  the  purpose of computing the I N T ( x , L )  vectors, 
the algorithm of section 8 may be  used  with the con- 
tained region R' treated  as  one would a basic  block of R .  
Although with a more refined method the assignment 
constraints could be  somewhat  relaxed,  the  net effect is 
probably insignificant. 

The R N A  vectors  for R must, of course, reflect the 
register availability in R' relevant  to  loads  and live exits 
in R .  In  case  secondary partial reservation  is  not being 
done, this can  be accomplished as follows (where  the qj 
and qj' are  as defined above) : 

For  each register r do: 

1. Initialize R N A ( R , r )  to 0. 
2.  For  each  data item x (referenced in R ) ,  if x is not 

referenced in R' and r is reserved  anywhere in R ' ,  
then OR R R B ( q j )  into R N A ( R , r )  for 1 5  j 5 k .  

a. If x is not assigned to r at qj', then OR R R B ( q j ~ )  
3 .  If x is referenced in R ' ,  then  for j = 1 to k do: 

into RNA  (R , r ,x ) .  

If secondary partial  reservation is being done,  the pro- 
cedure is more  tedious and depends on the R N A   ( R ' , r ) .  

The effect of R' on  the initialization of the AIF vector 
is determined in an analogous  way. 

11. Logical  constraints of load-store motion 
Until now we have  assumed,  for simplicity of exposi- 
tion,  a one-to-one fixed relation between  data items to be 
assigned to registers  and  their storage locations. Thus 
the only constraint involved in load-store  motion  was 

logical constraints  as well as the  physical one  already 
dealt with. These  constraints should also  cover  the pos- 
sibility of aliasing among  data items.  Finally the problem 
of safety must  be  faced in order  to  move  loads and 
stores of dynamically addressed  items;  safety  here 
means the possibility of ,introducing  unwanted  side  ef- 
fects  due  to a change in conditionality of execution of 
the moved instruction.  These  are  serious problems for 
all forms of compiler  optimization,  particularly the glob- 
al ones.  The aim of this  section is not to  present general 
solutions for  these problems,  but to show how the  above 
global assignment  algorithm  can effectively make  use of 
such solutions. 

Consider  the case of a subscripted variable A ( I ) .  It  is 
possible to apply  machine-independent methods of 
expression commoning and backward  motion to  remove 
the  loads of A ( I )  (see [7], for  example.)  This involves 
introduction of a scalar  temporary  to  carry  the value of 
A ( I )  from one point of reference  to a subsequent  one, 
independently of register  availability. This is the  strategy 
used in the FORTRAN H optimizer, in which, however, 
apparently  no  attempt is made  to  remove subscripted 
stores. Although  this approach  reduces  the index regis- 
ter  requirements,  the effect is frequently  outweighed by 
the additional stores required for  the  scalar  temporaries. 
A  more flexible approach involves  removing  only those 
loads and  stores of A ( I )  for which registers are avail- 
able.  This machine-dependent approach  has  the  draw- 
back that  the potential  index  register  saving is not  only 
smaller but often cannot be  conveniently  realized, be- 
cause  the  necessary information is not known soon 
enough.  A test made to  compare  the two approaches 
indicated no significant difference (see section 1 3 ) .  
Nevertheless,  the basic  machine-dependent  method is 
now described,  because with some  elaboration, it has  the 
potential of more promising results. 

Each formally distinct  subscripted  variable is treated 
as a separate  data item subject  to  load-store motion. 
Thus A ( I ) , B ( I ) ,  and A ( J )  would all be considered  as 
separate items.  Assuming that global commoning and 
backward  motion for  expressions  (but  not  for subscript- 
ed  references)  have been completed, if e is an expres- 
sion other than a simple variable reference, a reference 
to A ( e )  need not be considered,  at  least  for load motion. 
For this would be  possible  only if e were  redundant, in 
which case  the reference  presumably would have been 
changed to  the form A ( T ) .  

the physical one of register  availability. One would like For  the  purpose of load motion for a data item x = 

to  be  able to apply these  techniques to dynamically  ad- A ( I ) ,  the  absolute infeasibility vector AIF may  be  used 
dressed  (pointer  or  subscript  qualified)  data items, to record the logical constraints  as follows: 
which do  not satisfy the fixed one-to-one  relation with For  any block b of the region R in which x is not  a 
storage; e.g., A ( I )  may refer to different storage loca- potential  terminal quantity, we OR R R E ( ~ J )  into A I F ( x )  
tions at different  times and may refer to the same  storage if either I or A ( I )  could  be modified by the execution of 
location as A ( J ) .  This  requires  the imposition of certain b .  The  latter  alternative would in general  obtain if, for 33 
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instance, A ( J )  or A ( e )  were stored in 6. We have 
begged the  question slightly in the  use of the notion of 
potential  terminal quantity.  In section 5 this,  as well as 
potential initial quantity,  was defined in terms of register 
availability alone. For a subscripted item x, this concept 
should  include the logical identity of x at  the  end of b (at 
the beginning in the  case of an initial quantity).  In  other 
words, x is a potential  terminal  quantity for b if there is 
qn instruction  i  referencing x in b and if a load of x could 
correctly be  moved  from the  end of 6 back to  loc(i). 
Similarly, x is a potential initial quantity for 6 if there is 
a load i of x in 6 that  can  be  correctly moved  back to  the 
beginning of 6. In both cases we require,  as in section 5, 
that  the available  register counts along the  course of 
motion are positive. 

Store motion for A ( I )  requires  data in addition to  that 
described in section 5. For  the simple case  addressed 
there, a store S of item x could be  removed from region 
R if each load and liv'e exit of x to which S was in' the 
affect ( R J )  relation  could  be  removed from R .  The  ad- 
ditional requirement for the  case x = A  ( I )  can  be satis- 
fied by allowing for a  dummy  load of x at  any  point-of R 
at which a modification of Z or  either a use  or a modifica- 
tion of A ( I )  under  any  other name  (e.g., A (.I) 1 could 
occur.  These dummy loads  are  to be considered immov- 
able from R .  Thus .if S is in the affect ( R J )  relation to 
any  such load L, then S is not movable  from R .  These 
dummy loads of x can be represented collectively by a 
single bit  position, which we denote  as  SLZ(b,x)  for  store 
logically immovable, appended  to  each A F C T ( 6 , x )  mc-  
tor  as defined in section 8. Thus if SLZ(.b,x) is on, the 
end of b is in the affect ( R , x )  relation to  some immov- 
able dummy load and hence a store of x in'b is logically 
immovable. By 'appropriate initialization the SLZ ( 6 , x ) ,  
as'the AFCT(b,x) ;  are  computed by the algorithm of 
section 8. 

. .  

Other  forms of dynamic qualification, such  as  based 
references, can be  handled in exactly the  same  manner 
as  subscripted references'. 

We have until now assumed  that different vafiables 
correspond  to disjoint storage locations. In this section, 
we used A ( I )  and A ( J )  as  examples of possible aliases 
for  the  same  storage location.  Language constructs;  such 
i s  EQUIVALENCE in FORTRAN, DEFINED'  or 
BASED in PL/I, REDEFINES in COBOL, or  parameters 
in many languages, allow numerous  other possibilities 
for aliasing. Moreover, calls tp external  routines  can in 
certain  instances implicity reference variables of the 
calling program. -To  do global optimization of any  sort 
correctly, all possibilities for  such side  effects  must  be 
taken into account, if necessary by assuming worst 
cases. Our  technique  for handling  subscripted references 
can  be applied to reflect these possibilities in the bit vec- 
tors  for global assignment. For  example, if x and. Y 

could be aliases for  the  same  storage, they would be 
handled as A ( I )  and A ( J )  were above, in that a change 
of X could cause a load of Y to  become absolutely in- 
feasible, and  either a use  or a change of X could cause a 
store of Y to become logically immovable. 

What has  been  shown thus  far is how the global as- 
signment algorithm can  be  applied to a data item x, given 
that  for x and its  dynamic qualifiers (subscripts  or 
pointers)  the program  points are known at which the 
storage allocated to them can  be used or modified. In  the 
case of store motion for x in region R ,  it is generally 
necessary  to know additionally that  the  storage  for x is 
not  deallocated in R .  

The  question of safety  is  relevant  for a dynamically 
qualified reference of data item x that must  be  moved to 
a region entry  or  exit,  at which it could  be executed, 
even though it might not have been executed if left in 
place. This is because  the qualifier may be invalid and 
cause  an unwanted interrupt.  Let p be an  entry of region 
R .  We assume it is known whether a load  L of x would be 
unsafe at  the  corresponding  entry target, i.e., whether 
such a load .could  cause  an  interrupt  even though the 
original program  could  not. There  are means of deter- 
mining this in some  cases, e.g., [8]. Should  L be unsafe, 
we can inhibit the motion of any load or live exit of x 
requiring  L simply by oRing R R B ( p , x )  into A Z F ( x ) .  
Similarly, if q is an  exit of R ,  then  we  assume it is known 
whether a store of x would be unsafe at  the  correspond- 
ing.exit target. If so, then if L is  the  live  exit of x corre- 
sponding to q,  a store S of x in R cannot be removed if 
loc(S)  is in the affect ( R , x )  relation to  loc(L).  This  fact 
cap  be reflected in the  appropriate SLZ bit by  consider- 
ing L to be a dummy  immovable  load. 

12. Register  assignment  prototype 
A prototype register  assignment  program was written 
to  evaluate  the strategy  proposed in section 2 and con- 
sists of the  three  phases  described there. To  provide 
realistic input, a  program was  written  to  convert  the in- 
ternal text of the FORTRAN H compiler after  the final op- 
timization phase  (phase 20) to a form acceptable  to  the 
prototype.  The  prototype  generates IBM System/360 
code from  this  input. The  phase implementations in the 
prototype  are  described below. 

Local allocation 
The local  allocation phase  retains  the instruction order 
and  merely attempts  to  keep  data items in registers  be- 
tween successive  references in the  same basic block 6 ,  
without making specific register  assignments. This is 
done by 'keeping counts of.  available  registers at each 
point  (i.e., instruction) of 6. Separate  counts  are kept 
for floating-point and general  registers. These  are initial- 
ized to  the  number of registers of the  respective  type in 

I .  
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the machine. Then  the basic register  requirement for 
each instruction is subtracted.  Normally, this amounts  to 
one register of the  appropriate  type  for  the instruction at 
its  corresponding  point, although more  are obviously 
required for certain  instructions, such  as fixed-point mul- 
tiply. Thus we only account  for  the  result register re- 
quirement  at this  point. The  operand registers are ac- 
counted  for later. 

The instruction text  is in the form described in  section 
3, with data  references made  only  by means of loads or 
stores. Because some of the loads may eventually  be 
effected by RX  references, it is advisable not  to  assume 
any register requirement  for  such loads at this time. This 
assumption  is valid as long as  the loads  immediately 
precede  the  instruction referencing their  results.  The 
subsequent register  allocation corrects this  assumption 
appropriately. 

We define  a gap of b as  the interval between  two suc- 
cessive  references  to  the  same  data item in 6,  the second 
of which is not  a store.  The  gaps of b are assigned priori- 
ties and sorted by increasing  priority. Then  for  each gap 
g in order, we attempt  to close g by  decrementing the 
appropriate register counts in the interval g. When a reg- 
ister  count of zero  occurs in a gap,  then it cannot be 
closed, in which case a load and possibly a store must  be 
generated.  The priority  used for a  gap is its  length in 
terms of the  number of intervening  instructions. An ex- 
ception to this is made  when the gap is between a store 
of x and a unique load of x ( x  ceases to be live after this 
load).  In this case  we use half the gap  length, because 
both the  store  and  the load are removed  by  its  closing. 

Any optimization  procedure that  alters  the instruction 
sequence  should,  for  obvious  reasons,  precede  the gap- 
closing process.  This applies  not  only to  the usual ma- 
chine-independent  optimization steps but also  to instruc- 
tion reordering of the machine-dependent types,  such 'as 
discussed in [9- 111. However, in design and evaluation 
experience with instruction  scheduling  algorithms for 
optimizing running time on pipelined machines, we 
found it advisable to close certain time-critical short 
gaps  before  applying  a  general  gap-closing algorithm 
such  as  the  one described above.  This involves  a partial 
gap  closing during,  rather than after,  the determination 
of the instruction order  for  the block. 

Global assignment 
The algorithm described in sections 4 through 8 was 
implemented  reasonably  faithfully, including the method 
for  the handling of outer regions  outlined in section 10, 
with partial secondary  reservation, and the handling of 
subscripted references described in section 1 I .  

Local assignment 
The function of the local assignment phase is to  generate 

code  consistent, insofar as possible, with the  results of 
local allocation and global assignment. This is done  one 
basic block at a time and involves assignment of the reg- 
isters used solely for intrablock  communication (i.e., 
those allocated  during  local allocation),  as well as  cer- 
tain  local  optimization steps,  such  as commuting  oper- 
ands  to avoid unnecessary register moves  (System/360 
load register)  and generating RX-type  references  where 
possible. The  instructions of a block b are  processed 
in order  except  that a look-ahead procedure  is  used  to 
avoid unnecessary register  moves due  to register  assign- 
ments  at  the  end of b that  have  already been fixed by the 
global assignment  phase.  This  procedure  uses  chains  con- 
structed during  local  allocation,  which link each in- 
struction having a register  result to  the  last instruction in 
b using this result, or to the  end of b in case  the result is 
to remain in a register beyond  this  point. A spill situation 
can  arise during local assignment, even though the avail- 
able register counts  are  not allowed to go negative dur- 
ing the prior  phases. Experience with the  prototype  has 
indicated that this possibility is almost  never realized in 
practice.  When it is, the  necessary  corrective action is 
straightforward. 

Limitations of the prototype 
It is appropriate  to identify the principal limitations and 
inadequacies of the  prototype: 

1 .  No attempt was made  to compile subroutine link- 
ages or in-line functions. 

2. The general purpose registers  were treated uniform- 
ly, so that  the impossibility of using register 0 for 
address modification can be reflected only by not 
using it at all (by an  appropriate  parameter  setting). 

3. The paired  register requirements of the fixed-point 
multiply and divide instructions were  ignored, so 
that  these  are not correctly compiled. 

4. No attempt was made  to  use  the branch-on-index 
instructions  for loop  closing, again because of the 
paired  register  requirement. 

5. Only  full-word arithmetic and shift instructions  were 
compiled. 

6. All branch  targets  and  scalar  data were considered 
to be addressable with a single base register,  which 
is assumed to be constantly loaded and  thus not 
available to  the assignment  algorithm. 

7. Indexed (i.e., variable target)  branches  were  not 
compiled. 

8. No attempt was made  to  use  the load address in- 
struction  for loading or incrementing by a constant, 
or  to  use  the  subtract register instruction  for zeroing 
a  register. 

9. No attempt  was  made  to handle parameter or equiv- 
alenced data. 35 
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Table 1 Results of evaluation  experiment. 
~ ~ ~~ ~~ 

Percent  reduction of FORTRAN H generated  code 

Example 
programs 

Liberal Conservative No. of No. of $fixed-point 
m.d. m.d.  m.i.  m.d.  (all-or-none) statements X’s and +’s 

DTF 
CONNECT 
MINV 
DETERM 
MATINV 
STRESS 
TRNPROB 
CLOSP 
GEOLAT 

averages 

18 
30 
3 1  
3 1  
32 
28 
35 
22 
1 1  

26 

16 5 
25 27 
24  26 
27 28 
28 27 
24 25 
3 3  32 
17  17 
1 1  12 

8 
20 
24 
24 
25 
24 
30 
12 
3 

36 
43 
51 
36 
62 
77 
45 

122 
105 

23 22 19 64 2 

36 
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10. The storage mapping and region (loop)  structure 
produced by the H compiler are  used, including the 
existing  linear ordering of blocks. The  predecessor 
ordering  required for  the algorithm of section 8 must 
exist at the  source level. Any  exception is flagged as 
an error. 

Most of these deficiencies can be  remedied by a 
straightforward  addition of detail. However, a few  re- 
marks may be of value to a prospective implementer. 
Consider first the problem of general  purpose register 
(G PR)  0. The simplest  solution  would be to avoid  its use 
in global assignment and  to  use it when possible in local 
assignment. A better  approach involves the  use of the 
bit vectors  described in section  6 to indicate the feasi- 
bility of using G P R  0 for a particular global  assignment. 
For example, if data item x is used in block b as  an ad- 
dress modifier (base or index  register), then RRE(b ,x )  
should  be oRed into RNA  (GPRO,x),  thus inhibiting the 
assignment of G P R  0 in the motion of any load  based on 
the availability of x at the  end of b. 

Now  consider  the problem of paired, aligned registers. 
In  the  case of fixed-point divide and multiply, the align- 
ment,  rather than the pairing, presents  the major  prob- 
lem for global assignment, because  the high-order half of 
the  product is usually discarded and  represents only an 
ephemeral  register  requirement.  Similarly,  only one re- 
sult of the divide is normally required.  The alignment 
can be  forced  by use of the RNA vectors. For  instance, 
if x is  set in b to  the result of a  fixed-point  multiply, then 
RRE(b,x)  is oRed into RNA(r ,x )  for  each  even num- 
bered GPR I-. The use of the branch-on-index  instruc- 
tions,  however,  presents a genuine pairing problem, 

which could be handled by adjusting the register  trial 
sequences of the  increment and comparand  to  increase 
the likelihood of their being  paired  and aligned properly. 
With the exception of a single base register for  the most 
critical data, it seems unwise to  reserve any base regis- 
ters unconditionally, as  the FORTRAN H compiler does 
for  addressing  the  code of a large module.  A  more flexi- 
ble alternative is to make,  before  register assignment, a 
conservative  estimate of code size in each basic  block 
and to use this and  control flow structure  to assign  labels 
(i.e., branch  targets)  to  as few  distinct  symbolic address 
constants  as possible. A branch to such a label must 
have,  as  an  operand, a load of its address  constant, 
which will compete  for registers on  an equal  basis during 
register  assignment. 

13. Experimental results 
In this section we present some experimental  results 
obtained  by  comparing the  code  generated by the IBM 
System/360 FORTRAN H compiler for nine  programs 
with the  output of the  prototype  described in section 12. 
The  prototype produced on  the  average  about 25 per- 
cent  better  code.  In  the remainder of this  section we dis- 
cuss in detail the experimental results, which are sum- 
marized in Table 1. 

Because the FORTRAN H compiler was  used  to  provide 
input for  the register  assignment prototype, it served  as 
a convenient  standard against which to  measure  the 
effectiveness of the  prototype. In spite of occasional 
user complaints about  the register  assignment  produced 
by the H compiler, it has in fact remained a standard 
among  production  optimizing  compilers, using a  straight- 
forward  one-to-one  (in the  sense of [ 11) global assign- 
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ment  strategy after first giving priority to local assign- 
ment  [3].  Most of these complaints are based on  the 
occasional appearance in the  object listing of an  adjacent 
store-load  pair  referencing the  same memory location in 
the  same basic  block. With the version of the compiler 
used for  the  experiment (level 18, September,  1969), a 
visual scan of several moderately  large listings turned up 
five such  obvious  redundancies. 

Although  the  primary object of our register assign- 
ment strategy is to minimize the execution  time of the 
object program, we have  chosen  the  storage required for 
instructions  as  the criterion for  measurement.  One rea- 
son is that a realistic test of object execution  time would 
have been  beyond the  scope of our project. In general 
the  one-to-one assignment strategy used by the H com- 
piler is adequate  and,  indeed, hard to  beat  on programs 
whose execution  frequency is concentrated in loops that 
are small enough  not to  tax  the register resources of the 
machine. There is some indication [ 121 that  such pro- 
grams  are typical, at  least of FORTRAN programs. The 
same  study, however,  points to ill-advised use of the 
language  and poor algorithm design as a  primary source 
of this  phenomenon. In  moderate  to large programs that 
have been  carefully  designed and  tuned, especially those 
of the  system  type, it is relatively rare  that execution 
frequency  is heavily concentrated in a  few small kernels. 
It is for  such programs that  the major payoff of more 
advanced global register  assignment methods is to be 
expected.  Moreover, payoff in execution time will prob- 
ably  be about  the  same  as in code  space.  This is because 
the loads  and stores in such programs  tend to be  typical 
in execution time, and also  because  the redistribution of 
these  instructions  out of loops is not  nearly as significant 
as  their total  elimination, i.e., commoning. Thus,  for  the 
purposes of this study,  code  space seemed to be the 
most appropriate  measure of effectiveness. 

The H compiler text  that  we  used as input reflected 
the machine-independent handling of subscripted  loads 
mentioned in section 1 1 .  To apply the machine-depen- 
dent method described  there,  our  conversion program 
(optionally)  restored  the moved loads  to  their original 
positions, at  least in the more obvious  cases.  The result- 
ing data in Table 1 are captioned m.d. for machine de- 
pendent.  The  data  for  the unmodified FORTRAN H text 
are  captioned m.i. 

Because of the inability of the  prototype  to make 
selective use of GPR 0 and to  generate BX-type branch- 
es (section 12), we  have  assumed  no  use of G P R  0 and 
no BX branches in the  “conservative”  data.  Even so, 
because fixed-point multiplies and  divides  are not neces- 
sarily  compiled correctly  (section 12), the  number of 
such  instructions is included in the  statistics  for  each 
test  case. To  obtain  a  reasonable upper bound on effec- 
tiveness, we include in Table 1 ‘‘liberal’’ data obtained 

by compiling each example  assuming complete  freedom 
in the  use of GPR 0 and assuming that a BX branch is 
generated when all conditions except register adjacency 
are met.  We  believe that  the  methods suggested in sec- 
tion 12 can  lead to  results  close  to  the liberal figures. 

In an attempt  to  assess  the effect of the individual 
treatment of loads and  stores of a variable as  opposed  to 
the classical all or none approach typified by the many- 
to-few  strategy [ 1,2],  the global  assignment  algorithm of 
section 4 was modified as follows: Instead of attempting 
to remove individually each load and  store of item x 
from  a region R ,  an  attempt was  made to find a single 
register  available for removing all loads  and live exits of 
x from R (i.e.,  available wherever x was live in R ) .  If 
such a  register exists, all loads and stores of x are re- 
moved  and the  reservation  procedure of section 7 is car- 
ried out.  Otherwise,  or in the  case of any  absolute in- 
feasibility, no loads or  stores of x are  removed.  The re- 
sults of this modification are  described  under  the head- 
ing “all or  none.” 

The  examples tested  were  typical FORTRAN programs. 
The only strictly  fixed-point  programs were  CLOSP and 
CONNECT.  However, a scan of the  output indicates 
that in only one example, GEOLAT,  were  there suffi- 
cient  general purpose registers to  accommodate all items 
on a one-to-one basis. This is somewhat surprising, giv- 
en the  moderate size of the programs. It  appears  to be 
due in large part to  the  temporary variables  introduced 
by the FORTRAN H optimizer.  Although  most of the 
examples had to be modified slightly to allow for  the lirn- 
itations of the  prototype  (see section 12), care was  tak- 
en not to  alter  the basic data flow. 

The need for partial secondary  reservation  was  ques- 
tioned in section 10. Although no  systematic  attempt 
was  made to  evaluate this need,  experience with  the  pro- 
totype indicated that  the  code  for this  function was al- 
most  never invoked. 

14. Notes on the  prototype  implementation 
The  prototype  was implemented in PL/I by the  author 
over a two-year period, roughly half  of which was  devot- 
ed to this  project. It  consists of approximately 4750 
lines of code, of which about 3500 lines  comprise,  the 
global assignment  phase. The  conversion  from ForcrRAN 

H represents  an additional 450 lines (also in P L / I ) .  The 
P L / I  F compiler  was  used initially under  System/360 
Operating System  (OS/360) and finally under  Control 
Program/67-Cambridge  Monitor  System  (CP/67-CMS). 
While under OS, the  object program  was overlayed and 
ran in a 400K- to SOOK-byte region. 

Although extensive list  processing was  used,  the use 
of based  storage for this purpose  was  kept  to a mini- 
mum. Instead  the list elements were accessed  as ele- 
ments of arrays of structures.  This greatly enhanced the 37 
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effectiveness of the  subscript range  condition for  error 
checking. Through a minimal standardization of list for- 
mats and naming conventions  and  the  use of the p L / I  

preprocessor to implement  a  few  common list-handling 
constructs, a flexible and effective system  was evolved 
for handling singly linked  lists. Constructs  were intro- 
duced  for iterative  processing of the  elements of a list 
and  for prefixing and deleting such elements. 

Even allowing for  the  use of p L / I  without  optiqiza- 
tion  and  with extensive  subscript range  checking, the 
execution times for  the  prototype  were long. About half 
the time was  spent in the global assignment phase. Be- 
cause this phase  was designed  with  considerably greater 
care than the  rest, this ratio is not particularly signifi- 
cant.  The global assignment  time  was  measured in terms 
of the  total  number of global references  (loads  and 
stores)  processed, i.e., considered  for global motion, in- 
cluding those  generated  at  entries  and  exits of a region 
by the algorithm. The time per  reference  on a Sys- 
tem/360  Model  67 was in the  range  0.50-.75 s ,  and did 
not vary meaningfully with the number of references. 
For  instance, a  program  with 172  references  and  one 
with 505 references  both required  0.66 s per  reference. 
The global assignment  time thus  appears  to  be roughly 
linear in the  number of references. In  the  examples  test- 
ed,  the  average  number of references  per  statement 
ranged from three  to six. 

15. Summary and conclusions 
The  results  reported in section 13 show  that  the register 
assignment strategy outlined in section 2 can result in 
substantial improvement  -on  the  order of 25 percent - 
in the quality of object  code  currently available from 
FORTRAN source  code  on  System/360 machines. This 
figure is based on code  space,  as  opposed  to  execution 
time. However, a comparable  improvement in execution 
time can be expected,  to  the  extent  that  execution  fre- 
quency is not concentrated in small kernels. 

Extrapolation of the  results  to  other  source languages 
and  other  object machines is difficult. On  the  one hand, 
the global assignment  algorithm is completely  general 
and applies to  any machine  with  multiple  registers  and to 
any  source language. The algorithm is shown in section 
11 to be  applicable in the principal situations that  are 
encountered in optimizing code  for  current  source lan- 
guages, given the basic  information  needed for all forms 
of global optimization. In section  12, methods  are  de- 
scribed for adapting the algorithm to  some of the asym- 
metries of the  System/360 register architecture;  these 
methods  can be seen  to apply to some of the peculiari- 
ties of other register  machines. However,  the viability of 
the register  allocation (as  opposed  to  assignment)  con- 
cept  depends  on a high degree of register symmetry.  The 
local  assignment and  to  some  extent  the local allocation 

methods used are  more  dependent  on  the  characteristic 
System/360  features,  such  as  two-address  format  and 
RR vs RX operands.  However,  both  phases  are fairly 
straightforward and easily adapted  to  other register ar- 
chitectures. 

The real key to effective  application of any global op- 
timization to more  versatile languages, such  as PLII, is 
the  containment of the possibility of side  effects,  alias- 
ing, etc.,  to  the situations in which  they are actually 
used. For example, it  is relatively rare that a BASED 
variable is used as  an alias for  another  variable;  yet a 
compiler must  assume  it could  be an alias for  any  other 
variable, in order  to  generate  correct  code.  Whereas 
clever global analyses may be able  to mollify this as- 
sumption, a more  profitable course in the long run would 
be to design a language  encouraging, if not forcing,  more 
disciplined access  to  data.  There  are,  however,  other 
difficult problems of semantics  yet  to be  solved in the 
design of general purpose,  yet highly analyzable (hence 
optimizable), languages. In  the meantime, the fruits of 
global  compiler  optimization will continue  to  be  harvest- 
ed mainly in the domain of less ambitious or  more spe- 
cialized source languages. 

The time and  space figures in section 14 definitely put 
the  methods of this paper in the  category of a high op- 
timization  level,  suitable  only for compilation of de- 
bugged production code.  The  apparent linearity of the 
time figures, however, leads one to hope that, with sim- 
plification and tuning, these  methods would be suitable 
for a production  compiler. 

Perhaps  even  more significant than the  performance 
figures, at least  to  someone  whose  experience in com- 
piler optimization is limited to  the  theoretical  or algo- 
rithmic  level, is the implementation experience  reported 
in section 14. The basic  global  assignment  algorithm is 
conceptually not extraordinarily difficult. However, ap- 
plying it,  even in a modest sub?@ Q€ the environment 
of a real  compiler, took  considerable effort. Probably  the 
most  important single reason for this difficulty is  the 
great disparity between  the relatively amorphous form in 
which a program is represented during  its  compilation 
and the regular structures  (such  as bit vectors) in which 
its details  must  be  encoded  for efficient implementation 
of ambitious global optimization techniques.  The ef- 
ficient mediation between  these  disparate  representa- 
tions requires  code  and  data  structures of considerable 
complexity. I t  is undoubtedly  this  mediation, rather than 
the  bit  vector manipulations per  se,  that  accounts  for 
most of the  overhead of the implementation. 
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