20

J. C. BEATTY

J. C. Beatty

Register Assignment Algorithm for Generation of
Highly Optimized Object Code

Abstract:

A register assignment algorithm is described that, in contrast to traditional methods, permits a high level of optimization at

both local and global levels. This involves splitting local register optimization into two phases, with global assignment intervening.
Because novel techniques are used in the global assignment procedure, it is described in detail. Experimental results with a prototype
implementation are presented in which object code improvements on the order of 25 percent over a production optimizing compiler were
obtained. No attempt was made to assess manpower costs of a final implementation nor to weight them against expected improvements

in generated code.

1. Introduction

The register assignment process in compilers is gener-
ally divided into local and global phases, primarily be-
cause of the much greater difficulty of global assignment.
The dividing line may vary among methods, but the
basic criterion is the same: that local assignment operate
in a restricted context, in which enough information is
available to make correct decisions. These decisions at
the same time should have a high likelihood of improv-
ing the efficiency of the code generated. In global assign-
ment, one must chose between doing something very
rudimentary, such as a one-to-one assignment of select-
ed items to registers, or going to considerable pains to
get enough information for a more nearly optimal ap-
proach. Day [1] has shown, using random data, that the
second alternative offers potential for substantial gains
in efficiency. In spite of the pioneering work of Yershov
[2] in this direction, the practical application of ad-
vanced global register assignment techniques in the
western world has been limited. One reason for this is
undoubtedly the complex interaction between local and
global assignment. (Yershov’s work was motivated pri-
marily by storage economy and did not have this con-
straint.)

Because of its restricted context, local assignment is
likely to have greater payoff than global assignment. It is
both faster and more likely to result in the right deci-
sions (from the point of view of efficiency of the gener-
ated code). Thus, to the extent that local and global as-
signment procedures compete for registers, preference
should be given to the former. This was indeed done in

the design of the IBM System /360 FORTRAN H compiler
[3], in which local assignment for a region (loop)
of the program is completed and then the remaining
unused registers are assigned globally on a one-to-one
basis. In fact, it is not clear how a more sophisticated
approach to global assignment, such as Day’s *“‘many-to-
few” algorithm [1], can be used effectively in an envi-
ronment in which local registers have been completely
bound. One appears to be faced with a dilemma: Either
give priority to local assignment and sacrifice the bene-
fits of an ambitious global assignment scheme, or do
global assignment first, using a relatively sophisticated
many-to-few strategy and reserving a fixed number of
registers for a subsequent local assignment procedure.

This paper describes a register assignment method
that resolves this dilemma. The approach is basically to
separate local register optimization into allocation and
assignment phases, with global assignment intervening.
Local allocation claims all register resources needed for
local communication without the premature binding that
would impede global assignment. This binding is com-
pleted later, during the local assignment phase, consis-
tently with the results of global assignment. In the local
register optimization phases, relatively straightforward,
but possibly highly machine-dependent, techniques are
used. These are not discussed in great detail. The global
assignment algorithm, however, is applicable to any
machine with multiple registers, and novel techniques
are used; it is described in considerable detail and illus-
trated by an exampie.

IBM J. RES. DEVELOP.

A prototype implementation of the proposed register
assignment method in the context of the FORTRAN H
compiler is described, and some experimental results are
presented. Limitations of the prototype are outlined,
indirectly suggesting the magnitude of a production im-
plementation. However, no attempt is made to assess
the tradeoff between anticipated improvements in object
code and the cost of final implementation.

2. Register assignment strategy
A basic block (or simply a block) is defined as a se-
quence of nonbranch instructions followed by a (possi-
bly null) sequence of conditional branches, followed op-
tionally by an unconditional branch. Register assignment
is customarily broken into local, or intrablock, assign-
ment and global, or interblock, assignment. The reason
for this dichotomy is probably that local assignment is
easier than global assignment. However, the two pro-
cesses are so interrelated that neither can be done well
independently of the other. To resolve this dilemma, let
us, for a program point p and a data item x, distinguish
allocating a register for x at p from assigning a specific
register to x at p. The former action implies a decision
that x is to reside in some register at p without specify-
ing which one. Thus the consistency of an allocation at p
is dependent only on the count of available registers at p
being greater than zero.

The register assignment process is then broken into
the following three steps:

1. Local allocation
2. Global (allocation and) assignment
3. Local assignment.

This organization permits local allocation to be given
priority over global assignment without unnecessarily
impeding it by premature binding of registers.

3. Context for global assignment
The principal concern of this paper is the global assign-
ment phase. Its functional specifications are described in
this section; to a large extent they determine the division
of local register optimization between the local alloca-
tion and the local assignment phases. More details about
a specific implementation of these phases are given in
section 12,

The inputs required for global assignment may be
summarized as follows:

1. Instruction text and dictionary

2. Count of available registers at each program point
3. Control flow information

4. Live variable information at selected points.

To describe these components in greater detail, a few
definitions are required.

JANUARY 1974

We speak of the instants between the execution of
successive instructions as program points and distin-
guish the point after the last instruction of a basic block
b (the end of b) from the point before the first instruc-
tion of any successor b’ of b (the beginning of b').

We will have occasion to refer to program points in

their control flow context. The corresponding flow graph

is obtained from the customary graph (whose nodes are
basic blocks) by replacing each basic block by all of its
points, connected in their linear order.

We assume that there is a hierarchical decomposition
of the flow graph into strongly connected, nested sub-
graphs, called regions. These are used for the redistribu-
tion of load and store instructions in an inner-to-outer
direction. These regions should thus ideally be correlat-
ed with execution frequency in the obvious way and
would normally be the same regions used for other loop-
oriented optimization techniques, such as backward mo-
tion of loop-invariant expressions and strength reduc-
tion. A point or another region is said to be immediately
contained in region R if it is a subgraph of R but not of
any subregion of R.

A region R, in addition to being a mere subgraph, has
certain points distinguished as entries corresponding to
the beginnings of the blocks of R with a predecessor
outside of R, and exits, corresponding to the ends of the
blocks of R with a successor outside of R. An entry p of
region R is assumed to have a unique predecessor p’ not
in R, called the entry target of p. Moreover, p’ has p as
its unique sucessor and has the same immediately con-
taining region as R. Similarly an exit ¢ of R is assumed
to have a unique successor ¢’ not in R, called the exit
target of q. Moreover, g’ has ¢ as its unique predecessor
and has the same immediately containing region as R.
These restrictions are motivated primarily by conve-
nience and can always be met, if necessary, by introduc-
ing empty blocks.

A track is defined as a nonrepeating sequence of pro-
gram points, each of which is a successor (in the context
of the flow graph) of the preceding point in the se-
quence. The track is said to be closed if its first point is a
successor of its last point.

A data item x is said to be live at a point p if there is a
track T from p to a point of possible use (e.g., a load) of
x, such that no store of x occurs between points of 7.
(The term used in [3] is “busy.”) In [4], an efficient al-
gorithm is given for determining where items are live.
Sometimes the liveness of x at p is defined as requiring
additionally that there be a track from a store of x to p.
We refer to this as the restrictive definition. It is valid
only under certain assumptions. Static data in a PL/1 or
FORTRAN subprocedure, for instance, must in general be
assumed to have a store at the procedure entry in order
for this definition to apply.

21

REGISTER ASSIGNMENT

22

J. C. BEATTY

Now we can describe in greater detail each of the
above components of the global assignment input.

Instruction text and dictionary

The instructions are partitioned into basic blocks and
are expressed in a form identical to that of the object
machine language except that specific registers are not
assigned. An operand of an instruction i in block b may
be either the result of a prior instruction in » or a data
item, as represented by a dictionary entry. The latter
alternative would normally occur only for an operand
(such as that of a load or store) that must be in storage.
(Options such as RR vs RX referencing in System/360
computer architecture are discussed in more detail in
section 12.) This implies, in particular, that for a data
item to be used as a register operand of i, it must be the
subject of a load instruction in » the result of which
would be referenced by i. Similarly, unless an instruction
has a storage result, its result, in order to be assigned to
a variable x, must be the subject of a store instruction
referencing x. We assume that all questions of intrablock
communication of values in registers have been resolved
at the allocation level, i.e., that local allocation is com-
plete. Thus global assignment for data item x need be
concerned at most with the elimination (or motion) of
one load and one store of x in any basic block.

Available register count

The second essential input for global assignment con-
sists, for each program point p, of the count RAVAIL
(p) of registers available at p. These counts must reflect
the results of local allocation. Thus RAVAIL (p) is the
number of registers in the machine minus the number of
ordered pairs (i, i') of instructions (in the block contain-
ing p) such that i and i’ are separated by p, and i’ refer-
ences the result of i.

Control flow information

The control flow information required for global assign-
ment consists basically of the possible successors of
each basic block and of the regions described above.

Live variable information
For each exit target ¢’ of each region R we require the
list of data items that are referenced in R and are live at
q'. If the restrictive definition of liveness is used, then
such a list is also required for each entry target of R.
The ouput of global assignment consists of the pro-
gram text in the same form as on input except that cer-
tain loads and stores may have been marked for dele-
tion, others may have been inserted in entry and exit
targets, and the result register of certain instructions
may have been assigned. Specifically, any load that has
been marked for deletion and any instruction whose re-

sult must remain in a register until the end of its block
must have a specific result register assigned. Moreover,
a block b may have certain registers reserved for passing
data items through b, even though they are not refer-
enced in b. The available register counts in RAVAIL,
though no longer needed after global assignment, are
maintained throughout the process and reflect its results.
This is done because global assignment is in part a con-
tinuation of the allocation process. Assignments are
made only when an interblock communication is in-
volved, and at any two points taking part in a communi-
cation of values of a data item x, the same register must
be assigned to x for each. Thus all interblock matching
has been resolved during global assignment.

4. Global assignment strategy

The classical approach to global assignment for a data
item x in a region R involves the assignment of a single
register to x at least at each point of R at which x is live.
This clearly permits all loads and stores of x to be re-
moved from R, given that x is loaded at the entry targets
and stored at the exit targets of R at which it is live.
Some classical methods of global assignment are dis-
cussed in [1]. Considerably greater freedom is obtained
by allowing individual loads and stores of x to be re-
moved from R even though not all such loads and stores
can be moved. We next describe a method for doing
this:

1. Regions are processed in an inner-to-outer order.
Loads and stores deposited at entries and exits of a
region R are considered for removal from the imme-
diately containing region.

2. The first step in processing a region involves the
computation of bit vectors, called status vectors,
which are used to record the status of allocation and
assignment.

3. For a given region R, all loads and stores of a data
item x are processed together. The order in which
data items are processed is significant; however, pro-
cessing order is not addressed in this paper beyond
commenting that reference frequency should proba-
bly be an important factor. The processing of x in R
consists of the following subphases:

a. Load motion This involves processing the loads
of x sequentially, moving each one for which a
consistent assignment can be found, based on the
status vectors. Because the processing order may
be significant, the most frequently executed loads,
if known, should be considered first.

b. Store motion Stores of x are processed sequen-
tially as in load motion. Their motion depends
partly on the results of load motion.

IBM J. RES. DEVELOP.

c. Reservation, or status update This involves re-
cording the effect of the load-store motion for x on
the status vectors, as well as updating the register
counts in RAVAIL.

5. Underlying concepts for load-store motion

A live exit for data item x in region R is defined as an
exit of R at whose exit target x is live. A live exit for x
corresponding to exit g plays a role analogous to that of
a load of x at the point ¢ and may be thought of as a
dummy load at this point.

The location of an instruction i is the point immedi-
ately following i and denoted loc (i).

Given points p and g of region R and a data item x, we
say that p is in the affect (R.x) relation to g, denoted
AFFECT (p,q,R.x), if there is a track from p to ¢ in R
not containing any redefinition (e.g., store) of x. Live
exits and the affect relation piay a central role in store
miotion, because té move a store i of x out of R, it is
necessary, in effect; to remove the live exits of x (con-
sidered as loads of x) to which loc (i) is in the affect
(R,x) relation.

A point p is called a register point for data item x if p
is the point immediately following an instruction whose
result is in a register and is the current value of x, i.e., it
would be correct to insert a store of this result into x as
the next instruction. In particular, the point following a
load of x would be a register point for x. A register point
for x is used to eliminate subsequent loads of x in the
manner in which, in global common expression elimina-
tion {(e.g.,as ini [5]), one instance of an expression is used
to eliminate a subsequent one computing the same value.

Given a point p in a region R and a data item x, we
define the register requirement set for removing from R
a load of x at p; abbreviated RR(R,x,p)}, as the set of
points ¢ in R such that there is a track from g to p not
containing a register point for x. In fact, the removal of
such a load can be effected by maintaining x in a register
in RR(R,x,p) and, if necessary, loading it at the entry
target of any entry in RR(R.,x,p). If the restrictive defi-
nition of liveness (section 3) is used, then loads are only
needed at those entry targets at which x is live.

Let g be the location of a store of x in R, and let
P, " P, be the locations of all the loads and live exits of
x in R to which ¢ is in the affect (R,x) relation. The store
at g can be removed from R by removing all these loads
from R, maintaining x in a register in each of the register
requirement sets RR(R.x,p,), -+, RR(R x,p,) and stor-
ing x at each exit target of R corresponding to one of the
live exits p; of x.

A load or live exit L of data item x in region R is re-
ferred to as absolutely infeasible for removal from R if
the corresponding register requirement set RR (R,x,loc
(L)) contains a point p at which no registers are avail-

JANUARY 1974

able, i.e., RAVAIL(p) = 0. A specific register r is said
to be available to L if r has not received any specific as-
signment in RR (R,x,Joc(L)). Prior to global assignment,
this would normally be true of all registers.

A block b is transparent if RAVAIL(p) > 0 for all p
in b. Data item x is a potential initial quantiry for b if x is
used before it is defined in b and if RAVAIL(p) > 0 for
all p between the beginning of » and the first register
point of x in 4. The significance of the potential initial
quantities for b is that only the loads for these items in b
can be candidates for load motion, because any other
loads are absolutely infeasible. Similarly, x is a potential
terminal quantity for b if x has a register point in b and
RAVAIL(p) > 0 for all p between the last such point
and the end of b. The fact that x is a potential terminal
quantity for b can thus be used to extend the register
point for x in b to the end of b when this is required for
removing a load in some other block.

6. Bit vector definition
For a region R, we define a number of Boolean vectors
spanning the loads and live exits immediately contained
in R, i.e., having a coordinate for each such load and live
exit. These are called R-vectors and are partitioned into
subvectors by data item. The subvector of R-vector V
whose coordinates correspond to loads and live exits of
a data item x is called an [(R)] x-vector, and is denoted by
V(x). In case V is itself indexed, say V(j), its x-vector
is denoted V(j,x). We also have occasion to use unim-
bedded x-vectors, i.e., those not contained in any R-
vector. In defining these vectors, we use L to denote both
a load (or live exit) and its corresponding R-vector (or
x-vector) coordinate. The data item loaded by L is denot-
ed item (L).

For each basic block 4 immediately contained in re-
gion R, we define the R-vectors:

RRB (b), whose Lth coordinate indicates membership of
the beginning of » in RR(R.item(L),oc(L)), and
RRE(b), whose Lth coordinate indicates membership
of the end of b in RR (R,item(L).loc(L)).

Among the register requirement sets for the different
loads and live exits L ,---, L, of a data item x in region
R, it is important for assignment consistency to know
which pairs of such sets mutually intersect. This is con-
veniently represented by the x-vectors:

INT(x,LJ.), whose L,th coordinate indicates that RR
(R,x,loc(Lj)) intersects with RR(Rx,loc(L,)) for 1=
j=ml1=<k=n

For interrogation of individual x-vector components,
we make use of the x-vectors UNIT (x,L), which have
zero in all but the Lth coordinate position.

23

REGISTER ASSIGNMENT

24

The R-vector AIF indicates by its Lth coordinate the
absolute infeasibility of removing the load or live exit L
from R.

For each specific register r, the R-vector RNA ([R,]r)
represents by its Lth coordinate the nonavailability of
register r to the load or live exit L. These vectors (in
contrast to AIF) are normally all zero prior to global
assignment, because no specific assignments have oc-
curred. A specific assignment to r in general rules out
the use of r for certain loads of other items, which is
reflected by modifying RNA (r) appropriately.

For each basic block b in region R, we define the R-
vector NPT (b), whose Lth coordinate indicates that
the data item x associated with the load or live exit L
was not a potential terminal quantity for b at the outset
of global assignment for R. Thus, by definition, NPT (b)
need not be updated as allocation proceeds in R.

7. Global assignment for a single data item in an
innermost region

The essence of the global assignment for a data item x in
a region R may be seen by considering the case in which
R has no subregions.

As can be observed in sections 4 and 5, the central
operation in global assignment is that of moving a single
load (or live exit) L of data item x from R. As described
in section 5, this involves finding a register r available in
RR(R.xJoc(L)). It may be, however, that another load
L’ of x has a register requirement set intersecting that of
L. In this case we would, in order to move both L and
L’, need a common register for both unless register
move instructions were introduced. Since the latter al-
ternative may nullify the benefit of load motion, we re-
ject it, though a few register moves may be required dur-
ing local assignment.

Given any set U of loads of x to be moved, let U be
partitioned into sets U, *-+, U, such that for each k
there is a unique register r, to which x has been assigned
at loc(L) for all L € U,. We call the set P = {(r,,U,),
<o (r,,U,)} a direct partial assignment for x. The gen-
eral requirement to avoid register moves is that P be
consistent, in the sense that if L and L’ are in distinct
U,, then RR(R xloc(L)) and RR(Rxloc(L')) are dis-
joint,

Consider now the problem of moving a load L of x not
in U. If RR(R x,Joc(L)) is disjoint from all of the U,,
any register available in RR (R x,Joc(L)) may be cho-
sen. In general, however, we must do some merging to
preserve consistency. For convenience we order the set
P so that, for some index / (0 == m), U, intersects
RR(L.xJoc(L)) for 1 = k= 1Ibut not for/ < k= m. Let
U'={L} UU, U---U U, Tt is necessary for consis-
tency to find a common register »’ for all members of U’.

J. C. BEATTY

The members (r,U,),"++, (r,U,) of P are then replaced
by the single member (r',U’). We call this process con-
necting L to p.

Let us consider how to find +'. We assume this is done
simply by trying all registers in a specific order, called
the register trial sequence for x in R. This sequence
need not include registers inappropriate for x (such as
floating-point registers if x is not a floating-point num-
ber). Let s,,- -, s, be this sequence. Some criteria for
choosing the sequence for different data items are dis-
cussed in section 9. It is convenient to represent the reg-
isters in a direct partial assignment for x by their indices
in the register trial sequence for x. We call the result an
indirect partial assignment. In these terms, the problem
we are addressing is how to find /' such that register s is
available in RR(R,x,Jloc(L")) for all L' € U’. Of course,
this could be done simply by trying j' = 1, - -, n. How-
ever, if we let j, be the register trial sequence index of r,
for 1 = k = [, it suffices to try ;' = max (1,5 - ~j,), " n.
For if j, = max (j;--j,), then, because the same reg-
ister trial sequence was used in obtaining j,, it is the
minimum index for which s; is available for the elements
of Uik’ so no smaller index can suffice for all elements of
the larger set U’.

Now we are ready to summarize the connecting algo-
rithm discussed above in a more specific form, using the
bit vectors described in section 6. Given a register trial
sequence s,,- " -, §,, a partial assignment P = {(j,U,), -,
(U} for x, where the U, are interpreted as x-vec-
tors, and a load or live exit L of x, the procedure CNCT
(L,P) attempts to connect L to P, i.e., to replace P by a
partial assignment including L.

Procedure CNCT (L,P)

1. Order P so that for some | (0= I = m),
U, AINT (x,L) #0for 1 < k=1,
and U, A INT(x,L) =0for !l < k= m.
2. LetU'=UNIT(x,L)VU V---VU,
3. Fork =max(1,j,, - +j,), - n,do:
if U' ARNA(s,,x) = 0, then replace
Pby {(j,U;,)5 (GwUy),s (k,U')} and return.
4. Return in failure (L cannot be connected to P).

Given a register trial sequence s for x, load motion for
x is accomplished simply by initializing the partial as-
signment P to the empty set and successively invoking
CNCT(L,P) for the loads L of x that are not absolutely
infeasible (i.e., are such that UNIT (x,L) NAIF (x) = 0).
The motion of a store § is done as follows:

1. If there is a load L of x such that AFFECT (loc(S)),
loc(L),R,x) and L could not be removed during load
motion, S cannot be removed.

IBM J. RES. DEVELOP.

2. Otherwise let L ,- - -, L, be the live exits (and loads, if
any) satisfying AFFECT (loc (S),loc(Lj),R,x), which
may still be movable, and let P be the current partial
assignment (based on load-store motion up to this
point).

. Let P' = P, and apply CNCT(P’,L].) forj=1,-+k.

4. If each application was successful, S can be removed.

LetP=P'.
5. Otherwise S cannot be removed.

w

After load-store motion and assignment have been
determined for x, the reservations implied by this assign-
ment must be carried out. This involves

1. Allocation by counting and
2. Assignment of specific registers at block boundaries.

In addition to the information recorded locally (e.g.,
RAVAIL and the assigned result registers), it is neces-
sary to update the AIF vector (based on step 1) and the
RNA vectors (based on step 2), because these are what
control the load-store motion and assignment for subse-
quent data items.

Allocation by counting takes one of three forms for
data item x in a block b:

1. Initializing This occurs when x is a potential initial
quantity for and the corresponding load is removed.
It involves decrementing RAVAIL (p) for each point p
from the beginning of b to the first register point of x.

2. Terminalizing This occurs when x is a potential ter-
minal quantity for » and its last register point in b is
used to remove a load or live exit elsewhere. It in-
volves decrementing RAVAIL(p) for each point p
from this point to the end of b.

3. Passing through This occurs when x has no register
point in b, but b is transparent and is on a track from
such a register point elsewhere to a load or live exit
being removed. It involves decrementing RAVAIL (p)
for all points p in b.

Allocation by counting in block b can affect the abso-
lute infeasibility status, as reflected by the R-vector
AIF, in one or more of the following three ways when
RAVAIL goes to zero at some point in b:

1. One or more data items can cease to be potential ini-
tial quantities for b. For each such data item x, RRB
(b,x), which contains only the single load L of x in b,
is ored into AIF(x), because L is now absolutely
infeasible.

2. One or more data items can cease to be potential
terminal quantities for b. For each such data item x,
RRE(b,x) is ored into AIF (x), because this causes
any load L of x that has the end of b in RR(R,x,
loc(L)) to become absolutely infeasible.

JANUARY 1974

3. Block » may cease to be transparent. In this case
RRE(b) AN NPT (b) is ored into AIF, because this
causes any load L of an item x that is not referenced
in b to become absolutely infeasible if the end of b is
in RR(R,x,Joc(L)). Note that if x is referenced in b
but is not a potential terminal quantity of b, L would
already be absolutely infeasible, so that the bit vector
operation is still correct.

Let A={(r,U), -~ (r,,U,)} be the assignment
generated by load-store motion for x, where the x-vector
U, represents the loads and live exits of x that were as-
signed to register r,. The reservation implied by 4 is car-
ried out by performing the procedure RSRV () for each
block b in R.

Procedure RSRV (b)
Forj=1to m do:

1. If U; A RRE(b,x) # 0 then (the last register point of

x in b was used in moving one of the loads of x) do:

a. If x is a potential terminal quantity in b then do:

i. Terminalize x in b.
ii. Assign r; as the result register of the instruc-
tion last defining x in b.
iii. ORRRE (b)into RNA (rj).
iv. Update AIF as required (see 1 -3 above):
b. Else (xis not referenced in b) do:
i. Passx through b.
ii. Reserver;asa pass-through register of 4.
iii. ORRRE(b) V RRB(b) into RNA (r].).
iv. Update AIF asrequired (see 1-3 above).
v. Return.
2. If U; A RRB(b,x) # 0 then (a load of x in b was
moved) do:

a. Initialize x in b.

b. Assign r; as the result register of the initial load of
x in b, which, though it is marked for deletion, is
left as a place holder for local assignment.

¢. ORRRB (b) into RNA (rj);

d. Update AIF as required (see 1-3 above).

8. Computation of RRE, RRB, and INT vectors

The first step in computing the RRB and RRE vectors
for a region R (as defined in section 6) is to select a set
{e,, -+ e,} of edges of the control flow graph of R so
that the graph R resulting from the removal of the e,
from R has the following property: R has no closed
tracks that are not totally contained in proper subregions
of R. The method of [6] always produces regions for
which this can be achieved for n= 1. For the present,
we assume that R contains no proper subregions. Thus,
the graph R is acyclic (has no closed tracks), and its

25

REGISTER ASSIGNMENT

26

J. C. BEATTY

o
1t
a
*
=2

Rt |
Ib.d,e.&f live |

Figure 1 An example for global assignment in an innermost
region (3-6).

Figure 2 Effect of local allocation on status.

!

| n2:1d(c) i

[a3+ (nl,n2) {

m————= > n4:st(a,nd) |
[n5:1d (%)]
| nfzx(nS,nl) {
!

I

I

|

R

=== n7:ist(d,n6)

B RS
*

| | nB:ld{e)

i | n9:+(n3,n8s)
| {_nl10:st(f,n9)
|
t
t

i
A4 i

{ alt:ld(d)
{f e=m=--] 012:14 ()
| n13:+(nl11,n12)

|] n15:1d(a)
i | nleild(c)
i | r17:%x(n15,n16)

1

|
} |
! .- nl4:st(b,n13) i
| |
1 |
| |
| 1 1_pl8:st(f,n17) |
I
|
I
i

5

1
| B
f | n19:1d {a) |]

=»] n20:1d (4)] |

| n2%:x(n19,020) | | *
| 1_p22:st(e,n2)] i

! |

| b4 &

v

>] n23:1d (4)
| n24:1ld{(c)

|

!

Vommmmm- | n25:%{n23,n24) |
j_n26:ist{b,n25) 1

nodes (basic blocks) can be topologically sorted, ie.,
given a linear order b, -, b, such that if b, is a prede-
cessor of b, then i <.

Then apply the following steps:

1. For 1 =j= mdo:
a. Set the Lth component of RRB (bj) tolifLisa
potential initial load in b;s else to 0 (the beginning
of b is in RR(R,item(L),loc(L)) if item(L) is a
potential initial quantity of).
b. Set the Lth component of RRE(b].) tolifLisa
live exit corresponding to the end of b;, else to 0
(the end of 4 is in RR(R.item(L),loc(L)) if it is
the exit corresponding to L).
2. Repeat n + 1 times:
a. Forj=m,m—1, -, 1do;
i. OR RRB(b,) into RRE(bj) for each successor
b, of b; in R, including those corresponding to
removed edges (if the beginning of b, is in
RR(R.item(L),loc(L)), then so is the end of bj).
ii. OR RRE(bj) A NPT(bj) into RRB (b].) (if the
end of b is in RR(R,item(L),loc(L)), then so
is the beginning of b if item (L) is not referenced
inb).

This algorithm strongly resembles that used in [5] to
compute the bit vectors for global redundancy elimina-
tion, and it has a similar justification. See also [7], in
which it is viewed as solving linear Boolean equations.
The algorithm results, in general, in register requirement
sets that are larger than those defined in section 5, be-
cause an item may not be a potential terminal quantity of
b even though it is referenced in b. However, this can
only occur for a load or live exit that is absolutely in-
feasible, so that there is no net effect of the inaccuracy.

For its application in store motion, the affect (R.x)
relation is conveniently represented by an x-vector
AFCT(b,x) for each block b of the region R whose Lth
coordinate has the truth value of the relation AFFECT
(end (b),Joc(L),R,x). Such a vector is required only if x
is stored in R. By appending AFCT (b,x) to RRE(b)
for all such x, and by appending similar x-vectors
AFCTNPT(b,x) to NPT(b) and AFCTRRB (b,x) to
RRB(b) and initializing them appropriately, the above
iterations also compute the AFCT (b,x) vectors. Specifi-
cally, AFCT(b,x) and AFCTRRB(b,x) are initialized
exactly as the corresponding vectors RRE(b,x) and
RRB (b,x) are in step 1 above, whereas AFCTNPT (b,x)
is set to all zeros if x is redefined in b and to all ones other-
wise.

The AIF vector is first set to all zeros if we assume
that only loads corresponding to potential initial quanti-
ties have R-vector coordinates. Then, for each block b
in R that is not transparent, RRE (b) A NPT (b) is ORed

IBM J. RES. DEVELOP.

variable: a
ref.blk.: 45

¥
| n1:14 (b) | RRB (3) Go
} n2:14d (¢)]
| n3:+(nl1,n2) |
! nd:st{a,n3d) i
| n5:1d (d) {
| n6:*(n5,n1) |
{ n7:st(d,né) !
| n8:1ld{e) |
{ n9:+(n3,n8) {
} _ n10:st(£,n9) | RRE(3) 02

| NPT (3) GO

h i s s ettt e B

) §
| n11:1d (d) |
n12:1d (e) |
| n13:z4{(n11,n12) |
| nlb:st(b,n13)]
} n15:1d (a) {
| n16:14 () |
| |
1 l

RRB (4) 10

t
]
i
|
[}

n17:*(n15,n16)
nli:st(E,n17) RRE(4) Y

NPT (4) 00

n19:14 (a) i
n20:14 (4) |
n21:%(n19,n20) |
n22:st{e,n21) | REE(5) 00

| NPT ({5) 09

4 6
n23:1d4 (d) |
n2d:1d (c) |
n25:x{n23,n24)
| _n26:st(b,n25) | RKE(6) 00
{ NPT (8) i

RRE (5) 91

- - | e — e #
)]

A4

A4

RRB (6) 00

—===>] |
| bd,e,s5f live i

2 component: reyister reguirement

b
373

100

300
000

000

001
009

000

009

T

009

010
000

/atffect
c d e f /a b d e f
3467 345673 3478 78,45 378 345678 3478 78
1000 100000 1000 60/00 100

100000 1000 00

0000 000000 0000 0000 000 000000 0000 00
0000 000000 0000 00,00 111 000000 1111 00

010C 010000 G100 00/10 000 010000 0100 00

G000 000001
J000

0001 01,006 001 000001
00C000 0000 00,11 000 111711

0001 O
1111 60

0000 0C1000 0000 GO/01 GO0 001000 0060 00

000C 000000 0000 00,00 000 000006 0000 0O
1111 6606060 0000 11/11 111 111111 0000 11

6010 G6C0G100 GOGO GO0V 00O GO0100 0000 00

0001
000

000010 0010
000000 111

10,00 610 000010
11/11 000 111111

0010 10
1111 1

Figure 3 Vectors as initialized prior to iteration for RRB’s and RRE’s.

into AIF, because if RR(R.item(L),loc(L)) contains
the end of b, then L is absolutely infeasible unless item
(L) is a potential terminal quantity for 5.

The intersection vectors are computed as follows:

1. Initialize INT (x,L) to all zeros for all x and all loads
L of x in R.
2. For each block b and each data item x in R do:
a. Set RREI = RRE(b.x).
b. If x is both a potential initial and a potential termi-
nal quantity in b corresponding to a single load
L in b, then OR RRB(b,x) into RREI. (At this
point, RREI represents the set of loads of x
whose register requirement sets have a common
point in block b.)

JANUARY 1974

c. For each component L of an x-vector, if the Lth
component of RREI = 1, then oR RREI into INT
(x,L).

9. Example

The global assignment algorithm has been described for
a region with no subregions. The reader may now con-
sider its application to the example shown in Figs. 1 and
2. The region R consists of the blocks 3, 4, 5, and 6. By
removing the edge from block 6 to block 3, all closed
tracks in R are eliminated, and the blocks are topo-
logically sorted. The only entry block is 3, with entry
target 2. Both 4 and 6 are exit blocks with exit targets 8
and 7, respectively. The indicated control flow would, of

27

REGISTER ASSIGNMENT

28

J. C. BEATTY

variable:
ref.blk.,:

a
45

| | RRB (3) 00
| n2:1d{c) !
| n3z+(nl1,n2)]
------ | né:st(a,n3) 1
| n5:1d(4d) |
| nb:x{(n5,n1) J
. } n7:st{d,n6) |
| | n8:1ld (e) |
| | n9:+(n3,ns) |
}] _ ni0:st(£f,n9) | RRE(3) 11
| |
|
i

h 4
] ' n11:14 (8) RRB (4) 10
nl2:14d (e)
n13:+(n11,n12)

|
i
i
ntld:st{b,nl13) |
|
|
|
|

i

|

| n15:14d (a)

| n16:1d (c)

| n17:%{n15,n16)
| _nlt:st{f,nl17)

BRE (4) 00

n19:14d (a) 01

i | RRB (5)
>) n20:14 {d) |

| 1

(I i

n21:*%(n19,n20)
n22:st{e,n21)

|

L 4
n23:14 (d) |
n24:1d {c) !
n25:% (n23,n24) |
|

RIE(5) 00

- e e e | e e e e b &

> RRE (6)
|

s e S M st i . A s S ot e i o M ot ot o it 8

------- |
l_n26:st(b,n25) _

|
V4 7

| 090
|

|

1 | 1

|

|

'

RAE (6)

|_bec,d,e,5f livel
5
|_byd,e,&f live |

Figure 4 Results of iteration for RRB’s and RRE’s.

course, require branches in addition to the instructions
shown. The variables that are live on entry to the exit
targets are listed. The box to the right of each block in R
is used in Figs. 2 and 5-10 to illustrate the allocation and
assignment status of the block. A character under a par-
ticular variable v in such a box indicates that a register
has ‘been allocated for v at the corresponding point. New
allocations (i.e., changes from the prior state depicted)
are indicated by x’s, old ones by *’s. We assume an object
machine with four registers of a single type. The register
availability count at any point is thus four minus the num-
ber of characters in the corresponding row of the appro-
priate box. Figure 2 shows the effect of local allocation:

component:register reguirement

b
378

1060

<
(]

000

001

009

000

000

1o

saffect
£t sa b
78/45 378

a
345678

d

345678

(o]

e
3487 3478 3478

1000 100000 1000 00/00 100 100000 1111 00

0110 011660 0100 10,11 000 1117111 1111 10

01006 010000 0100 00/10 000 110111 1111 00

0010 00C1071 1011 11,00 1007111 1111 11

0610 001000 0000 16,01 000 101110 0000 10

0010 000100 1010 10,00 000 100110 1111 10

001C 000100 1010 16,00 000 150110 1111 10

1001 100010 1810 10,00 110 100010 17111 10

a and b have been maintained in registers between suc-
cessive references in block 3. A global assignment of v to
register r is indicated by r at the appropriate block bound-
ary (beginning or end) under the v.

Figures 3 and 4 show the bit vectors before and after
application of the algorithm of section 8 for computing
RRB and RRE with n = 1. In addition to the register re-
quirement components as defined in section 6, we have
included, to the right of the slash, the affect component,
as suggested in section 8, for computing the affect relation
needed for store motion. Each R-vector (section 6) is
separated by spaces into its component x-vectors. An
x-vector is labeled by variable, and its bit positions are

IBM J. RES. DEVELOP.

6¢

LINANNDISSY YHLISIOFA

{89} = (8°P) ANI
{L9¢} = (L'P) INI
{8°'L'9°s*€} = (9°P) LNI
196y} = ($'7) NI
{$%} = (¥'P) LNI
{L'9'¢} = (¢'P) LNI

(8
uonodas Jo WYILIOF[e Y} WOIJ) IABY M ‘p JO SIIXd dA}|
pue speo| 10j uoneudIsap ¥50[q 2y} SUISN ‘UONEIOU I}l
-09Y} 198 U] "[re1dp ul p Jo Surssadoid oyl SSNOSIP I

‘sayse[s
UM YONISISAO 218 PIAOWAI UIQ JABY JeY) SII0IS
pue speoT 'S,X Aq PaledIpul AIe A Y PU®]} SI0109A
UOIBAISSAI Y} Ul | 0] (woly safuey) -ojdwrexa sy} ur
[eLIg)eUIUI SI PIsSSa00id ale 9[qBLIBA B JO SPRO[3} YoIym

TYET

=oouonbos jewny Jo1siSa1 o Suissaooad Jo synsay 9 un3iyg
60 0000 000000 0000 000 00 (n)vNy

00 0000 000000 0000 000 00 (F)VNy

XX XXXX XXXXXX¥ XXXX XXX XX (Z)VNH

LLoLtbE LELELL LLLL bbL LL (L) vny

00 000% 00000C 000C 000 0O aTyY

8L BLHE GL9GhE LO9hWE BLE Gn “NT(°3Id
3 B P > q B aTqEIIVA

1 TTSRTT 157877

TITHTETE

!
|
(1) 45 | f
|
|
l

| TG 7eTarIsToz e
| (h7u’g7u) %:62U lommomann .
{ ABYEXEARZA |

1 AVYPIXLLK 1€

) 3 |
| I
| WZUTSTISETZZ |
| (opuferu)»zpzu ||
| ABYPIFGLE <~
| (F)eTiotu |
5 |
1
|
!
i
t

% H]e o= % K % x|

NNT R % RN N R % XN

1T TITUTITIRTEIO
bolgpuraiu)szqu |
i ABYXXZ K |
! (e} prigru |
I (eruglasippu -
i (ziufpu)+zgpu |
! ()ptizin l-mmmm s
[KpY§1{£(g_l

|

1T TTRUTITIRTOIU
| (cufyuyspu |
| (e)pTigu

| ABUIEY F2XLY |
| (Lufgu)xigu |
1 ALY BT XEH |
| (gufe) 35 tqu |
| {zufju)+:gu |
| ABY¥TEZH |
| (qp1sLu 1

EE A

P

IR R E R R
DX X XX X KX X K

w
I

o
]

YL61 AAVANVL

ut I9pIo ayL 'aidunaxa SIY) I0J A[LRXIQIR USSOUD Uddq
aary Aay] -uoneoydde yoes 10J umoys aIe (/ UoNIIS)
soouanbas [eLy 19381301 9y UMOYS jou si 31 0s ‘afueyd
ou ul s}{nsa1 v s[qeLrea o) uonedrdde ay], “Ioplo Jey) Ul
‘fpue ‘q ‘v ‘2 ‘> ‘p s9[qeLIeA U} 0} / UONISS JO WYILIoSR
oys Swf[dde jo sjnsai oyl moys ¢ y3noiyy ¢ saingig
‘uonout
2I01S IO] papadu A[Uo sI 11 9snedsq ‘y Suissaoord 1oy
“I9)19 ‘pa1mbal J0u SI 2 JO 11X AN YL "Y Ul Paiols J0u
$3[qELIBA JOJ PaIIMbal 10U SI UOHE[aI 103 e Y} IsNesdq
“quauoduiod 109k Y} Ul PIpNIIUI SI J039aA-2 ON °/ 1951%)
1IX3 9} 18 2 JO NXS JAI[9Y) 0} Surpuodsoriod ‘/ pajoqe|
uonisod © pue ‘9 pue ‘4 ‘¢ SYO0[q Ul I JO Speo] 3y} 01
Surpuodsa1100 ‘g pue ‘p ‘¢ pa[eqe| suonisod sey 10309A-0
® ‘sny], ‘d[qelieA 1Byl JO (X JAI] IO pBO]) SJUdIJal
Surpuodsa1109 2y} JO SY20[q Y] JO sIaquInu 3y} Aq pajeqe|

Tl
=29ouanbas el 19)si3a1 (p Fuissadold Jo s}MsayY § Indiy

00 0000 000000 0000 200 OC (%) ¥Nd
00 0000 000000 0000 000 00 (€)ynu
00 0000 CO0DCO NOOO 000 QO (Z)vNg
XX XXXX XXXXXX XXXX XXX XX (L) YNy
00 0000 000000 00CO 000 00 1%

BL 8LhE BLIGHE LOohE BLE Gh "HATId*3F82
I e P > q © STgRPTIPA

T u7qyYIsTaeu |
(hZU/EZU) %167U {—omom
(o) prinzu |
ABYBIXEZY ¢

T

1
I T TTuTeTIEI I
I (ozu’elu) =z igu |
|
!

L}

!

I

f

!

ABYEXXILHE |e--
(Y pTipty | |
i

[

1

|

I

|

TLVT7ITISTRTU
(aru’cru)szpLu |
(o) pTigLu
(e}prigiu |
(¢Lu’gl)assplu 1-
(zru’ylu)+igpu | i
(9) P2 LU Jemeem
ABYBILLA) 1
)3

|
| |
TeuU7ITISToIn | |
|
|

ES

|

| {(gufgulsipu |

1 (e}prign |

i ABMIYYALXLE |~
1 (Lu’gu)xqu |

I togcess anl
|
|
I
1

(gu’e)3sipy |€-aoeaan
(gufiu)+:gu |
(o) p1igy |
(a}pr:iu |

% % % % ¥

¥ % % % %

T X b X MO OB Mo M or s M X M K X M| o X X ok e i % X X e

-
o

30

J. C. BEATTY

e £

A4

{ nl:1d(b) 1

| A2ZXRAZY I

| n3:+(nl,n2)]

fmmm——— >} n#:st{a,nl) |
| HBXXARAY |
| né:x({n5,n1) |
|

|

|

i

ERE I I
X o# % R xING

T HTXBEARARRY

IR R
"

1 | néa:ld (e)

| | n%:+(ni, nd)
| |_nlC:st (f,n9)
}
|
1

1

1 4
| AXFREALAY |
b | AAZTXALRY |
1 n13:+{n11,n12) |
L] nldist (b, n13) |
| n15:14 (a) i
|
!
|

o o % Kl = R ¥ R OF R X ¥ ¥ |-
RO el xR

\ AXBIXY LY
| al17:%(n15,n16)

{_nl18:st{f,nl7)

¥ ol =lw o

{ n19:1d (a) |

= AZDXEALRY |

| n21:%{n13,n20) |

|_n22:st{e,n21) _1I
|

X
>\ H2ITERARY f
| A2ZEXYRAZY |

I

i

*
*

!
|
|
1
|
] 5
|
1
|
|
|

6

§mmmem o | n25:%(n23,n24)

{_n26:st (b, 025}

N N Y I O LS I B O I Ik R I TR)

BRI NENE e

|

I

| AU 4

| | st{d) |
1 {_becrdee 8t livel
! B

toeeo> St (A) |
I1_bedeg tf live |

variable a b c d e f
ref.blk. 45 378 3467 345678 3478 78

ALF xx 000 0000 00000G 1000 00
RNA (1) 1111 1111 111111 1111 1
RNA (2} 111 111 11111t 1111 N

]NA (3) xx 000 Oxxd 0xx000 0x00 x0
RNA (4) 00 0u0 0000 000000 0000 0D

Figure 7 Results of processing e; register trial sequence =
3,4,1,2.

Observe -that RR(R.d)Joc(3)) and RR(R.dJoc(6))
must be regarded as intersecting because the load in
block 3 can only be moved by using the register point of
d after the load in block 6, so that by the principle of
consistency (section 7) they must be assigned the same
register. Note that AIF and RNA are initially zero and
the register trial sequence s is (1,2,3,4,). We move the
loads of d in numerical order. Initially the partial assign-
ment P is empty. The application of CNCT(3,P) re-
turns with P = {(1,{3})}. In applying CNCT(4,P)
we get, in step 1, /=0, so in step 2, U’ = {4}, and step
3 returns with P = {(1,{3}),(1,{4})}. On return from
CNCT(5,P), P={(1,{3}),(1,{4,5})}, and after CNCT
(6,P), P=1{(1,{3,4,5,6})}. The only store of d in R
is in block 3, and it is in the affect (R,d) relation to all
loads and live exits of d, as seen from the affect com-
ponent of RRE(3,d) in Fig. 4. Because all the loads

e 2
1 "Td(Q) L 1d (o) i
l_idgby 1} a
Y 3
WA XALBY !
H2XXEA2Y |
n3:+(n1,n2) |
nbd:st (a,n3) |
HAY I ALY |
nb:*(n5,n1) |
|
I
|
|

e f

R R # BT

'
|
)
]
]
i
v

smmm L ATXREXXARRY

P2 IR N

nB:ld(e)

| |
i { nS:+{n3,n8)
i {_nld:st(£,n9)
I |
1 A §
t | AXXZXIARY
I o===== | AYZAXAASY
I n13:+(n11,n12)
o HXFXBEABLRY Y
{ nt5:14 {a)
| AXEXXAL2Y
1 n17:%(n15,n16)
|_nttsst(f,nll}

* #la wix % *

[]

1 n19:14d {a) |
—=>| A2RIYIAXY 1
| n21:%(n19,n20) |
i_n22:stfe,n21) |

|

[

|
]
|
|
I
| 5
I
|
I
|
i
t

4
> gRFYILLY |
| W2RAXAAZY i
n25:% (n23,n24) |
|_MZL:8E(F 025) |
|

Ao o2 EPO LR w K oI rolE % ¥ x % K X R robr % % % X # X x ¥ #INO
N et I B I R I e B L T SN N 3 Eel o]

[
[

TECd) st
| _baCedra bt Livel

variable a4 b c d e £
ref.blk. 45 378 3467 345673 3478 738

AIF 11 000 0000 000000 10xx 00
RNA (1) 111 1117 1111t 1111 1
ANRA(2) 11 111 1111 111111 1111 11

|NA(3) 11 xxx x11x x11xxx x1Xxx xXx
RNA {4) 00 000 0000 000000 0000 00

Figure 8 Results of processing b; register trial sequence =
3,4,1,2.

have been successfully moved, the store motion pro-
cedure calls for the attempted motion of the live exists 7
and 8, using CNCT. These are successful, and the final
value of P is {(1,{3,4,5,6,7,8})}. The load store motion
for d is completed by following the instructions in sec-
tion 5, which call for a load of d to be inserted at the end
of block 2 and stores at the beginnings of blocks 7 and 8.
The reservation for d now is accomplished by a straight-
forward application of RSRV (4) for b = 3,4,5,6, which
has the effect of initializing and terminalizing d in each
block. The effects on RAVAIL, AIF, and RNA are
shown in Fig. 5.

In Fig. 6, observe that the one occurring in AIF for the
load of ¢ in block 3 is a result of e ceasing to be a poten-
tial initial quantity in this block. In Fig. 7, the ones in
AIF for both loads of a result from its ceasing to be a
potential terminal quantity for block 3.

IBM J. RES. DEVELOP.

o

| RAZXELHY

| A2z xxLey

J n3:+(n1,n2)
n4:stf{a,nl)
RBXXARAY
n6:x{nsS,n1)
AT ¥ YK AL BBY
ng: id (o)
n9:+(n3,ny)
K238 (8, 82)

1

#ow K o e T
* #lu
EE I I I 3 o

1
AYYLYLNEY I
AYZIYALRY I
n13:+(n11,n12) |
WY ISV LB ATEY]
[
!
1
)

[3) PN P

n15:14 (a)
WX FALY
nt7:% (n13,n16)
HXAFE (L AXD)

K % on w8 % F xleoeslx Fox o2 X X & %

[

n19:1d(a) |

AZRZXALRY |

n21:*(nlY,n2u) |

nZ2ist(e,n21) __|
{

4 o

H2BXXL XY | |

\ AZEFXLASY } 1
|

| |

X wio ol x % o# %

1
|
1
|
[
|
#*

—pr o K ¥ ol

Elx X % XlE Bk X X xle Ex R

_L

| n25:%(n23,n24)
| _H2E:1B8Y (B A25)
i

[T S ST N Y]

[RTE

—y 1
st () g5t (b)), §
st (f) 1

heCedee by _livel
8

-
|
(=

====>| st (d),st(h).,

I st (f)

| hedegedf live |

variable a b c i e
ref.plk. 45 378 3467 345678 3478 78

ALF 000 0000 000000 1011 00
RNA (1) 111 1111 111111 1111 114
RNA (2) 111 1111 111111 1111 1

RNA (3) 111 1111 11131 1111 11
RNA(4) XXX AXXX XXXXXX XXXX XX

Figure 9 Results of processing f; register trial sequence =
3.4,1,2.

Finally, Fig. 10 shows System/360-like code gener-
ated during the local assignment phase. A register trial
sequence for e beginning with register 4 would have in-
hibited the subsequent motion of the stores of f.

The interested reader is encouraged to try this exam-
ple with variations in the number of registers, the order
of processing of variables, and the register trial se-
quences.

10. Global assignment for outer regions

Suppose region R immediately contains region R'. Then
when global assignment for R takes place, it has already
been completed for R’, at least in the sense that all loads
and stores that are to be removed from R’ have been
removed. While glgbal assignment for R proceeds basi-
cally as described in sections 7 and 8, the presence of

JANUARY 1974

Ld(d) ,1ld{c)
[N Q) N —— !
[N { 3
| XX XEARY
| AZXXHLLY
| n3t+(ni, n2)

>] nk:st{a,nld)

1
I
!
|
| ABZXRAAY 1
| nb:x{n5,n1 i
I
|
1
|

xon KN

Tt AT 2BEARAALY
| n8:14d {e)
I n9s+(n3, nh)

IAZZZiZfLZLZZL___
i

R I I

HE IR I

|
| HAZZXALSY |
| n13:+(n11,n12) |
LAY ISR AR/ ANEY
|
!
1
1

I n15:14d (a)

| WS XXRALY

| n17:%(utd,n1é)
| _EX:gy (¥ BXT)

_5

| n21:%(n19,n2d)
|_n22:st(e,n21)
|
1

>V W2AYRAAY |
| AZRIXAAZY |
|
I

% ¥ ® oH|lE Ele %

5

>| AZRZYX XY {
|

i

|

i

|

|

|

|

1 | n19:1d{(a)
i

t

|

| [}
.

*

n2%:% (n23,u24)
| _B2L: 2K (B B2F)
|

RN AR S
* #
Sl ox ® &

4
st (1) ,st(b),
bost(f)
1.2eCrdaoetf Liv

---=>[st{d},st (b},
1 st(f)

|Ded e, 5E 1live

Figure 10 Generated code.

R’ must be accounted for in each of the three principal
subphases — vector computation, load-store motion, and
reservation. ‘

With respect to load-store motion, the completed as-
signment of R’ to some extent forces, or implies, certain
specific assignments in R, because of the principle of
consistency introduced in section 7. In the first place,
any load inserted into an entry target of R’ upon remov-
al from R’ clearly has its assignment implied by that in
R’. In the second place, if there is a register point in
R’ at which x has a specific assignment and which is to
be used in removing a load L of x from R, then by the
principle of consistency the assignment of L would be
implied. In more formal terms, suppose P’ is the final
assignment of x in R’, L is a load (or live exit) of x in
R, q’ is an exit of R’, g is the exit target of ¢’, L' is the
corresponding live exit for x, and ¢ isin RR(R,x,Jloc(L)).
If there exists (r,U) in P’ such that INT (x,L') A U # 0,
then L has the implied assignment r in R.

Other situations, such as fixed subroutine interfaces,
may have a similar effect. Whatever the source, we ex-
press this effect for each data item x in the same form as
a partial assignment for x in R. Thus an implied assign-

REGISTER ASSIGNMENT

J. C. BEATTY

ment for x in R is a set JA={(j,U), - (U}
where the j, are indices of the register trial sequence s
for x in R and U, is the (R) x-vector representing the
loads and live exits of x in R that must be assigned to 8,
if they are removed.

The application of the above criterion for determina-
tion of the implied assignment may lead to inconsisten-
cy, i.e., a load L common to U, and U, with j,_ # j,.
However, this situation is assumed to have been handled
by making L absolutely infeasible in R.

It is primarily in this context that the choice of the
register trial sequence seems significant, because it can
be used to reduce the likelihood of such inconsistency
arising. Suppose, for instance, that prior to any global
assignment, we determine the processing order of the
data items in each region, using reference frequency or a
similar criterion. Let N be the number of registers in the
object machine. Provisionally assign the first N data
items (in processing order) of the outermost region to
registers 1 through N. Then repeat the following process
for all remaining regions S’ in an outer-to-inner order:
For each of the first N data items x of §’, if x has a pro-
visional assignment in the region § immediately contain-
ing S', give it the same provisional assignment in S’;
otherwise provisionally assign x to any register not pro-
visionally assigned in S to any of the first N data items of
S’. These provisional assignments, having been obtained
prior to global assignment, can be used to determine the
register trial sequences. In particular, whenever a data
item x has a provisional assignment to register r in R, r
should be first in the register trial sequence for x in any
region R’ immediately contained in R.

In the presence of an implied assignment I4 =
{(k,W)), -~ (k,W,)} for x in R, the basic function
performed by the CNCT procedure in load-store motion
(section 7) is performed by the procedure CNCTIA
(L\,P,i4), where P={(j . U). -~ (j,U,)} is the cur-
rent partial assignment for x in R, s the register trial
sequence for x in R, and L the load (or live exit) being
moved.

Procedure CNCTIA(L,PIA)

I. First determine whether the assignment of L is
forced, i.e., whether UNIT (x,L) A w,#0 for some g
(1= ¢g= p). If so, then do the following:

a. Partition P as in CNCT so that for some [
0=1=m)
U, NINT(x,L) # 0for1=i=/[,and
U,NINT(x,L)y=0forl <i=<m,

. If j, >k for some i=/{, then return in failure
(since the implied assignment would have already
been tried in vain for one of the intersecting loads).

. Let U'=UNIT(x.L) VU, V-V U,

d. If U’ ARNA (skq,x) =0 then do:
i. Replace Pby {{(j,,,U,.,)» " (UL, (kU }

ii. oRINT(x,L) into Wq.

iii. Make inconsistent implied assignments in-
feasible, ie., OR W AW, into AIF(x) for
1<i=p,i#q.

iv. Return.

e. Return in failure.
2. Apply CNCT(L,P).

In addition to register reservation in blocks immedi-
ately contained in R, as described in section 7, the load-
store motion in R may require additional reservation in
the contained region R’. This would be the case, for in-
stance, if an exit target g of R’ were in RR (R x,loc(L)),
where L is a load (or live exit) of x moved from R, and
no register had been reserved for x at the corresponding
exit. We call this secondary reservation in R’, and it has
one of two forms:

1. Data item x may be passed through R’, i.e., a register
is reserved for x throughout R’. This can only happen
when R’ is transparent and x has no register point in
R’ but is required to be in a register at some exit of R'.

. Data item x may require a partial reservation in R’.
This can happen when x has a register point in R’ and
is required to be in a register at some exit of R’ for
which the corresponding live exit of x is “‘uncovered,”
i.e., cannot be removed based on prior reservations
in R'.

While passing through can be handled rather simply,
secondary partial reservation requires essentially the
same status information and processes as primary reser-
vation (as discussed in section 7). For this reason it
may be preferable simply to suppress the motion of any
load in R that would necessitate secondary partial reser-
vation in a contained region. This could be done by mak-
ing such loads absolutely infeasible. This key to carrying
out a secondary partial reservation to produce x in a reg-
ister at an exit ¢’ of R’ is provided by the live exit L’ of
x corresponding to ¢’. (If x is not live at the exit target g
of ¢’, there could be no load-store motion in R requiring
x to be in a register at g.) Specifically, the reservation is
just that required to remove L’ from R’, i.e., a register is
needed in the set S = RR(R',x,loc(L’)).

Next we consider the role that the contained region R’
plays in the computation of the RRB, RRE, and INT
vectors for R. For most purposes R’ can be considered
as a node (basic block) of R whose predecessors and
successors are the entry and exit targets of R’. It may be
regarded as one of the b, in the linear order defined in
section 8. If no secondary partial reservation is being
made, the basic algorithm for computing RRB and RRE
(section 8) can stand unchanged, given only that the

IBM J. RES. DEVELOP.

vectors are properly initialized for the nodes corre-
sponding to contained regions. Specifically, if b is the
node for R’, then RRB(b) and RRE(b) are initialized
to zero and NPT (b) is set to one in coordinate L if and
only if item (L) is not referenced in R’.

In case secondary partial reservation is used, the role
of NPT for the contained region R’ is played by an R-
vector JUMP for each entry-exit pair of R’. Let p’ be an
entry of R’ and p its entry target in R. Let q,,- - -, g’ be
the exits of R’ and g¢,, - --, g, their exit targets in R.
We define the R-vector JUMP(p,q;) with a one in com-
ponent L if L corresponds to data item x and the R’-
vector RRB(p’') has a one in the component corre-
sponding to the live exit of x at g;. Then the iteration for
RRE at block p has the form
OR JUMP(p,q;) A RRB(q;) into RRE(p) forj=1,- k.

For the purpose of computing the /INT (x,L) vectors,
the algorithm of section 8 may be used with the con-
tained region R’ treated as one would a basic block of R.
Although with a more refined method the assignment
constraints could be somewhat relaxed, the net effect is
probably insignificant.

The RNA vectors for R must, of course, reflect the
register availability in R’ relevant to loads and live exits
in R. In case secondary partial reservation is not being
done, this can be accomplished as follows (where the q;
and g;’ are as defined above):

For each register r do:

1. Initialize RNA(R,r) to 0.

2. For each data item x (referenced in R), if x is not
referenced in R’ and r is reserved anywhere in R’,
then OR RRB(qg;) into RNA(R,r) for 1 =j= k.

3. If x is referenced in R’, then for j =1 to & do:

a. If x is not assigned to r at g;, then oRr RRB (g;x)
into RNA(R,r.x).

If secondary partial reservation is being done, the pro-
cedure is more tedious and depends on the RNA(R',r).

The effect of R’ on the initialization of the AIF vector
is determined in an analogous way.

11. Logical constraints of load-store motion

Until now we have assumed, for simplicity of exposi-
tion, a one-to-one fixed relation between data items to be
assigned to registers and their storage locations. Thus
the only constraint involved in load-store motion was
the physical one of register availability. One would like
to be able to apply these techniques to dynamically ad-
dressed (pointer or subscript qualified) data items,
which do not satisfy the fixed one-to-one relation with
storage; e.g., A(I) may refer to different storage loca-
tions at different times and may refer to the same storage
location as A (J). This requires the imposition of certain

JANUARY 1974

logical constraints as well as the physical one already
dealt with. These constraints should also cover the pos-
sibility of aliasing among data items. Finally the problem
of safety must be faced in order to move loads and
stores of dynamically addressed items; safety here
means the possibility of introducing unwanted side ef-
fects due to a change in conditionality of execution of
the moved instruction. These are serious problems for
all forms of compiler optimization, particularly the glob-
al ones. The aim of this section is not to present general
solutions for these problems, but to show how the above
global assignment algorithm can effectively make use of
such solutions.

Consider the case of a subscripted variable 4 (7). It is
possible to apply machine-independent methods of
expression commoning and backward motion to remove
the loads of 4(1) (see [7], for example.) This involves
introduction of a scalar temporary to carry the value of
A(I) from one point of reference to a subsequent one,
independently of register availability. This is the strategy
used in the FORTRAN H optimizer, in which, however,
apparently no attempt is made to remove subscripted
stores. Although this approach reduces the index regis-
ter requirements, the effect is frequently outweighed by
the additional stores required for the scalar temporaries.
A more flexible approach involves removing only those
loads and stores of A(I) for which registers are avail-
able. This machine-dependent approach has the draw-
back that the potential index register saving is not only
smaller but often cannot be conveniently realized, be-
cause the necessary information is not known soon
enough. A test made to compare the two approaches
indicated no significant difference (see section 13).
Nevertheless, the basic machine-dependent method is
now described, because with some elaboration, it has the
potential of more promising results. '

Each formally distinct subscripted variable is treated
as a separate data item subject to load-store motion.
Thus 4(1),B(I), and A(J) would all be considered as
separate items. Assuming that global commoning and
backward motion for expressions (but not for subscript-
ed references) have been completed, if e is an expres-
sion other than a simple variable reference, a reference.
to A (¢) need not be considered, at least for load motion.
For this would be possible only if ¢ were redundant, in
which case the reference presumably would have been
changed to the form A (T).

For the purpose of load motion for a data item x =
A(1), the absolute infeasibility vector A7F may be used
to record the logical constraints as follows:

For any block b of the region R in which x is not a
potential terminal quantity, we orR RRE (b.x) into AIF (x)
if either / or A (1) could be modified by the execution of
b. The latter alternative would in general obtain if, for

33

REGISTER ASSIGNMENT

34

J. C. BEATTY

instance, A(J) or A(e) were stored in b. We have
begged the question slightly in the use of the notion of
potential terminal quantity. In section 5 this, as well as
potential initial quantity, was defined in térms of register
availability alone. For a subscripted item x, this concept
should include the logical identity of x at the end of b (at
the beginning in the case of an initial quantity). In other
words, x'is a potential terminal quantity for b if there is
an instruction i referencing x in b and if a load of x could
correctly be moved from rhe‘end of b back to loc(i).
Similarly, x is a potential initial quantity for b if there is
aload i of x in b that can be correctly moved back to the
beginning of b. In both cases we require, as in section 5,
that the available register counts along the course of
motion are positive.

Store motion for A4 (1) requires data in addition to that
described in section 5. For the simple case addressed
there, a store § of item x could be removed from region
R if each load and live exit of x to which § was in the
affect (R .x) relation could be removed from R. The ad-
ditional requirement for the case x = A (I) can be satis-
fied by allowing for a dummy load of x at any point of R
at which a modification of / or either a use or a medifica-
tion of A(I) under élny other name (e.g., A(J)) could
occur. These dummy loads are to be considered immov-
able'from R. Thus if § is in the affect (Rx) relation to
any such load L, then S is not movable from R. These
dummy loads of x can be represented-collectively by a
single bit position, which we denote as SLI(b,x) for store
logically immovable, appended to each AFCT (b,x) vec-
tor as defined in section. 8. Thus if SLI(b,x) is on, the
end of b is in the affect (R,x) relation to some immov-
able dummy load and hence a store of x in & is logically
immovable. By appropriate initialization the SLI (bx);
as the AFCT(b,x); are computed by the algorithm of
section 8. ' v ‘

‘Other forms of dynamic qualification, such as based
references, can be handled in exactly the same manner
as subscripted references. :

We have until now assumed that different variables
correspond to disjeint storage locations. In thjs section,
we used A (/) and A(J) as examples of possible aliaseé
for the same storage location. Language cbnétru‘cts; such
as EQUIVALENCE in FORTRAN, DEFINED or
BASED in pL/1, REDEFINES in COBOL, or parameters
in mary languages, allow numerous other’ possibilities
for aliasing. Moreover, calls to external routines can in
certain instances implicity reference variables of the
calling program. To do global optimization of any sort
correctly, all possibilities for such side effects must be
taken into account, if necessary by assuming worst
cases. Our technique for handling subscripted references
can be applied to reflect these possibilities in the bit vec-
tors for global assignment. For example, if X and' Y

could be aliases for the same storage, they would be
handled as 4 (/) and 4 (J) were above, in that a change
of X could cause a load of Y to become absolutely in-
feasible, and either a use or a change of X could cause a
store of Y to become logically immovable.

What has been shown thus far is how the global as-
signment algorithm can be applied to a data item x, given
that for x and its dynamic qualifiers (subscripts or
pointers) the program points are known at which the
storage allocated to them can be used or modified. In the
case of store motion for x in region R, it is generally
necessary to know additionally that the storage for x is
not deallocated in R.

The question of safety is relevant for a dynamically
qualified reference of data item x that must be moved to
a region entry or exit, at which it could be executed,
even though it might not have been executed if left in
place. This is because the qualifier may be invalid and
cause an unwanted interrupt. Let p be an entry of region
R. We assume it is known whether a load L of x would be
unsafe at the corresponding entry target, i.e., whether
such a load ‘could cause an interrupt even though the
original program could not. There are means of deter-
mining this in some cases, e.g., [8]. Should L be unsafe,
we can inhibit the motion of any load or live exit of x
requiring L simply by oring RRB(p,x) into AIF (x).
Similarly, if g is an exit of R, then we assume it is known
whether a store of x would be unsafe at the correspond-
ing.exit target. If so, then if L is the live exit of x corre-
sponding to ¢, a store S of x in R cannot be removed if
loc(S) is in the affect (R,x) relation to loc(L). This fact
can be reflected in the appropriate SLI bit by consider-
ing L to be a dummy immovable load.

12. Register assignment prototype

A prototype register assignmerit program was written
to evaluate the strategy proposed in section 2 and con-
sists of the three phases described there. To provide
realistic input, a program was written to convert the in-
ternal text of the FORTRAN H compiler after the final op-
timization phase (phase 20) to a form acceptable to the
prototype. The prototype generates IBM System /360
code from this input. The phase implementations in the
prototype are described below.

* Local allocation

The lo‘cal'allocation phase retains the instruction order
and merely attempts to keep data items in registers be-
tween successive references in the same basic block b,
without making specific register assignments. This is
done by'keeping counts of available registers at each
point (i.e., instruction) of b. Separate counts are kept
for ﬂoatihg-poirit and general registers. These are initial-
ized to the number of registers of the respective type in

IBM J. RES. DEVELOP.

the machine. Then the basic register requirement for
each instruction is subtracted. Normally, this amounts to
one register of the appropriate type for the instruction at
its corresponding point, although more are obviously
required for certain instructions, such as fixed-point mul-
tiply. Thus we only account for the result register re-
quirement at this point. The operand registers are ac-
counted for later.

The instruction text is in the form described in section
3, with data references made only by means of loads or
stores. Because some of the loads may eventually be
effected by RX references, it is advisable not to assume
any register requirement for such loads at this time. This
assumption is valid as long as the loads immediately
precede the instruction referencing their results. The
subsequent register allocation corrects this assumption
appropriately.

We define a gap of b as the interval between two suc-
cessive references to the same data item in b, the second
of which is not a store. The gaps of b are assigned priori-
ties and sorted by increasing priority. Then for each gap
g in order, we attempt to close g by decrementing the
appropriate register counts in the interval g. When a reg-
ister count of zero occurs in a gap, then it cannot be
closed, in which case a load and possibly a store must be
generated. The priority used for a gap is its length in
terms of the number of intervening instructions. An ex-
ception to this is made when the gap is between a store
of x and a unique load of x (x ceases to be live after this
joad). In this case we use half the gap length, because
both the store and the load are removed by its closing.

Any optimization procedure that alters the instruction
sequence should, for obvious reasons, precede the gap-
closing process. This applies not only to the usual ma-
chine-independent optimization steps but also to instruc-
tion reordering of the machine-dependent types, such as
discussed in [9-11]. However, in design and evaluation
experience with instruction scheduling algorithms for
optimizing running time on pipelined machines, we
found it advisable to close certain time-critical short
gaps before applying a general gap-closing algorithm
such as the one described above. This involves a partial
gap closing during, rather than after, the determination
of the instruction order for the block.

e Global assignment

The algorithm described in sections 4 through 8 was
implemented reasonably faithfully, including the method
for the handling of outer regions outlined in section 10,
with partial secondary reservation, and the handling of
subscripted references described in section 11,

e Local assignment
The function of the local assignment phase is to generate

JANUARY 1974

code consistent, insofar as possible, with the results of
local allocation and global assignment. This is done one
basic block at a time and involves assignment of the reg-
isters used solely for intrablock communication (i.e.,
those allocated during local allocation), as well as cer-
tain local optimization steps, such as commuting oper-
ands to avoid unnecessary register moves (System /360
load register) and generating RX-type references where
possible. The instructions of a block b are processed
in order except that a look-ahead procedure is used to
avoid unnecessary register moves due to register assign-
ments at the end of / that have already been fixed by the
global assignment phase. This procedure uses chains con-
structed during local allocation, which link each in-
struction having a register result to the last instruction in
b using this result, or to the end of b in case the result is
to remain in a register beyond this point. A spill situation
can arise during local assignment, even though the avail-
able register counts are not allowed to go negative dur-
ing the prior phases. Experience with the prototype has
indicated that this possibility is almost never realized in
practice. When it is, the necessary corrective action is
straightforward.

e Limitations of the prototype
It is appropriate to identify the principal limitations and
inadequacies of the prototype:

1. No attempt was made to compile subroutine link-
ages or in-line functions.

2. The general purpose registers were treated uniform-
ly, so that the impossibility of using register 0 for
address modification can be reflected only by not
using it at all (by an appropriate parameter setting).

3. The paired register requirements of the fixed-point
multiply and divide instructions were ignored, so
that these are not correctly compiled.

4. No attempt was made to use the branch-on-index
instructions for loop closing, again because of the
paired register requirement.

5. Only full-word arithmetic and shift instructions were
compiled.

6. All branch targets and scalar data were considered
to be addressable with a single base register, which
is assumed to be constantly loaded and thus not
available to the assignment algorithm.

7. Indexed (ie., variable target) branches were not
compiled.

8. No attempt was made to use the load address in-
struction for loading or incrementing by a constant,
or to use the subtract register instruction for zeroing
a register.

9. No attempt was made to handle parameter or equiv-
alenced data. '

35

REGISTER ASSIGNMENT

36

1. C. BEATTY

Table 1 Results of evaluation experiment.

Percent reduction of FORTRAN H generated code

Example Liberal Conservative No. of No. of fixed-point

programs m.d. m.d. m.i. m.d. (all-or-none) statements X's and +'s
DTF 18 16 5 8 36 0
CONNECT 30 25 27 20 43 2
MINV 31 24 26 24 51 0
DETERM 31 27 28 24 36 1
MATINV 32 28 27 25 62 5
STRESS 28 24 25 24 77 2
TRNPROB 35 33 32 30 45 4
CLOSP 22 17 17 12 122 6
GEOLAT 11 11 12 3 105 0
averages 26 23 22 19 64 2

10. The storage mapping and region (loop) structure
produced by the H compiler are used, including the
existing linear ordering of blocks. The predecessor
ordering required for the algorithm of section 8 must
exist at the source level. Any exception is flagged as
an error.

Most of these deficiencies can be remedied by a
straightforward addition of detail. However, a few re-
marks may be of value to a prospective implementer.
Consider first the problem of general purpose register
{GPR) 0. The simplest solution would be to avoid its use
in global assignment and to use it when possible in local
assignment. A better approach involves the use of the
bit vectors described in section 6 to indicate the feasi-
bility of using GPR 0 for a particular global assignment.
For example, if data item x is used in block b as an ad-
dress modifier (base or index register), then RRE (b,x)
should be ored into RNA (GPRO,x), thus inhibiting the
assignment of GPR 0 in the motion of any load based on
the availability of x at the end of b.

Now consider the problem of paired, aligned registers.
1n the case of fixed-point divide and multiply, the align-
ment, rather than the pairing, presents the major prob-
lem for global assignment, because the high-order half of
the product is usually discarded and represents only an
ephemeral register requirement. Similarly, only one re-
sult of the divide is normally required. The alignment
can be forced by use of the RNA vectors. For instance,
if x is set in b to the result of a fixed-point multiply, then
RRE(b,x) is ored into RNA(r,x) for each even num-
bered GPR r. The use of the branch-on-index instruc-
tions, however, presents a- genuine pairing problem,

which could be handled by adjusting the register trial
sequences of the increment and comparand to increase
the likelihood of their being paired and aligned properly.
With the exception of a single base register for the most
critical data, it seems unwise to reserve any base regis-
ters unconditionally, as the FORTRAN H compiler does
for addressing the code of a large module. A more flexi-
ble alternative is to make, before register assignment, a
conservative estimate of code size in each basic block
and to use this and control flow structure to assign labels
(i.e., branch targets) to as few distinct symbolic address
constants as possible. A branch to such a label must
have, as an operand, a load of its address constant,
which will compete for registers on an equal basis during
register assignment.

13. Experimental resuits

In this section we present some experimental results
obtained by comparing the code generated by the 1BM
System /360 FORTRAN H compiler for nine programs
with the output of the prototype described in section 12.
The prototype produced on the average about 25 per-
cent better code. In the remainder of this section we dis-
cuss in detail the experimental results, which are sum-
marized in Table 1.

Because the FORTRAN H compiler was used to provide
input for the register assignment prototype, it served as
a convenient standard against which to measure the
effectiveness of the prototype. In spite of occasional
user complaints about the register assignment produced
by the H compiler, it has in fact remained a standard
among production optimizing compilers, using a straight-
forward one-to-one (in the sense of {1]) global assign-

IBM J. RES. DEVELOP.

ment strategy after first giving priority to local assign-
ment [3]. Most of these complaints are based on the
occasional appearance in the object listing of an adjacent
store-load pair referencing the same memory location in
the same basic block. With the version of the compiler
used for the experiment (level 18, September, 1969), a
visual scan of several moderately large listings turned up
five such obvious redundancies.

Although the primary object of our register assign-
ment strategy is to minimize the execution time of the
object program, we have chosen the storage required for
instructions as the criterion for measurement. One rea-
son is that a realistic test of object execution time would
have been beyond the scope of our project. In general
the one-to-one assignment strategy used by the H com-
piler is adequate and, indeed, hard to beat on programs
whose execution frequency is concentrated in loops that
are small enough not to tax the register resources of the
machine. There is some indication [12] that such pro-
grams are typical, at least of FORTRAN programs. The
same study, however, points to ill-advised use of the
language and poor algorithm design as a primary source
of this phenomenon. In moderate to large programs that
have been carefully designed and tuned, especially those
of the system type, it is relatively rare that execution
frequency is heavily concentrated in a few small kernels.
It is for such programs that the major payoff of more
advanced global register assignment methods is to be
expected. Moreover, payoff in execution time will prob-
ably be about the same as in code space. This is because
the loads and stores in such programs tend to be typical
in execution time, and also because the redistribution of
these instructions out of loops is not nearly as significant
as their total elimination, i.e., commoning. Thus, for the
purposes of this study, code space seemed to be the
most appropriate measure of effectiveness.

The H compiler text that we used as input reflected
the machine-independent handling of subscripted loads
mentioned in section 11. To apply the machine-depen-
dent method described there, our conversion program
(optionally) restored the moved loads to their original
positions, at least in the more obvious cases. The result-
ing data in Table 1 are captioned m.d. for machine de-
pendent. The data for the unmodified FORTRAN H text
are captioned m.i.

Because of the inability of the prototype to make
selective use of GPR 0 and to generate BX-type branch-
es (section 12}, we have assumed no use of GPR 0 and
no BX branches in the “conservative” data. Even so,
because fixed-point multiplies and divides are not neces-
sarily compiled correctly (section 12), the number of
such instructions is included in the statistics for each
test case. To obtain a reasonable upper bound on effec-
tiveness, we include in Table 1 “liberal” data obtained

JANUARY 1974

by compiling each example assuming complete freedom
in the use of GPR 0 and assuming that a BX branch is
generated when all conditions except register adjacency
are met. We believe that the methods suggested in sec-
tion 12 can lead to results close to the liberal figures.

In an attempt to assess the effect of the individual
treatment of loads and stores of a variable as opposed to
the classical all or none approach typified by the many-
to-few strategy [1,2], the global assignment algorithm of
section 4 was modified as follows: Instead of attempting
to remove individually each load and store of item x
from a region R, an attempt was made to find a single
register available for removing all loads and live exits of
x from R (i.e., available wherever x was live in R). If
such a register exists, all loads and stores of x are re-
moved and the reservation procedure of section 7 is car-
ried out. Otherwise, or in the case of any absolute in-
feasibility, no loads or stores of x are removed. The re-
sults of this modification are described under the head-
ing “all or none.”

The examples tested were typical FORTRAN programs.
The only strictly fixed-point programs were CLOSP and
CONNECT. However, a scan of the output indicates
that in only one example, GEOLAT, were there suffi-
cient general purpose registers to accommodate all items
on a one-to-one basis. This is somewhat surprising, giv-
en the moderate size of the programs. It appears to be
due in large part to the temporary variables introduced
by the FORTRAN H optimizer. Although most of the
examples had to be modified slightly to allow for the lim-
itations of the prototype (see section 12), care was tak-
en not to alter the basic data flow.

The need for partial secondary reservation was ques-
tioned in section 10. Although no systematic attempt
was made to evaluate this need, experience with the pro-
totype indicated that the code for this function was al-
most never invoked.

14. Notes on the prototype implementation

The prototype was implemented in PL/1 by the author
over a two-year period, roughly half of which was devot-
ed to this project. It consists of approximately 4750
lines of code, of which about 3500 lines comprise. the
global assignment phase. The conversion from FORTRAN
H represents an additional 450 lines (also in PL/1). The
PL/1 F compiler was used initially under System /360
Operating System (OS/360) and finaily under Control
Program/67-Cambridge Monitor System (CP/67-CMS).
While under OS, the object program was overlayed and
ran in a 400K- to 500K-byte region.

Although extensive list processing was used, the use
of based storage for this purpose was kept to a mini-
mum. Instead the list elements were accessed as ele-
ments of arrays of structures. This greatly enhanced the

37

REGISTER ASSIGNMENT

38

J. C. BEATTY

effectiveness of the subscript range condition for error
checking. Through a minimal standardization of list for-
mats and naming conventions and the use of the pL/I
preprocessor to implement a few common list-handling
constructs, a flexible and effective system was evolved
for handling singly linked lists. Constructs were intro-
duced for iterative processing of the elements of a list
and for prefixing and deleting such elements.

Even allowing for the use of pL/1 without optimiza-
tion and with extensive subscript range checking, the
execution times for the prototype were long. About half
the time was spent in the global assignment phase. Be-
cause this phase was designed with considerably greater
care than the rest, this ratio is not particularly signifi-
cant. The global assignment time was measured in terms
of the total number of global references (loads and
stores) processed, i.e., considered for global motion, in-
cluding those generated at entries and exits of a region
by the algorithm. The time per reference on a Sys-
tem /360 Model 67 was in the range 0.50-.75 s, and did
not vary meaningfully with the number of references.
For instance, a program with 172 references and one
with 505 references both required 0.66 s per reference.
The global assignment time thus appears to be roughly
linear in the number of references. In the examples test-
ed, the average number of references per statement
ranged from three to six.

15. Summary and conclusions
The results reported in section 13 show that the register
assignment strategy outlined in section 2 can result in
substantial improvement—on the order of 25 percent—
in the quality of object code currently available from
FORTRAN source code on System /360 machines. This
figure is based on code space, as opposed to execution
time. However, a comparable improvement in execution
time can be expected, to the extent that execution fre-
quency is not concentrated in small kernels.
Extrapolation of the results to other source languages
and other object machines is difficult. On the one hand,
the global assignment algorithm is completely general
and applies to any machine with multiple registers and to
any source language. The algorithm is shown in section
11 to be applicable in the principal situations that are
encountered in optimizing code for current source lan-
guages, given the basic information needed for all forms
of global optimization. In section 12, methods are de-
scribed for adapting the algorithm to some of the asym-
metries of the System/360 register architecture; these
methods can be seen to apply to some of the peculiari-
ties of other register machines. However, the viability of
the register allocation (as opposed to assignment) con-
cept depends on a high degree of register symmetry. The
local assignment and to some extent the local allocation

methods used are more dependent on the characteristic
System /360 features, such as two-address format and
RR vs RX operands. However, both phases are fairly
straightforward and easily adapted to other register ar-
chitectures.

The real key to effective application of any global op-
timization to more versatile languages, such as PL/1, is
the containment of the possibility of side effects, alias-
ing, etc., to the situations in which they are actually
used. For example, it is relatively rare that a BASED
variable is used as an alias for another variable; yet a
compiler must assume it could be an alias for any other
variable, in order to generate correct code. Whereas
clever global analyses may be able to mollify this as-
sumption, a more profitable course in the long run would
be to design a language encouraging, if not forcing, more
disciplined access to data. There are, however, other
difficult problems of semantics yet to be solved in the
design of general purpose, yet highly analyzable (hence
optimizable), languages. In the meantime, the fruits of
global compiler optimization will continue to be harvest-
ed mainly in the domain of less ambitious or more spe-
cialized source languages.

The time and space figures in section 14 definitely put
the methods of this paper in the category of a high op-
timization level, suitable only for compilation of de-
bugged production code. The apparent linearity of the
time figures, however, leads one to hope that, with sim-
plification and tuning, these methods would be suitable
for a production compiler.

Perhaps even more significant than the performance
figures, at least to someone whose experience in com-
piler optimization is limited to the theoretical or algo-
rithmic level, is the implementation experience reported
in section 14. The basic global assignment algorithm is
conceptually not extraordinarily difficult. However, ap-
plying it, even in a modest subset of the environment
of a real compiler, took considerable effort. Probably the
most important single reason for this difficulty is the
great disparity between the relatively amorphous form in
which a program is represented during its compilation
and the regular structures (such as bit vectors) in which
its details must be encoded for efficient implementation
of ambitious global optimization techniques. The ef-
ficient mediation between these disparate representa-
tions requires code and data structures of considerable
complexity. It is undoubtedly this mediation, rather than
the bit vector manipulations per se, that accounts for
most of the overhead of the implementation.

Acknowledgment

The author expresses his gratitude to K. Kennedy of
Rice University for his perceptive reading of the manu-
script and man‘y helpful suggestions.

IBM J. RES. DEVELOP.

References

1.
2.
3.

4.

W. H. Day, “Compiler Assignment of Data Items to Reg-
isters,” IBM Systems Journal 9, No. 4, 281-317 (1970).
The Alpha Automatic Programming System, A. P. Yershev,
Ed., Academic Press, London and New York, 1971.

E. S Lowry, and C. W. Medlock, “Object Code Optimiza-
tion,” Comm. ACM 12, No. 1, 13-22 (January 1969).

K. Kennedy, “A Global Flow Analysis Algorithm”, Intern.
J. Computer Math., Section A, 3; 5-15 (1971).

. J. Cocke, “Global Common Subexpression Elimination,”

Proc Symp. on Compiler Optimization, SIGPLAN Notices
5,No. 7,20~-24 (July 1970).

. C. P. Earnest K. G. Balke, and J. Anderson, “Analysis of

Graphs by Ordering of Nodes,” J. ACM 19, No. 1,23-42.

. J. Cocke, and J. T. Schwartz, Programming Languages and

Their Compilers, Preliminary Notes, Courant Institute of
Mathematical Sciences, New York Umversxty, 1970.

. K. Kennedy, *“Safety of Code Motion,” Intern. J. Computer

Math., Section A, 3, 117130 (1972).

JANUARY 1974

. J. C. Beatty, ““‘An Axiomatic Approach to Code Optimiza-

tion for Expressions,” J. ACM 19, No. 4 613 - 640 (Octo-
ber 1972).

. R. Sethi and J. D. Ullman, “The Generation of Optimal

Code for Arithmetic Expressions,” J. ACM 17,N6. 4,715~
728 (October 1970).

. J.'F. Thorlin, “Code Generation for PIE (Parallel Instruc-

tion Execution) Computers,” Proc AFIPS 1 967 SJCC,
641-643. ‘

. D. E. Knuth, “An Empirical Study of FORTRAN Programs,”

Software Practice and Experience 1,1971,105-133. -

Received February 16,1973

The author is located at the IBM System Development
Division, Poughkeepsie, New York 12602.

39

REGISTER ASSIGNMENT

