
L. A. Belady
F. P. Palerrno

2

On-line Measurement of Paging Behavior by the
Multivalued MIN. Algorithm . .

Abstract: An algorithm is presented that extracts the sequence of minimum memory capacities (MMCs) from the sequence of page
references generated by a program as it is executed in a demand paging environment. The new algorithm combines the advantages of
existing approaches in that the MMC’s are produced in a single pass, as is the output of the M I N algorithm for a single memory size,
and the MMC sequence is identical to the optimum stack distances provided by the OPT algorithm, which requires two passes.

A hardware implementation is outlined as an extension to existing page management mechanisms. The resulting device could be used
to produce continuously the MMC information, while the (paging) machine executes the program at essentially full speed. The paper
also discusses the possible impact of the algorithm on the study o f program behavior and on the development of space sharing (paging)
algorithms. Finally, a proof is provided that the algorithm in fact produces an output identical to that of OPT.

1. Introduction
This paper describes an algorithm that computes the
minimum paging overhead from the page reference’string
of a program without look-ahead. Called the multivalued
MIN algorithm, it is equivalent to a one-pass version of
OPT [1 1. The immediate implication is the significantly
cheaper data gathering it affords. In addition, the novel
view of reference strings furnished by the algoritbm sug-
gests fresh approaches to the development and evalua-
tion of memory management schemes, i.e., multiprogram-
ming in a paging environment. The study of alternative
approaches to multiprogramming presents more severe
requirements for fast measurement tools than that of
uniprogramming, due to the additional degree’of freedom
introduced by dynamically varying memory space.

Extensive work has been done on the analysis of
memory hierarchies [2]. The reader should recall that
all page replacement algorithms face uncertainty when
choosing a page for removal from main memory. It was
early recognized [3] that, given a program characterized
by its page reference string and the size of main memo-
ry, it is useful to know the minimum number of page
faults necessary to run the program in order to eval-
uate memory configurations and page management
schemes. For example, the efficiency of a page replace-
ment algorithm is defined as the minimum number of
page faults divided by the number of page faults gener-

ated when using the particular algorithm. Efficiencies
have since been extensively measured and found to vary
between about 0.15 and 1 .O, an approximate mean being
about 0.4.

Two distinct, although necessarily related, methods
have been developed to extract the minimum number of
page faults. One, called MIN [3], can process the refer-
ence string as it is generated by the program and, given a
fixed memory size, compute the associated single mini-
mum page fault count by constructing, but only after a
necessary and variable delay, the memory states and
their transitions.

The disadvantage of MIN, that it works for a single
memory size at a time, was alleviated by the other ap-
proach, the two-pass OPT stack algorithm [I 1. The OPT
algorithm computes the minimum page fault counts for
the entire range of memory sizes essentially concurrently.
The algorithm would require repetitious look-ahead ex-
cept that this is eliminated by a preprocessing pass. Dur-
ing this first pass, performed in reverse order, the
forward distance string (reflecting the order of next oc-
curence of each element in the reference string) is con-
structed. The reference string is subsequently processed
by OPT to compute the optimum distance string-the
sequence of minimum memory capacities-by using the
output of the first pass to construct a priority list.

L. A. BELADY AND F. P. PALERMO IBM J . RES. DEVELOP

On balance, both schemes are useful. The MIN al-
gorithm is simple, requires no look-ahead, and is efficient
when only a single memory size is of interest. I t is often
used in compilers for register allocation [4, 51. The OPT
algorithm, on the other hand, is more elaborate and re-
quires a larger amount of recorded information, but it
yields directly the complete space-time behavior of the
program. As a result, OPT is extensively used to evaluate
storage hierarchies [61.

Neither algorithm, however, has been used on-line in
an operational environment. Their impact on page man-
agement schemes is therefore only indirect, through in-
creased insight into system behavior. They offer no pos-
sibility of real-time detection and exploitation of page
referencing patterns.

For the sake of completeness we mention two addi-
tional relevant pieces of work. A paper on index register
allocation [7] offers a neat solution to an even more
general problem than the one under study here, while a
patent [SI describes an on-line device that calculates
approximate values of the minimum page fault count.

The multivalued MIN algorithm introduced below
requires that only a small amount of information be re-
corded or stored while processing, with a resulting capa-
bility of being used on-line. The elimination of look-ahead
makes a hardware implementation feasible. In addition,
the algorithm has already permitted the discovery of
interesting program properties, some of which are sug-
gested in section 4.

In this paper, we first describe the multivalued MIN
algorithm, revealing at the same time some interesting
correspondences among MIN, OPT, and the new algo-
rithm. We then discuss a hardware implementation of
the new algorithm. Some of the possibilities for detecting
and using program properties, for example in multipro-
gramming environments, are then considered. A proof
that the outputs of OPT and the multivalued MIN algo-
rithm are identical is provided in an appendix.

2. Multivalued MIN algorithm
Consider a program represented by its page reference
string R . For any replacement algorithm, such a string is
the input. For a given memory size, MIN produces as
output a single value, the least number of page faults
required to run the program. The OPT algorithm also
uses the input string R , first to produce the forward
distance sequence, then to use this new sequence for the
process that actually extracts the sequence of optimum
stack distances. Each element of string R - the original
input- becomes associated with an OPT stack distance.

Since an optimum stack distance is the minimum
memory size associated with a reference such that no
page fault occurs, the minimum number of faults for
any fixed memory size is computable from the optimum

stack distance string, as described in [11. In this paper
we do not have an explicit stack in the sense of [1] and
therefore call such an output string the sequence of mini-
mum memory capacities (MMCs). A MMC value of p
then means that, prior to being referenced, the element
associated with the output has been contained in memo-
ries of size p or greater and therefore must be pulled by
being referenced into all memories smaller than p .

Historically the ultimate purpose of optimum stack
construction in evaluating memory hierarchies has been
to produce the MMC string. (The “hit ratios,” i.e,, the
normalized page fault counts as a function of memory
size, are directly computable from the MMC values;
hence recording of the voluminous MMC string can be
avoided.). The underlying thesis of the work presented
here is that, at any point in R , the MMC value (or,
equivalently, the OPT stack distance) associated with
the current reference is uniquely a function of the pre-
vious references; hence look-ahead is unnecessary.

This assertion does not mean, of course, that a viable
fault-minimizing replacement algorithm is possible. The
knowledge of the MMC value, paired with a memory
reference, is a posteriori information available when it
is, in general, too late to assure that the referenced page
will indeed be kept in a memory of this critical size. For
example, if a reference to page a! becomes, by our algo-
rithm, associated with the MMC value 4, this merely
means that a minimizing scheme applied from the begin-
ning of a program running in a four-page memory would
have kept a among its current four pages. In other words,
4 is the output associated with a; another page, not a,
might have a different associated MMC value.

In the remainder of this section we develop the new
algorithm in three phases. In the first, operation of the
original MIN algorithm [3] for a given memory size is
demonstrated by a two-dimensional matrix. In the next
we develop the multivalued version, which is represented
by a single numeral matrix that is a result of merging
matrices for distinct memory sizes. This algorithm in fact
produces the MMC values in one pass. The last phase
then shows that a single stack is sufficient to represent
the essential information contained in the numeral ma-
trix. Thus the algorithm becomes a set of manipulations
on this stack rather than on the numeral matrix of the
second phase.

M I N algorithm
The conceptual framework of MIN [3] is a two-dimen-
sional matrix in which a row is associated with each
page. A column represents a distinct memory state,
namely, a particular collection of pages. The number of
pages in such a collection may not exceed p , the memo-
ry size measured in pages. As the matrix is being con-
structed, a change of state occurs when a page not in

Figure 1 Successive memory states for seven references.

A 1 A 1 A 1
B 1 B 1 B 1 1 1 1
c 1 c 1 c 1
D 1 D 1 1 D 1 1
E 1 E I E I

(4 (b) (C)

Figure 2 Memory states for a three-page memory.

t

A 1 1 1
B 1 1 1 1 1
C 1 1 1 1
D 1 1 1
E 1 1

any previously constructed collection is referenced.
Re-referencing a page a can also cause a change of state
if any collections have been completed with p references
to other pages since the earlier reference to page a.
The MIN algorithm is then a procedure for constructing
a matrix representing the minimum number of states
necessary to execute a program.

Consider, for example, a program having an input
string R of the 14 elements ABCDEDBCBDAEAC
and a memory in which p = 3. After processing the first
five references, the information thus far available per-
mits construction of the matrix in Fig. 1 (a). Thus all
five references, by definition, created a new memory
state. However, we do not yet know the entire collection
of pages for each state; only one element is known in
each. Neither have we determined which pages will have
to be pushed out of our three-page memory, the inherent
delay of MIN alluded to earlier.

The sixth reference, to page D , may be added to an
already defined state, namely, the fifth. Thus I) and E
both become members of the same collection, and only
five states are required to accommodate the six refer-
ences, as shown in Fig. 1 (b).

The seventh reference, to page B, adds the third and
final element to the fifth state, as shown in Fig. 1 (c). The
matrix thus represents the minimum number of page
pulls (five) needed for these seven page references. It is
obvious in retrospect that pages B and D should not be
pushed from a three-page memory encountering this ref-
erence string. The not necessarily unique sequence of
states in our example could be represented as follows:
(A, 0, 01, (B, 0, O ,) , (B, C, O ,) , (B, D, 01, (B, D, E) ,
where zero means empty. 4

A general set of construction rules (except for the first
reference) can now be specified for such a matrix, given
memory size p and reference string R , as follows:

Suppose that the next reference in R is to page a and
that the rightmost nonempty column is labeled t - 1.

If row a is empty, mark a 1 at (a , t) and return.

Else find the rightmost column tm having a mark in
row a.

If there exists a column T , tu < T < t , with p markings,
mark a 1 in (a , t) and return.

Else mark a 1 in all empty (a , T) , tu < T < t , and re-
turn.

Figure 2 shows the matrix resulting from application of
these rules to the 14-element string used in our first
example. (Repetitious references in a string, for example
BB, would not cause new markings for any value of p and
are thus redundant. For the rest of the paper, we sup-
press such repetitions.)

After having processed input string R in accordance
with these rules, the number of marked columns is equal
to the minimum number of page pulls necessary to run
the program (eight in our example) for the given memo-
ry size. Unmarked gaps to the left of a marked entry (and
to the left of column one for the first entry) also represent
page pulls. Pages A, C, and E were pulled twice in the ex-
ample. Marks in a column identify pages coexisting in
memory, i.e., belonging to the same collection. The ma-
trix produced by MIN is such that a column may contain
fewer, but never more, than p pages.

Examination of Fig. 2 shows that, within the con-
straint set by p , gaps can sometimes be filled with mark-
ings when a new reference is made to a page previously
referred to, thus avoiding a page pull. However, p mark-
ings in a column present an obstacle to a filling attempt;
the gap is permanent. Recall also that columns generally
acquire p markings only after a delay.

With this representation, however, it is difficult to
compare and then interpret matrices generated for dif-
ferent p values, since the columns are generally not
aligned with the input string. For the above example and
p = 5, only five columns would be generated, the last
one with all positions marked; the matrix associated
with p = 1 would have as many columns as there are non-
repetitious page references, with each column having
only one marking.

We therefore slightly modify the construction rules. In
the new version of the algorithm, when the next reference
occurs, we mark (a , t) for all cases. Since prior to this
new reference, (a , t) has been empty, matrices for all
memory sizes now become aligned with the input string,
and t can be considered to be the index of time to a given

L. A. BELADY AND F. P. PALERMO IBM J . RES. DEVELOP.

reference; the next reference is xt and the tth column is
associated with it. Thus the only addition to the former
rules is to also mark a 1 in (a , t) in the last step.

All five matrices in our example, constructed using the
modified rules, are shown in Fig. 3. As before, the num-
ber of markings in any column never exceeds p , but can
be less. The minimum number of pulls necessary to run
the program is then equal to the number of markings not
preceded on the left by another marking, but preceded by
a gap or extending to the left of the first column.

Multivalued MIN matrix
We now superimpose the five matrices on one another.
However, we cannot now use a single number for mark-
ing- the numeral 1 -since we would have an incon-
clusive figure, identical to that of p = 5, which is the
union of all five matrices. We introduce as symbols for
marking the numerals 2, 3 ,4 , . . . , to represent the order
of natural numbers.

In addition to the rules already presented, we now
need some rules to guide in the use of the numerals so as
to preserve information about all cases even after super-
imposition. T o illustrate the construction rules, we pro-
ceed as follows.

First we decide to continue use of the numeral 1 in the
matrix for p = 1 ; the procedure for this case is then un-
changed, and there will be a 1 in as many columns as
there are references processed. No other numeral is
used.

Next we decide that no column may contain duplicate
numerals. By this means we are able to distinguish
among cases of different p values after superimposition.
If a given position in the matrix for memory size p con-
tains a mark, but the comparable position in the matrix
for p - I does not, then a numeral not yet used in the
relevant column of the matrix for p - I distinguishes
between the two cases.

We can construct the combined matrix by sequentially
processing the reference string. When the next reference
xt is to page a, we use 1 to mark (a , t). Then we note the
gap extending to the left of the new marking beyond
column one of the matrix (new reference) or bounded by
a numeral 1 (the most recent previous reference to a) . In
the original version of MIN, we would have filled the
gap only if, for each column in the region of the gap, the
number of markings was less than some fixed p . But we
are constructing a matrix for all possible p . Therefore we
use the numeral for marking that indicates, in position
(a, t - 1) , the minimum p value for which the gap-filling
is valid.

Since we want to find for all memory sizes the mini-
mum number of page exceptions necessary to run the
program, we must use the numerals in a specific order.
Starting with the leftmost position of the gap, the small-

Figure 3 Matrices for five memory sizes.

A B C D E D B C B D A E A C

A 1
B 1
C 1 1
D 1 1
E

1 1
1 1

1
1

1 1
(P = 1)

A I
B 1
C
D
E 1 I

I l l
1 1 1

1 I 1
1 1 1 1

(P = 2)

A 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1
D
E

1 1 1 1 1 1 1
1 1 1 1 1 1 1

(P = 3)
1 1

A 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1

(P = 4)

A 1 1 1 1 1 1 1 1 1 1 1 1 I
B 1 1 1 1 1 1 1 1
C
D

1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

(P = 5)

est numeral not yet present in that column is used for
marking. Since we also attach a meaning to this numeral,
namely, that it designate the p-size memory capable of
containing the page, a numeral once used in a gap forms
a lower bound to the right in that gap, i.e., before the
numeral 1 is reached. In other words, numeral string
223444 is valid while 223443 is not. The reason for the
nondecreasing string is that the matrix is designed to
reflect the behavior of a demand paging system. Each
numeral in the string represents the minimum size mem-
ory required to retain a given page at a given time. For
example, if the string above were in row a , the numeral
4 in the string would mean that a memory of at least size
p = 4 would be required to retain page a. Page a could
not be retained in the smaller memory of size 3. The ap-
pearance of a 3 in the string thus means that page a must
have been pulled back into memory. But this occurs only
if page a has been re-referenced, an event that in our
matrix is represented by a 1. 5

Figure 4 Multivalued MIN numeral matrix. Figure 5 LRU numeral matrix.

t t
A B C D E D B C B D A E A C A B C D E D B C B D A E A C

A 1 2 3 4 5 5 5 5 5 5 1 2 1 A 1 2 3 4 5 5 5 5 5 5 1 2 1
B 2 1 2 2 3 3 1 2 1

D 4 4 4 1 2 1 2 3 3 1 D 4 4 4 1 2 1 2 3 3 1
E 5 5 5 5 1 2 3 4 4 4 4 1 E 5 5 5 5 1 2 3 4 4 4 1 5) l

c 3 3 1 3 4 4 4 1 2 2 2 3 3 1 c 3 3 1 2 3 3 4 1 2 1 3 4 5 5 / 1 B 2 1 2 j 4 4 1 1 2 1

2 3 4 5 2 3 4 2 3 5 4 2 3 2 3 4 5 2 4 4 2 3 5 5 2 5

6

In the following text we call a gap-filling string starting
with numeral a and terminating with numeral b an a / b
string. The valid string in the example above is then a
2/4 string. Also, we exclude 1’s from the strings: hence
a is never 1. We now summarize the above requirements
into a numeral string algorithm:

Suppose that the next reference X , in R is to page a.
Let t , be the time at which a was last referenced (t , =

0 if this is the first reference to a).

Mark in row a every position (a , T), t , < T < t , with a
numeral q, which is the minimum missing numeral in
column T that is equal to or greater than the numeral
in position (a , T - 1) .

Mark (a, 1) with a numeral 1 and return.

(Note that q is redetermined for each column and that the
sequence is nondecreasing.)

The application of this set of rules to our former exam-
ple would produce the numeral matrix in Fig. 4. If an
additional reference were now made to page B, a 3
would be inserted into column 10 of row B, since 3 is
the smallest numeral not yet used in column 10 but is
clearly larger than the 1 in column 9. A 3 is also used in
column 1 1 for the same reasons. However, 3’s already
appear in columns 12 and 13, so a 4 is inserted into each
of these. A 4 is also inserted into column 14, since this
entry may not be smaller than the entry in column 13 of
row B. Finally, a 1 is inserted into column 15.

The algorithm is easy to perform manually. It is equal-
ly easy to extract the uniformly marked matrix for any
given value of p . This can be done in two steps:

1 . Remove all a /b strings (between 1’s) for which
b > p .

2. Change all remaining symbols to 1’s.

Of course, all 1’s originally in the matrix are retained.
The following properties of the combined matrix are

evident. If xt is a reference to page a , then (a , t) is marked
with a 1 . Also, the numeral at (a, t - 1), say p , stands for

quence of these MMC values is displayed immediately
below the numeral matrix in Fig. 4. There is one MMC
for every reference except for the first one; this is by
definition 1, but since we eliminated repetitious refer-
ences, it is suppressed.

This new version of MIN thus eliminates the look-
ahead (first pass) required by OPT, yet it produces ex-
actly the information generated by OPT. It is easy to
see that numerals stand for (OPT) stack distances.
Thus, the sequence of numerals in a given row is the his-
tory of pushes from memories of distinct sizes; a change
from a to b means that the page is pushed from memo-
ries of size c, a 5 c < b.

It is interesting to note that a similar matrix can be
made to represent the memory requirements of a pro-
gram executed in a demand paging environment under
a least recently used (LRU) page replacement policy.
The rules for constructing the matrix are provided here
for the sake of completeness; however, knowledge of this
algorithm is not necessary to understand the remainder of
the paper.

Suppose that the next reference x, in R is to page a.
Let ta be the time at which a was last referenced (t , =

0 if this is the first reference to a) .

Mark in row a every position (a , T), ta < T < t , with a
numeral r such that

* If row /3, containing a 1 in column T, contains another
1 in column A, ta < A < T, then r is the minimum
missing numeral equal to or greater than that at
(ff, 7- 11,

* Else r is equal to 1 plus the value at (a , T - 1) .

Mark (a , t) with a numeral 1 and return.

(Note that if xt is the first reference in R , after marking
for this reference, the matrix will contain a 1 at (a , t) .)

IBM J . RES. DEVELOP. L. A. BELADY AND F. P. PALERMO

Application of these rules to our sample page address
string is shown in Fig. 5. Comparison with Fig. 4 shows
the added page requirements for the LRU replacement
scheme over the minimum determined by the multival-
ued MIN algorithm; the changed requirements are
shown in boxes in Fig. 5.

The numerals in the matrix are the LRU stack posi-
tions. As rows are filled in accordance with the rules,
each successive column indicates that another page has
been referenced. Thus, as each column is reached, the
number of pages needed to contain the currently refer-
enced page (Y is usually increased by 1 . However, two
1’s in row p since time tu indicate two references to the
same page; hence, an additional page is not needed to
retain a in the memory.

P stack
Unfortunately the manual ease of constructing the multi-
valued MIN matrix does not compensate for its bulki-
ness; one of its dimensions is bounded only by the
length of R . Fast storage of this size is rarely available
for automatic computation. We must therefore develop a
more compact representation, one that keeps just that
information necessary to generate the MMC sequence in
response to input string R , suppressing historical infor-
mation rarely used in practice (as experience thus far
with OPT has indicated).

In the numeral string algorithm, upon presentation of
the next reference, a new string is constructed, subject
to constraints imposed by strings drawn earlier. In order
to be compact, we must summarize these constraints
while ensuring that needed information is retained. In
particular, the rightmost numeral in the string, identifying
the output associated with the page reference, must be
kept (recall that 1’s are not part of the string).

A simple way of doing this is to construct indepen-
dently for each gap the minimum a/b string that would
be drawn if these pages were referenced individually,
using the rules governing the construction of Fig. 4. In
the example presented there, a next reference to either B
or D would produce 4 as output, whereas a reference to E
or A would result in a 2 (a reference to C would be
repetitious). The corresponding minimum strings, listed
in the order of their lengths, or equivalently in LRU
order of past references, are shown in Fig. 6.

Of course, only one of the strings could become an
actual’minimum string, the one for the page that in fact
is referenced next. After that a new set of potential out-
puts can be defined.

Our objective is to describe the potential outputs in
such a fashion that, if and when the next reference is
known, not only is its associated output defined, but the
description of the‘new potential outputs is also available.

Figure 6 Minimum strings.

A 2
E 2 2
D 3 4 4 4
B 3 3 4 4 4

Figure 7 IMS and CMS.

IMS CMS

In order to arrive at such a scheme, we note that the
minimum string for D in our example is a proper right-
adjusted substring of that for B; a similar relation exists
between A and E. Next we observe that for strings in
the longest gap there is only one starting numeral to
choose from. In the next longest gap there are two free
numerals, then three, and so on. In our example, 3 is the
only choice of a starting numeral for a string for B, but 3
and 5 are both possible for D without duplicating’numer-
als in a column. Similarly, 2 , 4, and 5 are possible for E
and finally all but 1 for A. Of course, independently-con-
structed minimum strings drawn for individual gaps al-
ways start with the smallest numeral possible, as shown
in Fig. 6.

We now define two kinds of minimum strings: the
immediate minimum string (IMS) and the conditional
minimum string (CMS). The immediate minimum string
of element (Y is the numeral string that is generated by
the rules used for Fig. 4 if the next reference is to ele-
ment a. The strings for A, E, D, and B in Fig. 6 are then
by definition IMSs.

A conditional minimum string on the other hand is a
minimum string whose starting numeral is not the smal-
lest possible one. A CMS is a string that is either a proper
right-adjusted substring of an IMS or CMS that would
have been used to fill a longer gap, or it is the minimum
string that would be constructed assuming that all longer
gaps have been filled. (We continue to refer to a CMS as
“minimum” because it is either a substring of a longer
string that is itself a minimum string pr it is a string that
would be minimum if all longer strings had been filled.)

The IMSs and CMSs for our example are shown in
Fig. 7. The IMSs are obviously identical to those pre-
sellted in Fig. 6. However, 5555 as a CMS for D, for ex-
ample, is constructed under the assumption that the only
possible string for B has already been drawn. Other
CMSs were similarly generated. Note that each string 7

8

Figure 8 Primitive strings.

A
E
D 5 5 5 5 I;/
B 3 3 4 4 M

Figure 9 References to elements having primitive strings.

C E C B
A3 c 2 A3 c 4

E2 D5 e 6; E2 D5 e ;;
B4 8 4 B4 D5

(a) (b)

Figure 10 Effect of substrings.

"--,A
B
C
D
E

5 5 5 1 4
2 1 3 3 3
1 2 2 2 2
3 3 1 5 5
4 4 4 4 1 I"1 I 5 5 5 1 2 1

2 1 3 3 4 4
1 2 2 2 3 3
3 3 1 5 5 5
4 4 4 4 1 2 "

(IMS or CMS) that is not a substring in the above list is
underlined; we call such a string a primitive. Every string
that is not underlined is then a substring of some primitive.

Because of this string-substring inclusion property of
the IMS and CMS and the construction rules for Fig. 4,
there are as many primitives as there are gaps. If n is the
number of pages referenced thus far, then there are n - 1
primitives. For our example four primitives (underlined
in the figure) are constructed by application of the fol-
lowing rules:

Draw the minimum string for the longest gap.

Draw the minimum string for the next longest gap,
assuming that all longer gaps have been filled with
IMSs and CMSs.

Repeat the previous step until all gaps have been
filled.

By definition, the terminating numerals of the (n - 1)
primitives contain all immediate and conditional mini-
mum output values. The primitives for the example are
shown in Fig. 8 with the terminal numerals enclosed in a
rectangle. We define this LRU-ordered last column
formed from the primitives as the P stuck of output
values, and we interpret it as follows.

The least recently used element B has only one start-
ing numeral for a minimum string, and its terminal nu-
meral is 4, which would be the next MMC output if B
were referenced next.

There are two possible starting numerals for strings
for D , and the corresponding IMS and CMS terminate
in 5 and 4, which are listed at and below D in the P
stack. The smaller of the two, 4, would be the MMC
value associated with D if it were referenced next. Simi-
larly, E has three possible IMS and CMS terminating in
2 , 5, and 4. Therefore the smallest, 2, would be the out-
put if E were referenced next. The MMC for A would
also be 2, as the smallest of the terminal numerals 3 , 2 ,
4, and 5.

In general, given the P stack of output values in the
LRU order of their associated elements, the MMC val-
ue for the next referenced element can be computed, for
example, as follows:

If the next reference is to the Yth most recently refer-
enced element, select as MMC the smallest from the
set S of numerals at or below the (6 - 1)st position in
the P stack. (Note that the most recently referenced
element is not represented in the P stack.).

In our example, if E, the third most recently referenced
element, were referenced next, then the output would be
2 , which is the smallest number at or below the second
stack position. Similarly, the output for D would be 4,
etc.

We now must show how to manipulate the P stack in
order to reflect in it the new IMS-CMS configuration
after the next reference is included. We can expect, for
example, that changes may result because some CMSs
become IMSs.

There are two cases to consider. In the first case the
next reference is to an element whose IMS is either
primitive or is a proper substring of an IMS associated
with an element referenced earlier. By definition, the
longest gap (that ofthe least recently referenced element)
has an IMS that is primitive. In our example, the IMSs
for B and E are primitives, while the IMSs for D and A
are substrings.

Suppose that a is referenced next and that its IMS is
primitive. The IMSs and CMSs for each element refer-
enced earlier than a (below a in the LRU order) are
unchanged. The reason is that, by definition of the primi-
tive string, none of the longer IMSs or CMSs includes the
string actually generated for a. The IMSs or CMSs of
elements referenced more recently than a, however, are
affected; either an IMS or a CMS is lost for each ele-
ment in this range, because of the actual string generated
in row a. But this is equivalent to moving the new out-
put value, i.e., the terminal numeral of the actual string,
from its present position to the top of the P stack.

If in our example E were referenced next, where the
IMS for E is primitive, the corresponding stack transi-
tion would be as shown in Fig. 9 (a) (where for the sake

L. A. BELADY AND F. P. PALERMO IBM J. RES. DEVELOP.

of clarity we also list the names of the elements A
through E in LRU order). Similarly, a reference to B
(also with a primitive IMS) would cause the transition
shown in Fig. 9(b).

Now we consider the second case. Suppose that a is
referenced next and its IMS is a substring. Clearly, the
IMSs and CMSs of some elements less recently refer-
enced than a are affected, since there exists either an IMS
or a CMS properly including the actual string for a. The
unused portion of this including string will have to be
extended to the right by new numerals. Under the mini-
mum constraint these numerals for constructing strings
are the smallest (former) CMS of a. But this CMS of a ,
in turn, may be a substring of some other IMS or CMS,
requiring that its including string be extended by the
next smallest CMS of a , etc. These effects are illustrated
in Fig. 10, where the jagged lines separate the actual
strings from IMSs and CMSs.

The last column in the right matrix reflects the new
output (terminal numeral) configuration of all IMSs and
CMSs. Putting the numerals from both matrices in LRU
order results in the corresponding stack transition shown
in Fig. 11.

The new output is 2- the terminal numeral of the ac-
tual string for A. Upon transition, this 2 is put on the top
of the stack, indicating that, at least for now, no IMS or
CMS terminates in 2 except for one IMS for the top-
most element E (now the second most recently refer-
enced element). Since C lost its IMS of 2222, its new
IMS terminates in 3, which was A's smallest CMS. But
this latter string is not primitive; therefore B loses its
CMS of 333, which gets replaced by the 3344 string end-
ing in 4, which was the next smallest CMS of A. Only the
55 string remains untouched.

We described earlier how to find the output MMC
value in set S of the P stack when the next reference is
presented. We have now seen that the updating for the
new conditions requires the removal of the output value
from the stack and its subsequent placement on the top.
The vacated position then is filled with the next smallest
numeral, if any, in set S of the original stack above the
vacant position. This, in turn, creates a new vacant posi-
tion to be filled with the next smallest in that range, if
any, and so on. These rules can now be summarized in
terms of the operators 2 and 2.R. These operators trans-
form the sequence of page references, one at a time, into
a sequence of minimum memory capacities (or OPT
stack distances), as shown in Fig. 12.

The operator 2 transforms the sequence R of page
references into the sequence L of LRU positions. I t is
$dined as follows:

If the page referenced next is not in the LRU stack,
put the page on the top of the stack, compute the

Figure 11 Stack transition for Figure 10.

- 4

5 - 4

2
5

3
2 3

Figure 12 2 and !Dl operators.

number of pages n in the stack, generate (n - 1) as
output, and return.

Else find the page at the kth position in the LRU
stack, move the page to the top of the stack, generate
(k - 1) as output and return.

The operator transforms the sequence L of LRU
positions into a sequence M of minimum memory ca-
pacities. I t keeps past output values in the P stack (a
modified LRU stack), and it is defined as follows:

If the next input is zero, return.

Else

* If the 6th position in the modified stack is empty,
put the numeral (Y + 1) = p on the top, generate p
as output, and return.

* Else find the smallest value p at or below the Yth
position on the modified stack.

0 If p is at the 6th position, move p to the top,
generate p as output, and return.

0 Else find the smallest value p' above p but at or
below the Yth position; exchange p and p' in the
modified stack, and reenter the previous step.

Application of these operators to part of our example
reference string is shown in Table 1. Because the first ref-
erence is to page A, which is not in the stack, page A is
put at the top of the stack. Since the number of pages in
the stack is n = 1, generate n - 1 = 0; thus / is zero and
there is no output produced by operator 2.R. The pro-
cedure is generally similar until we reach the second ref-
erence to D. Since D is now in the LRU stack at the
second position, k = 2, and k - 1 = 1 is generated as
output. With the P stack as shown for the fifth reference
(to page E) , the smallest value at or below the first posi- 9

Nr. I n 2 k LRU stack n 8 A P stack Out

1 A Not in LRU stack, so - A 1 0 = 0, return - -
put on top

2 B - B 2 1 1st position empty in P stack 2
A

2

3 C - C 3 2 2nd position empty in P stack
B
A

3
2 3

4 D - D 4 3 3rd position empty in P stack
C
B
A

4
3
2 4

5 E - E
D
C
B
A

6 D D i s a t k = 2 i n 2 D
LRU stack E

B
A

5 4 4th position empty in P stack 5
4
3
2 5

5 1 2 is smallest value at or below 1st
position. 3 is the smallest above
it, so exchange them

5
4

3
L

Now 2 is again smallest, but 4 is
the minimum above 2, so
exchange them

>
2

2
5

4 4
3 etc. 3 2

tion is p = 2 at the fourth position: The smallest value
above the fourth position, p’, is 3; exchanging p and p’
results in the stack shown in Table 1. Again, p = 2 is the
smallest value below the first, and p‘ = 4 is the smallest
value above p , so p and p’ are again exchanged. The
procedure is continued until the P stack for the second
reference t6 D appears as shown in the table.

I t is easy to show ihat the last two steps are identical
to a single pass of a “bubble” sort [9] (strictly pair-
wis& exchange sort). The operator !&? then can be loose-
ly described as follows:

“Find the minimum value of p in the lower part of the
P stack, i.e., elements at and below the ?th position,
by performing a single pass of a bubble sort; then
move p to the top.”

3. Implementation considerations
As mentioned previously, a number of considerations

10 indicate the possibility of a hardware implementation of

the multivalued MIN algorithm that can be used in a
production environment. Indeed, patent applications for
implementation schemes have been filed.

First, some general machine requirements are sug-
gested. For nontrivial experimentation, a paging machine
with a viable page replacement algorithm is needed to
accommodate programs larger than available real mem-
ory space.

The most important characteristic of the new algo-
rithm is of course that it generates the MMC string in a
single pass. Additionally, many of the steps of the 9.R and
2 operators can be accomplished in parallel, using, for
example, associative memory techniques. This parallel-
ism, combined with decreasing computer, component
costs, makes feasible operation at essentially full com-
puter speed. Other techniques that can contribute to-
ward making a hardware implementation practicable by
increasing the efficiency with which storage and process-
ing resources are used are considered in this section.

L. A. BELADY A N D F. P. PALERMO IBM J . RES. DEVELOP.

On-line processing of the page reference string as it is
produced eliminates the need for its storage. All of the
information that need be stored is a table having a num-
ber of elements equal to the size of the program being
measured.

It is further proposed that the table of the device used
for implementing the algorithm consist of two parts, the
first or upper part in fast logic, having as many entries as
there are page frames in main memory. If, as usual, the
program is larger than main memory, the remaining sec-
ond (overflow) part of the table could be stored in some
slower device, such as a protected area of main memory
itself. At the time of a page fault, the contents of the two
parts of the table could be updated to reflect the new
memory contents.

It can be shown that, if a particular algorithm, LRU,
is used to do the actual page management of the ma-
chine, a partitioning of the table into real and external
parts is possible. Only pages in main memory must have
corresponding entries in the device stack, updated at the
rate of processing.

Also, given a fast LRU device, needed for on-line re-
placement anyway, only the operator m described ear-
lier need be built, and it could be an add-on device.
Implementation of a device, operating at CPU speed
and describing the entire virtual page space, would not
be technologically feasible. However, with the relaxed
requirement of having to represent only pages occupying
main memory page frames, more than an order of magni-
tude smaller in number, the device could be built.

Hardware implementation of the LRU replacement
algorithm has been proposed [lo]. We simply assume
that the device is a functional part of the (host) paging
machine, and that its output can be tapped to derive the
needed information to drive the add-on YX box, which, in
turn, generates the MMC string. Operation of the two
devices would then be as follows:

The operator 2 dynamically orders all page frames to
reflect the order of past references.

* If the page referenced next is in the LRU stack, its
stack position k is presented to the modified YX oper-
ator.

::: Else a page fault is generated. The contents, if any,
of the page frame with the highest LRU value (at
the bottom of the stack) are pushed, the required
I/O operation is initiated, the page referenced next
is placed on the top of the stack, and a special pro-
gram, held in memory to update all of the P stack

-information, is invoked.

The modified 272-operator processes the upper part of
the partitioned P stack. It is almost identical to the

algorithm presented earlier for the contiguous single
stack except for the fourth step, finding the smallest p
value. Since only a partial description of the stack is
held in the fast upper part, a complement search is
executed.

In the fourth step, not p but q, the smallest missing
integer above the A h position in the stack, is moved to
the top and presented as output.

As a result of these steps, one of two conditions can
exist: either p is already in the upper stack or it is not. If
it is, then p = q; hence the complete and the partitioned
schemes coincide. The necessary update is limited to the
upper portion, and the algorithm is correctly executed.

If p is not in the upper stack, the generated missing q
value is put on the top of the upper stack anyway. This
results in a push-down operation (observing the rules of
the algorithm) and in the removal of a value from the
stack. Hence a new value is added to the top, while an
old value drops out. Correctly, the new value should have
been obtained from the lower part of the stack, while the
removed value should have been pushed into the lower
part. This neglect results in one duplicate value and one
entirely missing value.

Such dual errors occasionally occur. Sooner or later,
however, a page exception occurs and, as said before, a
program is invoked that brings the two parts into align-
ment again by correcting, one by one, the pairs of errors.
The program logic is as follows:

Form the smallest integer p that is not represented in
either part.

Find in the lower part the smallest integer q that is
smaller than p .

If there is no element smaller than p and above q in
the lower part, replace q with p , i.e., discard q, and
return.

Else find in the lower part the smallest integer q' that
is smaller than p and is above q; exchange q' and q
and reenter the previous step.

The procesi terminates when there are no more mis-
sing integers. I t is easy to show that at this point all dup-
licates are also eliminated by discarding 4's; the two parts
become consistent, having unique p values. I t is impor-
tant though that this algorithm proceed from smaller to
larger missing integers.

After the alignment of the parts, the p value of the
page causing the page exception must be found. This is
done by essentially executing the m operator, the only
difference being that the output found has to be put on 11

12

the top of the upper part directly. The resulting push-
down then moves the element from the bottom of the
upper part to the top of the lower part, inducing the exe-
cution of the last three steps of Y.R there. The fast upper
part operates at the rate of processing; on the other hand,
there is always sufficient time to update the lower part,
since a page exception is associated with a slow I/O oper-
ation.

A device can be designed such that shifting bits, rather
than counters, represent stack values in order to increase
speed - simple logical operations can be used, instead of
slower arithmetic operations.

However, even with very fast logic, references may be
generated too fast for the device to keep abreast. At least
two alternatives present themselves: slowing down the
machine or using one of the slower members of the com-
patible IBM System/370 family of computers for mea-
surement and testing purposes. In addition, repetitions
can be eliminated from the reference string by a device,
such as a look-aside associative memory, that buffers one,
or even two (for data and program), page names and
propagates a next element to the device only if there is a
change of buffer contents. By doing this the machine and
the device become more asynchronous, and this, in turn,
may call for further buffering of the now repetition-free
reference string. Interlocks can also be employed to in-
hibit program execution in the rare case of buffer over-
flow and a resulting lost reference. In any event, it
seems certain that the extraction of the minimum memo-
ry capacity string can be accomplished while the ma-
chine executes a program at essentially full speed, as
opposed to the I :20 or more slow-down associated with
interpretive program execution when the reference
string first has to be recorded.

In summary, with an already implemented LRU box,
our device becomes an add-on instrument for extract-
ing the MMC string.

4. Program behavior
The information extracted by the multivalued MIN algo-
rithm and the way that this information is structured in
the P stack reveal some interesting program properties
and form a basis for the development and evaluation of
better algorithms for assigning page frames to programs
in a multiprogramming environment. Some of these
ideas are centered on the notion of output classes, as
defined below.

Recall the reference string ABCDE and its P stack
after the reference to E. If the next, sixth, reference is to
any page but E, then 2 is generated as output by the
multivalued MIN algorithm. Taking the same example
after the seventh reference, ABCDEDB, the P stack
read from the top is 3254, meaning that only three dis-
tinct outputs are possible: 1 (for repetition), 2 and 4.

In order to introduce the idea of equivalence classes,
we define, at any point of the reference string, the
MMC class Cj as the collection of pages whose next
(potential) output is j . As usual ICj/ means the cardi-
nality of set Cj.

From the previous sections it is obvious that the LRU
replacement algorithm is also a page classification algo-
rithm. It dynamically classifies the program pages into as
many classes as there are distinct pages in the program
(i.e., distinct elements in the reference string). As a re-
sult, at any time there is one and only one element in
each class.

In contrast, our algorithm classifies the pages, on the
average, into a lesser number of classes by grouping
candidates of optimum choice for a particular memory
size. As the referencing pattern evolves, the average size
of classes-or the level of uncertainty with respect to
the optimum choice - fluctuates according to the particu-
lar pattern of (re-)referencing elements. The removal by
a reference of a class member eliminates the chance of
its peers being retained in the same size memory; their
chances are lessened. In fact, one can envision an imple-
mentation of the Y.R operator applied to the LRU stack
via pointers, separating the pages into MMC classes.

By inspecting the class distribution it can also be
shown that the efficiency (as described earlier) of LRU
with respect to MIN has a nonzero lower bound for any
input string; it is 1/M, where M is the memory size. This
is not true for any other algorithm: the RAND replace-
ment algorithm [3] has, for example, zero as lower
bound.

There exist strings that cause MIN to mimic LRU.
Consider the following program, referencing a sequence
of strictly nested localities:

ABCDEDCBCDC

It can easily be verified that at the end of the string
the 5-entry P stack contains, (1),2,3,4,5, which is identi-
cal to the complete order enforced by LRU.

One may wish to consider this strict nestedness to be
a strong locality. On the other hand, a sequential refer-
encing of distinct pages (without re-referencing) pro-
duces a P stack grouping all but one element into class 2.
This sequential referencing phase, as in the example
string used in this paper, corresponds to the acquisition
of pages for a new locality, before re-referencing. One
could venture the statement that an LRU-like behavior
would identify a well established locality, while a large
class 2 implies drifting from one locality to another (col-
lecting “fresh” pages).

It can also be shown that in the case of cyclically re-ref-
erencing the same group of pages, as in a program loop,
the average size of class 2 is about half way between the
two extrema mentioned above.

L. A. BELADY AND F. P. PALERMO IBM J . RES. DEVELOP.

In a multiprogramming scheme, a device could, for
example, constantly update a register to contain
n

where II is the total number of pages of a program. I f this
sum is low (close to (n - 1)2) , the program must have
been in transition. If it is close to the maximum (LRU)
value of (n - 1) (n + 2) / 2 , then a locality must have
been established. Having one register for each program,
this could be a basis for a dynamic multiprogramming
scheme, helping to detect the relative memory space
requirements of the program mix. There is, in general, a
growing need for more on-line detection of program
behavior to improve system operation.

Another interesting phenomenon is the regularity of
class sizes. Class 1 has obviously only one member and
is never empty. Its only member is the most recent ele-
ment in the reference string. The next reference de-
stroys this membership and forces the element from
class 1 into class 2. This implies that class 2 is never
empty either (except for a single-page program).

Consider now an element a of class Cj. If the next
reference is made to a member of another class than Cj,
a will stay in Cj. If, however, another element, not a , is
referenced in Cj, then a’s membership changes to class
C,, k > j ; in fact the referenced element becomes itself
the sole element of class I and, again, class Cj becomes
empty.

For the nonrepetitious input string, it is now obvious
that elements (pages) of the program go through class
memberships in a cyclic fashion. Starting after class 1,
the membership changes through an increasing sequence
of integer values and eventually returns to 1 again.

Since every element goes through class-2 membership
for each of its occurrences in the input string, the size of
class 2 increases by one every time a reference is made
to an element whose class is other than 2 . If, however, a
class-2 element is referenced, this class collapses and
becomes the holder of one element only, namely the one
dropping out of class 1. In contrast, any class Cj (j > 2)
increases in clusters by the collapse of, for example, Cj-l.
On the other hand, class Cj loses all its members by a
reference to any element in it and creates (or increases
the size of), for example, class Cj+l.

A further observation is that the output string is con-
strained and not all sequences of integers are possible
output strings. This becomes obvious when we notice
that, at any point in the output string, in general, integers
are not in a strictly increasing order in the stack. From
eartier reasoning, 2 is always a candidate (and so is 1 for
the repetitious case). But some classes may be empty
while other classes may have a multiplicity of elements.

There has not been enough time since the discovery of

the approach presented in this paper to study this con-
strainedness of the output. Some aspects are, however,
obvious. Suppose that pages are identified by numerals as
symbols. Even then the input and output strings are not
interchangeable; since any numeral should be a possible
next input but not every numeral is a possible next out-
put, many input strings map into a single output string.
If the inverse to the presented algorithm exists, then it
will produce from the output string an input string that is
a representative of a class of reference strings having the
same space/time behavior.

An additional obvious constraint is that the highest
integer (class label) cannot exceed the number of dis-
tinct elements already represented in the input. Also, if
class Cj is empty but Cj+l is not, then there exists a class
i, i < j , such that it has more than one element. Further-
more, no runs (repetitions) are possible in the output
strings since the occurrence of, say, p makes this class
empty, and before p can occur in the output it has to be
replenished. Class 2 is exempt and can have runs in the
output since it is fed by each reference from class 1, as
seen earlier.

It seems that the contents of the P stack, its use to con-
struct the output string, and the interpretation of the ta-
ble updating as state transitions offer an entirely dif-
ferent view of the memory referencing behavior of pro-
grams.

5. Summary
This paper described an algorithm that generates from a
page reference string the sequence of minimum memory
capacities required to execute a program. The primary
feature of the algorithm is that the output string is pro-
duced for the range of memory sizes in a single pass.

The algorithm was first described in terms of numeral
matrices, which permitted its correspondence to the
MIN algorithm to be demonstrated and also provided a
visual means of comparing minimum paging with that
obtainable using LRU replacement. A stack processing
scheme to reduce overhead was described for generating
the MMC string, the description demonstrating the
equivalence of the string to the sequence of OPT stack
positions. (A formal proof of this equivalence is provid-
ed in the Appendix.)

A scheme was outlined for implementing the new al-
gorithm in such a way as to reduce the burden on com-
puting system processing and storage resources. Thus
the output formerly obtainable from the two-pass OPT
algorithm can now be produced essentially at normal
processing speed. Also, some of the possibilities of using
the data generated by the new algorithm to gain new in-
sight into program addressing characteristics were dis-
cussed. Both of these topics suggest numerous avenues
for further exploration. 13

students at the University of California at Berkeley. assert, the OPT stack distance.
Many thanks are also due to G. S . Shedler, who first The LRU stack is updated by moving the page refer-
recognized the program behavior implications, to D. R. enced to the top of the stack and then pushing down one
Slutz for his invaluable counter-example, and to R. A. position each page above the original position of the ref-
Nelson for illuminating alternative views. erenced page.

The P stack is updated as follows. The value at the
References

1 . R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM
Systems Journul 9, 2, 78 (1970).

2. P. J . Denning, “Virtual Memory,” Computing Surveys 2, 3,
153 (September 1970).

3 . L. A. Belady, “A Study of Replacement Algorithms for
Virtual Storage Computers,” IBM Systems Journal 5 , 2,
178 (.lune 1966).

4. F. R. A. Hopgood, Compiling Techniques, MacDonald,
London, 1970,96-99.

5 . D. Cries, Compiler Construction for Digitul Computers,
John Wiley and Sons, New York, 1972.

6. In 1970, J. Gecsei of IBM Systems Development Division,
San Jose, developed a one-pass version of OPT yielding the
approximate space-time behavior of programs.

7. L. P. Honvitz, R. M. Karp, R. E. Miller, and S. Winograd,
“Index Register Allocation,” J . A C M 13, 1 (January
1966).

8. U. S. Patent 3,577,185, “On-line System for Measuring the
Efficiency of Replacement Algorithms,” issued to L. A.
Belady.

9. Sorting Techniques, IBM Data Processing Techniques,
Form NR. C20-1639-0, 12-13, IBM Corporation, White
Plains, N.Y.

10. W. F. Beausoleil, D. T. Brown, and B. E. Phelps, “Magnet-
ic Bubble Memory Organization,” IBM J . Res. Develop.
16,6,587 (November 1972).

Appendix: Proof of equivalence to OPT
The correctness of the original two-pass OPT algorithm
was proved in [1 1 . Our multivalued MIN algorithm can
be considered to be a one-pass OPT algorithm, as we
mentioned previously. In this Appendix, we prove that
the numerals constituting the MMC string are in fact
OPT stack positions. In order to do this, we first review
briefly both algorithms from a slightly different point of
view, introducing at the same time some additional nota-
tion.

One-pass OPT algorithm
Recall that, for the multivalued M I N algorithm, two
stacks are maintained. The LRU stack is a list of the
pages that have been referenced with the most recently
referenced page on top of the stack. In general, page a! is
above page p if and only if a! has been referenced more
recently than p.

The P stack is a list of integers, each integer repre-
senting the potential minimum memory size required to
include the page with which the integer is associated.

14 When a page is referenced, its position in the LRU stack

position of the referenced page is removed from the
stack and saved. All items between the vacated position
and the second position from the top of the stack are
moved down one position. The saved value is compared
with the value in the next lower position in the stack.
The larger of these values is placed in this position, and
the smaller value is saved. The process is continued un-
til the bottom of the P stack is reached. The final saved
value (the OPT stack position or MMC) is placed in the
second position of the P stack.

Note that the P stack as described here differs from
our earlier P stack in that a 1 is always in the top position.
Thus the number of entires in the LRU stack and P stack
are always the same.

An alternative description of this update procedure is
as follows: Let k be the LRU stack position of the refer-
enced page. All items on the P stack between 2 and k - 1
inclusively are marked. The next item marked is the one
that has the minimum value from among the items that
are at or below position k and above the last marked
item, if any. This process is continued until the item at
position k is marked. The marked item in the lowest posi-
tion is the output value. It is put in the second position of
the P stack. All other marked items are shifted to the
next lower marked position. We will show the output to
be the OPT stack position, as defined below.

Two-pass OPT algorithm
The two-pass OPT algorithm may be summarized as fol-
lows. On a first pass through a page address trace, the
algorithm produces the forward distance string by creat-
ing for each page referenced the number of distinct
pages referenced before that page is re-referenced. Thus,
let R = x,, x*, . . ., xN be the reference string, and let F =
F, , F,, . . ., F , be the forward distance string. The two-
pass OPT algorithm is a stack algorithm that uses a prior-
ity list created from the forward distance string to deter-
mine the new OPT stack positions after a page has been
referenced. Thus at time t let Q, be the OPT stack and
L, be the priority list. Zfx,,, is the next page referenced,
its position k in Q, is the OPT stack distance and is placed
in the output string. The referenced page is moved to the
top of the Q-stack and displaces the page already there.
The items above position k are rearranged as follows:
The priority for the displaced page and the page in the
next position are compared. The page with higher priority

L. A. BELADY AND F. P. PALERMO IBM J . RES. DEVELOP.

the next page position is k ; then the last displaced page 1s 5 4 4 2 5 4 2 3 2 forward distance string
placed in position k .

Priority list L is updated as follows. All priorities that A
are less than or equal to the forward distance F,,, are c B 4 3 3 2 1 2 1 2

4 4 3 2 1 3 3 priority lists
reduced by one, and the priority for the referenced page D 2 1 4 4 4 4

XI+1 is F,+l.
E 5 5 5 5 5

9 Example of two-pass O P T
Let the given sequence of page references be ABCDED
BCB. The requirement that an arbitrary priority be given
to pages that are not referenced again can be met by ad-
joining to the end of this string the set of referenced pages
in some order (e.g., alphabetical order as in [1 1). Thus
the given page reference string is extended to the string
ABCDEDBCB (ABCDE). The forward distance string
for the original string is found to be 5 4 4 2 5 4 2 3 2. The
priority lists are given in Fig. 13.

For example, we obtain the second from the last col-
umn of the priority list in Fig. 13 (2 1 3 4 5) from the
previous column (3 2 1 4 5) by observing that the refer-
enced page C has a forward distance of 3. Then the en-
tries 3 and 2 are reduced by 1 , and the entry 1 is changed
to 3 to obtain the required updated priority list.

The OPT stack positions, displayed in Fig. 14, are
obtained by using this priority list. For example, the
stack positions in the third from last column (5 1 4 2 3)
are changed when C is referenced as follows:

The referenced page C is given stack position 1. Since
C occupied stack position 4 and is changed to stack po-
sition l , the page formerly in position l must change and
the pages in positions 2 and 3 may also change. Thus B
in position 1 and D in position 2 have their priorities
compared. Since B has a priority of 2 and D has a priori-
ty of 4, B takes stack position 2 while the priority of D is
compared to the priority 5 for E, the page in position 3.
Then D takes stack position 3 and E drops down to po-
sition 4, the original position of the referenced page.

Partially Jilled numeral matrix
We have shown informally in section 2 that the MMC-
values can be generated in one pass and claimed that the
MMC values are, in fact, the OPT stack distances. In our
numeral matrix algorithm, however, we maintain a se-
quence of OPT stacks only partially filled in, as opposed
to the two-pass OPT algorithm, which maintains stacks
for all times up to the present time, because the first pass

In Table 2, the sequence of partially filled in numeral
matrices H , are given for the above reference string. To

L supplies all necessary information about the future.

Figure 14 OPT stack updating

A B C D E D B
A 1 2 3 4 5 5 5
B 1 2 2 3 3 1
C 1 3 4 4 4
D 1 2 1 2
E 1 2 3

m m a m x 2 3

C B
5 5
2 1
1 2 OPT stacks
3 3
4 4
4 2 OPT stack

positions (outputs)

conform with the notation for the two-pass OPT algo-
rithm, the output associated with a first reference to a
page is the symbol 00. We also list the available stack
position sets A , and the unassigned page sets B,, which
are defined formally in the following text. For A , and B ,
only the nonempty columns are shown.

We presented earlier the matrix updating procedure,
which is now given an interpretation using OPT-stack
terminology. For example, when C is referenced at time
X, the row labeled C is filled for times 4, 5 , 6, 7, and X.
For these times, the available stack positions (obtained
from A , for t = 7) are given by

t 4 5 6 7
3

2 2
4 5 5 5
3 4 4 4

Thus the sequence of entries 3 4 4 4 1 is made. For t =

4, the minimum, 3, of the available set { 3, 4) is assigned
to C. For t = 5 , the minimum of the set (4, 5 } is assigned
to C, both 4 and 5 being greater than 3. For t = 6, the
value 4 is assigned to C because it is the minimum of the
set

{ k 1 k 1 4 and k E (2, 4, 5 > >.

Similarly, 4 is assigned to C for t = 7 . For t = X, the stack
position 1 is assigned to C.

This informal procedure now enables us to establish
that the one-pass algorithm yields the same output as the
two-pass OPT algorithm of [1 1. 1:

J A N U A R Y 1974 MULTIVALUED MIN ALGORITHM

Time Page
t referenced

x,
Numeral

matrix
Ht

Unassigned
position

list
A ,

Output
M M C ,

1

2

A

B

A I cc

cc A I
B - I

3 C A I
B - 1
C " l

A 1
B - 1
c - - 1
D - - - l

3
22

B
A A

cc

4 D 4
33

222

C
BB

AAA

5 E A 1
B - 1
c - - 1
D - " - 1
E - " - l

A 1
B - 1
c - - 1
D - - - 1 2 1
E""1

A 1
B - 1 2 2 3 3 1
c - - 1
D - - - l 2 1
E - " - l

A 1
B - 1 2 2 3 3 1
c - - 1 3 4 4 4 1
D - - - l 2 1
E - " - l

A I
B - I 2 2 3 3 1 2 1
c - - 1 3 4 4 4 1
D - - - 1 2 1
E""l

5
44

333
2222

D
cc

BBB
AAAA

2
455

3344
22233

E
ccc

BBBB
AAAAA

2

3
22

4555
233444

D
EE

cccc
AAAAAA

3

4
33

222
2345555

B
DD

E E E
AAAAAAA

4

9 B 2
344

2233
23455555

2
DDD
EEEE

AAAAAAAA

L

8 Formal structure
First we reinterpret, and extend, earlier notations. Our
partially filled numeral matrix will now appear as a par-
tial function H, . Lists A , and B,, introduced in Table 2,
will be formally defined. The symbol k is any stack posi-
tion. A numeral string S(a) consists of a sequence {yi}
of integers, t , < i 5 t , where a is a page previously refer-
enced at time ta. The set of consecutive integers from a
to b is denoted by [a , 61.

Let 2, be the set of pages referenced up to time t and
16 let '2, be the number of pages in E,, i.e., n, = IE,I.

Recall that a partial function from a domain D to N is
a function defined on a subset of D to N . Thus in our
case the partial function H , is defined on a subset of
[1 , t] X x, to the interval [1 , n ,] , i.e., H,: [1 , t] X Z, +.

These partial functions will be defined recursively.
First define HI to be the function that assigns to (1 , xl)
the value 1 , i.e.,

HI = ((1 , x l) , l } or

H l (1, X I) = 1.

[I , 4 .

L. A. BELADY AND F. P. PALERMO IBM J . RES. DEVELOP.

Now suppose H , has been defined on a subset of [1 , t] X

Z, to [1 , n,]. Thus H I is the partially filled numeral
matrix. Let A , (i) be the complement of the set of en-
tries of the ith column of H,. Similarly B,(i) is the set of
pages in 2, for which the ith column does not contain an
entry. Formally, we have

A , (i) = [1 , n,] - {kl(3&X,) such that H,(i , a) = k}

B,(i) = X, - (a1 (3E[I , n ,]) such that H,(i, a) = k } .

For any page a , we define the immediate minimum
string (IMS) {yil for t, < i 5 t + l}, where ta = the last
time a was referenced. (If this is the first time a is refer-
enced, ta = 0.) First define y,, = 1 and yI+, = 1 . Then
define y i for t , < i 5 t by the formula

y i= min{klk 1 yi-, and E A , (;) } .

For a given a , the partial function S,(a) is defined for all
(i, a) such that t, < i 5 t + 1 by the formula

S t (a) (i , a 1 = yi.

Now if the reference = a , the partial function
HI+, is defined to be the extension of H I by adjoining
the IMS {yilt, < i 5 t + I} . Thus

H,,, = H , U S , (a) .

Using this definition of the sequence H,, we can now
prove the following theorem.

Theorem 1: I f H , (i , a) = k , then k is the OPT stack posi-
tion for page a at the time i.

This theorem results from the following reasoning.

Lemma 2: If H I gives the OPT stack table at time t, then
S (a) determines the OPT stack entries for a = x,+~ for
all times since a was last referenced.

Proofi If a was not previously referenced, then its OPT
stack position for all i < t + 1 is 00, and for i = t + 1, it5
position is 1.

If a was last referenced at time tu, then its stack posi-
tion at that time was 1. The position of a at each time
t, < i 5 t is determined in the OPT algorithm as follows:
If a was at stack position y i at time i , it will remain at
position y i if y i has not been assigned to any other page
at time i + 1 , i.e., y i is in the set A, (i + 1) . (Note that i
as used here corresponds to r as used in section 2.)
Otherwise a will be displaced from position y i if y i has
been assigned to some other page, i.e., yi @ A,(i + 1). In
this case its stack position will be the first unassigned
stack position that is greater than yi.

The OPT algorithm may be interpreted as follows: A
page a whose stack position is y i at time i will remain at
that position at time i + 1 because

JANUARY 1974

1 . The stack position of the page referenced at time
i + 1 is less than y i (i.e., a is not challenged), or

2. If a is challenged, it has a higher priority than all chal-
lengers for its position. But this can happen only if
y i has not been assigned to a page with higher priority.

Suppose a is at stack position y i at time i. Suppose that
page p is referenced at time i + 1 and is in position Ai:
then if y i > Ai, a will remain in position y i . The stack
positions for all pages with higher priority than y have
already been determined (by the induction hypothesis).
Thus a will be assigned the first available position that is
1 yi. A page cannot achieve a smaller stack position than
its present value. In the contests for any given stack
position, the positions for all pages with higher priority
than a have already been assigned. Thus a may compete
for all stack positions 1 y i and will win the first contest
in which it has a higher priority. But this will happen only
for stack positions that have not been assigned. Thus the
stack position for a at time i + 1 is given by

min{klk 2 y i and E A , (i + I) } .

In the definition of the partial functions, we intro-
duced the sets A , (;) and B,(i) for i 5 t . These sets will be
used to establish the connection to the one-pass OPT
algorithm. First we list some properties of A , (i) and
B , (d .

1 . B, (i) B , (i + 1)

2. IA,(i)l 5 IA,(i + 111

3. t ~ , (4 I = IB,(i)l

4. l A , (i) / < lA,(i + 1)1 3 A, (i + 1)

= A , (i) u { k } for some X .

5. If lA,(i)l = IA,(i + 1)1 then A , (; + 1)

= (A , (i) - { j }) U { k } for somej and k .

6. (a) A , (t) = [2, n,l ,

(b) B, (t) = Et - {x,}.

Thus, given H,, the sequence of sets A , (i) and B, (i)
are determined. If the page a is referenced at time
t + 1, i.e., = a , then H,+, is constructed by ad-
joining S t (a) to H,. The resulting sequences A , + , (;)
and B,+,(i) as obtained from HI+, can also be ob-
tained from the sequences A , (;) and B, (i) using
formulas 7 and 8 below if a has been previously
referenced and formulas 9 and 10 below if a has not
been previously referenced. Formulas 6a and 6b give
thevaluesforA,+,(t + 1) andB,+,(t + 1) .

If a has been previously referenced, then X,+, =

Zt and n,,, = n,. 17

MULTIVALUED MIN ALGORITHM

I t 1

+
(Lt, PI) a + (Lt+PPt+l)

Figure 15 Effects of a reference to page LY.

7 . = A,(i) - {r i } .
8. B,+l(i) = B , (i) - { a } fort, < i 5 t .

If a has not been previously referenced, then E,+, =

E, U { a } , and nt+, = n, + 1.

9. A t +] (i) = A , (;) , 1 5 i 5 t.

10. B,+ , (i) = B t (i) , 1 5 i 5 t .

The above formulas are easily demonstrated and their
proofs are left to the reader.

Dejinition of L and P stacks

The L, and P, stacks are obtained directly from the se-
quence of sets A , (i) and B , (i) as follows. First we intro-
duce the sequence of times t i , i= 1 , . . ., n, where n = n,.
Time ti is defined as the first time that i pages were not
assigned, i.e., ti = min { S I IB,(s) I = i } for i = 1; . ., n - 1
and t , = t + 1 . Also define B, (t + 1) = X,. Then we let
ai be the page that is in B , (li) but not in B , (ti - 1) . Thus

a i € B , (t i) - E , (t , - l) f o r i = 1 ; . . , n .

Note that the sequence of pages a1; . ., a, are in LRU
order with a1 being the least recently referenced and a,
the most recently referenced. Note also that a, is the
page referenced at time t . For each i = 1 , . . ., n - 1 , let
S (a i) be the string adjoined to the partial function H,
after strings S (a ,) , . . ., S (C Y ~ - ~) have been adjoined and
define S' (a i) to be the string S(ai) truncated at time t .
Thus

18 S' (a i) = { (j , ai, yj) I (j , ai, yj) E S (a i) and t i 5 j 5 t } .

I-. A. BELADY AND F. P. PALERMO

LetX,bese t [l , t] X Z , X [I ,n]andG,=X,- - , .Then
n-1

G, = u S'(ai).
i= 1

Note that the strings S ' (a i) are the n - 1 primitives
shown in Fig. 8.

The set G, when written as the indicated union of
primitives corresponds to the rearrangement of the en-
tries in the complement of the numeral matrix into primi-
tive strings.

Define P, to be the set of integers [1 , nt] in the order
induced by the strings S' (a i) . Thus

P , (l) = 1.

P , (j) = k if and only if

(t , a , - j + l , k) E S ' (a , - j + l) f o r j = 2 ; . . , n.

Thus P, is the P stack defined earlier and marked in
Fig. 8.

Also define L, to be the set of pages X, in the order
induced by the sequence a,, . . ., a,, Le., in LRU order.
Thus

L , (j) = an-j+l f o r j = 1; . ., n.

L, is the LRU stack. With these definitions, we now
have the following lemmas.

Lemma 3: If (~ ~ € 2 , is referenced at time t + I , the output
y , is given by the formula

y t = rninA,K(t),

whereA:(t) = {k l3 j (t , aj, k) E S ' (a j) andj 5 K }

= { P , (j) / j 2 n - K + l } .

Note that A:(;) is the set of elements ofA,(i) that are
at level K or lower, Le., whose index is 1 K . In fact, it
can be shown that the IMS for the referenced page a is
calculated by selecting the minimum element in A:(i)
for tK < i < t + 1 . Thus we have the formula.

yi = min A: (i) for t 1 i 2 tK,

which is easily proved by induction.
The next theorem asserts that the updating of stacks

L, and P , are in step with the updating of the sets A , (i)
and B , (i) for i 5 t . Note that A , and B , denote the sets
oflistsA,(i) andB,(i) fori < t + 1 .

Theorem 4 : I f P , and L, correspond to the pairs A , and
B,, and aK€Z, is the next page referenced, then the stacks
P;+] and Li+, updated by the one-pass OPT procedure
are the same as the stacks Pt+ , and L,+, corresponding to
the pairs At+ , and B,+,.

This theorem follows from the fact that the transition
from A , (i) to At+l (i) is effected by removing the element

IBM J . RES. DEVELOP.

yi from A,(;) and reordering the remaining elements using
the updating algorithm for the P stack.

This is made precise by the following definitions and
lemma. Let P = (PI , . . ., P,v) and Q = (q , , . . ., q,v) be or-
dered sets of integers. We say that P i Q if P and Q
satisfy the following conditions for i = 1 , . . ., N and j = 1,
..., N :

1. Pi i qi;

2. I F pi 5 qj and j 5 i, then qi 5 qj.

The set P' = P - { p } , where p = min P is said to be
canonically reordered if the elements pi' of P' are ob-
tained from P by the recursive formulas

t , = P , ;

t i + , = m i n { t i , p , + , } f o r i = l ; ~ ~ , N - l ;

pi' = max {t i , pi+,} .

Lemma 5: Let P' = P - { p } and Q' = Q - { q } , where
p = min P and q = min Q. If P' and Q' are canonically
reordered and P i Q , then P' i Q' .

This lemma is proved by a straightforward computa-
tion. It is used to construct an inductive proof of The-
orem 2.

These theorems establish the equivalence of the one-
pass OPT to the two-pass OPT algorithm. This follows
because for any input the same output is obtained, and
the updated stacks Pi+, and Li+, correspond to the par-
tial function Ht+,.

The above discussion may be summarized by means
of Fig. 15. The horizontal arrows indicate that when
page a is referenced at time t + I , the numeral matrix
H,, the pair of sequences of sets (A, , B,) , and the pair of
stacks (Ll, P I) are transformed to the indicated objects.
We have also shown how to construct the pair (A,, B,)
from H , and (Lt , P I) from (A, , B l) . The results of the
above lemma may be stated as: The transformation from
H , to (Lt+,, PI+,) is independent of the path taken in
Fig. 15.

Received March 20. 1973

L. A . Belady is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.
F . P. Palermo is located at the IBM Research Division
Laboratory, Monterey and Cottle Roads, San Jose, Cal-
ifornia 951 14.

JANUARY 1974

19

MULTlVALUED MIN ALGORITHM

