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On-line  Measurement of Paging  Behavior by the 
Multivalued  MIN.  Algorithm . .  

Abstract:  An algorithm is presented  that  extracts the sequence of minimum memory  capacities (MMCs)  from  the sequence of page 
references generated by a program as it is executed in a  demand paging environment. The new  algorithm  combines the  advantages of 
existing approaches in that  the MMC’s are produced in a single pass,  as is the output of the M I N  algorithm for a single memory size, 
and  the MMC sequence is identical to  the optimum stack  distances provided by the OPT algorithm, which requires two passes. 

A hardware implementation is outlined as an  extension to existing  page  management  mechanisms. The resulting  device  could be used 
to produce continuously the MMC information, while the (paging) machine executes  the program at essentially full speed.  The  paper 
also  discusses  the possible  impact of the algorithm on the  study o f  program  behavior and on the  development of space sharing (paging) 
algorithms.  Finally, a proof is provided that  the algorithm in fact  produces  an  output identical to  that of OPT. 

1. Introduction 
This paper describes  an algorithm that  computes  the 
minimum paging overhead from the page reference’string 
of a  program  without look-ahead. Called the multivalued 
MIN algorithm, it is equivalent to a one-pass version of 
OPT [ 1 1. The immediate  implication is the significantly 
cheaper  data gathering it affords. In addition, the novel 
view of reference strings  furnished by the algoritbm sug- 
gests  fresh  approaches  to  the  development and  evalua- 
tion of memory  management schemes, i.e., multiprogram- 
ming in a paging environment. The study of alternative 
approaches  to multiprogramming presents more severe 
requirements  for fast measurement tools  than that of 
uniprogramming, due  to  the additional  degree’of  freedom 
introduced by dynamically  varying  memory space. 

Extensive work has  been  done  on  the analysis of 
memory  hierarchies [2]. The  reader should recall that 
all page replacement  algorithms face uncertainty when 
choosing  a page for  removal from main memory. It was 
early recognized [3] that, given a program  characterized 
by its page reference  string and  the  size of main memo- 
ry, it is useful to know the minimum number of page 
faults necessary to run the program in order  to eval- 
uate memory configurations  and page management 
schemes.  For example, the efficiency of a page replace- 
ment algorithm is defined as  the minimum number of 
page  faults  divided by the  number of page  faults  gener- 

ated when using the  particular algorithm. Efficiencies 
have since been extensively  measured  and  found to  vary 
between about 0.15 and 1 .O, an approximate  mean being 
about 0.4. 

Two distinct,  although  necessarily related,  methods 
have been  developed to  extract  the minimum number of 
page  faults. One, called MIN [3], can process  the refer- 
ence string as it  is generated by the program and, given a 
fixed memory size,  compute  the associated single mini- 
mum page fault count by constructing, but  only after a 
necessary  and  variable delay,  the memory states  and 
their transitions. 

The disadvantage of MIN, that it works for a single 
memory  size at a  time,  was  alleviated by the  other  ap- 
proach,  the two-pass OPT stack algorithm [ I 1. The  OPT 
algorithm computes  the minimum page fault counts  for 
the  entire range of memory sizes  essentially concurrently. 
The algorithm would require repetitious  look-ahead ex- 
cept  that this is eliminated by a  preprocessing  pass. Dur- 
ing this first pass,  performed in reverse  order,  the 
forward distance string  (reflecting the  order of next  oc- 
curence of each element in the  reference  string) is con- 
structed.  The reference  string is subsequently processed 
by OPT to  compute  the optimum distance  string-the 
sequence of minimum memory capacities-by using the 
output of the first pass  to  construct a priority list. 
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On balance,  both schemes  are useful. The  MIN al- 
gorithm is simple, requires  no look-ahead, and is efficient 
when  only a single memory size is of interest. I t  is often 
used in compilers for register  allocation [4, 51. The  OPT 
algorithm, on the  other  hand, is more elaborate  and re- 
quires a larger amount of recorded  information,  but it 
yields  directly the  complete space-time  behavior of the 
program. As a  result, OPT is extensively used to  evaluate 
storage hierarchies [ 61. 

Neither algorithm, however,  has been  used  on-line in 
an operational  environment. Their impact on page man- 
agement  schemes is therefore only  indirect,  through in- 
creased insight into system behavior. They offer no pos- 
sibility of real-time detection and  exploitation of page 
referencing patterns. 

For  the  sake of completeness we mention two addi- 
tional relevant pieces of work. A paper on index  register 
allocation [7] offers a  neat  solution to an even  more 
general problem than the  one  under  study  here, while a 
patent [SI describes  an on-line  device that calculates 
approximate values of the minimum page fault  count. 

The multivalued MIN algorithm introduced  below 
requires  that only  a small amount of information be re- 
corded  or  stored while processing, with a resulting capa- 
bility of being used on-line. The elimination of look-ahead 
makes a  hardware  implementation feasible. In addition, 
the algorithm has already  permitted the discovery of 
interesting  program properties, some of which are sug- 
gested in section 4. 

In this  paper, we first describe  the multivalued MIN 
algorithm, revealing at  the  same time  some  interesting 
correspondences among MIN,  OPT, and  the new algo- 
rithm.  We  then discuss a hardware implementation of 
the new algorithm. Some of the possibilities for  detecting 
and using program properties,  for example in multipro- 
gramming environments,  are then  considered. A proof 
that  the  outputs of OPT and the multivalued MIN algo- 
rithm are identical is provided in an appendix. 

2. Multivalued MIN algorithm 
Consider a program represented by its page reference 
string R .  For  any replacement  algorithm,  such  a  string is 
the input. For a given memory  size, MIN  produces  as 
output a single value, the  least number of page faults 
required  to run the program. The  OPT algorithm also 
uses  the input string R ,  first to produce the forward 
distance  sequence, then to  use this new sequence for  the 
process  that actually extracts  the  sequence of optimum 
stack  distances.  Each  element of string R -  the original 
input- becomes  associated  with an OPT stack distance. 

Since an optimum stack  distance is the minimum 
memory size  associated with a  reference  such that no 
page  fault occurs,  the minimum number of faults for 
any fixed memory size is computable from the optimum 

stack distance string, as  described in [ 11. In this paper 
we do not have  an explicit stack in the  sense of [ 1 ] and 
therefore call such  an  output string the  sequence of mini- 
mum memory capacities (MMCs). A MMC value of p 
then  means that, prior to being referenced,  the  element 
associated with the  output  has been  contained in memo- 
ries of size p or greater and therefore must  be pulled by 
being referenced into all memories  smaller  than p .  

Historically the ultimate purpose of optimum stack 
construction in evaluating  memory  hierarchies has  been 
to  produce  the  MMC string. (The “hit  ratios,” i.e,,  the 
normalized page fault counts  as a function of memory 
size, are directly computable from the  MMC  values; 
hence  recording of the voluminous MMC string can be 
avoided.).  The underlying thesis of the work presented 
here is that,  at  any point in R ,  the MMC value (or, 
equivalently, the  OPT  stack  distance) associated  with 
the  current  reference  is  uniquely  a  function of the  pre- 
vious  references;  hence  look-ahead  is  unnecessary. 

This assertion does not mean, of course,  that a  viable 
fault-minimizing replacement algorithm is possible. The 
knowledge of the  MMC value, paired with a  memory 
reference, is a  posteriori information  available  when it 
is, in general, too  late to assure  that  the  referenced page 
will indeed  be kept in a  memory of this critical  size. For 
example, if a reference  to page a! becomes, by our algo- 
rithm,  associated with the  MMC value 4, this  merely 
means that a minimizing scheme applied from the begin- 
ning of a  program running in a  four-page  memory would 
have kept a among its  current  four pages. In  other  words, 
4 is  the  output  associated with a; another page, not a, 
might have a  different associated  MMC value. 

In the remainder of this  section we develop  the new 
algorithm in three phases. In  the first, operation of the 
original MIN algorithm [3]  for a given memory  size is 
demonstrated by a two-dimensional  matrix. In  the next 
we develop the multivalued  version, which is represented 
by a single numeral matrix  that  is a result of merging 
matrices for distinct  memory  sizes. This algorithm in fact 
produces the  MMC values in one pass. The last phase 
then  shows that a single stack is sufficient to  represent 
the essential  information contained in the numeral ma- 
trix. Thus  the algorithm becomes a set of manipulations 
on this  stack rather than on  the numeral  matrix of the 
second phase. 

M I N  algorithm 
The conceptual framework of MIN  [3] is a two-dimen- 
sional matrix in which  a  row is associated with each 
page. A column represents a  distinct  memory state, 
namely,  a particular collection of pages. The  number of 
pages in such a collection may not  exceed p ,  the memo- 
ry size  measured in pages. As the matrix is being con- 
structed, a change of state  occurs when a page not in 



Figure 1 Successive  memory states for seven  references. 

A 1  A 1  A 1  
B 1  B 1  B 1 1 1 1  
c 1  c 1  c 1  
D 1 D 1 1  D 1 1  
E 1 E I E I 
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Figure 2 Memory states for a three-page  memory. 

t 

A 1  1 1  
B 1 1 1 1 1  
C 1 1 1 1  
D 1 1 1  
E 1 1 

any  previously constructed collection is referenced. 
Re-referencing  a page a can  also  cause a change of state 
if any  collections have been  completed with p references 
to  other pages since  the  earlier reference to page a. 
The MIN algorithm is then a procedure  for  constructing 
a matrix  representing the minimum number of states 
necessary  to  execute a  program. 

Consider, for example, a  program having an  input 
string R of the  14 elements  ABCDEDBCBDAEAC 
and a memory in which p = 3. After processing the first 
five references,  the information thus  far available per- 
mits construction of the matrix in Fig. 1 (a).  Thus all 
five references, by definition, created a new memory 
state.  However, we do not  yet know  the entire collection 
of pages for  each  state; only one element is known in 
each.  Neither have we  determined which pages will have 
to be  pushed  out of our three-page  memory, the  inherent 
delay of MIN alluded to earlier. 

The sixth reference,  to page D ,  may be added  to  an 
already defined state, namely, the fifth. Thus I) and E 
both become members of the  same collection,  and  only 
five states  are required to  accommodate  the six refer- 
ences,  as shown in Fig. 1 (b).  

The  seventh  reference,  to page B, adds  the third and 
final element to  the fifth state,  as  shown in Fig. 1 (c).  The 
matrix thus  represents  the minimum number of page 
pulls (five)  needed for  these  seven page references. It is 
obvious in retrospect  that pages  B and D should not be 
pushed  from a three-page  memory  encountering  this ref- 
erence string. The not  necessarily  unique sequence of 
states in our example  could be  represented  as follows: 
(A, 0,  01, (B, 0, O , ) ,  (B,  C, O , ) ,  (B,  D, 01, (B, D,   E ) ,  
where  zero  means  empty. 4 

A  general set of construction rules  (except for  the first 
reference)  can now be specified for  such a matrix, given 
memory size p and  reference string R ,  as follows: 

Suppose  that  the  next  reference in R is to page a and 
that the  rightmost nonempty column is labeled t - 1. 

If row a is empty, mark a 1 at (a ,  t )  and  return. 

Else find the rightmost  column tm having a  mark in 
row a. 

If there  exists a  column T ,  tu < T < t ,  with p markings, 
mark a 1 in (a ,  t )  and  return. 

Else mark a 1 in all empty (a ,  T ) ,  tu < T < t ,  and re- 
turn. 

Figure 2 shows the matrix  resulting from application of 
these rules to  the 14-element  string  used in our first 
example. (Repetitious  references in a string, for  example 
BB, would not cause  new markings for any  value of p and 
are  thus redundant. For  the  rest of the  paper,  we sup- 
press such  repetitions.) 

After having processed input  string R in accordance 
with these rules, the  number of marked  columns is  equal 
to  the minimum number of page pulls necessary  to run 
the program (eight in our  example)  for  the given memo- 
ry  size.  Unmarked gaps  to  the left of a  marked entry  (and 
to the left of column one  for  the first entry)  also  represent 
page pulls. Pages A,  C,  and E were pulled twice in the  ex- 
ample. Marks in a  column identify pages  coexisting in 
memory, i.e., belonging to  the  same collection. The ma- 
trix produced by MIN is  such  that a  column may contain 
fewer, but never more,  than p pages. 

Examination of Fig. 2 shows  that, within the con- 
straint  set by p ,  gaps  can  sometimes be filled with mark- 
ings when a new reference is made to a page previously 
referred to,  thus avoiding a page pull. However, p mark- 
ings in a  column present  an  obstacle  to a filling attempt; 
the gap is permanent.  Recall also  that columns  generally 
acquire p markings  only after a delay. 

With this representation,  however, it is difficult to 
compare  and  then  interpret matrices generated  for dif- 
ferent p values, since  the columns are generally not 
aligned with the input  string. For  the  above  example  and 
p = 5, only five columns would be generated,  the  last 
one with all positions marked;  the matrix associated 
with p = 1 would have as many  columns as  there  are non- 
repetitious page references, with each column  having 
only one marking. 

We  therefore slightly modify the  construction rules. In 
the new version of the algorithm, when the  next  reference 
occurs,  we mark ( a ,  t )  for all cases. Since  prior to this 
new reference, (a ,  t )  has been empty,  matrices  for all 
memory sizes now become aligned with the  input string, 
and t can be considered to be the index of time to a given 
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reference;  the  next  reference is xt and  the tth  column is 
associated with it. Thus  the only  addition to  the  former 
rules is to  also mark a 1 in (a ,  t )  in the  last step. 

All five matrices in our example, constructed using the 
modified rules,  are shown in Fig. 3. As before,  the num- 
ber of markings in any  column never  exceeds p ,  but  can 
be less. The minimum number of pulls necessary  to run 
the program is then  equal to  the  number of markings not 
preceded on  the left by another marking,  but  preceded by 
a gap  or  extending  to the left of the first column. 

Multivalued MIN matrix 
We now superimpose  the five matrices on  one  another. 
However,  we  cannot now use a single number  for mark- 
ing- the numeral 1 -since we would have  an incon- 
clusive  figure, identical to  that of p = 5, which is the 
union of  all five matrices. We introduce  as symbols  for 
marking the numerals 2, 3 ,4 ,  . . . , to represent the order 
of natural numbers. 

In addition to  the rules  already presented, we now 
need  some  rules to guide in the use of the numerals so as 
to  preserve information  about all cases  even  after super- 
imposition. T o  illustrate the  construction rules, we pro- 
ceed  as follows. 

First we decide  to  continue  use of the numeral 1 in the 
matrix for p = 1 ; the  procedure  for this case is then un- 
changed,  and  there will be  a 1 in as  many columns as 
there  are  references processed. No other numeral is 
used. 

Next we decide  that  no column may contain  duplicate 
numerals. By this  means we are  able  to distinguish 
among cases of different p values after superimposition. 
If a given position in the matrix for memory  size p con- 
tains  a mark, but the comparable  position in the matrix 
for p - I does  not, then a numeral  not yet used in the 
relevant column of the matrix for p - I distinguishes 
between the  two  cases. 

We can  construct  the combined  matrix by sequentially 
processing the reference string. When the next reference 
xt  is to page a, we use 1 to mark ( a ,  t).  Then we note the 
gap extending  to  the left of the new  marking beyond 
column one of the matrix (new  reference)  or bounded by 
a  numeral 1 (the most recent previous reference  to a ) .  In 
the original version of MIN, we would have filled the 
gap  only if, for  each column in the region of the gap,  the 
number of markings  was  less  than some fixed p .  But we 
are  constructing a matrix  for all possible p .  Therefore we 
use  the numeral for marking that indicates, in position 
(a,  t - 1 ) , the minimum p value for which the gap-filling 
is valid. 

Since we want  to find for all memory  sizes the mini- 
mum number of page exceptions necessary  to run the 
program, we must use  the numerals in a specific order. 
Starting  with the leftmost  position of the gap, the small- 

Figure 3 Matrices for five memory sizes. 

A B C D E D B C B D A E A C  

A 1  
B 1 
C 1 1 
D 1 1 
E 

1 1 
1 1 

1 
1 

1 1 
(P = 1 )  

A I  
B 1 
C 
D 
E 1 I 

I l l  
1 1 1  

1 I 1 
1 1 1  1 

(P  = 2)  

A 1   1 1 1  
B 1 1 1 1 1 1 1 1  
C 1 
D 
E 

1 1 1 1 1 1 1  
1 1 1 1 1 1 1  

( P  = 3 )  
1 1 

A 1   1 1 1  
B 1 1 1 1 1 1 1 1  
C 1 1 1 1 1 1 1 1 1 1 1 1  
D 1 1 1 1 1 1 1  
E 1 1 1 1 1 1 1 1  

(P = 4) 

A 1 1 1 1 1 1 1 1 1 1 1 1 I  
B 1 1 1 1 1 1 1 1  
C 
D 

1 1 1 1 1 1 1 1 1 1 1 1  

E 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1  

( P  = 5 )  

est numeral  not  yet present in that column is used for 
marking. Since we also attach a meaning to this numeral, 
namely, that it designate the  p-size memory  capable of 
containing the page,  a  numeral once used in a gap forms 
a lower  bound to  the right in that  gap, i.e., before the 
numeral 1 is reached. In  other  words, numeral  string 
223444 is valid while 223443 is not. The reason for  the 
nondecreasing string is that  the  matrix is designed to 
reflect the behavior of a demand paging system. Each 
numeral in the string represents  the minimum size mem- 
ory  required  to retain a given page at a given time. For 
example, if the string above  were in row a ,  the numeral 
4 in the  string would mean that a memory of at  least size 
p = 4 would be  required to retain  page a. Page a could 
not  be  retained in the smaller  memory of size 3. The  ap- 
pearance of a 3 in the string thus means that page a must 
have been pulled back into memory.  But  this occurs only 
if page a has been re-referenced,  an  event  that in our 
matrix is represented by a 1. 5 



Figure 4 Multivalued MIN numeral matrix. Figure 5 LRU numeral  matrix. 

t t 
A B C D E D B C B D A E A C  A B C D E D B C B D A E A C  

A 1 2 3 4 5 5 5 5 5 5 1 2 1   A 1 2 3 4 5 5 5 5 5 5 1 2 1  
B 2 1 2 2 3 3 1 2 1  

D 4 4 4 1 2 1 2 3 3 1   D 4 4 4 1 2 1 2 3 3 1  
E 5 5 5 5 1 2 3 4 4 4 4 1   E 5 5 5 5 1 2 3 4 4 4 1 5 ) l  

c 3 3 1 3 4 4 4 1 2 2 2 3 3 1   c 3 3 1 2 3 3 4 1 2 1 3 4 5 5 / 1  B 2 1 2 j 4 4 1 1 2 1  

2 3 4 5 2 3 4 2 3 5 4 2 3   2 3 4 5 2 4 4 2 3 5 5 2 5  

6 

In  the following text we call a gap-filling string  starting 
with numeral a and terminating  with  numeral b an a / b  
string. The valid string  in the example above is then a 
2/4 string. Also, we  exclude 1’s from the strings: hence 
a is never 1. We now  summarize the  above  requirements 
into a  numeral  string  algorithm: 

Suppose  that  the  next reference X ,  in R is  to page a. 
Let t ,  be the time at which a was  last  referenced ( t ,  = 

0 if this is the first reference  to a). 

Mark in row a every position (a ,  T), t ,  < T < t ,  with a 
numeral q, which is the minimum missing numeral  in 
column T that is equal  to or greater  than  the numeral 
in position (a ,  T - 1 ) .  

Mark (a, 1 )  with a  numeral 1 and  return. 

(Note  that q is redetermined for  each column and  that  the 
sequence is nondecreasing.) 

The application of this set of rules to our former exam- 
ple would produce  the numeral  matrix  in Fig. 4. If an 
additional reference  were now made to page B, a 3 
would be  inserted  into column 10 of row B, since 3 is 
the smallest numeral not  yet  used in column 10 but is 
clearly  larger than  the 1 in column 9. A 3 is also used in 
column 1 1  for  the  same reasons. However, 3’s already 
appear in columns 12 and 13, so a 4 is inserted  into  each 
of these. A 4 is  also inserted  into  column 14, since this 
entry may not  be smaller  than the  entry in  column 13 of 
row B. Finally, a 1 is inserted  into  column 15. 

The algorithm is  easy  to perform  manually. It is equal- 
ly easy to  extract  the uniformly marked  matrix for any 
given value of p .  This can be done in two  steps: 

1 .  Remove all a /b  strings (between 1’s) for which 
b > p .  

2. Change all remaining  symbols to 1’s. 

Of course, all 1’s originally in the matrix are  retained. 
The following properties of the combined  matrix are 

evident. If xt  is a reference  to page a ,  then (a ,  t )  is marked 
with a 1 .  Also,  the numeral at (a,  t - 1 ), say p ,  stands  for 

quence of these  MMC values is displayed  immediately 
below the  numeral matrix in Fig. 4. There is one  MMC 
for  every  reference  except  for  the first one; this is by 
definition 1,  but  since we eliminated  repetitious  refer- 
ences, it is suppressed. 

This new  version of MIN  thus eliminates the look- 
ahead (first pass) required by OPT,  yet it produces  ex- 
actly the information  generated by OPT.  It  is easy to 
see  that  numerals stand for  (OPT)  stack distances. 
Thus,  the  sequence of numerals in a given  row is the his- 
tory of pushes  from memories of distinct  sizes; a  change 
from a to b means  that  the page is pushed from memo- 
ries of size c, a 5 c < b.  

It is interesting  to  note  that a similar  matrix  can  be 
made to  represent  the memory requirements of a pro- 
gram executed in a  demand paging environment  under 
a least recently  used (LRU) page replacement policy. 
The rules for  constructing  the matrix are provided here 
for  the  sake of completeness;  however, knowledge of this 
algorithm is not  necessary to  understand  the remainder of 
the paper. 

Suppose  that  the next reference x, in R is  to page a. 
Let ta be  the time at which a was  last referenced ( t ,  = 

0 if this is  the first reference  to a ) .  

Mark in row a every position (a ,  T), ta < T < t ,  with a 
numeral r such  that 

* If  row /3, containing  a 1 in column T, contains  another 
1 in column A, ta < A < T, then r is the minimum 
missing numeral  equal to or greater than that  at 
(ff,  7- 11, 

* Else r is equal  to 1 plus the  value  at (a ,  T - 1) .  

Mark (a ,  t )  with  a  numeral 1 and  return. 

(Note  that if xt is the first reference in R ,  after marking 
for this reference,  the matrix will contain a 1 at (a ,  t ) . )  
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Application of these rules to  our sample page address 
string is shown in Fig. 5. Comparison with Fig. 4 shows 
the  added page requirements  for  the LRU replacement 
scheme  over  the minimum determined by the multival- 
ued MIN algorithm; the changed requirements  are 
shown in boxes in Fig. 5. 

The numerals in the matrix are  the  LRU  stack posi- 
tions. As  rows  are filled in accordance with the rules, 
each  successive column  indicates that  another page has 
been  referenced. Thus,  as  each column is reached, the 
number of pages needed to contain the currently refer- 
enced  page (Y is usually increased by 1 .  However, two 
1’s in row p since  time tu indicate two  references  to  the 
same page; hence,  an additional page is not  needed to 
retain a in the memory. 

P stack 
Unfortunately  the manual ease of constructing  the multi- 
valued MIN matrix does not compensate  for its bulki- 
ness;  one of its dimensions is bounded only by the 
length of R .  Fast  storage of this  size is rarely  available 
for  automatic computation.  We  must therefore develop  a 
more compact  representation,  one  that keeps just that 
information necessary  to  generate  the  MMC  sequence in 
response  to input  string R ,  suppressing  historical infor- 
mation rarely  used in practice (as  experience  thus  far 
with OPT has  indicated). 

In  the numeral  string  algorithm,  upon presentation of 
the  next  reference, a new string is constructed, subject 
to  constraints imposed by strings drawn earlier. In  order 
to  be  compact, we must  summarize these  constraints 
while ensuring that needed  information is retained. In 
particular, the rightmost  numeral in the string, identifying 
the  output  associated with the page reference, must  be 
kept  (recall that 1’s are not  part of the  string). 

A simple way of doing this is to  construct indepen- 
dently for  each gap the minimum a/b string that would 
be drawn if these pages were  referenced individually, 
using the  rules governing the  construction of Fig. 4. In 
the  example  presented  there, a next reference  to  either B 
or D would produce 4 as  output,  whereas a reference  to E 
or A would result in a 2 (a reference  to C would be 
repetitious).  The  corresponding minimum strings, listed 
in the  order of their lengths, or equivalently in LRU 
order of past  references,  are shown in Fig. 6. 

Of course, only one of the strings  could  become an 
actual’minimum  string, the  one  for  the page that in fact 
is referenced next.  After  that a new set of potential  out- 
puts can  be defined. 

Our  objective is to  describe  the potential outputs in 
such a  fashion that, if and when the  next reference is 
known, not  only is its  associated output defined,  but the 
description of the‘new potential outputs is also  available. 

Figure 6 Minimum  strings. 

A 2 
E 2 2  
D 3 4 4 4  
B 3 3 4 4 4  

Figure 7 IMS  and CMS. 

IMS   CMS 

In  order  to  arrive  at  such a scheme, we note that the 
minimum string for D in our  example  is a proper right- 
adjusted  substring of that for B; a  similar  relation exists 
between A and E. Next we observe  that  for strings in 
the longest  gap there is only one  starting numeral to 
choose  from.  In  the next  longest gap  there  are two  free 
numerals,  then  three,  and so on. In our  example, 3 is the 
only choice of a starting  numeral for a  string for B, but 3 
and 5 are  both possible for D without duplicating’numer- 
als in a column. Similarly, 2 ,  4, and 5 are possible for E 
and finally all but 1 for A. Of course, independently-con- 
structed minimum strings drawn  for individual gaps al- 
ways start with the smallest  numeral  possible, as shown 
in Fig. 6. 

We now define two kinds of minimum strings: the 
immediate minimum string (IMS)  and  the conditional 
minimum string (CMS).  The immediate  minimum  string 
of element (Y is the numeral  string that is generated by 
the rules  used for Fig. 4 if the  next  reference is to ele- 
ment a.  The strings for A,  E, D, and B in Fig. 6 are then 
by definition IMSs. 

A conditional  minimum string on  the  other hand is a 
minimum string  whose  starting  numeral is not the smal- 
lest possible  one.  A CMS is a string that  is  either a proper 
right-adjusted  substring of an  IMS  or  CMS  that would 
have been  used to fill a  longer gap,  or  it is the minimum 
string that would be constructed  assuming  that all longer 
gaps  have  been filled. (We  continue to refer  to a CMS  as 
“minimum”  because it is either a substring of a longer 
string that is itself a minimum string pr  it  is a string that 
would be minimum if all longer  strings had been filled.) 

The  IMSs  and  CMSs  for  our  example  are shown in 
Fig. 7. The IMSs are obviously  identical to  those pre- 
sellted in Fig. 6. However, 5555 as a CMS for D, for ex- 
ample,  is  constructed  under  the  assumption  that the only 
possible  string for B has  already been  drawn. Other 
CMSs  were similarly generated.  Note  that  each string 7 
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Figure 8 Primitive strings. 

A 
E 
D 5 5 5 5  I;/ 
B 3 3 4 4 M  

Figure 9 References to elements having primitive strings. 

C E C B 
A3 c 2  A3 c 4  

E2 D5 e 6; E2 D5 e ;; 
B4 8 4  B4 D5 

( a )  ( b )  

Figure 10 Effect of substrings. 

"--,A 
B 
C 
D 
E 

5 5 5 1 4  
2 1 3 3 3  
1 2 2 2 2  
3 3 1 5 5  
4 4 4 4 1  I"1 I 5 5 5 1 2 1  

2 1 3 3 4 4  
1 2 2 2 3 3  
3 3 1 5 5 5  
4 4 4 4 1 2  " 

(IMS  or  CMS)  that  is not a substring  in the  above list is 
underlined; we call such a string a primitive. Every string 
that is not  underlined is then  a  substring of some primitive. 

Because of this string-substring  inclusion property of 
the IMS  and  CMS  and  the  construction  rules  for Fig. 4, 
there  are  as  many primitives as  there  are  gaps. If n is the 
number of pages  referenced thus  far,  then  there  are n - 1 
primitives. For  our  example  four primitives  (underlined 
in the figure) are  constructed by application of the fol- 
lowing rules: 

Draw  the minimum string for  the longest  gap. 

Draw  the minimum string for  the  next longest gap, 
assuming that all longer  gaps have  been filled with 
IMSs  and  CMSs. 

Repeat  the previous step until all gaps  have been 
filled. 

By definition, the terminating  numerals of the (n - 1 )  
primitives contain all immediate and conditional mini- 
mum output values. The primitives for  the example are 
shown in Fig. 8 with the terminal numerals  enclosed in a 
rectangle. We define this LRU-ordered  last column 
formed from  the primitives as  the P stuck of output 
values, and  we  interpret it as follows. 

The  least recently  used  element  B has  only  one  start- 
ing numeral for a minimum string, and  its terminal nu- 
meral is 4, which would be the next MMC output if B 
were referenced next. 

There  are  two possible  starting  numerals for strings 
for D ,  and  the corresponding IMS  and  CMS  terminate 
in 5 and 4, which are listed at  and below  D in the P 
stack.  The smaller of the two, 4, would be the  MMC 
value associated with D if it were  referenced next. Simi- 
larly, E has  three possible IMS  and  CMS terminating in 
2 ,  5, and 4. Therefore  the  smallest, 2, would be the out- 
put if E were  referenced next. The  MMC  for A would 
also be 2, as  the smallest of the terminal numerals 3 ,  2 ,  
4, and 5. 

In general,  given the P stack of output values in the 
LRU  order of their associated elements,  the  MMC val- 
ue for  the  next referenced element  can  be  computed,  for 
example,  as follows: 

If the  next  reference  is  to  the Yth most recently  refer- 
enced  element,  select  as  MMC  the smallest  from the 
set S of numerals  at  or below the (6 - 1 )st position in 
the P stack.  (Note  that  the  most  recently referenced 
element  is  not  represented in the P stack.). 

In  our  example, if E, the third most  recently referenced 
element,  were referenced next,  then  the  output would be 
2 ,  which is the smallest  number at  or below  the  second 
stack position.  Similarly, the  output  for D would be 4, 
etc. 

We now must  show how to manipulate the P stack in 
order to reflect in it  the new IMS-CMS configuration 
after  the  next  reference is included. We  can  expect,  for 
example, that  changes may result because some CMSs 
become IMSs. 

There  are  two  cases  to  consider.  In  the first case  the 
next reference  is to an  element  whose  IMS is either 
primitive or  is a proper substring of an  IMS associated 
with an  element referenced  earlier. By definition, the 
longest gap  (that  ofthe  least recently  referenced element) 
has  an  IMS  that  is primitive. In  our  example,  the  IMSs 
for B and E are primitives, while the  IMSs  for D and A 
are substrings. 

Suppose  that a is referenced next  and  that  its  IMS  is 
primitive. The  IMSs  and  CMSs  for  each element  refer- 
enced  earlier than a (below a in the  LRU  order)  are 
unchanged. The  reason  is  that, by definition of the primi- 
tive  string, none of the longer IMSs or CMSs includes the 
string actually generated  for a. The  IMSs  or  CMSs of 
elements  referenced more  recently than a, however, are 
affected; either  an  IMS  or a CMS is lost for each ele- 
ment in this range,  because of the  actual string  generated 
in row a. But  this is equivalent to moving the new out- 
put  value, i.e., the terminal  numeral of the actual  string, 
from  its present position to  the  top of the P stack. 

If in our  example E were  referenced  next,  where  the 
IMS  for E is primitive, the  corresponding stack  transi- 
tion would be as  shown in Fig. 9 (a)  (where  for  the  sake 
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of clarity we also list the names of the  elements A 
through E in LRU  order). Similarly, a reference  to B 
(also with a primitive IMS) would cause  the  transition 
shown in Fig. 9(b). 

Now we consider  the  second  case.  Suppose  that a is 
referenced  next  and its IMS is a substring. Clearly,  the 
IMSs and CMSs of some  elements  less recently  refer- 
enced than a are affected, since  there  exists  either  an IMS 
or a CMS properly  including the actual string for a. The 
unused portion of this including string will have  to  be 
extended  to  the right by new numerals. Under  the mini- 
mum constraint  these  numerals  for constructing  strings 
are  the smallest (former) CMS of a. But this CMS of a ,  
in turn, may be a substring of some other IMS or CMS, 
requiring that  its including  string  be extended by the 
next smallest CMS of a ,  etc.  These effects are illustrated 
in Fig. 10, where  the jagged  lines separate  the  actual 
strings  from IMSs and CMSs. 

The last  column in the right matrix reflects the new 
output (terminal numeral) configuration of all IMSs and 
CMSs. Putting the  numerals from both  matrices in LRU 
order  results in the  corresponding stack  transition shown 
in Fig. 11. 

The new output is 2- the terminal  numeral of the  ac- 
tual string for A. Upon  transition, this  2 is put  on  the  top 
of the  stack, indicating that,  at  least  for now, no IMS or 
CMS terminates in 2 except  for  one IMS for  the top- 
most  element  E (now  the second most  recently refer- 
enced  element).  Since C lost  its IMS of 2222, its new 
IMS terminates in 3, which  was A's smallest CMS. But 
this latter string is not primitive; therefore B loses  its 
CMS of 333, which gets replaced by the  3344 string end- 
ing in 4, which was  the  next smallest CMS of A. Only the 
55 string  remains untouched. 

We described  earlier  how to find the  output MMC 
value in set S of the P stack when the  next  reference is 
presented. We have  now  seen  that  the updating for  the 
new  conditions requires  the removal of the  output value 
from the stack and  its  subsequent placement on  the top. 
The vacated  position then is filled with the  next smallest 
numeral, if any, in set S of the original stack above the 
vacant position. This, in turn,  creates a new vacant posi- 
tion to be filled with the  next smallest in that  range, if 
any,  and so on. These  rules can now be summarized in 
terms of the  operators 2 and 2.R. These  operators  trans- 
form  the  sequence of page references,  one  at a  time, into 
a sequence of minimum memory  capacities (or OPT 
stack distances),  as  shown in Fig. 12. 

The  operator 2 transforms  the  sequence R of page 
references into the  sequence L of LRU positions. I t  is 
$dined as follows: 

If the page referenced  next is not in the  LRU  stack, 
put the page on  the  top of the  stack,  compute  the 

Figure 11 Stack transition for Figure 10. 

- 4  

5 - 4  

2 
5 

3 
2 3 

Figure 12 2 and !Dl operators. 

number of pages n in the  stack,  generate ( n  - 1) as 
output,  and  return. 

Else find the page at  the kth position in the  LRU 
stack, move the page to  the top of the  stack,  generate 
( k  - 1)  as  output  and return. 

The  operator  transforms the sequence L of LRU 
positions into a sequence M of minimum memory ca- 
pacities. I t  keeps  past  output values in the P stack  (a 
modified LRU  stack), and it is defined as follows: 

If the  next  input  is  zero, return. 

Else 

* If the  6th position in the modified stack is  empty, 
put  the numeral (Y + 1)  = p on  the  top,  generate p 
as  output,  and  return. 

* Else find the smallest  value p at  or  below  the Yth 
position on  the modified stack. 

0 If p is at  the  6th position,  move p to  the  top, 
generate p as  output,  and  return. 

0 Else find the smallest  value p' above p but at or 
below the Yth position;  exchange p and p' in the 
modified stack, and reenter  the  previous  step. 

Application of these  operators  to  part of our example 
reference string is  shown in Table 1. Because  the first ref- 
erence  is  to page A, which is not in the  stack, page  A is 
put at  the  top of the  stack. Since the  number of pages in 
the stack is n = 1, generate n - 1 = 0; thus / is  zero and 
there is no  output produced by operator 2.R. The pro- 
cedure is generally similar until we reach  the  second ref- 
erence to D. Since D is now in the LRU stack at  the 
second  position, k = 2,  and k - 1 = 1 is generated  as 
output.  With the P stack  as shown for  the fifth reference 
(to page E ) ,  the smallest  value at or below the first posi- 9 



Nr.  I n  2 k LRU stack n 8 A P stack Out 

1 A Not in LRU stack, so - A 1 0 = 0, return - - 
put on top 

2 B - B 2 1 1st position empty in P stack 2 
A 

2 

3 C - C 3 2 2nd position empty in P stack 
B 
A 

3 
2 3 

4 D - D 4 3 3rd position empty  in P stack 
C 
B 
A 

4 
3 
2 4 

5 E - E 
D 
C 
B 
A 

6 D D i s a t k = 2 i n  2 D 
LRU stack E 

B 
A 

5 4 4th position empty in P stack 5 
4 
3 
2 5 

5 1 2 is smallest value  at or below 1st 
position. 3 is the smallest above 
it, so exchange them 

5 
4 

3 
L 

Now 2 is again smallest, but 4 is 
the minimum above 2, so 
exchange them 

> 
2 

2 
5 

4  4 
3 etc. 3 2 

tion is p = 2 at  the fourth  position: The smallest  value 
above  the  fourth position, p’,  is 3;  exchanging p and p’ 
results in the stack  shown in Table 1. Again, p = 2 is the 
smallest value below the first, and p‘  = 4 is the smallest 
value above p ,  so p and p’ are again exchanged. The 
procedure is continued until the P stack  for  the second 
reference  t6 D appears  as  shown in the table. 

I t  is easy  to show ihat  the  last two steps  are identical 
to a single pass of a  “bubble” sort [9] (strictly pair- 
wis& exchange  sort).  The  operator !&? then  can be  loose- 
ly described  as follows: 

“Find  the minimum value of p in the lower  part of the 
P stack, i.e.,  elements at  and below the ?th position, 
by performing a single pass of a bubble sort; then 
move p to  the top.” 

3. Implementation considerations 
As mentioned  previously, a number of considerations 

10 indicate the possibility of a hardware implementation of 

the multivalued MIN algorithm that  can be used in a 
production  environment. Indeed,  patent applications for 
implementation schemes  have been filed. 

First, some  general machine  requirements  are sug- 
gested.  For nontrivial experimentation, a paging machine 
with a viable page replacement algorithm is needed to 
accommodate programs larger  than available real mem- 
ory space. 

The  most  important  characteristic of the new algo- 
rithm is of course  that  it  generates  the MMC string in a 
single pass.  Additionally,  many of the  steps of the 9.R and 
2 operators can  be  accomplished in parallel,  using, for 
example, associative  memory  techniques. This parallel- 
ism, combined with decreasing  computer,  component 
costs, makes  feasible operation  at essentially full com- 
puter speed. Other  techniques  that  can  contribute to- 
ward making a hardware implementation  practicable by 
increasing the efficiency with which storage  and process- 
ing resources  are used are considered in this  section. 
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On-line  processing of the page reference string as it is 
produced  eliminates the need for its  storage. All of the 
information that  need be  stored is a  table having a num- 
ber of elements equal to  the size of the program being 
measured. 

It is further  proposed  that  the table of the device  used 
for implementing the algorithm consist of two  parts,  the 
first or upper  part in fast logic,  having as many entries  as 
there  are page frames in main memory. If,  as  usual,  the 
program is larger  than main memory,  the remaining  sec- 
ond  (overflow) part of the  table could  be stored in some 
slower device,  such  as a protected  area of main memory 
itself. At  the time of a page fault,  the  contents of the  two 
parts of the  table could be updated to reflect the new 
memory contents. 

It  can be  shown that, if a particular  algorithm, LRU, 
is used to  do  the  actual page management of the ma- 
chine, a partitioning of the  table into  real and  external 
parts is possible.  Only  pages in main memory  must have 
corresponding  entries in the device stack,  updated  at  the 
rate of processing. 

Also, given  a fast LRU device, needed for on-line  re- 
placement anyway, only the  operator m described ear- 
lier need be built,  and it could  be an add-on  device. 
Implementation of a device, operating at  CPU  speed 
and  describing the  entire virtual page space, would not 
be  technologically  feasible. However, with the relaxed 
requirement of having to  represent only  pages  occupying 
main memory page frames, more than  an  order of magni- 
tude smaller in number,  the  device could  be built. 

Hardware implementation of the LRU replacement 
algorithm has  been proposed [lo]. We simply assume 
that  the  device  is a functional part of the  (host) paging 
machine,  and that  its  output  can  be tapped to  derive  the 
needed  information to drive  the  add-on YX box, which, in 
turn,  generates  the  MMC string. Operation of the  two 
devices would then  be  as follows: 

The  operator 2 dynamically orders all page frames  to 
reflect the  order of past references. 

* If the page  referenced next is in the LRU stack,  its 
stack  position k is  presented  to  the modified YX oper- 
ator. 

::: Else a page  fault is generated.  The  contents, if any, 
of the page frame with the highest LRU value (at 
the  bottom of the  stack)  are  pushed,  the  required 
I/O  operation  is initiated, the page referenced next 
is placed on  the  top of the  stack,  and a special pro- 
gram, held in memory to  update all of the P stack 

-information, is invoked. 

The modified 272-operator processes  the  upper part of 
the partitioned P stack.  It is almost identical to the 

algorithm presented earlier for  the  contiguous single 
stack except  for  the  fourth  step, finding the smallest p 
value. Since only a partial description of the  stack is 
held in the  fast  upper  part, a complement  search is 
executed. 

In  the  fourth  step, not p but q, the smallest missing 
integer above  the A h  position in the  stack,  is moved to 
the  top  and  presented  as  output. 

As a result of these  steps,  one of two  conditions  can 
exist: either p is already in the  upper  stack or it  is not.  If 
it is,  then p = q; hence  the  complete  and  the partitioned 
schemes coincide. The necessary update  is limited to  the 
upper portion, and  the algorithm is correctly  executed. 

If p is not in the  upper  stack,  the  generated missing q 
value is put  on  the  top of the upper stack  anyway.  This 
results in a push-down  operation (observing  the rules of 
the algorithm) and in the removal of a value  from  the 
stack.  Hence a new  value is  added to the  top, while an 
old value drops  out.  Correctly,  the new value should have 
been  obtained from  the lower part of the  stack, while the 
removed  value  should have been  pushed into  the lower 
part. This neglect results in one  duplicate value and  one 
entirely missing value. 

Such dual errors occasionally occur.  Sooner or later, 
however, a page  exception occurs  and, as said before, a 
program is invoked that brings the  two  parts  into align- 
ment again by correcting,  one by one,  the pairs of errors. 
The program logic is as follows: 

Form  the smallest  integer p that  is  not  represented in 
either part. 

Find in the lower  part the smallest  integer q that is 
smaller than p .  

If there is no element  smaller  than p and  above q in 
the  lower  part, replace q with p ,  i.e., discard q, and 
return. 

Else find in the  lower part the smallest  integer q' that 
is smaller than p and is above q; exchange q' and q 
and  reenter  the previous  step. 

The  procesi  terminates when there  are  no  more mis- 
sing integers. I t  is easy  to  show  that  at  this point all dup- 
licates  are  also eliminated by discarding 4's;  the  two  parts 
become consistent, having unique p values. I t  is impor- 
tant though that this algorithm proceed from smaller to 
larger missing integers. 

After  the alignment of the  parts,  the p value of the 
page causing the page  exception must  be  found.  This is 
done by essentially  executing the m operator,  the only 
difference  being that  the  output found has  to be  put on 11 
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the  top of the  upper part  directly. The resulting  push- 
down then moves the element  from the bottom of the 
upper  part  to  the  top of the lower part, inducing the exe- 
cution of the  last  three  steps of Y.R there.  The  fast  upper 
part  operates at the  rate of processing; on  the  other  hand, 
there is always sufficient time to  update  the lower part, 
since  a  page  exception is associated with a slow I/O oper- 
ation. 

A device  can be  designed such  that shifting bits, rather 
than  counters,  represent stack  values  in order  to increase 
speed - simple logical operations can be used, instead of 
slower arithmetic operations. 

However,  even with very fast logic, references may be 
generated  too  fast  for the  device to  keep  abreast.  At least 
two  alternatives  present themselves: slowing down  the 
machine or using one of the slower members of the com- 
patible IBM  System/370 family of computers for mea- 
surement  and testing  purposes. In  addition, repetitions 
can be eliminated from the  reference string by a device, 
such  as a look-aside associative  memory,  that buffers one, 
or even  two  (for  data  and  program), page names and 
propagates a next element to  the  device only if there  is a 
change of buffer contents. By doing this  the machine  and 
the device become more asynchronous,  and this, in turn, 
may call for  further buffering of the now  repetition-free 
reference string. Interlocks can also be  employed to in- 
hibit program execution in the  rare case of buffer over- 
flow and a resulting  lost  reference. In  any  event, it 
seems  certain  that  the extraction of the minimum memo- 
ry capacity string can be accomplished while the ma- 
chine executes a program at essentially full speed,  as 
opposed to the I :20 or more  slow-down associated with 
interpretive program  execution when the reference 
string first has  to be  recorded. 

In  summary, with an already  implemented LRU box, 
our  device becomes an add-on instrument  for  extract- 
ing the  MMC string. 

4. Program  behavior 
The information extracted by the multivalued MIN algo- 
rithm and  the way that this  information is structured in 
the P stack reveal  some  interesting  program  properties 
and  form a basis for the  development and evaluation of 
better algorithms for assigning page frames  to programs 
in a multiprogramming  environment. Some of these 
ideas are  centered  on  the notion of output  classes,  as 
defined below. 

Recall the  reference string ABCDE  and  its P stack 
after  the  reference  to E. If the  next,  sixth,  reference is to 
any page but E, then  2 is generated  as  output by the 
multivalued MIN algorithm.  Taking the  same example 
after  the  seventh  reference,  ABCDEDB,  the P stack 
read from  the  top is 3254, meaning that only three dis- 
tinct  outputs  are possible: 1 (for repetition), 2 and 4. 

In  order  to introduce the idea of equivalence classes, 
we define, at  any point of the  reference string, the 
MMC  class Cj as  the collection of pages  whose next 
(potential)  output is j .  As usual ICj/ means  the cardi- 
nality of set Cj. 

From the  previous sections  it is obvious  that the LRU 
replacement algorithm is  also a page classification algo- 
rithm. It dynamically classifies the program pages into as 
many classes  as there are  distinct pages in the program 
(i.e., distinct  elements in the  reference  string).  As a  re- 
sult,  at any  time there is one  and only one element in 
each class. 

In contrast,  our algorithm classifies the pages, on  the 
average,  into a lesser  number of classes by grouping 
candidates of optimum choice  for a  particular memory 
size. As  the referencing pattern  evolves,  the average  size 
of classes-or  the level of uncertainty with respect  to 
the optimum  choice - fluctuates according  to  the particu- 
lar  pattern of (re-)referencing elements. The removal by 
a reference of a class  member eliminates the  chance of 
its peers being retained in the  same size memory; their 
chances  are lessened. In  fact,  one can  envision an imple- 
mentation of the Y.R operator applied to  the  LRU stack 
via  pointers,  separating the pages into  MMC classes. 

By inspecting the  class distribution it can  also  be 
shown  that  the efficiency (as  described  earlier) of LRU 
with respect  to MIN has a nonzero  lower bound for any 
input  string; it is 1/M,  where M is the memory  size. This 
is not true  for  any  other algorithm: the RAND replace- 
ment  algorithm [3]  has,  for  example,  zero  as lower 
bound. 

There  exist strings that  cause  MIN  to mimic LRU. 
Consider  the following program,  referencing a sequence 
of strictly nested localities: 

ABCDEDCBCDC 

It can  easily  be verified that  at  the end of the string 
the 5-entry P stack  contains, ( 1),2,3,4,5, which is identi- 
cal to  the complete order enforced by LRU. 

One may wish to  consider this strict  nestedness  to be 
a strong locality. On  the  other  hand, a sequential  refer- 
encing of distinct  pages (without re-referencing) pro- 
duces a P stack grouping all but  one  element  into class 2. 
This sequential  referencing phase,  as in the example 
string  used in this paper,  corresponds  to  the acquisition 
of pages for a  new  locality,  before  re-referencing. One 
could venture  the  statement  that  an  LRU-like behavior 
would identify a well established  locality, while a large 
class 2 implies drifting from  one locality to  another (col- 
lecting  “fresh” pages). 

It can also be  shown  that in the  case of cyclically re-ref- 
erencing the  same group of pages, as in a program  loop, 
the  average size of class 2 is about half way between the 
two  extrema mentioned above. 
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In a multiprogramming scheme, a  device could,  for 
example,  constantly  update a  register to contain 
n 

where II is the total number of pages of a program. I f  this 
sum is low (close  to ( n  - 1)2 ) ,  the program  must have 
been in transition. If it is close to  the maximum (LRU) 
value of ( n  - 1)  ( n  + 2 ) / 2 ,  then a locality  must have 
been  established. Having  one register for each program, 
this could be  a  basis for a dynamic multiprogramming 
scheme, helping to  detect  the relative  memory space 
requirements of the program mix. There is, in general, a 
growing need for  more on-line detection of program 
behavior to improve system operation. 

Another interesting  phenomenon is the regularity of 
class  sizes. Class 1 has obviously  only one member and 
is never  empty. Its only member is the most recent ele- 
ment in the  reference string. The  next  reference  de- 
stroys this membership and forces  the element  from 
class 1 into  class 2. This implies that  class 2 is never 
empty  either (except  for a single-page program). 

Consider now an  element a of class Cj. If the  next 
reference is made to a  member of another class  than Cj, 
a will stay in Cj. If,  however,  another  element,  not a ,  is 
referenced in  Cj, then a’s membership  changes to  class 
C,, k > j ;  in fact the referenced  element  becomes  itself 
the sole  element of class I and, again,  class Cj becomes 
empty. 

For  the nonrepetitious  input  string, it is now obvious 
that elements (pages) of the program go through class 
memberships in a cyclic  fashion.  Starting after  class 1, 
the  membership changes through an increasing sequence 
of integer values and eventually returns  to 1 again. 

Since  every element  goes  through  class-2  membership 
for each of its occurrences in the input  string, the size of 
class 2 increases by one  every time a reference is made 
to an element  whose class is other than 2 .  If,  however, a 
class-2 element is  referenced, this  class  collapses and 
becomes  the holder of one element only, namely the  one 
dropping  out of class 1. In  contrast, any class Cj ( j  > 2 )  
increases in clusters by the collapse  of, for  example, Cj-l. 
On  the  other hand, class Cj loses all its members by  a 
reference to any element in it and creates  (or  increases 
the size of),  for  example,  class  Cj+l. 

A further  observation is that  the  output string is con- 
strained and not all sequences of integers are possible 
output strings. This  becomes  obvious when we notice 
that,  at any point in the  output string, in general, integers 
are not in a  strictly  increasing order in the  stack.  From 
eartier  reasoning, 2 is  always a candidate  (and so is 1 for 
the repetitious case). But some  classes may be  empty 
while other  classes may have a multiplicity of elements. 

There  has  not  been enough  time  since the  discovery of 

the  approach  presented in this paper  to study  this  con- 
strainedness of the output. Some  aspects  are,  however, 
obvious. Suppose  that pages are identified by numerals as 
symbols. Even  then  the input  and output  strings  are not 
interchangeable; since any  numeral  should  be  a  possible 
next  input but not every numeral is a possible  next out- 
put, many input strings map into  a single output string. 
If the  inverse  to  the presented algorithm exists,  then  it 
will produce from the  output string an  input string that is 
a representative of a class of reference  strings having the 
same  space/time behavior. 

An additional obvious  constraint is that  the highest 
integer (class  label)  cannot  exceed  the  number of dis- 
tinct elements  already  represented in the input. Also, if 
class Cj is empty but Cj+l is not, then there  exists a class 
i, i < j ,  such  that it has more  than one  element.  Further- 
more, no  runs  (repetitions)  are possible in the  output 
strings  since the  occurrence of, say, p makes this class 
empty,  and before p can  occur in the  output it has  to be 
replenished. Class 2 is  exempt and  can have  runs in the 
output  since it is fed by each  reference  from  class 1,  as 
seen  earlier. 

It  seems  that  the  contents of the P stack, its use  to  con- 
struct  the  output string, and  the  interpretation of the ta- 
ble updating as state transitions offer an entirely dif- 
ferent view of the memory  referencing behavior of pro- 
grams. 

5. Summary 
This  paper  described  an algorithm that  generates from  a 
page reference string the  sequence of minimum memory 
capacities  required to  execute a  program. The primary 
feature of the algorithm is that the  output string is pro- 
duced for  the  range of memory sizes in a single pass. 

The algorithm was first described in terms of numeral 
matrices, which permitted its  correspondence  to  the 
MIN algorithm to be demonstrated  and  also provided  a 
visual means of comparing minimum paging with that 
obtainable  using LRU replacement.  A stack processing 
scheme  to  reduce  overhead was described  for generating 
the MMC string, the description demonstrating  the 
equivalence of the string to  the  sequence of OPT stack 
positions. (A formal proof of this equivalence is provid- 
ed in the Appendix.) 

A scheme  was outlined for implementing the new al- 
gorithm in such a way as  to reduce the  burden  on com- 
puting system processing  and storage  resources.  Thus 
the  output  formerly obtainable  from the  two-pass OPT 
algorithm can now  be  produced  essentially at normal 
processing speed. Also, some of the possibilities of using 
the  data  generated by the new algorithm to gain  new in- 
sight into program  addressing characteristics were dis- 
cussed.  Both of these topics  suggest numerous  avenues 
for  further exploration. 13 
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The P stack is updated  as follows. The value at  the 
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Appendix: Proof of equivalence to OPT 
The  correctness of the original two-pass OPT algorithm 
was proved in [ 1 1 .  Our multivalued MIN algorithm can 
be considered  to be a one-pass OPT algorithm, as we 
mentioned  previously. In  this  Appendix,  we  prove  that 
the  numerals constituting the  MMC string are in fact 
OPT stack positions. In  order  to  do  this, we first review 
briefly both algorithms  from  a slightly different point of 
view,  introducing at  the  same time some additional  nota- 
tion. 

One-pass OPT algorithm 
Recall that,  for  the multivalued M I N  algorithm, two 
stacks  are maintained. The  LRU  stack is a list of the 
pages that  have been  referenced with the most  recently 
referenced page on  top of the  stack.  In  general, page a! is 
above page p if and only if a! has been  referenced  more 
recently  than p. 

The P stack is a list of integers,  each integer  repre- 
senting the potential minimum memory  size  required to 
include the page with which the integer is associated. 

14 When a page is  referenced,  its position in the  LRU stack 

position of the referenced  page is removed from the 
stack  and saved. All items between  the vacated  position 
and  the second  position  from the  top of the stack are 
moved  down one position. The saved  value is compared 
with the value in the  next  lower position in the  stack. 
The larger of these values is placed in this position,  and 
the smaller  value is saved.  The  process is continued un- 
til the  bottom of the P stack is reached. The final saved 
value (the  OPT stack  position or MMC) is placed in the 
second position of the P stack. 

Note  that  the P stack as  described here differs from 
our earlier P stack in that a 1 is  always in the  top position. 
Thus  the number of entires in the  LRU stack  and P stack 
are  always  the same. 

An  alternative  description of this  update  procedure is 
as follows: Let k be the LRU stack  position of the refer- 
enced page. All items  on  the P stack  between 2 and k - 1 
inclusively are marked. The  next item  marked is the  one 
that  has  the minimum value from among the items that 
are  at  or below  position k and  above  the last  marked 
item, if any. This  process is continued until the item at 
position k is marked. The  marked item in the lowest posi- 
tion is the  output value. It is  put in the second position of 
the P stack. All other marked  items are shifted to  the 
next lower  marked  position.  We will show the  output  to 
be the OPT stack  position, as defined below. 

Two-pass OPT algorithm 
The  two-pass  OPT algorithm may be summarized as fol- 
lows. On a first pass through a page address  trace,  the 
algorithm  produces the  forward  distance string by creat- 
ing for  each page referenced the number of distinct 
pages referenced  before that page is re-referenced. Thus, 
let R = x,, x*, . . ., xN be  the  reference string, and let F = 
F, ,  F,, . . ., F ,  be the forward distance string. The two- 
pass  OPT algorithm is a  stack  algorithm that  uses a  prior- 
ity list created from the forward distance string to  deter- 
mine the new OPT stack  positions after a page has  been 
referenced. Thus  at time t let Q,  be the OPT stack  and 
L, be the priority list. Zfx,,, is the  next page referenced, 
its position k in Q, is the OPT stack distance and is placed 
in the  output string. The  referenced page is moved to  the 
top of the Q-stack  and displaces  the page  already there. 
The items above position k are rearranged as follows: 
The priority for  the displaced  page  and the page in the 
next position are  compared.  The page with higher priority 
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the next page position is k ;  then the last  displaced  page 1s 5 4 4 2 5 4 2 3 2 forward distance string 
placed in position k .  

Priority list L is updated as follows. All priorities that A 
are  less than or  equal  to  the forward distance F,,,  are c B 4 3 3 2   1 2 1 2  

4 4 3 2 1 3 3 priority lists 
reduced by one,  and  the priority for the  referenced  page D 2 1   4 4 4 4  

XI+1 is F,+l. 
E 5 5  5 5 5  

9 Example of two-pass O P T  
Let  the given sequence of page references  be ABCDED 
BCB. The requirement that  an arbitrary priority be  given 
to pages that  are not referenced again can  be met by ad- 
joining to  the end of this  string the  set of referenced  pages 
in some order (e.g.,  alphabetical order  as in [ 1 1  ). Thus 
the given page reference string is extended to  the string 
ABCDEDBCB  (ABCDE). The forward distance string 
for  the original string is found to be 5 4  4 2 5 4 2 3 2. The 
priority lists are given in Fig. 13. 

For  example, we obtain the second  from  the  last col- 
umn of the  priority list in Fig. 13 (2 1 3 4 5 )  from the 
previous  column ( 3  2 1 4 5 )  by observing that  the refer- 
enced page C has a forward distance of 3. Then  the en- 
tries 3 and  2 are reduced by 1 ,  and the  entry 1 is changed 
to 3 to obtain the required  updated priority list. 

The  OPT stack  positions, displayed in Fig. 14, are 
obtained by using this  priority list. For  example,  the 
stack  positions in the third  from  last  column ( 5  1 4 2 3 )  
are changed when C is referenced as follows: 

The referenced page C is given stack position 1. Since 
C occupied  stack  position 4 and is changed to  stack po- 
sition l ,  the page formerly in position l must  change and 
the pages in positions  2 and 3 may also  change. Thus B 
in position 1 and D in position  2  have their priorities 
compared.  Since B has a priority of 2  and D has a priori- 
ty of 4, B takes  stack position  2 while the priority of D is 
compared to  the priority 5 for E, the page in position 3. 
Then D takes  stack  position 3 and E drops  down  to po- 
sition 4, the original position of the referenced page. 

Partially Jilled numeral  matrix 
We have  shown informally in section  2 that  the MMC- 
values can be generated in one pass  and claimed that  the 
MMC values are, in fact,  the  OPT stack distances.  In  our 
numeral matrix algorithm, however, we maintain a  se- 
quence of OPT  stacks only partially filled in, as  opposed 
to  the two-pass OPT algorithm, which maintains stacks 
for all times up to the  present time, because  the first pass 

In  Table  2,  the  sequence of partially filled  in numeral 
matrices H ,  are given for  the  above reference  string. To 

L supplies all necessary information  about the  future. 

Figure 14 OPT stack updating 

A B C D E D B  
A 1 2 3 4 5 5 5  
B 1 2 2 3 3 1  
C 1 3 4 4 4  
D 1 2 1 2  
E 1 2 3  

m m a m x 2 3  

C B  
5 5  
2 1  
1 2 OPT stacks 
3 3  
4 4  
4 2 OPT stack 

positions  (outputs) 

conform  with the notation for  the two-pass OPT algo- 
rithm, the  output  associated with a first reference to a 
page is the  symbol 00. We also list the available  stack 
position sets A ,  and  the unassigned page sets B,, which 
are defined formally in the following text.  For A ,  and B ,  
only the  nonempty  columns  are shown. 

We presented  earlier  the matrix  updating procedure, 
which is now given an interpretation using OPT-stack 
terminology. For  example, when C is referenced at  time 
X, the row  labeled C is filled for  times 4, 5 ,  6, 7, and X. 
For  these  times,  the available  stack  positions (obtained 
from A ,  for t = 7 )  are given by 

t 4 5 6 7  
3 

2 2  
4 5 5 5  
3 4 4 4  

Thus  the  sequence of entries 3 4  4  4 1 is made.  For t = 

4, the minimum, 3, of the available set { 3, 4) is assigned 
to C. For t =  5 ,  the minimum of the  set (4, 5 }  is assigned 
to C, both 4 and 5 being greater  than 3. For t = 6, the 
value 4 is assigned to C because it is the minimum of the 
set 

{ k  1 k 1 4  and k E (2, 4, 5 >  >. 

Similarly, 4 is assigned to C for t = 7 .  For t = X, the stack 
position 1 is assigned to C. 

This informal procedure now enables us to establish 
that  the  one-pass algorithm yields the  same  output  as  the 
two-pass OPT algorithm of [ 1 1. 1: 
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Time  Page 
t referenced 

x, 
Numeral 

matrix 
Ht 

Unassigned 
position 

list 
A ,  

Output 
M M C ,  

1 

2 

A 

B 

A I  cc 

cc A I  
B - I  

3 C A I  
B - 1  
C " l  

A 1  
B - 1  
c - - 1  
D - - - l  

3 
22 

B 
A A  

cc 

4 D 4 
33 

222 

C 
BB 

AAA 

5 E A 1  
B - 1  
c - - 1  
D - " - 1  
E - " - l  

A 1  
B - 1  
c - - 1  
D - - - 1   2 1  
E""1 

A 1  
B - 1  2 2 3 3 1  
c - - 1  
D - - - l   2 1  
E - " - l  

A 1  
B -   1 2  2 3 3 1  
c - - 1  3 4 4 4 1  
D - - - l   2 1  
E - " - l  

A I  
B - I  2  2 3 3 1 2 1  
c - - 1  3 4 4 4 1  
D - - - 1   2 1  
E""l 

5 
44 

333 
2222 

D 
cc 

BBB 
AAAA 

2 
455 

3344 
22233 

E 
ccc 

BBBB 
AAAAA 

2 

3 
22 

4555 
233444 

D 
EE 

cccc 
AAAAAA 

3 

4 
33 

222 
2345555 

B 
DD 

E E E  
AAAAAAA 

4 

9 B 2 
344 

2233 
23455555 

2 
DDD 
EEEE 

AAAAAAAA 

L 

8 Formal  structure 
First  we  reinterpret,  and  extend, earlier  notations. Our 
partially filled numeral  matrix will now appear  as a par- 
tial  function H, .  Lists A ,  and B,,  introduced in Table 2, 
will be  formally defined. The symbol k is any stack posi- 
tion. A numeral string S(a) consists of a sequence {yi} 
of integers, t ,  < i 5 t ,  where a is a  page previously refer- 
enced at  time ta. The set of consecutive integers  from a 
to b is  denoted by [ a ,  61. 

Let 2, be the  set of pages referenced up to time t and 
16 let '2, be the number of pages in E,, i.e., n, = IE,I. 

Recall that a partial  function  from a domain D to N is 
a  function defined on a subset of D to N .  Thus in our 
case  the partial function H ,  is defined on a subset of 
[ 1 ,  t ]  X x, to  the interval [ 1 ,  n , ] ,  i.e., H,:  [ 1 ,  t ]  X Z, +. 

These partial functions will be defined recursively. 
First define HI to be the function that assigns to ( 1 ,  xl) 
the value 1 ,  i.e., 

HI = ( (1 ,  x l ) , l }  or 

H l (  1, X I )  = 1. 

[ I ,  4 .  

L. A. BELADY  AND F. P. PALERMO  IBM J .  RES. DEVELOP. 



Now  suppose H ,  has  been defined on a subset of [ 1 ,  t ]  X 

Z, to [ 1 ,  n,]. Thus H I  is the partially filled numeral 
matrix. Let A , ( i )  be  the complement of the  set of en- 
tries of the ith column of H,. Similarly B,(i)  is  the  set of 
pages in 2, for which the ith column does not  contain an 
entry. Formally,  we  have 

A , ( i )  = [ 1 ,  n,] - {kl(3&X,) such  that H,( i ,  a )  = k} 

B,( i )  = X, - (a1 (3E[ I ,  n , ] )  such that H,(i, a )  = k } .  

For any  page a ,  we define the immediate  minimum 
string ( IMS)  {yil for t, < i 5 t + l}, where ta = the last 
time a was  referenced.  (If this is the first time a is refer- 
enced, ta = 0.) First define y,, = 1 and yI+, = 1 .  Then 
define y i  for t ,  < i 5 t by the formula 

y i=  min{klk 1 yi-,  and E A , ( ; ) } .  

For a given a ,  the partial  function S,(a) is defined for all 
(i, a )  such that t, < i 5 t + 1 by the formula 

S t ( a )  ( i ,  a 1 = yi.  

Now if the  reference = a ,  the partial  function 
HI+, is defined to  be  the extension of H I  by adjoining 
the  IMS {yilt,  < i 5 t + I} .  Thus 

H,,, = H , U S , ( a ) .  

Using  this definition of the sequence H,, we can now 
prove the following theorem. 

Theorem 1: I f  H ,  ( i ,  a )  = k ,  then k is the  OPT stack posi- 
tion for  page a at  the  time i. 

This theorem results from the following reasoning. 

Lemma 2:  If H I  gives  the OPT stack table  at  time  t,  then 
S ( a )  determines  the OPT stack  entries for  a = x,+~ for 
all times  since a was  last  referenced. 

Proofi If a was not previously referenced,  then  its OPT 
stack  position for all i < t + 1 is 00, and  for i = t + 1, it5 
position is 1. 

If a was last referenced at time tu, then  its stack posi- 
tion at  that time  was 1. The position of a at  each time 
t, < i 5 t is determined in the OPT algorithm as follows: 
If a was at  stack position y i  at time i ,  it will remain at 
position y i  if y i  has  not been  assigned to  any  other page 
at time i + 1 ,  i.e., y i  is in the  set A, ( i  + 1) .  (Note  that i 
as used here  corresponds  to r as used in section 2.) 
Otherwise a will be  displaced  from  position y i  if y i  has 
been assigned to  some  other page, i.e., yi @ A,( i  + 1). In 
this case  its stack  position will be the first unassigned 
stack position that is greater than yi. 

The  OPT algorithm may be interpreted  as follows: A 
page a whose stack position is y i  at time i will remain at 
that position at time i + 1 because 

JANUARY 1974 

1 .  The  stack position of the  page  referenced at time 
i + 1 is less than y i  (i.e., a is not challenged),  or 

2. If a is challenged, it has a higher priority than all chal- 
lengers for its position. But this can happen only if 
y i  has  not been assigned to a page with higher priority. 

Suppose a is at stack position y i  at time i. Suppose that 
page p is referenced  at time i + 1 and  is in position Ai:  
then if y i  > Ai,  a will remain in position y i .  The stack 
positions for all pages  with higher priority  than y have 
already  been  determined (by  the induction hypothesis). 
Thus a will be assigned the first available  position that is 
1 yi.  A page cannot achieve  a  smaller stack position than 
its present value. In the contests  for  any given stack 
position, the positions for all pages with higher  priority 
than a have  already been  assigned. Thus a may compete 
for all stack positions 1 y i  and will  win the first contest 
in which it has a higher priority. But this will happen only 
for stack  positions  that have not been assigned. Thus  the 
stack  position for a at time i + 1 is given by 

min{klk 2 y i  and E A , ( i  + I ) } .  

In  the definition of the partial functions, we intro- 
duced the  sets A , ( ; )  and B,( i )  for i 5 t .  These  sets will be 
used to  establish  the connection to  the one-pass OPT 
algorithm. First we list some  properties of A , ( i )  and 
B , ( d .  

1 .  B, ( i )  B , ( i +  1 )  

2. IA,(i)l 5 IA,(i + 111 

3. t ~ , ( 4 I  = IB,(i)l 

4. l A , ( i ) /  < lA,(i + 1)1 3 A, ( i  + 1 )  

= A , ( i )  u { k }  for some X .  

5. If lA,(i)l = IA,(i + 1)1 then A , ( ;  + 1 )  

= ( A , ( i )  - { j } )  U { k }  for somej  and k .  

6. (a )  A , ( t )  = [2, n,l ,  

(b) B, ( t )  = Et  - {x,}. 

Thus, given H,, the  sequence of sets A , ( i )  and B,  ( i )  
are  determined. If the page a is referenced at time 
t +  1, i.e., = a ,  then H,+,  is  constructed by ad- 
joining S t ( a )  to H,. The resulting sequences A , + , ( ; )  
and B,+,(i) as obtained from HI+, can  also be  ob- 
tained from  the  sequences A , ( ; )  and B, (  i )  using 
formulas 7 and 8 below if a has been  previously 
referenced and  formulas 9 and 10 below if a has not 
been  previously referenced.  Formulas 6a and  6b give 
thevaluesforA,+,(t + 1 )  andB,+,(t + 1 ) .  

If a has been previously referenced, then X,+, = 

Zt and n,,, = n,. 17 
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I t 1  

+ 
(Lt, PI) a + (Lt+PPt+l) 

Figure 15 Effects of a reference to page LY. 

7 .  = A,( i )  - {r i } .  
8. B,+l( i )  = B , ( i )  - { a }  fort, < i 5  t .  

If a has not  been previously referenced, then E,+, = 

E, U { a } ,  and nt+, = n, + 1. 

9. A t + ] ( i )  = A , ( ; ) ,  1 5  i 5  t. 

10. B,+ ,  ( i )  = B t ( i ) ,  1 5 i 5 t .  

The  above  formulas  are easily demonstrated  and their 
proofs are left to  the  reader. 

Dejinition of L and P stacks 

The L,  and P,  stacks  are obtained directly from the se- 
quence of sets A , ( i )  and B , ( i )  as follows. First we intro- 
duce  the  sequence of times t i ,  i= 1 , .  . ., n, where n = n,. 
Time ti is defined as  the first  time that i pages were  not 
assigned, i.e., ti = min { S I  IB,(s) I = i }  for i = 1; . ., n - 1 
and t ,  = t + 1 .  Also define B, (  t + 1 ) = X,. Then we let 
ai be the page that is in B ,  ( li) but  not in B ,  ( ti - 1 ) . Thus 

a i € B , ( t i ) - E , ( t , - l ) f o r i = 1 ; . . , n .  

Note  that  the  sequence of pages a1; . ., a, are in LRU 
order with a1 being the least  recently  referenced  and a, 
the most  recently  referenced. Note  also  that a,  is the 
page referenced  at time t .  For  each i = 1 ,  . . ., n - 1 ,  let 
S ( a i )  be the string  adjoined to  the partial  function H, 
after strings S ( a , ) ,  . . ., S ( C Y ~ - ~ )  have  been adjoined and 
define S' (a i )  to be the string S(ai) truncated  at time t .  
Thus 

18 S' (a i )  = { ( j ,  ai, yj) I ( j ,  ai, yj) E S ( a i )  and t i  5 j 5 t } .  
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LetX,bese t  [ l , t ]  X Z , X  [ I ,n ]andG,=X,- - , .Then  
n-1 

G, = u S'(ai). 
i= 1 

Note  that  the strings S ' ( a i )  are the n - 1 primitives 
shown in Fig. 8. 

The  set G, when written  as  the indicated  union of 
primitives corresponds  to  the  rearrangement of the en- 
tries in the complement of the numeral  matrix  into primi- 
tive  strings. 

Define P,  to be the  set of integers [ 1 ,  nt]  in the  order 
induced by the strings S' (a i ) .  Thus 

P , ( l )  = 1. 

P , ( j )  = k if and only if 

( t ,  a , - j + l , k ) E S ' ( a , - j + l )  f o r j =  2 ; . . ,  n. 

Thus P, is the P stack defined earlier  and  marked in 
Fig. 8. 

Also define L, to be the  set of pages X, in the  order 
induced by the  sequence a,, . . ., a,, Le.,  in LRU order. 
Thus 

L , ( j )  = an-j+l f o r j  = 1; . ., n.  

L, is the LRU stack. With these definitions, we now 
have  the following lemmas. 

Lemma 3: If ( ~ ~ € 2 ,  is referenced  at  time t + I ,  the output 
y ,  is given by the  formula 

y t =  rninA,K(t), 

whereA:(t) = {k l3 j ( t ,  aj,  k ) E S ' ( a j )  andj  5 K }  

= { P , ( j )  / j  2 n - K + l } .  

Note  that A:(; )  is  the  set of elements  ofA,(i)  that  are 
at level K or lower, Le., whose index is 1 K .  In  fact, it 
can be shown that  the IMS for  the referenced page a is 
calculated by selecting the minimum element in A:( i )  
for tK < i < t + 1 .  Thus  we  have  the formula. 

yi = min A: ( i )  for t 1 i 2 tK, 

which is easily proved by induction. 
The  next theorem asserts  that  the updating of stacks 

L, and P ,  are in step with the updating of the  sets A , ( i )  
and B , ( i )  for i 5 t .  Note  that A ,  and B ,  denote  the  sets 
oflistsA,(i)  andB,(i)  fori < t + 1 .  

Theorem 4 :  I f  P ,  and L, correspond  to  the  pairs A ,  and 
B,,  and aK€Z, is the next page  referenced, then  the stacks 
P;+]  and  Li+,  updated by the  one-pass OPT procedure 
are  the  same  as  the  stacks Pt+ ,  and L,+, corresponding  to 
the  pairs At+ ,  and  B,+,. 

This  theorem follows from the  fact  that  the transition 
from A , ( i )  to At+l  ( i )  is effected by removing the element 
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yi from A,( ; )  and reordering the remaining elements using 
the updating algorithm for  the P stack. 

This is made  precise by the following definitions  and 
lemma. Let P = (PI , .  . ., P,v) and Q = ( q , , .  . ., q,v) be  or- 
dered sets of integers. We say  that P i Q if P and Q 
satisfy the following conditions for i = 1 , .  . ., N and j = 1, 
..., N :  

1.  Pi i qi;  

2. I F  pi 5 qj and j 5 i, then qi 5 qj. 

The  set P' = P - { p } ,  where p = min P is said to be 
canonically  reordered if the  elements pi' of P' are ob- 
tained from P by the  recursive formulas 

t ,  = P , ;  

t i + , = m i n { t i , p , + , } f o r i = l ; ~ ~ , N - l ;  

pi' = max {t i ,  pi+,} .  

Lemma 5: Let P' = P - { p }  and Q' = Q - { q } ,  where 
p = min P and q = min Q. If P' and Q' are  canonically 
reordered and  P i Q ,  then P' i Q' .  

This lemma is proved by a straightforward computa- 
tion. It is used to  construct  an inductive proof of The- 
orem 2.  

These  theorems establish the equivalence of the one- 
pass OPT to  the  two-pass OPT algorithm. This follows 
because  for any  input the  same  output is obtained, and 
the  updated  stacks Pi+, and Li+, correspond  to  the par- 
tial function Ht+,. 

The  above discussion may be  summarized by means 
of Fig. 15. The horizontal arrows indicate that when 
page a is referenced  at time t + I ,  the numeral  matrix 
H,, the pair of sequences of sets (A, ,  B, ) ,  and  the pair of 
stacks (Ll, P I )  are transformed to  the indicated objects. 
We have  also  shown how to  construct  the pair (A,, B, )  
from H ,  and (Lt ,  P I )  from (A, ,  B l ) .  The  results of the 
above lemma may be stated  as:  The transformation  from 
H ,  to (Lt+,, PI+,) is independent of the  path  taken in 
Fig. 15. 
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