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Lower Bounds for the Partitioning of Graphs 

Abstract: Let a  k-partition of a graph be a  division of the  vertices  into k disjoht  subsets containing m, 2 m2,. . ., 2 mk vertices.  Let E, 
be the number of edges  whose two  vertices belong to different subsets.  Let A, 1 A,, . . ., 2 A, be the k largest  eigenvalues of a matrix, 
which is the  sum of the  adjacency  matrix of the  graph plus any diagonal matrix U such  that  the  sum of all the  elements of the  sum matrix 
is  zero.  Then 

A theorem is given that  shows  the effect of the maximum degree of any node being limited, and it is also  shown  that  the right-hand  side 
is a concave function of U .  Computational  studies  are  made of the  ratio of upper  bound  to  lower bound for the two-partition of a number 
of random graphs having up to 100 nodes. 

Introduction 
Partitioning of graphs  occurs in computer logic parti- 
tioning [ 1 ,  21, paging of computer programs [ 3, 41, and 
may also find application in the  area of classification [ 5 ] .  
Graph partitioning is the  problem of dividing the ver- 
tices of a  graph  into  a  given number of disjoint subsets 
such  that  the  number of nodes in each  subset is less than 
a given number, while the  number of cut edges, i.e., edges 
connecting nodes in different subsets, is a minimum. The 
problem of computer logic partitioning is actually  some- 
what different; for a thorough description of that  problem, 
see Ref. 1. The partitioning of graphs is a simplified ver- 
sion of that problem. 

In  this  paper,  we  assume  that  the  number of vertices 
in each  subset  is  prescribed.  Let A = A ( G  ) be  the adja- 
cency matrix of the graph G ,  which will be defined later, 
and V any diagonal matrix  with the  property  that  trace 
( V )  is the negative of the  sum of the valences of the ver- 
tices.  We derive in Theorem 1 a lower bound for  the num- 
ber of cut edges in terms of the eigenvalues of A + U .  
For the case of division into  two  subsets,  we  present, 
using a different  method of derivation,  another bound that 
is stricter for  this  special case.  The bound  given in Theo- 
rem 1 turns  out  to be a concave function of U ,  a fact  that 
suggests  exploitation by means of mathematical pro- 
gramming. Computational  results  are  presented, in which 420 
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the bound is compared with the  results of actual,  but  not 
necessarily minimal, partitioning.  We also  compare ex- 
perimentally the  results when Uii  = -di (the  valence of 
vertex i), and when the { Uii} vary. 

We  believe that, in combinational  problems whose 
complexity  suggests the  use of heuristic methods,  such 
as  the partitioning of graphs, it is worthwhile to  have a 
lower bound on what can be achieved, regardless of the 
algorithm,  provided the calculation of the bound is itself 
not too  onerous and the  bounds  derived  are  not  too  far 
from the  correct value. The  results  presented  here may 
satisfy these criteria. The calculation of the bound may 
itself suggest  new approaches  to  the original problem. 
Also, the  fact  that different methods  are used to  derive 
the bounds of Theorems 1 and 2 suggests that a more 
comprehensive  approach  to  the problem may be possible. 
We should also mention that a  different use of eigenvalues 
and  eigenvectors  on a  related  problem is  discussed in 
Ref. 6 .  

This  paper  does  not  present  details of our  experiments 
on  the algorithm for varying (I, because a  new  method 
which converges  to  the maximum  value of the bound has 
since been found  by Jane Cullum.  We are grateful to 
Jane Cullum and Philip  Wolfe, of the Watson Research 
Center,  for useful conversations  about  the  present work. 
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Derivation of lower bound 
Let G be a graph, with  edge set E ,  and vertex set V.  For 
any  set S, IS1 denotes  the  number of elements in S. Let 
A (G)  = ( a i j )  be a square matrix of order (VI and be  de- 
fined by: 

a , .  = { 1 if vertices i and j are  joined by an edge, 
U O‘otherwise. 

Thus, A ( G  ) -the adjacency  matrix of G -is a square 
symmetric (0 ,  1 )  matrix with 0 diagonal. 

Let  the eigenvalues of any real  symmetric  matrix M 
be denoted by A, ( M )  1 A, (M)  1 . e ;  let U be  any  di- 
agonal  matrix such  that ZiUii  =-2)El; let m, 2 m, 1 

and  let VI, .  . ., Vk be  disjoint subsets of V such  that 
(Vil =mi,  i =  I;.. , k.  Finally,  let ,ec be the  set of edges 
of G,  each of which has its two  endpoints in different Vi. 

. . .  - 2- mk be  given  positive integers  such  that Zmi = \V I ;  

Theorem 1 .  Given  the notation above, 

(E,[ 1 - $ miAi(A + U ) .  

The right-hand  side is a concave function of U .  

Proof. It is easy  to  see  that  the main theorem of Hoff- 
man and Wielandt [7], when  applied to real symmetric 
matrices M and N of order n, yields 

Trace M N T  5 2 Ai (M)Ai (N) ,  (1) 

in which the  Trace of a matrix denotes  the sum of all the 
elements of the diagonal.  We note  that, if N T  is the trans- 
pose of N ,  then  Trace M N T  = ZijMijNij. Let M = A + U 
and N be the  direct sum of k matrices,  each of which  con- 
sists entirely of I’s, and is defined on  the  rows  and col- 
umns  corresponding  to V i ( i  = i , .  . ., k ) .  Then 

A l ( N )  = m,, . . e, A k ( N )  = mk, 

A k + , ( N ) = . . . = A I V I ( N ) = O .  \ _  ( 2 )  

It is clear  that 

IVI x h i ( M ) A i ( N )  = miAi(A + U ) .  ( 3 )  

On  the  other  hand, 

Trace M N T  = -2)EI + 2()El - (E,..) = -21E,I. (4) 

Inserting ( 3 )  and (4) into ( 1 )  proves  the first sentence 
of Theorem 1. 

To prove  the second sentence, it is sufficient to show 
that ZrniAi(A + U )  is a convex function of U .  If R ,  S are 
real symmetric  matrices of order n,  and if 15 n, then [8] 

2 Ai(R + S)  4 2 Ai(R) + 2 Ai(S). 

n 

1 

1 

I I I 

1 1 I 
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Hence 

+ L  2 (A + U , ) ]  

+ x 5 Ai(A + U , ) .  l 1  

1 

I x hi(A + U )  is a convex function of U .  

Next 

2 miAi(A + U )  = ( m ,  - m,)Al(A + U )  ( 5 )  

+ (m,  - m,)[h,(A + U )  +A,@ + U ) l  

1 

k 

1 

+ . * .+  mk[A1(A + U )  

+ . . . + & ( A  + U ) ] .  

Since mi 1 mi+l, i = 1 , .  . ., k - 1 ,  and mk > 0,  it follows 
that  the right-hand  side of (5) is a  nonnegative  sum of 
convex  functions of U and  hence a convex function of U .  

The  next  theorem  is  concerned with a partition into 
two equal groups when the maximum degree of any  ver- 
tex of G is less than d. 

Theorem 2. Given 1 ) a graph  with an  even  number of 
vertices, 2 )  that m, = m2 = IV)/2, 3)  that  the  degree of 
any  vertex  does  not  exceed  some  value d ,  and 4) that 
0 5  S 1 5  n/4, 0 5 6,Z n/4, and 5) that x 5 I repre- 
sents a simultaneous solution of the  equations 

x sin 26; = ( 1 - x) sin 26,, ( 6 )  

- [A,(A + U )  + A,(A + U ) ] / 2  = x{ 1 - sin 26, 

+ 2 ( d  - 1 )  [ 1 - COS (6, + a,)]}, (7 )  

Note:  Setting 6, = 6, = 0 causes this theorem  to be  a 
special case of Theorem 1, namely, the  case in which 
m, = m, = JV1/2. 

Proof. We first show  that if there  exists  any partition 
into  two equalized groups with e < (VI12 edges  cut, then 

-- [A,(A + U )  + A,(A + U ) ]  5 Z(1 - sin 2a1 1 
2 

+ 2 ( d -  l ) [ l  -  COS(^^ +a,)]}, (9)  

where 2 = 2e/l VI and a, and a2 are any numbers satis- 
fying 
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Figure 1 Locations of the groups A , ,  A, ,  B , ,   B ,  in  a coordinate 
system defined by y , ,  yo. These four groups are defined in the 
proof of Theorem 2. 

Z sin 2a, = (1 - 2 )  sin 2a,, 0 5 a1,a2 5 ~ / 4 .  (10) 

Later we show  that  the  result given above is sufficient to 
prove  the  theorem. 

It  has been shown [9] that, if y 1  and y2 are any two 
orthonormal vectors, then 

A, ( A  + U )  + A, ( A  + U )  2 

YIT(A + U ) Y ,  + yzT(A + U ) Y 2 ,  ( 1 1 )  

since A and U are  symmetric matrices.  We can  further- 
more  see  that 

ykT ( A  + ) Y k  = x x AijYk$kj + x ‘ i i y k ;  
i j  i 

where yki are  the  components of y,. Let us define 

Uii’ = uii + x A,. ( 1 3 )  
j 

Since x A ,  + x Uii = 0, we  have 
i j  1 x Uii’ = 0. (14) 

z 

We  now  divide further  each of the  two  groups 1, 2 into 
which the corresponding V that was partitioned; sub- 
group A , ( k  = 1,2) is a set of exactly e vertices, which 
includes all the  vertices  that  have  connections  to  ver- 
tices  not belonging to group k .  As long as e < IVl/2, such 
a set can  always  be generated.  The  other  subgroup B ,  
has, of course, only connections  to  group A,. There  are 
\P’//2 - e vertices in B,, and N ,  connections  between 
A ,  and B,. We  now set values for ymi ( m  = 1,2), as indi- 

422 cated in Fig. I .  
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i E B ,  y l i  = rn cos (Ti4 + a2)  

yZi = \m sin ( ~ / 4  + a,) 

i E A ,  y l i  = \m cos (Ti4 - al) 

yzi  = \m sin (a/4 - a,)  

i E A ,  y l i  = m c o s  (Ti4 - 01,) 

ypi  = - sin ( ~ i 4  - a, )  

i E B ,  y l i  = m c o s  (Ti4 + a,) 

yZi = - sin ( ~ / 4  + a,). (15)  

Since IA,/ = JA,I and lB,I = lB,I, then y ,  and y, are 
clearly  orthogonal. We now show  that condition (10) 
proves lb,ll= 1, k = 1, 2 .  It  can  be  seen  that 

YITyl = ( ~ / I v I ) [ ( I v I  - 2e) sin2 (n/4 + a,) 

+ 2e sin’ ( ~ / 4  - a,) 1, 

yzTyz = ( ~ / I v I ) [ ( I v I  - 2 e )  cos’ ( ~ / 4  + a,) 

+ 2e COS’ ( ~ / 4  - a,)], 

S O  that ylTyl + yZTy, = 2.  However,  we also require  for 
normality that ylTy, - y:y2 = 0 so that 

o =  ( 2 / l V I ) [ ( l V l  - 2 e )  cos ( 4 2  + 2 4  

+ 2e cos ( ~ / 2  - 2a,)] 

or, dividing by two and using Z = 2e/l VI, we have 

0 = ( 1 - Z )  cos (T/2 + 2a,) + z cos (T/2 - 201,). 

Since  cos (n/2 + x) = - sin x, we find the  above  to  be 
equivalent to 0 = -( 1 - Z )  sin 201, + Z sin 2 ~ 5 ,  which 
is condition ( 10). 

Inserting  Eq. ( 12) into ( 1 1 ) we have 

-A,(A + U )  - A,(A + U )  5 - x A u [  (yli - Y , ~ ) ~  1 
2 ,  j 

+ (YZi  - YJ’I 

- 2 Uii‘ (Y,; + .YZiZ). 
z 

However, from Eq. (15) it follows that y l i 2  + y,; = 

2/lVl and,  when  Eq. (14) is  used,  the  term in Uii f  falls 
out.  The  other part becomes,  on  substitution of Eq. ( 15), 

-X, - A, 5 x Aij (8 / lVI)  sin2 ( ~ / 4  - a , )  
i E A l  J E A ~  

+ ( x ,x + ) ( ~ A ~ ~ / I v I I  [sin (T/~“CU,) 

- sin ( ~ / 4  + a,)]2 + [cos ( ~ / 4  - a, )  

- cos (T/4 + a,)],, 

i E A l  J E B ~  iEAZ j E B 2  

which simplifies to 
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-A, - A, 5 (8ellVI) [sin' ( ~ / 4  - a , ) ]  

+ (2/1~1 ( N ,  + N ~ )  [sin' ( r i 4  - a, )  

+ sin' ( n / 4  + a,) 

- 2 sin ( a / 4  - a, )  sin (7ri4 + a2)  

+ cos2 (Ti4 - a, )  

- 2 cos ( d 4  - a, )  cos ( d 4  + f fJ 

+ cos' ( 4 4  + a, )] .  

Upon using standard geometric  identities, we  have 

-A, - A, 5 ( 4 e / l V l ) ( l  - sin 2a,) + [ 4 ( N ,  + N,) / lVl l  

x [ I  - cos (a ,  + f f 2 ) ] .  

Because each node  has a  maximum degree of d ,  we  have 

e + N ,  5 ed 
e + N ,  5 ed 

so that N ,  5 e ( d  - 1 )  and using Z = 2e/ 1 VI, we  have  after 
also dividing both sides by two 

~ ( - A l - A X , ) 5 Z ( 1 - s i n 2 a 1 ) + 2 Z ( d - 1 )  1 

x [ I  -cos (Cy, + a , ) ] ,  

which is the inequality ( 9 ) .  
The second part of the proof consists in showing that 

any  possible value of x that  solves Eqs. ( 6 )  and ( 7 )  must 
be less  than Z .  The value of x is then used in the inequal- 
ity (8).  

Let us assume  that we have found x, S , ,  6, satisfying 
Eqs. ( 6 )  and (7 )  and  that x exceeds  the minimum pos- 
sible  value of Z ,  which is a characteristic of the graph. We 
fix a, = SI, and with x > Z ,  it turns  out  that a, exists if 6, 
exists,  and  furthermore,  that a2 < S , ,  which  can be veri- 
fied by inspecting  conditions ( 6 )  and ( I O ) .  This leads to 

a, + a, < 6, + s, 5 7T/2 

and 

-cos (a ,  + a,) < -cos (6, + S 2 ) ,  

so that, with d 1 1 ,  

1 - sin 26, + 2 ( d  - 1 )  [ I  - cos (6, + 6,) 
> 1 - sin 201, + 2 ( d  - 1 )  [ l  - COS (a ,  + a , ) ] .  

Using Eq. (9)  we find 

x { 1 - s i n 2 S , + 2 ( d - 1 ) [ 1 - c o s ( S , + S 2 ) ] }  

> Z { 1 - s i n 2 a 1 + 2 ( d - 1 ) [ 1 - c o s ( a l + a , ) ] }  

>- -  
- 2  (A ,  + A'). 

The transitivity of the > relationship leads us then  to 
conclude,  contrary  to  hypothesis,  that Eq. ( 7 )  is not 
satisfied, so that x I Z .  

Q.E.D. 

Theorem 2 is interesting in the  case  for partitions into 
two  groups in which E, is vanishingly small as  compared 
to I VI. In this  limit, 6, + 0 and  we may readily compute 
the minimum of [ I  - sin 26, + 2 ( d  - I ) (  1 - cos S , ) ] .  
This allows us  to  compute  the  ratios R of the bound  given 
by Theorem 2 to  that of Theorem 1 as a function of d:  

d =  3 R = 1.68 
4 1.42 
5 1.30 

10 1.12 
20 1.06 
50 1.02 

This  shows  that,  for small d ,  the bound  given by Theorem 
1 will be off by a significant amount. While a factor of two 
to  four  between  actual  result and  theoretical  bound may 
be  tolerable,  since  one may be able  to  develop heuristic 
rules  for  such a ratio, much  larger factors would make  the 
present work useless. Accordingly, some  results  are 
presented in the  next section  showing that  the ratio R is, 
at  least in certain  cases,  not excessive. 

Let B = A  + D ,  where D is a  diagonal  matrix chosen 
so that  each  row sum of B is 0 ;  i.e., dii is the negative of 
the valence of vertex i. For this choice, D = U ,  we ob- 
tain another  improvement of Theorem I .  This  theorem 
yields  a better  estimate if the {mi}  are different. 

Theorem 3 .  Let B be defined as  above,  and a2 3. . .1 ak 
be  the  roots of 

Then 

E, 1 - 
j= 1 

Proof. Let J be  the  matrix of I's, and N be  as defined 
in the proof of Theorem 1 .  By the  methods used in 
Theorem 1, it follows that 

E, 1 -+ A j ( t J  + N ) A j ( B )  [because Tr  ( t J  + N ) B  
j = 1  

= Tr  N B ]  = -2 x Aj( tJ  + N I X j @ ) ,  
j = 2  

I n  

since  the  hypotheses  on B show  that A,@) = 0. In- 
equality (17) is valid for all t -+ m. But it is easy  to  see 
that  as t + m, A , ( t J  + N )  + 00, A , ( t J  + N )  -+ a,, . . ., 423 
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Table 1 Computed bounds with partitioning of results into two groups. 

Bl, Bu Bu/B[~ 
Graph No. of No.  of (Heuristic 

number  nodes  edges Ui,’ = 0 Best U’ partition) 

AI 20 54 7 11  13 
A2 

1.18 
20 51 5 11 13 

A3 20 45 4  7 I O  
1.18 
1.43 

A4 20 46 6  10 15 
A5 19 45 7  9 12  1.33 

1 S O  

A6 20 40 3  7  9 
A7 20 48 5  9 13 

I .29 

A8 
1.44 

20 34  2  5  7 
A9 20 51 8 13 16 1.23 

I .40 

A10 20 51 5 IO  14 1.40 

A l l  20 46 5 8 11 
A16 20 42 4  9 1 1  1.22 

1.38 

A13 20 52 4 I 1  15 1.36 
A14 20 43  3  8 1 1  
AI5 20 40 

1.38 
4  6 IO 1.67 

A16 20 44 4  9 12 1.33 
A17 20 54 8 12 17 1.42 
A18 20 35 2  5 8 1.80 
A19 20 45 6  9  14 1.56 
A20 20 42 6 8 1.63 

Average B J B I ,  = 1.4 I 
13 - 

h k ( t J + N )  ~ ( Y ~ , ~ ~ + ~ ( ~ J + N ) = . . . = A ~ ( ~ J + N ) = O .  
The  reason  is  as follows. The matrix tJ + N is positive 
semidefinite, and if x is any  vector  such  that,  for  each 
Vi(i = 1;. ., k ) ,  j € V j P j  = 0, then ( [J  + N ) x  = 0. It 
follows that  the  eigenvectors x corresponding to positive 
eigenvalues of t J  + N have x, = xc if k ,  8 E Vi .  Accord- 
ingly, the nonzero eigenvalues of .tJ i- M are  the eigen- 
values of the k X k matrix N ( t  ), where 

( t  f I )m,  if r =  s 

[tmS if: + 1 [ ( N ( t ) I , ,  = r, s = 1,. * ., h. 

Clearly h l [ N ( t ) ]  -+ a~. The  other eigenvalues of N ( t )  
approach limits that  are  the  roots of the polynomial that 
is the coefficient of the highest power: o f t  present in the 
characteristic polynomial of N ( t ) .  The  characteristic 

polynomial of N ( t )  is ( x  - m i )  - tf (x). 
k 

1 

To prove  that ( 17) is a better bound than  that provided 
by Theorem 1 in the  case D = U ,  it is sufficient to  show 
ai 1 mi for i = 2, . . *, k .  But N ( t )  i s  similar to diag 
( m l , .  . ., mk)  + t(%). Since t-is positive semi- 
definite fort  2 0, we  have  completed  the proof. 

Computational  results 
Graphs  were  generated by connecting a preset  number of 
vertices with some probability p ,  and removing  uncon- 

424 nected  vertices  from  the graph. The  lower  bound BL on 
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BL Bu BulB,, 
Graph No.  of No. of (Heuristic 
number  nodes  edges Uii’ = 0 Best I/‘ partition) 

BI 40 100 12 15 27 1.80 
B2 40 92 8 13  23  1.77 
B3 40 104 9 17 25 1.47 
B4 50 80  6  9 17 I .89 
B5 38 78‘, 5 11  16 1.45 
B6 40 91 9 13 21 1.62 
B7 39 118 18 22 31 - 1.41 

Average Bu/BI ,  = 1.63 

_ _ _ ~  ~ 

C1 59 162 13 26 41 1.58 
c 2  58 153 10 25 40 1.60 
c 3  60 152 24 37 1.54 
c 4  59 142 21 32 1.52 

Average Bu/BI,  = 1.58 

:; 
c 5  59 147 9 20 33 - 1.65 

D l  99 232 14 28 47 1.68 
D2 100 264 21 36 54 1.50 
D3 100 252 12 34 58 1.7 1 
D4 100 238 13 30 49 1.63 
D5 97 272 19 40 62 - 1 .55 

Average Bu/BI,  = 1.6 1 

the  number of edges cut by a partition  into two equal- 
sized groups was  first computed with Uii  = -Ej A,, and 
then U was varied using the  procedure of the  two pre- 
ceding sections  to  obtain a “best” U with  maximum BL. A 
heuristic  procedure  was  then used to obtain a partition 
into  groups with BU edges  cut, which i s  an  upper bound 
on  the minimum number of edges  cut by such a partition. 
Results  are given in Table 1 for  graphs having 20,40,60, 
and 100 nodes;  the  ratio BU/BL is computed  for  each 
graph and  averaged  over all graphs of each of the  various 
sets of equal size. It  can  be  seen  that this ratio which i s  
about 1.6 for many of the  cases, gives a reasonable range 
in view of our  Theorem 2. 

From  the  results  one  can  also  see  that variation of U 
improves B,, significantly - a factor of two  improvement 
is  the rule for  the 1arger.graphs. 

Lastly,  two  graphs  are given in detail in Tables 2 and  3, 
together with a partition. 
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