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Lower Bounds for the Partitioning of Graphs

Abstract: Let a k-partition of a graph be a division of the vertices into  disjoint subsets containing m, = m,,- - -, = m, vertices. Let E,
be the number of edges whose two vertices belong to different subsets. Let A, Z \,,* -1, = A, be the & largest eigenvalues of a matrix,
which is the sum of the adjacency matrix of the graph plus any diagonal matrix U such that the sum of all the elements of the sum matrix

is zero, Then

k
1
Ec =3 E —mN\,.
r=1

A theorem is given that shows the effect of the maximum degree of any node being limited, and it is also shown that the right-hand side
is a concave function of U. Computational studies are made of the ratio of upper bound to lower bound for the two-partition of a number

of random graphs having up to 100 nodes.

Introduction

Partitioning of graphs occurs in computer logic parti-
tioning [1, 2], paging of computer programs [3, 4], and
may also find application in the area of classification [5].
Graph partitioning is the problem of dividing the ver-
tices of a graph into a given number of disjoint subsets
such that the number of nodes in each subset is less than
a given number, while the number of cuz edges, i.e., edges
connecting nodes in different subsets, is a minimum. The
problem of computer logic partitioning is actually some-
what different; for a thorough description of that problem,
see Ref. 1. The partitioning of graphs is a simplified ver-
sion of that problem.

In this paper, we assume that the number of vertices
in each subset is prescribed. Let 4 = 4(G) be the adja-
cency matrix of the graph G, which will be defined later,
and U any diagonal matrix with the property that trace
(U) is the negative of the sum of the valences of the ver-
tices. We derive in Theorem 1 a lower bound for the num-
ber of cut edges in terms of the eigenvalues of A + U.
For the case of division into two subsets, we present,
using a different method of derivation, another bound that
is stricter for this special case. The bound given in Theo-
rem 1 turns out to be a concave function of U, a fact that
suggests exploitation by means of mathematical pro-
gramming. Computational results are presented, in which
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the bound is compared with the results of actual, but not
necessarily minimal, partitioning. We also compare ex-
perimentally the results when U, = —d, (the valence of
vertex i}, and when the {U,} vary.

We believe that, in combinational problems whose
complexity suggests the use of heuristic methods, such
as the partitioning of graphs, it is worthwhile to have a
lower bound on what can be achieved, regardless of the
algorithm, provided the calculation of the bound is itself
not too onerous and the bounds derived are not too far
from the correct value. The results presented here may
satisfy these criteria. The calculation of the bound may
itself suggest new approaches to the original problem.
Also, the fact that different methods are used to derive
the bounds of Theorems 1 and 2 suggests that a more
comprehensive approach to the problem may be possible.
We should also mention that a different use of eigenvalues
and eigenvectors on a related problem is discussed in
Ref. 6.

This paper does not present details of our experiments
on the algorithm for varying U, because a new method
which converges to the maximum value of the bound has
since been found by Jane Cullum. We are grateful to
Jane Cullum and Philip Wolfe, of the Watson Research
Center, for useful conversations about the present work.
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Derivation of lower bound

Let G be a graph, with edge set E, and vertex set V. For
any set S, |S| denotes the number of elements in S. Let
A(G) = (a;) be a square matrix of order |V| and be de-
fined by:

0. = {1 if vertices i and j are joined by an édge,
¥ |0‘otherwise.

Thus, 4A(G) —the adjacency matrix of G —is a square
symmetric (0, 1) matrix with 0 diagonal.

Let the eigenvalues of any real symmetric matrix M
be denoted by A, (M) = A\,(M) = ---; let U be any di-
agonal matrix such that SU;=—2|E|; let m, = m, =
-+« = m, be given positive integers such that Zm, = {V|;
and let V.-, V, be disjoint subsets of V' such that
[Vil=m, i=1,--- k. Finally, let E, be the set of edges
of G, each of which has its two endboints in different V.

Theorem 1. Given the notation above,

k
EJZ—5 3 mx(4 + U).
1

1
2
The right-hand side is a concave function of U.

Proof. 1t is easy to see that the main theorem of Hoff-

man and Wielandt [7], when applied to real symmetric
matrices M and N of order n, yields

Trace MN" < En: N (M)A(N), (1)

in which the Trace of a matrix denotes the sum of all the
elements of the diagonal. We note that, if N” is the trans-
pose of N, then Trace MNT = EijMijNij. LetM=A4A+ U
and N be the direct sum of k matrices, each of which con-
sists entirely of 1’s, and is defined on the rows and col-
umns corresponding to V,(i=1,- -+, k). Then

Al(N)zmp”'y )\k(N)=mk, ‘
)‘k+1(N)="'=>\|V|(N)=O. e 2)

It is clear that
Vi
é)\i(M)}\i(N)=E mA (A + U). 3)

On the other hand,
Trace MN" =—2|E| + 2(|E| — |E.]) = —2|E.]. (4)

Inserting (3) and (4) into (1) proves the first sentence
of Theorem 1. v

To prove the second sentence, it is sufficient to show
that Sm,(4 + U) is a convex function of U. If R, § are
real symmetric matrices of order n, ahd if I < n, then [8]

i NR+S) = é M(R) + i ().
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Hence

i)\i[A +w, UZ)] - )\iB(A + U

N

T Uz)]

<

A+U,)

N =

+3 N4+ U,).

~M ~ M~

D |—

{
E A;(4 + U) is a convex function of U.
1
Next
k
2 mA (A + U) = (m;— m)\ (4 + U) (5)
1

+ (my, — m) [\ (4 + U) + 7,4 + U)]
oo m [N (A4 + U)
oA (A4 + U)].

Since m; Zm,,;, i=1,"--, k— 1, and m, > 0, it follows
that the right-hand side of (5) is a nonnegative sum of
convex functions of U and hernce a convex function of U.

The next theorem is concerned with a partition into
two equal groups when the maximum degree of any ver-
tex of G is less than d.

Theorem 2. Given 1) a graph with an even number of
vertices, 2) that m, = m, = |V'|/2, 3) that the degree of
any vertex does not exceed some value d, and 4) that
0=5,=m/4, 0=8,=w/4, and 5) that x = | repre-
sents a simultaneous solution of the equations

x sin 28; = (1 — x) sin 23, (6)

~[A\ (4 + U) + 204 + U)]/2=x{1 — sin 28,
+2(d—1)[1 —cos (5, +8,)]}, (7)

then

|E.| = x|V|/2. (8)

Note: Setting 8, =3, =0 causes this theorem to be a
special case of Theorem 1, namely, the case in which
my=m;=|V|2.

Proof. We first show that if there exists any partition
into two equalized groups with e < |V'|/2 edges cut, then

—% A\ (4 + U) + \,(d + U)] = Z{1 — sin 2a,

+2(d— 1)[1—cos(e, +a,)1}, (9)

where Z = 2¢/|V| and «, and o, are any numbers satis-
fying
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Figure 1 Locations of the groups 4,, 4,, B,, B, in a coordinate
system defined by y,, v,. These four groups are defined in the
proof of Theorem 2.

Z sin 2a, = (1 — Z) sin 2a,, 0 < a,,0, < /4. (10)

Later we show that the result given above is sufficient to
prove the theorem.

It has been shown (9] that, if y, and y, are any two
orthonormal vectors, then

MA+U)+0,A+U) =
v, A+ Uy, +3,"(4+ Uy, (11)

since A and U are symmetric matrices. We can further-
more see that

ylc (A + U ZzAzjykiyk1+2 Uuylu
2
—_2_2 EA,](ykl_yk]) + E (U
i i
2
+]2Aij)yki’ (12)
where y,, are the components of y,. Let us define
=U;+ > A, (13)
J

Since Y > A4, + Y U, =0, we have
i i
S Uy =o0. (14)

We now divide further each of the two groups 1, 2 into
which the corresponding V that was partitioned; sub-
group A, (k= 1,2) is a set of exactly e vertices, which
includes all the vertices that have connections to ver-
tices not belonging to group k. As longas e < |V}/2, such
a set can always be generated. The other subgroup B,
has, of course, only connections to group 4,. There are
[V1/2 — e vertices in B,, and N, connections between
A, and B,. We now set values for y,,(m = 1,2), as indi-
cated in Fig. 1.
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i €B, vy = V2/V| cos (m/4 + ay,)
vy = V2/|V] sin (7/4 + o)

i €4, v, = V2/[V] cos (w4 — a,)
vy = V2/[V] sin (w/4—a,)

i €4, vy = V2I[V] cos (m/4— o)
vy =— V2IIV] sin (7/4 — a,)

i €EB, = V2/[V] cos (/4 + a,)

Yy == V2V sin (/4 + a,). (15)

Since |4,|=14,| and [B,|=|B,|, then y, and y, are
clearly orthogonal. We now show that condition (10)
proves |y, /l= 1, k=1, 2. It can be seen that

Yy = QVHLAV] = 2e) sin’ (7/4 + a,)
+ 2¢ sin® (m/4 — a,)],

v ¥e= QIVDL(IV] = 2€) cos® (/4 + a,)
+ 2e cos® (w/4 — a,)],

so that y,"y, +y,"y, = 2. However, we also require for
normality that y,'y, — v,"y, = 0 so that

0= 2/IV])[(|V] — 2€) cos (72 + 2a,)

+ 2e cos (w/2 — 2a,)]
or, dividing by two and using Z = 2¢/|V|, we have
0= (1—2) cos (w/2 + 2a,) + Z cos (7|2 — 2a,).

Since cos (w/2 + x) =— sin x, we find the above to be
equivalent to 0 =—(1 — Z) sin 2a, + Z sin 2a,, which
is condition (10).

Inserting Eq. (12) into (11) we have

“AA+U)—\A+U)=

ZEAU[(}'M ylj
+ (y21-_y2]) ]

- 2 U’ (yu'z + yziz)-
i

However, from Eq. (15) it follows that y,°+y,’ =
2{|V| and, when Eq. (14) is used, the term in U, falls
out. The other part becomes, on substitution of Eq. (15),

AN=NETS S A4,8/V)) sin® (7/4 - a,)

i€A1 jEAy
+<2 SEY Y )(2Aij/lvl)[sm (wld— o)
I€A] JEB| €4, JEB,

—sin (7/4 + &,)1° + [cos (7/4— a,)
—cos (m/4+ a,) T,

which simplifies to
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-\, — A\, = (8e/IV]) [sin® (w/4— )]
+ (2/|V)) (N, + N,) [sin’ (7/4 — ;)
+ sin® (7/4 + a,)
— 2 sin (w/4 — o) sin (/4 + o)
+ cos’ (m/4— a,)
— 2 cos (m/4— a,) cos (m/4+ a,)
+cos’ (w4 + a,) ].
Upon using standard geometric identities, we have
—A,~ A, = (4e/[V]) (1 —sin 2a)) + [4(N, + N,)/V]]
X {1—cos (a, +a,)].
Because each node has a maximum degree of d, we have

e+ N, =ed
e+ N,=ed

sothat N, = e(d — I) and using Z = 2¢/|V'|, we have after
also dividing both sides by two

3 (X = A,) = Z(1 = sin 2a,) + 2Z(d — 1)

X [1—cos (o, + &,)],

which is the inequality (9).

The second part of the proof consists in showing that
any possible value of x that solves Eqs. (6) and (7) must
be less than Z. The value of x is then used in the inequal-
ity (8).

Let us assume that we have found x, §,, 8, satisfying
Eqgs. (6) and (7) and that x exceeds the minimum pos-
sible value of Z, which is a characteristic of the graph. We
fix &, = 8,, and with x > Z, it turns out that «, exists if 5,
exists, and furthermore, that o, < 8,, which can be veri-
fied by inspecting conditions (6) and (10). This leads to
a,+a, <8, +8,=7/2
and
—cos (a, + o) <-—cos (8, +3,),
so that, with d = 1,
1—sin 28, +2(d—1) [1 —cos (8, +85,)

> 1—sin 20, + 2(d—1)[1 — cos (a, + a,)].
Using Eq. (9) we find
x{1—sin 28, +2(d— 1)[1 —cos (8, + §,) 1}
>Z{1—sin 20, +2(d—1)[1 —cos (a, + a,)]}

_1

2(/\ +X,).
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The transitivity of the > relationship leads us then to
conclude, contrary to hypothesis, that Eq. (7) is not
satisfied, so that x = Z.

Q.E.D.

Theorem 2 is interesting in the case for partitions into
two groups in which E_ is vanishingly smail as compared
to |V|. In this limit, §, — 0 and we may readily compute
the minimum of [1—sin 28, +2(d — 1)(1 —cos 8,)].
This allows us to compute the ratios R of the bound given
by Theorem 2 to that of Theorem 1 as a function of d:

d= 3 R=1.68
4 1.42
5 1.30
10 1.12
20 1.06
50 1.02

This shows that, for small d, the bound given by Theorem
1 will be off by a significant amount. While a factor of two
to four between actual result and theoretical bound may
be tolerable, since one may be able to develop heuristic
rules for such a ratio, much larger factors would make the
present work useless. Accordingly, some results are
presented in the next section showing that the ratio R is,
at least in certain cases, not excessive.

Let B=A + D, where D is a diagonal matrix chosen
so that each row sum of B is 0; i.e., d, is the negative of
the valence of vertex i. For this choice, D = U, we ob-
tain another improvement of Theorem 1. This theorem
yields a better estimate if the {m} are different.

Theorem 3. Let B be defined as above,and o, =+ - - Z o,
be the roots of
flx)= <Emi>xk_l -2y mimjxk_2
i<j
+3y mimjmpxk_3 Foo=0 (16)
i<j<p
Then

Ecz—% ) (B). (17)

"M”

Proof. Let J be the matrix of 1’s, and N be as defined
in the proof of Theorem 1. By the methods used in
Theorem 1, it follows that

v

C

-5 300+ NA(B) [because Tr (1] + N)B

Tt NB]=— ix.(rJ%-N)}\j(B),

1
2
since the hypotheses on B show that A, (B)=0. In-
equality (17) is valid for all ¢ — . But it is easy to see
thatast — o, A, (tJ +N) >, AW +N)—>a, -,
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Table 1 Computed bounds with partitioning of results into two groups.

B, By BylB,,

Graph No. of No. of (H euristic
number nodes edges U, =0 BestU' partition)

BL BU BUIBL
Graph No. of No. of (Heuristic
number nodes edges. U, =0 BestU' partition)

Al 20 54 7 11 13 1.18 B1 40 100 12 15 27 1.80
A2 20 51 5 1 13 1.18 B2 40 92 8 13 23 1.77
A3 20 45 4 7 10 . B3 40 104 9 17 25 1.47
A4 20 46 6 10 15 1.50 B4 50 80 6 9 17 1.89
AS 19 45 7 9 12 1.33 BS 38 78 5 11 16 1.45
B6 40 91 9 13 21 1.62
Ab 20 40 3 7 9 1.29 B7 39 118 18 22 31 1.41
A7 20 48 5 9 13 1.44 Average By/B, = 1.63
A8 20 34 2 5 7 1.40 .
A9 20 51 8 13 16 1.23
Al10 20 51 5 10 14 1.40 Cl 59 162 13 26 41 1.58
C2 58 153 10 25 40 1.60
All 20 46 5 8 11 1.38 C3 60 152 11 24 37 1.54
Al6 20 42 4 9 11 1.22 C4 59 142 13 21 32 1.52
Al3 20 52 4 11 15 1.36 Cs 59 147 9 20 33 1.65
AlS 20 40 4 6 10 1.67
Ale 20 44 4 9 12 1.33 D1 99 232 14 28 47 1.68
A7 20 54 8 12 17 1.42 D2 100 264 - 21 36 54 1.50
A18 20 35 2 5 8 1.80 D3 100 252 12 34 58 1.71
Al9 20 45 6 9 14 1.56 D4 100 238 13 30 49 1.63
A20 20 42 6 8 13 1.63 DS 97 272 19 40 62 1.55
Average By/B, = 1.41 Average By/B,, = 1.61
NI+ N) = a, A, (T +N)y=-=)x(tJ+N)=0. the number of edges cut by a partition into two equal-

The reason is as follows. The matrix #J + N is positive
semidefinite, and if x is any vector such that, for each
Vii=1,-, k), jEV3x;=0, then (&J +N)x=0. It
follows that the eigenvectors x corresponding to positive
eigenvalues of tJ + N have x, = x, ifk, £ € V. Accord-
ingly, the nonzero eigenvalues of +J + M are the eigen-
values of the & X k matrix N(t), where

(t+ 1)m, ifr=s
[(N(t)]m=[ }r,s= 1,-h

tm, ifr#s

Clearly A, [N(1)] — . The other eigenvalues of N (r)

approach limits that are the roots of the polynomial that

is the coefficient of the highest power of ¢ present in the

characteristic polynomial of N(¢). The characteristic
k

polynomial of N(¢) is [] (x — m;) — tf(x).

1
To prove that (17) is a better bound than that provided
by Theorem 1 in the case D = U, it is sufficient to show

a;Zm; for i=2, -+, k. But N(t) is similar to diag
(my,- -+ m) +t(Vmyn;). Since 1V m;m; is positive semi-

definite for t = 0, we have completed the proof.

Computational results

Graphs were generated by connecting a preset number of
vertices with some probability p, and removing uncon-
nected vertices from the graph. The lower bound B;, on
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sized groups was first computed with U, =—2, 4, and
then U was varied using the procedure of the two pre-
ceding sections to obtain a “‘best”” U with maximum B;. A
heuristic procedure was then used to obtain a partition
into groups with By édges cut, which is an upper bound
on the minimum number of edges cut by such a partition.
Results are given in Table 1 for graphs having 20, 40, 60,
and 100 nodes; the ratio By/B, is computed for each
graph and averaged over all graphs of each of the various
sets of equal size. It can be seen that this ratio which is
about 1.6 for many of the cases, gives a reasonable range
in view of our Theorem 2.

From the results one can also see that variation of U
improves B, significantly —a factor of two improvement
is the rule for the larger graphs.

Lastly, two graphs are given in detail in Tables 2 and 3,
together with a partition.
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