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An Analysis  of Page Allocation Strategies for 
Multiprogramming  Systems  with Virtual Memory 

Abstract: In a  multiprogramming,  virtual-memory  computing system, many processes  compete for the main storage page frames  and 
CPU’s of the real system.  It is customary to define a subset of these  processes called the “multiprogramming set” (MPS), and  to allo- 
cate  resources only to those  processes  currently in the MPS. Each  process remains in the MPS for a limited time and  is then demoted. 
The  system paging manager controls the  size of the MPS; it allocates  the available  page frames  among  the  processes in the MPS and 
fetches  appropriate pages into  the page  frames. 

A model is described that  assumes  the most  critical resources of the  system to be page frames  and  the paging channel (i.e., there  is  no 
significant CPU contention).  The model makes certain  assumptions  about the  page  fault rate of processes  as a function of page frames 
allocated,  and  about the  page  fetch  time as a  function of mean load on  the paging channel.  The model also  incorporates a definition of 
the  value of a  given  page  allocation in terms of system throughput. 

The model is used to study  various  strategies for choosing an MPS and allocating  page frames among processes. For simple cases,  the 
model yields an  exact optimal  strategy. A heuristic strategy  is proposed for dealing with more  complex  cases,  and  is shown by the 
model to be reasonably near optimal. The heuristic  strategy monitors  the  page fault rate of each  process  and  chooses  an allocation 
such that  each  process  can  be  executed  at a reasonable  rate, while ensuring that  the paging channel is neither overloaded nor  under- 
loaded. 

1. Introduction 
In a multiprogramming,  virtual-memory  computing sys- 
tem, many processes  compete simultaneously for  the 
resources of the system. (In this paper,  we define a pro- 
cess as a program  with its  own virtual memory, which 
requires  an allocation of real  memory space  and a CPU 
in order  to be executed.)  The principal system  resources 
are  CPU’s, main memory page frames,  and  the transmis- 
sion capacity of the paging drum.  Here we consider  sys- 
tems in which the  scarce  resources  are page frames  and 
the paging drum (Le., the  system is not CPU-bound). 
Subject  to this assumption, we study ways of allocating 
resources  to  the  processes in order  to maximize system 
throughput. 

I t  is  customary  to define a subset of the  processes 
known to  the  system, called the multiprogramming  set 
(MPS),  and  at  each  instant  to  allocate  resources only to 
those  processes  currently in the  MPS. While in the  MPS 
a process is allocated  a  certain number of main storage 
page frames,  and is allowed to  be  executed.  Its  execu- 
tion is periodically interrupted by page  faults, in which 

404 the  process  references a page that is not present in main 

storage  and must wait for  the page to be fetched. A pro- 
cess remains in the  MPS until it finishes or  exhausts  its 
time  slice, at which time it is demoted. 

We  assume  the  existence of two  resource managers 
within the virtual-memory  operating  system: the paging 
manager and  the  scheduler.  The paging manager  con- 
trols the size of the  MPS  and  allocates main storage 
page frames among those  processes in the  MPS.  The 
scheduler assigns time-slice lengths to  the various pro- 
cesses  and defines a  promotion order  among  those pro- 
cesses not currently in the  MPS.  The  scheduler  must 
ensure  that system responsiveness is adequate, while the 
paging manager is primarily concerned with throughput. 
This  paper  studies possible  strategies for  the paging man- 
ager. A strategy for  the  scheduler is proposed in [ 1 1 .  

In  order  to  evaluate  various  strategies  for  the  resource 
managers, it  was  necessary  to  construct a model of a time- 
sharing system. Because of the large amount of data  we 
wished to  gather, we did not consider a pure simulation 
model to be  feasible. Furthermore,  since we wished to 
study the allocation of resources  to a heterogeneous mix 
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of processes,  we  were unable to  use  conventional 
queuing  models,  which assume  that all processes in the 
system  are identical [ 2 ] .  Therefore, we developed  a 
model of our  own, analytical in nature  but  not based on 
queuing theory. 

The models and  experiments  to be described  are rep- 
resentative of the following approach  to  the general 
problem of system  resource allocation: 
1.  Assume a set of parameterized equations  that  charac- 

terize  the  environment in which resources  are  to be 
allocated. 

2. Define an  objective function. 
3. For various values of the  parameters,  solve  for  the 

resource allocation  that  optimizes the  objective  func- 
tion. 

4. Evaluate  various simple  heuristic  allocation schemes 
by comparing their  performance with the optimum as 
defined by step 3. 

2. Modeling the user load 
In  an earlier paper  [3], Belady and  Kuehner  introduced 
the  concept of a “life-time function,” which relates ei,  
the  expected  execution time between page  faults for a 
given process,  to p i ,  the  number of page frames allocated 
to  the  process.  (In this paper,  we  assume  that  the page 
frame allocation to a given process is constant  for  the 
short  term,  and  that a process  can  fetch a  new  page  only 
by relinquishing  a  page it currently  possesses in main 
storage. In  the long term, by monitoring the  behavior of 
a process,  the paging manager  may chobse  to  change  its 
page frame  allocation.) Belady and  Kuehner cited evi- 
dence  that  the lifetime function has  two regions: a con- 
cave upward  region,  followed by a concave  downward 
region, as  shown in Fig. 1. This  corresponds  to  the ob- 
servation  that if a process is allocated very many or very 
few  page frames, it tends  to  use them inefficiently, but 
that  each  process  has  some intermediate number of allo- 
cated page frames, variously  called  its  “locality” [4] or 
“working set” [SI, which enables it to be executed effi- 
ciently. For the  present  paper,  we fit the lifetime func- 
tion curve with the simple  equation 

2 B i  
e. = 

This  equation  enables  us  to  describe a process by the 
following two  parameters: 

C,(pages): A relative measure of the  number of page 
frames needed to  enable the process to be 
executed efficiently. More  precisely,  the 
number of page frames  that provides the 
process with half of its largest  possible life- 
time. 

e upward + 
Concave 

region 

I ‘ 
1 region 

Concave 
L d o w n w a r d -  

I 
I 

’age frames allocated to process i, Pi 

Figure 1 Lifetime function for  process i. 

Bi(ms):  The  expected execution  time between 
page faults  for  process i when it is allocat- 
ed Ci page frames. 

Like  Belady and  Kuehner, we assume  that  the param- 
eters Bi and Ci are invariant  during the period of inter- 
est. Also, we assume  that, during the period of interest, 
processes  neither  arrive  at  the  system  nor  terminate. 
Therefore,  we  can completely describe  the load on  the 
system by specifying, for  each  process,  the  parameters 
B i  and Ci. Experience  has  shown  that,  on  the  IBM  Sys- 
tem/360 model 67  computer,  appropriate  values  for Ci’s 
are in the low tens of pages,  and for Bi’s are in the low 
tens of milliseconds [6,7]. 

3. Modeling the paging drum 
Whenever a process  sustains a page fault, it goes  into a 
wait state until the required page can be fetched  from 
the paging drum.  The length of the waiting period de- 
pends  on  the capabilities of the  drum  and  on  the length 
of the  queue of requests  for pages to be fetched.  In this 
paper,  we  assume  that  the  circumference of the  drum  is 
divided into  an integral  number of sectors,  and  that 
pages are  stored in such a  way that  they  do  not  cross 
sector boundaries.  When a request is made  to read or 
write  a  page, the  request is placed in the  appropriate sec- 
tor  queue. As the  drum  rotates, its  read-write heads 
reach  each  sector in turn  and  service  the  requests  on 
each  sector  queue in first-in, first-out order. We assume 
that  the  drum  has rotational  period T and  has N ,  sec- 
tors. 

We desire  to find a relationship  between the  average 
time to  service a page fetch  request ( W )  and  the total 405 
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Figure 2 Simulation of paging  drum. 

load on  the paging drum in requests  per  second ( U ) .  
This problem has been  solved  analytically by Skinner 
[8] and Coffman [9] under  the  assumption  that arrival 
times of drum requests  form a  Poisson process.  In gen- 
eral,  however,  arrivals of drum  requests in a computer 
system  do not form a Poisson  process.  Therefore,  we 
have  chosen  to model the  computer  system with the 
more realistic  cyclic-queue structure  shown in Fig. 2 ,  
which does not require this assumption.  An  experiment 
was performed in which the  structure shown in Fig. 2 
was simulated. A total of N M  processes  were  considered 
to be  active in the  system.  After  each  page  request  is 
serviced,  the  process  that issued the  request is executed 
for a random interval of time  before it makes  another 
page request.  The  intervals  are  drawn from an  exponen- 
tial distribution. (Choosing  execution  intervals  from  the 
same distribution for all processes may seem  to  contra- 
dict  our  assumption  that  different  processes  have  different 
characteristics.  However,  we will show  that  the paging 
manager can  and indeed should,  allocate pages to non- 
identical processes in such a way that their  mean execu- 
tion  intervals  between page faults  are  the same. In  any 
case,  we  do  not  expect  the  drum  characteristics  described 
here  to be  sensitive to differences  among processes.) 
The page requests  are placed on  each of the N s  sector 
queues with equal probability. Consistent with our origi- 
nal assumption of a non-CPU-bound  system, we assume 
that  no  process  ever waits for a CPU  after its  page re- 
quest  has been satisfied. By adjusting the mean execu- 
tion interval, we vary the total drum load ( U )  and ob- 
serve  the effect on  the  average wait time ( W ) .  

Clearly the  results must be  dependent  on  the  degree of 
multiprogramming, Nb1. If N M  = I ,  the single process 
always  sees  an  empty  drum  queue,  and  the  average wait 
time to service a fault is the  “no  load” wait: 
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The  ‘no load  wait W,,, consists of one-half revolution 
average  latency, plus one  sector  read time to  transmit 
the page. If there  are many processes in the  system, we 
expect W to vary from W,, to infinity, depending on  the 
load U .  Wait W should approach infinity as U approach- 
es the  maximum  transmission capacity M of the  drum, 
which is given by: 

M = NslT .  (3)  

The  results of the simulation experiment confirmed 
the  above  expectations. A family of curves was  plotted 
that gives W as a  function of U for  various values of N M ,  
as  shown in Fig. 3. Several  equations were fitted to the 
results of the simulation and  the following basic hyper- 
bolic  form was found to be  most appropriate: 

W = [ K , / ( M  - U ) ]  + K,. (4) 

Least-squares analysis  was  used to  evaluate  the con- 
stants K ,  and K ,  for various  degrees of multiprogram- 
ming N,. The following specific equation  was found to 
fit the  results very  closely: 

where M and WKL. are defined by Eqs. (2) and (3) and 
Kbl is a factor  determined by the  degree of multipro- 
gramming, defined as follows: 

The total drum load U consists of the sum of the real- 
time page fault  rates of all the  processes in the multi- 
programming set: 

NM 

u = Ui’ ( 7 )  
i = l  

where 

u i =  l / ( e i  + W ) .  (8) 

If we let p = U / M ,  Eq. (5) can be  written  as: 

It is interesting to  note  the marked degree of similarity 
between  the  above  equation  and  the following expression 
for W derived by Skinner  and Coffman for  the special 
case of a  Poisson  arrival process: 

4. Definition of value 
We  now wish to  make a reasonable definition of the val- 
ue of a particular  allocation of pages to a particular set 
of processes.  First we note  that  the rate  ofprogress ri of 
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Figure 3 Drum wait as a function of load. 

process i (expressed in insk-uctions per  second) is given 
by the  equation: 

y ,  = 
e ,+W S, ( 9 )  

where S is the  speed of the CPU in instructions  per  sec- 
ond. We wish to  take into account  the  fact  that  some 
processes  are  more demanding than  others in the sense 
that  they  require  more page frames in order  to be exe- 
cuted efficiently, and  that it is more difficult (and hence 
more  valuable)  to  execute  an  instruction  for a  more 
demanding process than for a  less  demanding process. 
We will define the rate of accrual of value (vi) of pro- 
cess i to be the  product of its  demand ( D i )  and  its  rate 
of progress (ri): 

We proceed to define the  rate of accrual of value for 
the system as a whole ( V )  as  the  sum of the value rates 
of all the  processes in the  system: 

N J  

v = x ui. ( I  I )  
i = l  

We  are now  left  with the task of defining the  demand 
( D i )  of a process.  One possible candidate i s  Ci,  which 
has been defined as a measure of the  number of page 
frames needed for  process i to  progress  at half its maxi- 
mum rate. But this measure would neglect Bi, which also 
has a strong influence on  the  behavior of the  process 
(see Fig. 1 ). What  we really want is a measure of the rel- 
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Figure 4 Derivation of demand of a process. 

ative  cost  to  the system  (in page-seconds) of executing 
an  instruction  for  process i. To gain such  a measure, we 
consider a hypothetical experiment in which process i 
runs alone  on a virtual-memory computer. We allocate 
to  the  process various numbers of page frames, pi, al- 
lowing the  other page frames  to  stand idle,  and observe 
its behavior. As a function of pi ,  we plot the  average 
system page-seconds  required to  execute  one  instruction 
(represented by p i / r i ) .  The  results,  derived  from  Eqs. ( 1 ) 
and ( 9 ) ,  are  shown in Fig. 4. There is some optimal 
number of page frames, pi * ,  that minimizes the  system's 
cost  per  instruction  when  process i runs alone. The  actual 
cost  per instruction at this minimum point is defined to  be 
the  demand of process i :  

Di = (:) pi = p i * .  (12) 

From Eqs. ( 1 ) and ( 9 ) ,  D i  may be  expressed in terms of 
the  characteristics Bi and Ci of the  process: 

This definition of demand  has  the  feature  that it is a prop- 
erty only of the  characteristics of the individual pro- 
cess,  and  does not depend  on  the  environment in which 
the  process is run. 

5. Solution procedure 
Our model of a  multiprogrammed,  virtual-memory  com- 
puter  system  has been described in the preceding three 
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Figure 5 Experiment 1.  

Table 1 Process characteristics for experiments 1,  2, 3.  
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Figure 6 Experiment 2. 
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Figure 7 Experiment 3. 

sections. The  above definitions and  assumptions must 
now be  brought  together  into a procedure  for finding the 
value of a particular  page  allocation. 

Equations ( 5 ) ,  (7),  and (8) can be combined to give 
the following implicit relation for W: 

Equation ( 1  ) gives e, as a function of B,,  Ci, and Pi for 
each  process.  Therefore, if we specify the lifetime func- 
tions of all processes in the multiprogramming set,  the 
drum  characteristics,  and a particular  page  allocation, 
we can  solve  Eq. (14) for W.  In our analysis we used 
the  secant  method  and  found it to  converge consistently 
within a few  steps  to single-precision accuracy  on  an 
IBM System/360  computer. 

Once W is determined, we can use  Eq. (9) to find the 
rate of progress, r,, for each of the  processes,  and  then 
use  Eqs. ( 10) and ( 1 1 )  to find V ,  the value of the page 
allocation. Note  that V will have  units of pages,  and will 
be  less than or equal  to  the number of page frames in the 
system. The  ratio of V to the  number of system page 
frames might be  considered a measure of the efficiency 
of use of main  memory. 

An  interactive PL/I program was written to aid in 
evaluating  various  page  allocations and  searching  the 
space of possible  allocations for  the  one  that  produces 
optimum  value  under  various conditions. The following 
sections  describe  results obtained  by use of this  pro- 
gram. 
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6. Simple  observations 
The first experiments  done with the modeling program 
were  studies of an  extremely simple system in which 
only two  processes were active.  The  system  drum  has 
parameters T = 10 ms, N s  = 5, which corresponds  to  an 
IBM 2035  drum with page size = 2K bytes [lo]. Three 
experiments  were performed. The B,’s and C,’s chosen 
for  the  two  processes in each experiment are  shown in 
Table 1. 

In  each  experiment, many  possible  allocations of 
pages to  the  two  processes  were  tried,  and  their values 
were recorded.  The  results  are  shown in Figs. 5, 6 ,  and 
7, in which equal-value contours  are  drawn  on  the plane 
of possible  page  allocations. The following observations 
may be made from  these figures: 

1. The equal-value contour lines are sharply  discontin- 
uous  on  the  axes, reflecting the  fact  that it is always 
much better  to give n pages to  one  process and no 
pages to  the  other than to give ( n  - 1 ) pages to  one 
process and one page to the  other.  (Axis  intercepts of 
the equal-value contours  are  represented by X’s  in the 
figures.) 

2. On  the figures, any line of slope -1 represents all the 
possible  allocations for a system with a fixed number 
of page frames. 

3. The effect on  the value contours of decreasing C, is 
similar to  the effect of increasing B,;  both  changes 
tend  to  decrease  the  demand of process 2. 

4. The  locus of optimal (best-value) allocations for vari- 
ous  numbers of pages is represented  on  the figures by 
the heavy dashed line. 
a. For two  identical processes,  the optimal  strategy is 

to run  only one  process if there  are  fewer than a 
certain  number of pages  available; if more  than  this 
number of pages are available,  they  should  be  split 
evenly between  the  two  processes. 

b. For  two nonidentical processes,  the optimal strate- 
gy is  as follows: If very few pages are available,  run 
the  less demanding process  only; if somewhat  more 
pages are available,  run the  more demanding pro- 
cess  only; if relatively many pages are available, 
run both  processes  and  allocate  the pages to  them 
in some fixed proportion depending on  their Bi’s 
and C,’s. 

In addition to allocating  pages, it is the  task of the 
paging manager to control the size of the multiprogram- 
ming set.  Once again,  a  simple experiment  can give us 
insight into the  nature of this task. For Experiment 4, we 
keep  the  2305  drum  characteristics  as  above,  and we 
assume  the  user load consists of many  identical  pro- 
cesses, all with B ,  = 30 ms, Ci = 50 pages. For various 
numbers of pages in the  system,  and  for various de- 

400 $ 

/D 50 100 150 200 250 

Total system page frames, N p  

Figure 8 Experiment 4. 

Table 2 Process characteristics for experiments 5,  6. 

I 1 2 3 4 
Bi (ms) 10 5 25 20 
Ci (pages) 15 20 50 60 

grees of multiprogramming, we find the optimal-value 
page  allocation  and  record I! (total  drum  load)  and V 
(total  system  value)  for this  allocation. A family of 
curves showing drum load as a function of total pages 
for various degrees of multiprograTming is shown in 
Fig. 8. Superimposed  on  these  curves is a locus  that 
shows  the  degree of multiprogramming that yields op- 
timum value for  any given number of pages. Note  that 
as  the  number of pages increases,  the optimal degree of 
multiprogramming increases, tending to keep  the  drum 
load I! within a certain band of values. 

7. More complex cases 
Having gained some insight  into the problem by study- 
ing a simple case, we can now consider  the more realis- 
tic  case of several nonidentical processes competing for 
system  resources.  As  an example of such a case, we will 
describe  some  experiments  that  assume  the  system  is 
loaded with the  four  processes  described in Table 2. As 
before, the paging manager  must choose a multiprogram- 
ming set  and allocate page frames  to  those  processes 
chosen.  The lifetime functions of these  processes  are 
shown superimposed on  each  other in Fig. 9. The  expe- 
riments in this  section  employed the  same 2305 drum 
parameters  described  above. 

Experiment 5 studies  the  process of choosing a multi- 
programming set (MPS) from the  four available  pro- 
cesses.  There  are 15 possible nonempty MPS’s that 409 
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Figure 9 Lifetime functions of  processes in experiments 5 
and 6. 

could be  chosen.  Each MPS has a curve of system value 
( V )  vs total system pages ( N , ) ,  assuming that  the pages 
are allocated in such a way as  to maximize system value. 
Figure 10 shows  those  fragments of the V vs N ,  curves 
that  are optimal  for  various  values of N,.  As  expected, 
the  best MPS when very few pages are available  con- 
sists only of the smallest process;  as  more pages are 
added,  the MPS grows until it contains all four pro- 
cesses.  Some possible combinations of processes  are 
never  the optimal MPS for any  value of N,.  

Experiment 6 studies  the allocation of pages to pro- 
cesses in the MPS. We see from  Fig. 10 that  the optimal 
MPS for N ,  > 100 consists of all four  processes. So we 
find the optimum  allocations of pages  for N ,  = 100, 150, 
and 200. The  results  are  shown in Table 3. 

Various  attempts were made  to find a pattern in these 
allocations;  the only  generalization that held for this and 
other similar experiments  was  that pages were allocated 
to  the various processes approximately in the  proportion 
of CiBi-0'4. Figure 11 shows how this  proportionality is 
preserved  for  each of the optimal  allocations in Table 3. 

Of course,  the  observation  that optimal  page alloca- 
tions  are proportional to CiBL0'4 is of little  value in the 
design of a  real paging manager, because Bi and Ci are 
very difficult to  measure in real  time for a  real process. 
What is needed is a heuristic strategy that  enables  the 
paging manager to  choose  an MPS and  allocate pages on 
the basis of quantities  that  are easily  measured  with  very 
little overhead  on a real  system.  Such a heuristic pro- 

41 0 cedure is described in the  next section. 

8. Heuristic  strategy 
We propose  that  the paging manager  monitor the real- 
time page-fault rate, ui, of each  process in the MPS, and 
the  total  system page-fault rate U .  These  quantities  are 
very easy  to  measure in real systems. We further pro- 
pose  that  the paging manager use  these  measurements  to 
implement the following heuristic procedures: 

Heuristic  procedure 1:  Control  the size of the MPS in 
such a way that U is kept  between limits Urnin  and Urn,,, 
which are defined as  properties of a  particular  system. 
Implementation: If U < Urnin, promote  another  process 
into  the MPS; the  process  to be promoted is chosen by 
the  system  scheduler [ 11. If U > U,,,, demote  the pro- 
cess  that  has been  longest in the MPS. Choose  Urnin  and 
U,,, far enough apart so that  the probability of jumping 
from U < Urnin to U > U,,, is negligible. 

Heuristic  procedure 2:  Allocate page frames  to  the pro- 
cesses in the MPS in such a way that all their page  fault 
rates  are equal ( u i  = ii) . 
Implementation: If process i has ui < 6 and process 
j has uj > E,  take a page frame  away  from  process i and 
give it to  processj. 

Evaluation: In  order  to  evaluate  the  two heuristic  pro- 
cedures,  experiments were  performed to  compare  the 
system value V produced by them  with the  best possible 
value  realizable under  the  same  conditions. We report 
on  an  experiment in which the  system  was loaded by the 
eight processes described in Table 4. These  processes 
were chosen  to  represent a  broad spectrum of demand. 

Experiment 7 was conducted assuming a system with 
N ,  = 50 pages  and a 2305 drum.  The number of system 
pages was  chosen small  enough so that  the optimum 
MPS would include  only  a subset of the available  pro- 
cesses.  The first part of the  experiment was to find the 
best page  allocation for  each of the 256 possible MPS's, 
and to measure  its value. The highest value realizable by 
any  possible MPS, with  optimal  page  allocation, is denot- 
ed by V*;  it was  found to  have  the value V* = 46.02 
pages in Experiment 7. The  next  part of the  experiment 
consisted in allocating  page frames according to heuris- 
tic procedure 2 (ui = ii) for  each of the 256 possible 
MPS's. For  each  such allocation, the system paging rate 
U and  the  system value V were  measured.  These mea- 
surements  are plotted on a U-V plane in Fig. 12, in 
which each point represents a possible MPS. (Note  that 
this figure was  produced by a computer printout. The 
appearance of a number such  as 8 denotes  the clustering 
of 8 points in the  same print  position. An  asterisk de- 
notes clustering of more than 9 points.) If we employ 
heuristic procedure 1 with  Urnin = 150 faultsls  and 
U,,, = 250 faults/s,  we  are confined to some MPS in 
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Figure 10 Experiment 5 .  

the  center region of the  graph.  The mean value of all 
points in the  center region is 40.1 pages, 87% of V * .  So 
we see  that  the  two heuristic procedures used in con- 
junction will result in an  average  system value of 87% of 
the  best possible  value under  the conditions of the  ex- 
periment. 

Other  experiments were conducted with similar re- 
sults. The choice of Urnin and U,,, depends  on N ,  and 
on the  characteristics of the  drum being used.  For exam- 
ple, Experiment 7 was repeated with N ,  = 50 and with 
the  same load,  but with two 2305 drums in the system 
rather than one.  Under  these  conditions, with Urnin = 

200 faults/s  and U,,, = 400 faultsls,  the heuristic  pro- 
cedxes  produced a mean system value of 92.5% of V * .  

The  system  scheduler may require  that  the paging 
manager  provide an  estimate of the size of the working 
page set of each  process  as it is demoted,  to be  used in 
scheduling its  next promotion [ 131. Using the  two heu- 
ristic procedures  above,  no precise measurement of 
working set  can be made,  since  the  number of page 
frames allocated to a process  depends on the  character- 
istics of the other  processes  that  are in the MPS at  the 
same time. However, a reasonable  measure of the rela- 
tive  sizes of working sets  can be made by informing the 
scheduler,  when a process is demoted, of the  average 
number of page frames allocated to it during its stay in 
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Figure 12 Experiment 7. 

Table 3 Optimal  page allocations. 

N P  PI PP p3 P4 

100 13 20 29 38 

200 26 41 58  75 
150 20 30 44 56 

Table 4 Process characteristics for experiment 7. 

i 1 2 3 4 5 6 7 8  

B ,  (ms) 10 10 50 50 10 10 50 50 
Ci (pages) 50 50 10 10 10 10 50 50 

41 1 
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the  MPS.  Heuristic  procedure 1, in maintaining the total 
fault rate within a certain  range,  tends  to stabilize the 
environment in the  MPS. If we assume  that a  given  pro- 
cess encounters approximately the  same  MPS  environ- 
ment each time it is promoted,  the  number of page 
frames allocated to it is a reflection of its working set 
size. 

9. Conclusions 
We have  proposed  an  analytic model for  the behavior of 
processes in a non-CPU-bound virtual-memory system, 
and  for  the performance of the paging drum. Our model 
is unusual in that it takes  into  account  the tradeoff be- 
tween  two  scarce  resources of the  system: main memory 
page frames  and paging channel capacity.  Combining 
our definition for value  with the  model, we have de- 
veloped methods of measuring the value of a given page- 
frame allocation, and of finding the optimal  allocation of 
a given  number of pages among a given set of processes. 
We have  tested our methods  on a simple system  contain- 
ing only  .two processes,  and found the  results to be intui- 
tively reasonable.  Using the  same method with more 
complex systems, we have  observed  the following two 
results: 

The optimal choice of a  multiprogramming set is 
closely  related to  the load on  the paging channel. If 
more page frames  are  added  to  the  system,  the optimal 
MPS  grows, tending to stabilize the paging channel 
load. 
Among those  processes in the  MPS,  the optimal allo- 
cation of page frames  is approximately  proportional to 
CiBi-0.4. 

As a convenient, low-overhead means  for  the paging 
manager to  control  the allocation of page frames,  we pro- 
pose  that it monitor  the page fault rates of all active pro- 
cesses,  and employ the following heuristic procedures: 

1. 

2. 

Control  the  size of the MPS in such a way that  total 
paging channel load U is kept between limits Umin  and 
U,,,, which are defined as system  parameters. 
Allocate page frames  among  processes in the  MPS in 
such a way that all active  processes  have  the  same 
page  fault rate. 

These heuristic procedures  have been  evaluated using 
the  tools  described  above.  Under  the conditions of our 
experiment,  they provide an inexpensive means  for dy- 
namically tuning a system for near-optimal  throughput. 

Our results illustrate the general approach of defining 
a model and solving it analytically for optimum resource 
allocation, and then  evaluating  heuristic  allocation strat- 
egies by comparing their  performance with the optimum. 
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