404

D. D. Chamberlin
S. H. Fuller
L. Y. Li

11}

-

An Analysis of Page Allocation Strategies for
Multiprogramming Systems with Virtual Memory

Abstract: In a multiprogramming, virtual-memory computing system, many processes compete for the main storage page frames and
CPU?’s of the real system. It is customary to define a subset of these processes called the “multiprogramming set” (MPS), and to allo-
cate resources only to those processes currently in the MPS. Each process remains in the MPS for a limited time and is then demoted.
The system paging manager controls the size of the MPS; it allocates the available page frames among the processes in the MPS and
fetches appropriate pages into the page frames.

A model is described that assumes the most critical resources of the system to be page frames and the paging channel (i.e., there is no
significant CPU contention). The model makes certain assumptions about the page fault rate of processes as a function of page frames
allocated, and about the page fetch time as a function of mean load on the paging channel. The model also incorporates a definition of
the value of a given page allocation in terms of system throughput.

The model is used to study various strategies for choosing an MPS and allocating page frames among processes. For simple cases, the
model yields an exact optimal strategy. A heuristic strategy is proposed for dealing with more complex cases, and is shown by the
model to be reasonably near optimal. The heuristic strategy monitors the page fault rate of each process and chooses an allocation
such that each process can be executed at a reasonable rate, while ensuring that the paging channel is neither overloaded nor under-

loaded.

1. Introduction

In a multiprogramming, virtual-memory computing sys-
tem, many processes compete simultaneously for the
resources of the system. (In this paper, we define a pro-
cess as a program with its own virtual memory, which
requires an allocation of real memory space and a CPU
in order to be executed.) The principal system resources
are CPU’s, main memory page frames, and the transmis-
sion capacity of the paging drum. Here we consider sys-
tems in which the scarce resources are page frames and
the paging drum (i.e., the system is not CPU-bound).
Subject to this assumption, we study ways of allocating
resources to the processes in order to maximize system
throughput.

It is customary to define a subset of the processes
known to the system, called the multiprogramming set
(MPS), and at each instant to allocate resources only to
those processes currently in the MPS. While in the MPS
a process is allocated a certain number of main storage
page frames, and is allowed to be executed. Its execu-
tion is periodically interrupted by page faults, in which
the process references a page that is not present in main

D. D. CHAMBERLIN ET AL

storage and must wait for the page to be fetched. A pro-
cess remains in the MPS until it finishes or exhausts its
time slice, at which time it is demoted.

We assume the existence of two resource managers
within the virtual-memory operating system: the paging
manager and the scheduler. The paging manager con-
trols the size of the MPS and allocates main storage
page frames among those processes in the MPS. The
scheduler assigns time-slice lengths to the various pro-
cesses and defines a promotion order among those pro-
cesses not currently in the MPS. The scheduler must
ensure that system responsiveness is adequate, while the
paging manager is primarily concerned with throughput.
This paper studies possible strategies for the paging man-
ager. A strategy for the scheduler is proposed in [1].

In order to evaluate various strategies for the resource
managers, it was necessary to construct a model of a time-
sharing system. Because of the large amount of data we
wished to gather, we did not consider a pure simulation
model to be feasible. Furthermore, since we wished to
study the allocation of resources to a heterogeneous mix

IBM J. RES. DEVELOP.

of processes, we were unable to use conventional

queuing models, which assume that all processes in the

system are identical [2]. Therefore, we developed a

model of our own, analytical in nature but not based on

queuing theory.

The models and experiments to be described are rep-
resentative of the following approach to the general
problem of system resource allocation:

1. Assume a set of parameterized equations that charac-
terize the environment in which resources are to be
allocated.

2. Define an objective function.

3. For various values of the parameters, solve for the
resource allocation that optimizes the objective func-
tion.

4, Evaluate various simple heuristic allocation schemes
by comparing their performance with the optimum as
defined by step 3.

2. Modeling the user load

In an earlier paper [3], Belady and Kuehner introduced
the concept of a “life-time function,” which relates e,
the expected execution time between page faults for a
given process, to p,, the number of page frames allocated
to the process. (In this paper, we assume that the page
frame allocation to a given process is constant for the
short term, and that a process can fetch a new page only
by relinquishing a page it currently possesses in main
storage. In the long term, by monitoring the behavior of
a process, the paging manager may chodse to change its
page frame allocation.) Belady and Kuehner cited evi-
dence that the lifetime function has two regions: a con-
cave upward region, followed by a concave downward
region, as shown in Fig. 1. This corresponds to the ob-
servation that if a process is allocated very many or very
few page frames, it tends to use them inefficiently, but
that each process has some intermediate number of allo-
cated page frames, variously called its “locality” [4] or
“working set” [5], which enables it to be executed effi-
ciently. For the present paper, we fit the lifetime func-
tion curve with the simple equation

2B,
e=—"— (1)

i Ci .
P

This equation enables us to describe a process by the
following two parameters:

C.(pages): A relative measure of the number of page
frames needed to enable the process to be
executed efficiently. More precisely, the
number of page frames that provides the
process with half of its largest possible life-
time.

SEPTEMBER 1973

|

- '

w |

] Concave | Concave
8 |

g | upward —>|<——d0wnWard—>
g region I region
=
R !

2z I
]

=
£

2]

20

)

&

8 B;

L ————————

g 1

15
s |

2 |
£ {

b !

[

50 |

I3 |

g

g |
< o]

Page frames allocated to process i, P;
Figure 1 Lifetime function for process i.
The expected execution time between

page faults for process i when it is allocat-
ed C, page frames.

B,(ms):

Like Belady and Kuehner, we assume that the param-
eters B, and C,; are invariant during the period of inter-
est. Also, we assume that, during the period of interest,
processes neither arrive at the system nor terminate.
Therefore, we can completely describe the load on the
system by specifying, for each process, the parameters
B, and C,. Experience has shown that, on the IBM Sys-
tem/360 model 67 computer, appropriate values for C.’s
are in the low tens of pages, and for B's are in the low
tens of milliseconds [6,7].

3. Modeling the paging drum
Whenever a process sustains a page fault, it goes into a
wait state until the required page can be fetched from
the paging drum. The length of the waiting period de-
pends on the capabilities of the drum and on the length
of the queue of requests for pages to be fetched. In this
paper, we assume that the circumference of the drum is
divided into an integral number of sectors, and that
pages are stored in such a way that they do not cross
sector boundaries. When a request is made to read or
write a page, the request is placed in the appropriate sec-
tor queue. As the drum rotates, its read-write heads
reach each sector in turn and service the requests on
each sector queue in first-in, first-out order. We assume
that the drum has rotational period T and has Ny sec-
tors.

We desire to find a relationship between the average
time to service a page fetch request (W) and the total

405

PAGE ALLOCATION MODEL

406

~——-——N)1 processes

& N
Execution time
(exponential
distribution)

\\ @ ——‘J

N~—

|
|
|
’ N sectors
|

Drum load == U faults/s

Figure 2 Simulation of paging drum.

load on the paging drum in requests per second (U).
This problem has been solved analytically by Skinner
[8] and Coffman [9] under the assumption that arrival
times of drum requests form a Poisson process. In gen-
eral, however, arrivals of drum requests in a computer
system do not form a Poisson process. Therefore, we
have chosen to model the computer system with the
more realistic cyclic-queue structure shown in Fig. 2,
which does not require this-assumption. An experiment
was performed in which the structure shown in Fig. 2
was simulated. A total of Ny processes were considered
to be active in the system. After each page request is
serviced, the process that issued the request is executed
for a random interval of time before it makes another
page request. The intervals are drawn from an exponen-
tial distribution. (Choosing execution intervals from the
same distribution for all processes may seem to contra-
dict our assumption that different processes have different
characteristics. However, we will show that the paging
manager can and indeed should, allocate pages to non-
identical processes in such a way that their mean execu-
tion intervals between page faults are the same. In any
case, we do not expect the drum characteristics described
here to be sensitive to differences among processes.)
The page requests are placed on each of the Ng sector
queues with equal probability. Consistent with our origi-
nal assumption of a non-CPU-bound system, we assume
that no process ever waits for a CPU after its page re-
quest has been satisfied. By adjusting the mean execu-
tion interval, we vary the total drum load (U) and ob-
serve the effect on the average wait time (W).

Clearly the results must be dependent on the degree of
multiprogramming, Ny. If Ny =1, the single process
always sees an empty drum queue, and the average wait
time to service a fault is the “no load” wait:

Wy = (%Jr N‘;)T)

D. D. CHAMBERLIN ET AL

The no load wait Wy, consists of one-half revolution
average latency, plus one sector read time to transmit
the page. If there are many processes in the system, we
expect W to vary from Wy to infinity, depending on the
load U. Wait W should approach infinity as U approach-
es the maximum transmission capacity M of the drum,
which is given by:

M= NJT. (3)

The results of the simulation experiment confirmed
the above expectations. A family of curves was plotted
that gives W as a function of U for various values of Ny,
as shown in Fig. 3. Several equations were fitted to the
results of the simulation and the following basic hyper-
bolic form was found to be most appropriate:

W=I[K/(M-U)}+K,. (4)

Least-squares analysis was used to evaluate the con-
stants K, and K, for various degrees of multiprogram-
ming Ny. The following specific equation was found to
fit the results very closely:

2Ky 2Ky
—M_U+WNL_ M

where M and W, are defined by Egs. (2) and (3) and
Ky is a factor determined by the degree of multipro-
gramming, defined as follows:

w

(5)

The total drum load U consists of the sum of the real-
time page fault rates of all the processes in the multi-
programming set: -

Nm

U=3u, (7)
i=1

where

u;= 1/(e; + W). (8)

If we let p = U/M, Eq. (5) can be written as:

11 20K u
W= (—+~—>T+—-——T.

2 Ng Ng(1—p)
It is interesting to note the marked degree of similarity
between the above equation and the following expression
for W derived by Skinner and Coffman for the special
case of a Poisson arrival process:

1 1 p
W = (— + *—>T + = T.

2 Ng (1— p)
4. Definition of value
We now wish to make a reasonable definition of the val-
we of a particular allocation of pages to a particular set
of processes. First we note that the rate of progress r, of

IBM J. RES. DEVELOP.

100 |

Np=1

Average page wait time, W (ms)

Total drum load, U (faults/s)

Figure 3 Drum wait as a function of load.

process i (expressed in instructions per second) is given
by the equation:

e.
57 S 9)

e AW

where S is the speed of the CPU in instructions per sec-
ond. We wish to take into account the fact that some
processes are more demanding than others in the sense
that they require more page frames in order to be exe-
cuted efficiently, and that it is more difficult (and hence
more valuable) to execute an instruction for a more
demanding process than for a Jess demanding process.
We will define the rate of accrual of value (v,) of pro-
cess i to be the product of its demand (D;) and its rate
of progress (r,):

v;= Dy, (10)

We proceed to define the rate of accrual of value for
the system as a whole (V) as the sum of the value rates
of all the processes in the system:

V=3 v, (11)

We are now left with the task of defining the demand
(D;) of a process. One possible candidate is C,, which
has been defined as a measure of the number of page
frames needed for process / to progress at half its maxi-
mum rate. But this measure would neglect B, which also
has a strong influence on the behavior of the process
(see Fig. 1). What we really want is a measure of the rel-

SEPTEMBER 1973

Cost per instruction, P;/r;

Page frames allocated, P;

Figure 4 Derivation of demand of a process.

ative cost to the system (in page-seconds) of executing
an instruction for process i. To gain such a measure, we
consider a hypothetical experiment in which process i
runs alone on a virtual-memory computer. We allocate
to the process various numbers of page frames, p,, al-
lowing the other page frames to stand idle, and observe
its behavior. As a function of p,, we plot the average
system page-seconds required to execute one instruction
(represented by p,/r;). The results, derived from Eqgs. (1)
and (9), are shown in Fig. 4. There is some optimal
number of page frames, p,;*, that minimizes the system’s
cost per instruction when process / runs alone. The actual
cost per instruction at this minimum point is defined to be
the demand of process i:

D,= (%) p,=pr. (12)

From Egs. (1) and (9), D, may be expressed in terms of
the characteristics B; and C, of the process:

Ci s
D, B, \/WNLZ + 2B Wy (13)

This definition of demand has the feature that it is a prop-
erty only of the characteristics of the individual pro-
cess, and does not depend on the environment in which
the process is run.

5. Solution procedure
Our model of a multiprogrammed, virtual-memory com-
puter system has been described in the preceding three

407

PAGE ALLOCATION MODEL

408

Page frames allocated to process 2, Py

Page frames allocated to process 2, Py

0 10 20 30 40 50 60

Page frames allocated to process 1, A

Figure 5 Experiment 1.

Table 1 Process characteristics for experiments 1, 2, 3.

Expt. Expt. Expt.

1 2 3

B, (ms) 20 20 20
C, (pages) 50 50 50
B, (ms) 20 20 40
C, (pages) 50 25 50

Figure 6 Experiment 2.

Page frames allocated to process 2, Py

0

Page frames aflocated to process 1, Py

D. D. CHAMBERLIN ET AL

Page frames allocated to process 1, Py

Figure 7 Experiment 3.

sections. The above definitions and assumptions must
now be brought together into a procedure for finding the
value of a particular page aliocation.

Equations (5), (7), and (8) can be combined to give
the following implicit relation for W:

W={2KM/[~ 1<§N (ei+W)“]}+WNL—2AIfIM.
i (14)

Equation (1) gives e, as a function of B;, C;, and P, for
each process. Therefore, if we specify the lifetime func-
tions of all processes in the multiprogramming set, the
drum characteristics, and a particular page allocation,
we can solve Eq. (14) for W. In our analysis we used
the secant method and found it to converge consistently
within a few steps to single-precision accuracy on an
IBM System/360 computer.

Once W is determined, we can use Eq. (9) to find the
rate of progress, r;, for each of the processes, and then
use Eqs. (10) and (11) to find V, the value of the page
allocation. Note that ¥ will have units of pages, and will
be less than or equal to the number of page frames in the
system. The ratio of V' to the number of system page
frames might be considered a measure of the efficiency
of use of main memory. '

An interactive PL/I program was written to aid in
evaluating various page allocations and searching the
space of possible allocations for the one that produces
optimum value under various conditions. The following
sections describe results obtained by use of this pro-
gram.

IBM J. RES. DEVELOP.

6. Simple observations

The first experiments done with the modeling program
were studies of an extremely simple system in which
only two processes were active. The system drum has
parameters T = 10 ms, Ng = 5, which corresponds to an
IBM 2035 drum with page size = 2K bytes [10]. Three
experiments were performed. The B/’s and C;’s chosen
for the two processes in each experiment are shown in
Table 1. '

In each experiment, many possible allocations of
pages to the two processes were tried, and their values
were recorded. The results are shown in Figs. 5, 6, and
7, in which equal-value contours are drawn on the plane
of possible page allocations. The following observations
may be made from these figures:

1. The equal-value contour lines are sharply discontin-
uous on the axes, reflecting the fact that it is always
much better to give n pages to one process and no
pages to the other than to give (n— 1) pages to one
process and one page to the other. (Axis intercepts of
the equal-value contours are represented by X’s in the
figures.) '

2. On the figures, any line of slope —1 represents all the
possible allocations for a system with a fixed number
of page frames.

3. The effect on the value contours of decreasing C, is
similar to the effect of increasing B,; both changes
tend to decrease the demand of process 2.

4. The locus of optimal (best-value) allocations for vari-
ous numbers of pages is represented on the figures by
the heavy dashed line.

a. For two identical processes, the optimal strategy is
to run only one process if there are fewer than a
certain number of pages available; if more than this
number of pages are available, they should be split
evenly between the two processes.

b. For two nonidentical processes, the optimal strate-
gy is as follows: If very few pages are available, run
the less demanding process only; if somewhat more
pages are available, run the more demanding pro-
cess only; if relatively many pages are available,
run both processes and allocate the pages to them
in some fixed proportion depending on their B;’s
and C,’s.

In addition to allocating pages, it is the task of the
paging manager to control the size of the multiprogram-
ming set. Once again, a simple experiment can give us
insight into the nature of this task. For Experiment 4, we
keep the 2305 drum characteristics as above, and we
assume the user load consists of many identical pro-
cesses, all with B; = 30 ms, C,= 50 pages. For various
numbers of pages in the system, and for various de-

SEPTEMBER 1973

400

300

Locus of optimal Ny

200

100

Total drum load, U (faults/s)

0 50 100 150 200 250

Total system page frames, Np

Figure 8 Experiment 4.

Table 2 Process characteristics for experiments 5, 6.

i 1 2 3 4
B, (ms) 10 5 25 20
C,; (pages) 15 20 50 60

grees of multiprogramming, we find the optimal-value
page allocation and record U (total drum load) and V
(total system value) for this allocation. A family of
curves showing drum load as a function of total pages
for various degrees of multiprograrpming is shown in
Fig. 8. Superimposed on these curves is a locus that
shows the degree of multiprogramming that yields op-
timum value for any given number of pages. Note that
as the number of pages increases, the optimal degree of
multiprogramming increases, tending to keep the drum
load U within a certain band of values.

7. More complex cases
Having gained some insight into the problem by study-
ing a simple case, we can now consider the more realis-
tic case of several nonidentical processes competing for
system resources. As an example of such a case, we will
describe some experiments that assume the system is
loaded with the four processes described in Table 2. As
before, the paging manager must choose a multiprogram-
ming set and allocate page frames to those processes
chosen. The lifetime functions of these processes are
shown superimposed on each other in Fig. 9. The expe-
riments in this section employed the same 2305 drum
parameters described above.

Experiment 5 studies the process of choosing a multi-
programming set (MPS) from the four available pro-
cesses. There are 15 possible nonempty MPS’s that

409

PAGE ALLOCATION MODEL

410

50

40 -

L 4
30

20k Process 1

10 -

Expected time between fauits, e ; (ms)

0 I} L I L 1 1

0 20 40 60 80 100 120

Page frames allocated, P;

Figure 9 Lifetime functions of processes in experiments 5
and 6.

could be chosen. Each MPS has a curve of system value
(V) vs total system pages (N,), assuming that the pages
are allocated in such a way as to maximize system value.
Figure 10 shows those fragments of the V' vs N, curves
that are optimal for various values of N,. As expected,
the best MPS when very few pages are available con-
sists only of the smallest process; as more pages are
added, the MPS grows until it contains all four pro-
cesses. Some possible combinations of processes are
never the optimal MPS for any value of N,,.

Experiment 6 studies the allocation of pages to pro-
cesses in the MPS. We see from Fig. 10 that the optimal
MPS for N, > 100 consists of all four processes. So we
find the optimum allocations of pages for N, = 100, 150,
and 200. The results are shown in Table 3.

Various attempts were made to find a pattern in these
allocations; the only generalization that held for this and
other similar experiments was that pages were allocated
to the various processes approximately in the proportion
of CB,”"*. Figure 11 shows how this proportionality is
preserved for each of the optimal allocations in Table 3.

Of course, the observation that optimal page alloca-
tions are proportional to C,B, " is of little value in the
design of a real paging manager, because B, and C, are
very difficult to measure in real time for a real process.
What is needed is a heuristic strategy that enables the
paging manager to choose an MPS and allocate pages on
the basis of quantities that are easily measured with very
little overhead on a real system. Such a heuristic pro-
cedure is described in the next section.

D. D. CHAMBERLIN ET AL

8. Heuristic strategy

We propose that the paging manager monitor the real-
time page-fault rate, u,, of each process in the MPS, and
the total system page-fault rate U. These quantities are
very easy to measure in real systems. We further pro-
pose that the paging manager use these measurements to
implement the following heuristic procedures:

Heuristic procedure 1: Control the size of the MPS in
such a way that U is kept between limits U, and U,,,,,
which are defined as properties of a particular system.
Implementation: If U < U, promote another process
into the MPS; the process to be promoted is chosen by
the system scheduler [1]. If U > U,,, demote the pro-
cess that has been longest in the MPS. Choose U, and
U mayx far enough apart so that the probability of jumping
from U < Upy,to U > Upa, is negligible.,

Heuristic procedure 2: Allocate page frames to the pro-
cesses in the MPS in such a way that all their page fault
rates are equal (u;=).

Implementation: If process i has u, < it and process
J has u; > i, take a page frame away from process i and
give it to process j.

Evaluation: In order to evaluate the two heuristic pro-
cedures, experiments were performed to compare the
system value ¥ produced by them with the best possible
value realizable under the same conditions. We report
on an experiment in which the system was loaded by the
eight processes described in Table 4. These processes
were chosen to represent a broad spectrum of demand.
Experiment 7 was conducted assuming a system with
N, = 50 pages and a 2305 drum. The number of system
pages was chosen small enough so that the optimum
MPS would include only a subset of the available pro-
cesses. The first part of the experiment was to find the
best page allocation for each of the 256 possible MPS’s,
and to measure its value. The highest value realizable by
any possible MPS, with optimal page allocation, is denot-
ed by V*; it was found to have the value V* = 46.02
pages in Experiment 7. The next part of the experiment
consisted in allocating page frames according to heuris-
tic procedure 2 (u,= i) for each of the 256 possible
MPS’s. For each such allocation, the system paging rate
U and the system value V' were measured. These mea-
surements are plotted on a U-V plane in Fig. 12, in
which each point represents a possible MPS. (Note that
this figure was produced by a computer printout. The
appearance of a number such as 8 denotes the clustering
of 8 points in the same print position. An asterisk de-
notes clustering of more than 9 points.) If we employ
heuristic procedure 1 with U, = 150 faults/s and
Umax = 250 faults/s, we are confined to some MPS in

IBM J. RES. DEVELOP.

100 ‘e
/
/
/
- /
90 /
/ ~«— Process
1,2,3,4
g
&
=
a
o
=
=
g
£
3
2
=
= |
0 25 50 75 100 125 150
Total system page frames, Np

Figure 10 Experiment 5.

the center region of the graph. The mean value of all
points in the center region is 40.1 pages, 87% of V'*. So
we see that the two heuristic procedures used in con-
junction will result in an average system value of 87% of
the best possible value under the conditions of the ex-
periment.

Other experiments were conducted with similar re-
sults. The choice of Uy, and Uy, depends on N, and
on the characteristics of the drum being used. For exam-
ple, Experiment 7 was repeated with N, = 50 and with
the same load, but with two 2305 drums in the system
rather than one. Under these conditions, with U, =
200 faults/s and Una, = 400 faults/s, the heuristic pro-
cecures produced a mean system value of 92.5% of V*.

The system scheduler may require that the paging
manager provide an estimate of the size of the working
page set of each process as it is demoted, to be used in
scheduling its next promotion [1,5]. Using the two heu-
ristic procedures above, no precise measurement of
working set can be made, since the number of page
frames allocated to a process depends on the character-
istics of the other processes that are in the MPS at the
same time. However, a reasonable measure of the rela-
tive sizes of working sets can be made by informing the
scheduler, when a process is demoted, of the average
number of page frames allocated to it during its stay in

SEPTEMBER 1973

100 |- Process 1

60’—
ol

Optimal page frame allocation, P; *

|

-

20 -
0 i | | 1
0 5 10 15 20 25
;B0
Figure 11 Experiment 6.
50 -
v :
45 - ‘
w0l . .) R 0
B ' ' b h ‘hu % 2
0k | o0 :
25k, i L
} 1
) : :
£ 20r :
N 2
s 15+
=
g
g 10+~
)
Z
0
[_‘O b 1 1 Umin 1 Umax L 1
P 50 100 150 200 250 300 350 400
Total system page fault rate, U (faults/s)
Figure 12 Experiment 7.
Table 3 Optimal page allocations.
Np p] pz P3 p4
100 13 20 29 38
150 20 30 44 56
200 26 41 58 75
Table 4 Process characteristics for experiment 7.
i 1 2 3 4 S 6 7 8
B, (ms) 10 10 50 50 10 10 50 50
C,; (pages) 50 50 10 10 10 10 50 50

411

PAGE ALLOCATION MODEL

412

the MPS. Heuristic procedure 1, in maintaining the total
fault rate within a certain range, tends to stabilize the
environment in the MPS. If we assume that a given pro-
cess encounters approximately the same MPS environ-
ment each time it is promoted, the number of page
frames allocated to it is a reflection of its working set
size.

9. Conclusions

We have proposed an analytic model for the behavior of
processes in a non-CPU-bound virtual-memory system,
and for the performance of the paging drum. Our model
is unusual in that it takes into account the tradeoff be-
tween two scarce resources of the system: main memory
page frames and paging channel capacity. Combining
our definition for value with the model, we have de-
veloped methods of measuring the value of a given page-
frame allocation, and of finding the optimal allocation of
a given number of pages among a given set of processes.
We have tested our methods on a simple system contain-
ing only two processes, and found the results to be intui-
tively reasonable. Using the same method with more
complex systems, we have observed the following two
results:

1. The optimal choice of a multiprogramming set is
closely related to the load on the paging channel. If
more page frames are added to the system, the optimal
MPS grows, tending to stabilize the paging channel
load.

2. Among those processes in the MPS, the optimal allo-
cation of page frames is approximately proportional to
CcB

As a convenient, low-overhead means for the paging
manager to control the allocation of page frames, we pro-
pose that it monitor the page fault rates of all active pro-
cesses, and employ the following heuristic procedures:

1. Control the size of the MPS.in such a way that total
paging channel load U is kept between limits U ;, and
U max, Which are defined as system parameters.

2. Allocate page frames among processes in the MPS in
such a way that all active processes have the same
page fault rate.

These heuristic procedures have been evaluated using
the tools described above. Under the conditions of our
expériment, they provide an inexpensive means for dy-
namically tuning a system for near-optimal throughput.

D. D. CHAMBERLIN ET AL

Our results illusﬁrate the general approach of defining
a model and solving it analytically for optimum resource
allocation, and then evaluating heuristic allocation strat-
egies by comparing their performance with the optimum.

Cited references :

1. D. D. Chamberlin, “A Scheduling Mechanism for Interac-
tive Systems with Virtual Memory,” IBM Research Report
RC3911, Yorktown Heights, New York.

2. J. M. McKinney, “A Survey of Analytical Time-Sharing
Models,” Computing Surveys 1, 105 (1969)

3. L. A. Belady and C. J. Kuehner, “Dynamic Space-Sharing
in Computer Systems,” Communications of the ACM 12,
282 (1969).

4. L. A. Belady, “A Study of Replacement Algorithms for a
Virtual Storage Computer,” IBM Systems Journal 5, 78
(1966).

5. P. Denning, “The Working Set Model for Program Behav-
ior,” Communications of the ACM 11, 323 (1968).

6. W. J. Doherty, *‘Scheduling TSS/360 for Responsiveness,”
AFIPS Conference Proceedings, Fall Joint Computer Con-
ference 37,97 (1970).

7. T. B. Pinkerton, Program Behavior and Control in Virtual
Storage Computer Systems, Ph.D. Thesis, University of
Michigan, 1968. .

8. C. E. Skinner, “A Priority Queuning System with Server-
Walking Time,” Operations Research 15,278 (1967).

9. E. G. Coffman, “Analysis of a Drum Input/Output Queune
under Scheduled Operation in a Paged Computer System,”
Journal of the ACM 16, 73 (1969); Errata, Journal of the
ACM 16,646 (1969).

10. IBM Systems Component Summary: 2305 Fixed Head
Storage, Form GA26-1589-1, IBM Data Processing Divi-
sion, White Plains, New York.

General references

1. Barbara S. Brawn and Frances G. Gustavson, Program Be-
havior in a Paging Environment, IBM Research Report
RC2194, Yorktown Heights, New York.

2. G. H. Fine, C. W. Jackson, and P. V. Mclsaac, “Dynamic
Program Behavior under Paging,” Proc. ACM 2Ist Nat.
Conf., pp. 223228 (1966). .

3. R. W. O’Neill, “Experience Using a Time-Sharing Multipro-
gramming System with Dynamic Address Relocation Hard-
ware,” AFIPS Conference Proceedings, Spring Joint Com-
puter Conference 30,611 (1967).

4. B. Randell and C. J. Kuehner, “Dynamic Storage Allocation
Systems,” Communications of the ACM 11, 297 (1968).

5. W. W. Chu and H. Opderbeck, “The Page Fault Frequency
Replacement Algorithm,” Proceedings 1972 Fall Joint Com-
puter Conference 41, 597 -609.

Received April 10, 1973

Dr. Fuller is located at Carnegie-Mellon University,
Pittsburgh, Pa. Dr. Chamberlin and Dr. Liu are located
at the IBM Research Division Laboratory, Monterey
and Cottle Roads, San Jose, California 95114.

IBM J. RES. DEVELOP.

