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Characterization of Program Paging 
in a Time-sharing Environment 

Abstract: This paper describes a method for predicting  the  paging  behavior of a program in a virtual memory  multiprogramming  en- 
vironment.  The  effect of overall  system  activity  on  the  program  is  summarized in one  parameter, the page  survival  index. The model 
correlates well with observations  taken  on  programs  running  under CP-67. The model  can  be  used for paging  load  prediction,  simulator 
input verification, and evaluation of program  rearrangement  and  sharing. 

1. Introduction 
With the  advent of virtual memory it has  become impor- 
tant  to  characterize the paging behavior of programs. 
One wishes to know what computer  resources  are nec- 
essary  to make a  program  run efficiently, or  conversely, 
how a  program will run with given resources.  The  two 
established methods of characterizing  program behavior 
answer  these  questions  under  certain conditions. If a 
program is to be  run in a  memory  partition of fixed size, 
then the so-called “parachor  curve” [ 11 predicts  the 
number of page exceptions  that will occur. If the pro- 
gram is to be dispatched in fixed time  slices, then knowl- 
edge of its  working sets [2] enables one to assign the 
proper memory size for  each time slice. These  approach- 
es,  however,  cannot deal adequately with a program 
running in a multiprogramming environment,  where nei- 
ther  the memory allotted  nor the time that  the program is 
allowed to run is fixed. It seems intuitively clear  that  the 
most efficient use of system resources can  be  achieved 
only if their  allocation to the  various users is allowed to 
vary  dynamically in response to  the users’ needs,  rather 
than according to some  predetermined scheme.  Indeed, 
the  trend  is  toward designing time-sharing  and other 
multiprogramming systems in this way [ 31.  

In section 2, the behavior of a  program  running in this 
kind of system is described.  The key difference  from its 
behavior in a system with a fixed memory size is that  the 
other programs running affect this program’s behavior, 
particularly the typical  length of time that  an unrefer- 
enced page remains in main storage.  A  formal measure 
of this  effect, the page  survival  index, is defined in sec- 
tion 3, and in section 4, it is shown how, for a given val- 
ue of the page  survival  index, the execution trace of an 

individual program may be  used to  derive  approximate 
measures of the program’s performance in the  “true” 
environment. These  measures, which we call q-realiza- 
tions, are analogous to  parachor  curves  and working sets 
for  characterizing  behavior of single programs in a uni- 
programmed environment. 

The  results of some experiments  on  Control Program- 
671Cambridge Monitor  System  (CP-67/CMS)  to verify 
the resulting model are described in section 5 .  Compari- 
sons of these  results with the  parachor  curve  approach 
are given in section 6.  In section  7, extensions of the 
ideas of sections 2 and 3 in a CP-67  environment  are 
given.  Finally some applications of the model are  de- 
scribed in section 8. 

2. Description of program execution 
We  assume  that a program (designated X in the  sequel) 
is being executed  under  the control of a multiprogram- 
ming system, on a computer consisting of a single cen- 
tral  processing  unit,  a main storage  unit  divided into 
fixed-size page frames,  and suitable 1/0 equipment. 

At any given time,  a certain  number of the pro- 
gram’s pages reside in main storage.  We  refer to  these 
pages as  the resident  set. The program is executed 
until interrupted by the  occurrence of some event,  such 
as  one of the following: 

1. The program references a page not  currently in the 

2. The program enters  the  (virtual) wait state, e.g., to 

3. A  timer  interruption  indicates end of time slice. 

resident set (page  exception). 

await  the completion of an 1/0 operation. 
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When the interruption occurs,  the operating  system 
gains control,  initiates  required actions  (e.g., bringing in 
the page that  caused  the  exception),  and then dispatches 
some other  program.  The period from  the  time a pro- 
gram is dispatched until it suffers an interruption is 
called an execution  interval. 

When  execution of program X is resumed at  some la- 
ter time,  its resident  set may have changed because: 

1. The  interruption  was  caused by a  page exception,  and 
the page causing the  exception will have been  brought 
in and  added to the  resident  set. 

2 .  Some pages previously in the  resident  set may have 
been removed by the operating  system to  make room 
for pages  required both by X and by other programs. 

The principal aim of this paper is to  show how the 
trace of a program  being executed alone can  be  used  to 
predict approximately  the  sequence of execution inter- 
vals and  resident  sets  that will occur  when  the program 
is executed  together with  a set of unknown  programs in 
a demand-paging  multiprogrammed  environment. The 
effect of this environment  is summarized in a single 
parameter,  as  described in the  next section. 

3. Page survival index 
We assume  that  the  operating  system  uses  an LRU- like 
page replacement algorithm. This  means  that when a 
page demanded by  a  program is brought  into main stor- 
age, it is likely to  replace a  page that  has  not been 
referenced  for a relatively long period of time. Such 
algorithms are  used,  for  instance, in CP-67 [4], VM/370 
[5], MTS [6], and Multics [7]. 

A  program can lose  pages  only while it is in the inter- 
rupted  state.  Therefore,  the  number of interruptions 
suffered by the program is a better indicator  than  elapsed 
time for  the  purpose of ascertaining  which pages  have 
been  lost. With a strict LRU replacement algorithm, 
pages not  referenced  for a time  equivalent to n interrup- 
tions will be lost before  pages that  have been  referenced 
in  a  time  equivalent to  fewer than n interruptions.  In  the 
approximations  to LRU that  have been  implemented on 
real systems,  the  clause “will be lost”  should be re- 
placed by “are more likely to be lost.”  However,  we 
shall neglect  this  difference in the model. 

Suppose  the  system paging rate is low. Under this 
condition, unreferenced  pages  can survive a  relatively 
large number of interruptions. On  the  other  hand, if 
the  demand  for pages is large,  e.g., because  the multi- 
programming level is high, then  unreferenced pages will 
tend to  be  lost  after relatively  few interruptions.  The 
effect of overall system activity on individual  program 
paging behavior  can be  summarized by means of one 
parameter, called the page survival  index (PSI),  which is 
defined as  the  number of interruptions  that  an unrefer- 

i 

enced  page can  survive.  Low PSI values  are  associated 
with high system activity  levels, and vice versa.  We shall 
use  the  letter 1I’ to desi- specific values of the PSI. 

A specific interpretation of the PSI for  the CP-67 sys- 
tem is given in a subsequent section. First,  however,  we 
show how  program behavior can be  characterized in a 
deterministic  way,  assuming that  the value of the PSI 
prevailing in the  system  at  the time of execution is a 
known constant. 

4. Execution trace  analysis 
Suppose a complete  execution  trace is available for  pro- 
gram X. The  trace  contains a sequential  list of all in- 
structions  executed,  each with a list of pages  referenced 
by that instruction. Such a trace tells us directly  how the 
program is executed  alone in unlimited storage. Further 
analysis is required to  show how the program is execut- 
ed in the multiprogrammed environment.  At  the  most 
detailed  level, the  desired  characterization  consists of a 
list of all execution intervals of the program. For  each 
interval,  we  require  the length of the interval (CPU time 
or  number of instructions),  the  resident  set,  and  the  type 
of interruption  that  terminated  the interval. Once  these 
data  are  obtained, more concise  characterizations  can be 
computed. For instance,  one may wish to  determine  the 
joint distribution of execution interval length and resi- 
dent  set size. Or,  one may be content with simple sum- 
mary statistics,  such  as  average  resident  set size and 
number of page exceptions. 

For a  given  value of the PSI, the detailed characteri- 
zation,  which we shall call the W-realization of program 
X ,  may be  obtained from  the execution trace in the fol- 
lowing manner: 

Define the following counters: 

T :  total  program execution time, 
t :  time since  start of current  execution interval, 
m: instruction number, 
k:  interruption  number. 

For  each page p referenced by the program we shall 
maintain  a counter L ( p )  containing the time that  the 
page was  last  referenced. 

For  each interruption k we shall define values S ( k )  
containing the time of occurrence,  and U ( k )  containing 
a code defining the  type of interruption.  Assume S ( k )  = 
0 for all k < 1 .  With each  interruption k we shall also 
associate a vector P ,  containing a list of the pages  resi- 
dent  at  the time of the interruption. 

Let W be  the prevailing value of the PSI. 
The algorithm proceeds  as follows: 

1 .  Initialization: Define the  resident  set  to be the  empty 
set,  and  let T = 0, m = 1, k = 0, and L ( p )  = -1 for 
all p .  
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2 .  Execution  interval  initialization: Let t = 0. 
3. Instruction  initialization: Check  whether  the mth in- 

struction  references any page  not in the  resident set. 
If it  does,  proceed  to  step 5 ) .  

4. Instruction  execution: Increase T and t by the exe- 
cution  time of the mth instruction.  Set L ( p )  = T for 
each page referenced by the  instruction.  Increase m 
by 1. If  the  instruction does  not  cause  the program to 
enter  the wait state, and if t does not exceed  the time 
slice  length, return  to  step 3 ) . 

5 .  Interruption: Increase k by I .  Set S ( k )  = T and  store 
the interruption type  code in U ( k ) .  Define the  vector 
P,  to  consist of the  current resident set page identifier. 

6. Resident  set  adjustment: Remove from the resident 
set all pages for which L ( p )  < S ( k  - Ur). This simu- 
lates  the loss of pages that  have  not been  referenced 
during the last Ur execution intervals. If the inter- 
ruption is a  page  exception (a transfer  from  step  3)  to 
5 )  ) , add  the offending page to  the resident set.  Note: 
If the  instruction  references  several pages  not in the 
resident  set, only one  is  added  at a  time. 

7.  Return  to  step 2 ) .  

It is evident that upon  completion of the trace,  one 
has  complete information on  the lengths of the  execution 
intervals, on  the  associated resident sets,  and  on  the 
nature of the interruptions that  occur,  at  the given  value 
of the PSI. For instance the length of the kth execution 
interval is given by TSo+,, - T,,,, and the  resident  set 
size at the  nth  interruption equals  the dimension of P,. 
By judicious programming of the algorithm, it is possible 
to obtain  realizations for several  values of the PSI 
simultaneously  during one  pass through the  trace.  Once 
these realizations are  obtained,  one easily computes  the 
summary statistics required for  the various  applications 
described below. 

5. Model verification 
The model was verified by comparing  its  predictions to 
data obtained from actual runs of various  programs un- 
der  the CP-67 system.  This  system maintains  various 
counters  that register the activities of each  user  on  the 
system.  The  two  counters  relevant  to  the  present  study 
are  the following: 

1. N :  number of page exceptions, 
2. S: cumulative  sum of resident  set  sizes,  the sum being 

incremented  at  each page  exception. 

By forming the ratio A = S I N ,  one  obtains  the  average 
resident  set size (average  number of pages in main 
storage),  the  average being over  the  instants  at which 
page exceptions  occur.  This  average is a measure of the 
cost  to  the  system of the  storage occupied by the  pro- 
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gram at  the time that its  execution is blocked  by a page 
exception  [3]. 

The values of N and A can  be  easily computed  from 
the information  recorded  during generation of the 
realizations for various  values of the PSI, as indicat- 
ed in the preceding section.  The r e d t i n g  values are 
plotted in Figs. 1-4 for various  programs  whose traces 
were available.  We  refer to  these plots as  the paging 
characteristics of the programs.  Also  plotted are  the 
values of N and A for replicate runs of the  same pro- 
grams  under uncontrolled  load  conditions on CP-67 in 
an  actual operating environment.  Since  the activity  level 
of the system fluctuates  rapidly, one  cannot  expect a 
single value of the PSI to prevail throughout  a run. 
Hence,  the  observed  points generally do  not  correspond 
to any specific predicted  points,  and  only approximate 
agreement  can  be  expected, with  occasional wide depar- 
tures.  Some additional inaccuracies of the model are  the 
following: 

1. Interruptions of various types  tend  to differ in length. 
A page is less likely to survive the long wait for a con- 
sole input than  the  short wait for a disk I/O. 

2. Some  interruptions may be conditioned on  outside 
events. For instance, a program  attempting to initiate 
an 1 / 0  operation will suffer an interruption if the  de- 
vice is busy  serving another program. 

3. Some  interruptions may  originate  externally to  the 
program under  study, e.g., the preemption of the CPU 
by a program of higher priority. 

Nevertheless, the agreement  between the observed 
data and the locus of the predicted  points is quite good. 

6. Static vs dynamic storage requirements 
The paging characteristics of Figs. 1 - 4 are analogous to 
the usual “parachor  curves,”  where  the  number of page 
exceptions is plotted  against the size of a fixed storage 
partition  allotted to  the program. These  latter  curves  are 
also plotted on Figs. 1-4. They  were obtained by run- 
ning the programs alone  under CP-67 in fixed storage 
partitions of various sizes and  counting the  number of 
page exceptions  generated.  It  is  clear from the figures 
that by allowing a program’s resident set  to expand  and 
contract according to its needs  one considerably reduces 
its average storage  requirements  over what would be 
necessary if the program were forced to be executed in a 
fixed-size partition. It is worth  noting that  the  observed 
points  are almost always much closer  to  the paging char- 
acteristics than to  the fixed memory parachor cur.:es. 

7. Interpretation of the PSI in a CP-67 like  system 
In  order  to explain how the PSI manifests itself in a CP- 
67-like system, it is necessary  to review  the CP-67 Re- 
lease 3.1  page replacement algorithm, Le., the method 



390 

Y .  BARD 

$ = 6  8 10 e- Page survival index 
Paging characteristic 
Fixed storage parachor curve - - - - - - - - - - - - 

0 Observed runs 

1000 

500 

100 

.- 
E 
0 50 

8 
x, 
a 

B 

c 
2 

i? 10 

__________ 

B 
- 

0 10 20 30  40 

Average size of resident  set (pages) 

Figure 1 Assembly of 1 t5-card  deck. 

for choosing which page should  be  removed from main 
storage to make room for a new page to be brought in 
from  auxiliary storage.  We  point  out first that CP-67 
maintains  a table of all pages in main storage, a  refer- 
ence bit associated with each page,  and  a pointer  that 
cycles  around  the table. CP-67 also maintains, at  any 
given moment, a list of "in-queue" users, and these  are 
the only ones eligible to receive  service at  that time. The 
algorithm may  now be described  as follows: 

Select the  next page  pointed to in the table if its  refer- 
ence bit is  off. Otherwise,  turn  the reference bit off, 
move the pointer down  one page, and  repeat.  Note: The 
reference bit is turned on  whenever  the  user  references 
the page in the course of running his program. The bit is 
turned off when  the  user is removed  from  in-queue sta- 
tus. 

We  refer to  the time that it takes  the pointer to move 
through  the  entire table as a cycle. 

A  page that  has survived the passage of the  pointer 
has  its  reference bit off. The page will be lost if, and only 
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Figure 2 FORTRAN compilation of 49-card deck. 

if, it remains unreferenced until the next  passage of the 
pointer. Any page that is lost has,  therefore, gone unref- 
erenced for at  least  one cycle. On  the  other  hand, it is 
clear  that a page cannot survive  unreferenced for  two 
full cycles.  Suppose program X is dispatched n ( X )  times 
during one cycle. Thus n ( X )  is also the  number of inter- 
ruptions  that  the  program  has  suffered, and  it follows 
that: 

n ( X )  5 P ( X )  < 2 n ( X ) ,  

where we have used the notation W(X) to refer to  the 
value of the PSI that  holds  for this  particular  program. 
Assuming that  the last reference  to a page, which is 
known  not to  have been  referenced for  at  least n ( X )  
intervals and at most 2n(X) - 1 intervals, is distributed 
uniformly over this  range, we deduce 

where E denotes  the  expected value. Thus, in reality the 
value of P(X) would vary  randomly over a certain 
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Figure 3 Execution of FORTRAN program. 

range, whereas in our characterization  we  assumed it to 
be fixed. 

Suppose  that K programs are being multiprogrammed 
together, and suppose all these programs are  dispatched 
at  the  same  frequency, e.g., as in a  round  robin  schedule. 
Since n ( X )  will be  the  same  for all programs,  they will 
also  have  the  same  expected value of W ( X ) ,  and we may 
henceforth  drop  the argument ( X ) .  Suppose  further 
that all programs are running under nearly  steady- 
state conditions,  with no marked changes in the sizes 
of their  resident  sets. 

Let A (i, 'u) be the  average  resident  set of the ith pro- 
gram, given that  the PSI is T. If M is  the total number of 
page frames available in main storage, then  clearly 

K 
M z 2 A ( i ,  9). 

i= 1 

Since A is generally  a  monotonic  increasing  function 
of W (see Figs. 1 -4 ) ,  and  since  active programs  tend to 
increase  their  resident  sets  at  the  expense of inactive 
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Figure 4 Execution of PL/I program. 

programs, it follows that  under  steady-state conditions 
the maximum  value of T for which the  above inequality 
holds will prevail,  i.e.: 

T* = max {W(M 3 2 A ( i ,  TI}, 

where W* denotes  the actually  prevailing  value of W. 
Let R (i, T) be the page exception  rate  (per second of 

execution time) for the ith program,  given that  the PSI 
is T. Furthermore, let t( i ,T) be the  average length of the 
execution  interval. Then  the overall page exception  rate 
(per  second of virtual CPU time) is: 

K 

i=1  

Let f(i, T) be  the  fraction of execution  intervals termi- 
nating in a  page exception.  Since  each program  has, on 
the  average, n* = 2/3T* execution  intervals  per  cycle, it 391 
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Figure 5 Use of paging characteristic in evaluation of trace 
compression technique. 

follows that  there  are F* = 2/31V*Zi f(i, T*) page 
exceptions  per  cycle,  Hence  the  duration of a cycle is 
F*/R*,  and the  pointer  advances,  on  the  average, M / F *  
pages per page exception. 

The  functionsA(i, Yr), R ( i ,  ly), t(i, Yr), andf(i,VI)  are 
easily calculated  from the realizations described in Sec- 
tion 4, and all other  quantities of interest can  be  com- 
puted  from the  above formulas. 1 / 0  rates  (other than 
paging) can  be  computed similarly to  the paging rate, 
and  these  rates  can be  used to predict CPU utilization 
and  other throughput measures by means of suitable 
queuing  models [8]. 

The  assumptions of steady  state  and equal  dispatching 
frequency  are rarely met in practice,  and  the  above 
equations were derived only to give the  reader a feeling 
for  the way in which the PSI is related to  events occur- 
ring in the system. A more  realistic model for predicting 
system  behavior  under a given set of programs  running 
together is being developed. 
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Figure 6 Use of paging characteristic in evaluation of program 
rearrangement. 

8. Applications 
The principal  potential  application of the model is in at- 
tempting to predict system  performance  that will result 
when  a  given set of programs is run together. A simpli- 
fied approach  to this  problem has already been  pre- 
sented in the preceding sections. 

An application for which the model has already been 
used is in verifying compacted  descriptions of program 
execution  traces  to be used as inputs to a system simula- 
tor  [9]. In this compaction, many machine  instructions 
are aggregated into a single “macro instruction.” A de- 
scription of the  macro instruction consists of the  number 
of machine instructions included, and  the  set of pages 
referenced.  Special macros  exist  for I/O instructions  and 
other  exceptional  cases.  Macro  sizes  are limited by the 
number of pages and/or  number of machine instructions 
allowed.  When fed  to  the simulator, a special  “window” 
algorithm [9] is used to  break  up  the  macro  into a  simu- 
lated page reference string. Due  to  the  manner in which 

IBM J .  RES. DEVELOP. 



the  macros  are  generated (fixed limit on pages refer- 
enced  per  macro)  there is generally  excellent agreement 
between  the  “parachor curves’’ of the simulated and real 
programs, at  least  for fixed memory sizes  above  the 
macro limit. Therefore,  comparison of the *-realization 
statistics  provides a much  more  critical test of both  the 
compaction  and window  algorithms. An  example of such 
a comparison is given in Fig. 5 .  Incidentally, the  process 
of generating the  T-realizations provides an  excellent 
method for determining macro instruction boundaries. 
One could  in fact  argue  that  the macro instructions 
should correspond precisely to  the execution intervals in 
the  To-realization of the program,  where To is the great- 
est  lower bound on the  values of the PSI observed in the 
real system. It  can  be  shown  that  for T 1 To, *-realiza- 
tions  generated  from  such a compacted  trace  are exactly 
the  same  as  those obtained from  the full instruction 
trace,  and  the  set of interruptions in the *-realization is a 
subset of the  interruptions in the *,-realization, provided 
time  slice ends  are ignored. 

It  is usually possible to  write a  program in many dif- 
ferent, though  functionally  equivalent,  ways. Our  char- 
acterization could  be  used to  determine which one of 
several implementations makes  the  least  demands on the 
system’s paging resources, i.e., by  having the  lowest 
paging characteristic. Hatfield and  Gerald [ 101 have  de- 
veloped methods for rearranging the modules of a pro- 
gram so as  to  reduce paging. The effect of such a re- 
arrangement is shown in Fig. 6 ,  showing that  the desired 
objective was, indeed, achieved: at  each value of the 
Psi, there  are savings both in average  storage required 
and  number of page exceptions. 

From  each realization of program X we can compute 
the  fraction of execution time  during  which any specific 
page is resident,  and  also  the  number of exceptions 
caused by that page. As shown by Wahi [ 111, this infor- 
mation can be  used to  determine which pages of a  popu- 
lar  procedure should be  shared among users  and/or 
locked  permanently in main storage. 

9. Conclusion 
We  have  presented  here a characterization of a program’s 
behavior in a multiprogramming virtual  memory  system. 
The  characterization  is  based  on  the  concept of the 
resident  set, which may be  regarded as  an  adaption of the 
working set [ 2 ]  concept.  The  latter  captures  the pages 
referenced during  a predetermined time  interval. The 
former  captures  the pages likely to  be resident in main 
storage during an organically determined execution 
interval. In fact,  the resident set  at  the  kth interruption 
is precisely the working set  for  the period spanned by 
the preceding T execution intervals. The page  survival 
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index (PSI) characterizes  the interaction  between  the 
environment  (the operating system and all the programs 
being executed)  and  the specific  program under investi- 
gation. The  9-realizations of a program’s  execution are 
intended to be reproducible approximations  to  actual, 
nonreproducible executions of the program on  the real 
system. We  feel that  statistics  (such  as  the paging char- 
acteristic)  generated from the  sequence of execution 
intervals  and  resident  sets predicted for various  values 
of the PSI are  more  relevant  for  studies of program be- 
havior and  system design and evaluation,  than those 
based on  the  more traditional concepts of fixed-time 
working set and  fixed-storage parachor  curve. 
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