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Characterization of Program Paging
in a Time-sharing Environment

Abstract: This paper describes a method for predicting the paging behavior of a program in a virtual memory multiprogramming en-
vironment. The effect of overall system activity on the program is summarized in one parameter, the page survival index. The model
correlates well with observations taken on programs running under CP-67. The model can be used for paging load prediction, simulator
input verification, and evaluation of program rearrangement and sharing.

1. Introduction

With the advent of virtual memory it has become impor-
tant to characterize the paging behavior of programs.
One wishes to know what computer resources are nec-
essary to make a program run efficiently, or conversely,
how a program will run with given resources. The two
established methods of characterizing program behavior
answer these questions under certain conditions. If a
program is to be run in a memory partition of fixed size,
then the so-called ‘“‘parachor curve” [1] predicts the
number of page exceptions that will occur. If the pro-
gram is to be dispatched in fixed time slices, then knowl-
edge of its working sets [2] enables one to assign the
proper memory size for each time slice. These approach-
es, however, cannot deal adequately with a program
running in a multiprogramming environment, where nei-
ther the memory allotted nor the time that the program is
allowed to run is fixed. It seems intuitively clear that the
most efficient use of system resources can be achieved
only if their allocation to the various users is allowed to
vary dynamically in response to the users’ needs, rather
than according to some predetermined scheme. Indeed,
the trend is toward designing time-sharing and other
multiprogramming systems in this way {3].

In section 2, the behavior of a program running in this
kind of system is described. The key difference from its
behavior in a system with a fixed memory size is that the
other programs running affect this program’s behavior,
particularly the typical length of time that an unrefer-
enced page remains in main storage. A formal measure
of this effect, the page survival index, is defined in sec-
tion 3, and in section 4, it is shown how, for a given val-
ue of the page survival index, the execution trace of an
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individual program may be used to derive approximate
measures of the program’s performance in the ‘‘true”
environment. These measures, which we call V-realiza-
tions, are analogous to parachor curves and working sets
for characterizing behavior of single programs in a uni-
programmed environment.

The results of some experiments on Control Program-
67/Cambridge Monitor System (CP-67/CMS) to verify
the resulting model are described in section 5. Compari-
sons of these results with the parachor curve approach
are given in section 6. In section 7, extensions of the
ideas of sections 2 and 3 in a CP-67 environment are
given. Finally some applications of the model are de-
scribed in section 8.

2. Description of program execution

We assume that a program (designated X in the sequel)
is being executed under the control of a multiprogram-
ming system, on a computer consisting of a single cen-
tral processing unit, a main storage unit divided into
fixed-size page frames, and suitable I/O equipment.

At any given time, a certain number of the pro-
gram’s pages reside in main storage. We refer to these
pages as the resident set. The program is executed
until interrupted by the occurrence of some event, such
as one of the following:

1. The program references a page not currently in the
resident set (page exception).

2. The program enters the (virtual) wait state, e.g., to
await the completion of an I/O operation.

3. A timer interruption indicates end of time slice.
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When the interruption occurs, the operating system
gains control, initiates required actions (e.g., bringing in
the page that caused the exception), and then dispatches
some other program. The period from the time a pro-
gram is dispatched until it suffers an interruption is
called an execution interval.

When execution of program X is resumed at some la-
ter time, its resident set may have changed because:

1. The interruption was caused by a page exception, and
the page causing the exception will have been brought
in and added to the resident set.

2. Some pages previously in the resident set may have
been removed by the operating system to make room
for pages required both by X and by other programs.

The principal aim of this paper is to show how the
trace of a program being executed alone can be used to
predict approximately the sequence of execution inter-
vals and resident sets that will occur when the program
is executed together with a set of unknown programs in
a demand-paging multiprogrammed environment. The
effect of this environment is summarized in a single
parameter, as described in the next section.

3. Page survival index

We assume that the operating system uses an LRU- like
page replacement algorithm. This means that when a
page demanded by a program is brought into main stor-
age, it is likely to replace a page that has not been
referenced for a relatively long period of time. Such
algorithms are used, for instance, in CP-67 [4], VM/370
[5], MTS [6], and Multics [7].

A program can lose pages only while it is in the inter-
rupted state. Therefore, the number of interruptions
suffered by the program is a better indicator than elapsed
time for the purpose of ascertaining which pages have
been lost. With a strict LRU replacement algorithm,
pages not referenced for a time equivalent to » interrup-
tions will be lost before pages that have been referenced
in a time equivalent to fewer than » interruptions. In the
approximations to LRU that have been implemented on
real systems, the clause “will be lost” should be re-
placed by ‘““are more likely to be lost.” However, we
shall neglect this difference in the model.

Suppose the system paging rate is low. Under this
condition, unreferenced pages can survive a relatively
large number of interruptions. On the other hand, if
the demand for pages is large, e.g., because the muiti-
programming level is high, then unreferenced pages will
tend to be lost after relatively few interruptions. The
effect of overall system activity on individual program
paging behavior can be summarized by means of one
parameter, called the page survival index (PS1), which is
defined as the number of interruptions that an unrefer-

enced page can survive. Low PSI values are associated
with high system activity levels, and vice versa. We shall
use the letter ¥ to designate specific values of the PSI.

A specific interpretation of the PSI for the CP-67 sys-
tem is given in a subsequent section. First, however, we
show how program behavior can be characterized in a
deterministic way, assuming that the value of the PSI
prevailing in the system at the time of execution is a
known constant.

4. Execution trace analysis

Suppose a complete execution trace is available for pro-
gram X. The trace contains a sequential list of all in-
structions executed, each with a list of pages referenced
by that instruction. Such a trace tells us directly how the
program is executed alone in unlimited storage. Further
analysis is required to show how the program is execut-
ed in the muitiprogrammed environment. At the most
detailed level, the desired characterization consists of a
list of all execution intervals of the program. For each
interval, we require the length of the interval (CPU time
or number of instructions), the resident set, and the type
of interruption that terminated the interval. Once these
data are obtained, more concise characterizations can be
computed. For instance, one may wish to determine the
joint distribution of execution interval length and resi-
dent set size. Or, one may be content with simple sum-
mary statistics, such as average resident set size and
number of page exceptions.

For a given value of the PSI, the detailed characteri-
zation, which we shall call the W-realization of program
X, may be obtained from the execution trace in the fol-
lowing manner:

Define the following counters:

T: total program execution time,

t: time since start of current execution interval,
m: instruction number,

k: interruption number.

For each page p referenced by the program we shall
maintain a counter L{p) containing the time that the
page was last referenced.

For each interruption k¥ we shall define values S (k)
containing the time of occurrence, and U (k) containing
a code defining the type of interruption. Assume S (k) =
0 for all kK < 1. With each interruption £ we shall also
associate a vector P, containing a list of the pages resi-
dent at the time of the interruption.

Let ¥ be the prevailing value of the PSI.

The algorithm proceeds as follows:

1. Initialization: Define the resident set to be the empty
set, and let T=0, m=1, k=0, and L(p) =—1 for
all p.
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2. Execution interval initialization: Let t = 0.

3. Instruction initialization: Check whether the mth in-
struction references any page not in the resident set.
If it does, proceed to step 5).

4. Instruction execution: Increase T and ¢ by the exe-
cution time of the mth instruction. Set L(p) = T for
each page referenced by the instruction. Increase m
by 1. If the instruction does not cause the program to
enter the wait state, and if ¢ does not exceed the time
slice length, return to step 3).

5. Interruption: Increase k by /. Set S(k) = T and store
the interruption type code in U (k). Define the vector
P, to consist of the current resident set page identifier.

6. Resident set adjustment: Remove from the resident
set all pages for which L(p) < §(k — ¥). This simu-
lates the loss of pages that have not been referenced
during the last ¥ execution intervals. If the inter-
ruption is a page exception (a transfer from step 3) to
5)), add the offending page to the resident set. Note:
If the instruction references several pages not in the
resident set, only one is added at a time.

7. Return to step 2).

It is evident that upon completion of the trace, one
has complete information on the lengths of the execution
intervals, on the associated resident sets, and on the
nature of the interruptions that occur, at the given value
of the PSI. For instance the length of the kth execution
interval is given by Tg, ., — T4, and the resident set
size at the nth interruption equals the dimension of P,.
By judicious programming of the algorithm, it is possible
to obtain realizations for several values of the PSI
simultaneously during one pass through the trace. Once
these realizations are obtained, one easily computes the
summary statistics required for the various applications
described below.

5. Model verification

The model was verified by comparing its predictions to
data obtained from actual runs of various programs un-
der the CP-67 system. This system maintains various
counters that register the activities of each user on the
system. The two counters relevant to the present study
are the following:

1. N: number of page exceptions,
2. S: cumulative sum of resident set sizes, the sum being
incremented at each page exception.

By forming the ratio 4 =S/N, one obtains the average
resident set size (average number of pages in main
storage), the average being over the instants at which
page exceptions occur. This average is a measure of the
cost to the system of the storage occupied by the pro-
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gram at the time that its execution is blocked by a page
exception [3].

The values of N and A4 can be easily computed from
the information recorded during generation of the
realizations for various values of the PSI, as indicat-
ed in the preceding section. The reshlting values are
plotted in Figs. 1-4 for various programs whose traces
were available. We refer to these plots as the paging
characteristics of the programs. Also plotted are the
values of N and A4 for replicate runs of the same pro-
grams under uncontrolled load conditions on CP-67 in
an actual operating environment. Since the activity level
of the system fluctuates rapidly, one cannot expect a
single value of the PSI to prevail thronghout a run.
Hence, the observed points generally do not correspond
to any specific predicted points, and only approximate
agreement can be expected, with occasional wide depar-
tures. Some additional inaccuracies of the model are the
following:

1. Interruptions of various types tend to differ in length.
A page is less likely to survive the long wait for a con-
sole input than the short wait for a disk 1/0O.

2. Some interruptions may be conditioned on outside
events. For instance, a program attempting to initiate
an 1/O operation will suffer an interruption if the de-
vice is busy serving another program.

3. Some interruptions may originate externally to the
program under study, e.g., the preemption of the CPU
by a program of higher priority.

Nevertheless, the agreement between the observed
data and the locus of the predicted points is quite good.

6. Static vs dynamic storage requirements

The paging characteristics of Figs. 1—4 are analogous to
the usual “parachor curves,” where the number of page
exceptions is plotted against the size of a fixed storage
partition allotted to the program. These latter curves are
also plotted on Figs. 1-4. They were obtained by run-
ning the programs alone under CP-67 in fixed storage
partitions of various sizes and counting the number of
page exceptions generated. It is clear from the figures
that by allowing a program’s resident set to expand and
contract according to its needs one considerably reduces
its average storage requirements over what would be
necessary if the program were forced to be executed in a
fixed-size partition. It is worth noting that the observed
points are almost always much closer to the paging char-
acteristics than to the fixed memory parachor curves.

7. Interpretation of the PSI in a CP-67 like system

In order to explain how the PSI manifests itself in a CP-
67-like system, it is necessary to review the CP-67 Re-
lease 3.1 page replacement algorithm, i.e., the method
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Figure 1 Assembly of 115-card deck.

for choosing which page should be removed from main
storage to make room for a new page to be brought in
from auxiliary storage. We point out first that CP-67
maintains a table of all pages in main storage, a refer-
ence bit associated with each page, and a pointer that
cycles around the table. CP-67 also maintains, at any
given moment, a list of “in-queue” users, and these are
the only ones eligible to receive service at that time. The
algorithm may now be described as follows:

Select the next page pointed to in the table if its refer-
ence bit is off. Otherwise, turn the reference bit off,
move the pointer down one page, and repeat. Note: The
reference bit is turned on whenever the user references
the page in the course of running his program. The bit is
turned off when the user is removed from in-queue sta-
tus.

We refer to the time that it takes the pointer to move
through the entire table as a cycle.

A page that has survived the passage of the pointer
has its reference bit off. The page will be lost if, and only
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Figure 2 FORTRAN compilation of 49-card deck.

if, it remains unreferenced until the next passage of the
pointer. Any page that is lost has, therefore, gone unref-
erenced for at least one cycle. On the other hand, it is
clear that a page cannot survive unreferenced for two
full cycles. Suppose program X is dispatched n(X) times
during one cycle. Thus n(X) is also the number of inter-
ruptions that the program has suffered, and it follows
that:

n(X)=¥(X) <2n(X),

where we have used the notation ¥ (X) to refer to the
value of the PSI that holds for this particular program.
Assuming that the last reference to a page, which is
known not to have been referenced for at least n(X)
intervals and at most 2n(X) — 1 intervals, is distributed
uniformly over this range, we deduce

EY(X)=3/2 n(X),

where E denotes the expected value. Thus, in reality the
value of ¥(X) would vary randomly over a certain
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Figure 3 Execution of FORTRAN program.

range, whereas in our characterization we assumed it to
be fixed.

Suppose that K programs are being multiprogrammed
together, and suppose all these programs are dispatched
at the same frequency, e.g., as in a round robin schedule.
Since n(X) will be the same for all programs, they will
also have the same expected value of ¥ (X), and we may
henceforth drop the argument (X). Suppose further
that all programs are running under nearly steady-
state conditions, with no marked changes in the sizes
of their resident sets.

Let A(i, ¥) be the average resident set of the ith pro-
gram, given that the PSI is V. If M is the total number of
page frames available in main storage, then clearly .

X
M= AGY).
i=1

Since A4 is generally a monotonic increasing function
of ¥ (see Figs. 1-4), and since active programs tend to
increase their resident sets at the expense of inactive
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Figure 4 Execution of PL/I program.

programs, it follows that under steady-state conditions
the maximum value of ¥ for which the above inequality
holds will prevail, i.e.:

* = max {¥|M = ﬁj A, W)},

where ¥* denotes the actually prevailing value of V.

Let R(i, ¥) be the page exception rate (per second of
execution time) for the ith program, given that the PSI
is ¥. Furthermore, let ¢(i,%) be the average length of the
execution interval. Then the overall page exception rate
(per second of virtual CPU time) is:

S R(, W)1(i, U*)

2 t(i, ¥*)

1

R*=

Let f(i, ¥) be the fraction of execution intervals termi-
nating in a page exception. Since each program has, on
the average, n* = 2/3¥* execution intervals per cycle, it
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Figure 5 Use of paging characteristic in evaluation of trace
compression technique.

follows that there are F*=2/3%*¥, f(i, ¥*) page
exceptions per cycle, Hence the duration of a cycle is
F*/R*, and the pointer advances, on the average, M/F*
pages per page exception.

The functions 4 (i, ¥), R{i, ¥), t(i, ¥), and f(i, ¥') are
easily calculated from the realizations described in Sec-
tion 4, and all other quantities of interest can be com-
puted from the above formulas. I/O rates (other than
paging) can be computed similarly to the paging rate,
and these rates can be used to predict CPU utilization
and other throughput measures by means of suitable
queuing models [8].

The assumptions of steady state and equal dispatching
frequency are rarely met in practice, and the above
equations were derived only to give the reader a feeling
for the way in which the PSI is related to events occur-
ring in the system. A more realistic model for predicting
system behavior under a given set of programs running
together is being developed.
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Figure 6 Use of paging characteristic in evaluation of program
rearrangement.

8. Applications

The principal potential application of the model is in at-
tempting to predict system performance that will result
when a given set of programs is run together. A simpli-
fied approach to this problem has already been pre-
sented in the preceding sections.

An application for which the model has already been
used is in verifying compacted descriptions of program
execution traces to be used as inputs to a system simula-
tor [9]. In this compaction, many machine instructions
are aggregated into a single ‘“macro instruction.” A de-
scription of the macro instruction consists of the number
of machine instructions included, and the set of pages
referenced. Special macros exist for 1/O instructions and
other exceptional cases. Macro sizes are limited by the
number of pages and/or number of machine instructions
allowed. When fed to the simulator, a special “window”
algorithm [9] is used to break up the macro into a simu-
lated page reference string. Due to the manner in which
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the macros are generated (fixed limit on pages refer-
enced per macro) there is generally excellent agreement
between the “parachor curves” of the simulated and real
programs, at least for fixed memory sizes above the
macro limit. Therefore, comparison of the ¥-realization
statistics provides a much more critical test of both the
compaction and window algorithms. An example of such
a comparison is given in Fig. 5. Incidentally, the process
of generating the W-realizations provides an excellent
method for determining macro instruction boundaries.
One could in fact argue that the macro instructions
should correspond precisely to the execution intervals in
the ¥ -realization of the program, where ¥ is the great-
est lower bound on the values of the PSI observed in the
real system. It can be shown that for ¥ = ¥, V-realiza-
tions generated from such a compacted trace are exactly
the same as those obtained from the full instruction
trace, and the set of interruptions in the ¥-realizationis a
subset of the interruptions in the W -realization, provided
time slice ends are ignored.

It is usually possible to write a program in many dif-
ferent, though functionally equivalent, ways. Our char-
acterization could be used to determine which one of
several implementations makes the least demands on the
system’s paging resources, i.e., by having the lowest
paging characteristic. Hatfield and Gerald [10] have de-
veloped methods for rearranging the modules of a pro-
gram so as to reduce paging. The effect of such a re-
arrangement is shown in Fig. 6, showing that the desired
objective was, indeed, achieved: at each value of the
PSI, there are savings both in average storage required
and number of page exceptions.

From each realization of program X we can compute
the fraction of execution time during which any specific
page is resident, and also the number of exceptions
caused by that page. As shown by Wahi [11], this infor-
mation can be used to determine which pages of a popu-
lar procedure should be shared among users and/or
locked permanently in main storage.

9. Conclusion

We have presented here a characterization of a program’s
behavior in a multiprogramming virtual memory system.
The characterization is based on the concept of the
resident set, which may be regarded as an adaption of the
working set [2] concept. The latter captures the pages
referenced during a predetermined time interval. The
former captures the pages likely to be resident in main
storage during an organically determined execution
interval. In fact, the resident set at the Ath interruption
is precisely the working set for the period spanned by
the preceding ¥ execution intervals. The page survival

index (PSI) characterizes the interaction between the
environment (the operating system and all the programs
being executed) and the specific program under investi-
gation. The ¥-realizations of a program’s execution are
intended to be reproducible approximations to actual,
nonreproducible executions of the program on the real
system. We feel that statistics (such as the paging char-
acteristic) generated from the sequence of execution
intervals and resident sets predicted for various values
of the PSI are more relevant for studies of program be-
havior and system design and evaluation, than those
based on the more traditional concepts of fixed-time
working set and fixed-storage parachor curve.
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