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System Formulation and ApL Shared Variables

Abstract: The problem of providing communication with APL programs was approached by formulating systems as collections of au-
tonomous processors communicating on interfaces consisting of shared variables. This paper discusses the formulation of a theoretical
APL system and cites experience with a prototype APL shared variable system which both uses and provides shared variable interfaces.

Introduction

This paper discusses the results of an investigation of
the nature of communication between cooperating pro-
cesses that was motivated by the desire to provide a
communication facility for APL programs. The principal
results are a formalization of shared variables as inter-
faces between processors, and a theoretical mechanism —
a shared variable processor —based on a formalization of
systems in general and of APL systems in particular. A
companion paper [la] contains a discussion of shared
variables in the context of the design of APL.

APL\360 [1b] is an implementation of APL as an in-
teractive system on the IBM System/360 family of com-
puters. The system was originally designed with two pri-
mary uses in mind: as an aid in teaching [2], and for
system design [3]. However, the language is suited for
almost all aspects of data processing and, once an imple-
mentation was available, its use spread rapidly, despite
the fact that it provided communication only with type-
writer terminals. There was no facility for passing large
volumes of information across the workspace boundary.
The use of APL\360 was therefore restricted to applica-
tions where all necessary information could be entered
from a terminal device and stored in fixed-size work-
spaces.

Most programming languages approach communica-
tion and storage problems by defining explicit communi-
cation primitives such as READ and WRITE to transfer
information. These specialized primitives, used in con-
junction with declarative statements and job control lan-
guages, result in programs which contain file-handling
details irrelevant to the algorithm, and are strongly de-
pendent on host operating systems and file structures.
This approach was deemed inappropriate for APL be-
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cause it conflicted with many of the principles that guide
APL design [1a]; in particular, it conflicted with the re-
quirement for machine-independent theoretical defini-
tions of primitive functions.

The basis for communication with an APL program
was established in 1964 [4] when autonomous proces-
sors, described in APL, were shown communicating
through interfaces consisting of shared variables having
no other special properties. The concept of communica-
tion between processes by means of shared variables has
also been used as a theoretical basis for other communi-
cation schemes. For example, Dijkstra [5] used it to
develop semaphores (which are specialized shared
variables) and the P and V functions defined on them.

Systems, processors, and interfaces

A system can be formulated and constructed as a collec-
tion of interconnected processors, each of which is de-
signed to do a specific job. For example, computers are
usually constructed with arithmetic and data transfer
functions incorporated in independent processors; chan-
nels transfer data between high-speed storage and input-
output devices, concurrently with CPU processing.

A processor can be described by an APL program
[4,6,7] which does not terminate, i.e., all branches are
made to statements within the program. It operates on
values supplied to it, and may also store a result on the
interface with another processor.

The interface is represented in each processor as one
or more variables which appear in both, i.e., shared vari-
ables. (Hardware systems are often constructed in this
way. For example, in System/360, communication be-
tween central processors and channels is effected by
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Figure 1 Organization of an idealized APL system.

variables such as the Channel Status Word and Channel
Address Word, and by other interface variables located
in local storage and set by the channel and by the execu-
tion of SIO, TIO, and HIO instructions in the central
processor.) Either processor may read and write the
shared variables, and in general, there is no other means
of communication between them. When a processor is
described by an APL program, the behavior of the inter-
face is completely determined by the functions applied
to the shared variables.

Some processors are designed to be servants to others.
This design is achieved by constructing the processors
so that their operation is directed by information supplied
on an interface, with analysis and decision-making being
performed by the master processor. For example, the
IBM 1403N1 printer and IBM 2821 Control Unit are
constructed so that the analysis is performed in the
Control Unit. The printer receives interface values which
specify print hammers to be selected, based on timing
information supplied to the Control Unit by the printer.
Systems are rarely constructed where one processor has
access to the control mechanism of another, so that cor-
rect operation depends entirely upon precise specifica-
tions for the interfaces between the various processors.

" The interfaces between the processors that form most
conventional computing systems are usually permanent-
ly established when the system is installed, but as sys-
tems become larger and more complex it becomes in-
creasingly desirable to have temporary interfaces that
can be quickly connected and disconnected. For example,
multiprogramming requires the dynamic allocation of sub-
sets of a system,; this is, in effect, the automatic construc-
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tion of concurrent, temporary systems from a pool of
available processors and other resources. Perhaps more
important is the continuing development of telecommuni-
cations technology, making it both feasible and desirable
to connect entire computing systems with one another,
often on a transient basis.

An ApL system

A theoretical APL system can be organized as shown in
Fig. 1. The system consists of an APL processor, which
executes all APL primitive and defined functions, and a
memory which stores global and local variables and
function definitions. The APL processor has its own local
storage for information relevant to the execution state,
including an execution stack and any temporary results
that might be required during the evaluation of a state-
ment. The memory, or storage processor, consists of a
processor and a storage device. In the particular case of
an APL memory, the contents are accessed by names
that have no direct relationship to the locations at which
information is stored —hence the memory is called a
symbolic memory.

Information can be passed into or out of the APL sys-
tem only by way of a variable called the external data
path. One of the principal results of the present investi-
gation is the design of a processor that is connected
to the storage processor by sharing this variable with it,
and acts as an intermediary in establishing and maintain-
ing transient connections between the APL system and
its environment. An organization for this shared variable
processor is shown in Fig. 2. The organization is the
same as that of the APL system, except for the location
and number of external data paths.

Figure 3 illustrates how a multiple-user system like
the (time sharing) APL\360 might be constructed using
the shared variable processor. Each user has a separate
APL system, connected to its environment by way of the
external data path that is shared as shown in the figure.
Part of this environment is a single APL supervisor that
governs the connection of each APL system to its sources
and repositories of information: the APL libraries, parts
of the host system, and the users themselves at type-
writer terminals.

The organization illustrated in Fig. 3 allows the APL
system to be designed and constructed so that it is inde-
pendent of the design of other aspects of the environment
(such as the host operating system), and is dependent
only upon the precise definition of the interface with the
shared variable processor. It reduces the problem of pro-
viding a general communication facility for APL programs
to the problem of providing the APL system with an ex-
plicit shared variable facility. This problem is approached
in the following section by a more detailed examination
of the APL storage processor.

IBM J. RES. DEVELOP.



External
data paths

Varurdrure

1]

Shared
variable Tables
processor

Control
Name
Value

Storage
processor

Symbolic
memory

Storage

e e e e o e e e e e am

Figure 2 Organization of a shared variable subsystem.

APL storage

The APL storage processor determines where informa-
tion is stored. It cooperates with the APL processor
(which is, in theory, completely unconcerned with the
storage process) and with the shared variable processor.

The program STORAGE in Fig. 4 is a simplified model
of APL storage; a complete APL storage is somewhat more
complicated since it stores functions and other informa-
tion in addition to variables. It is also likely that a practi-
cal system would require additional information, such
as temporary results and the execution stack, to be kept
in the main storage rather than in the APL processor, as is
assumed in the idealized system shown in Fig. 1.

In the function STORAGE (which is written in 0-origin)
three shared variables, CONTREOL, NAME, and VALUE,
form the interface between the APL processor and the
storage processor. It is presumed that the APL processor
notifies the storage processor when access to a variable
is required by setting an appropriate value (R or W) in
the CONTROL variable, after placing necessary informa-
tion in the NAME and VALUE variables. The storage
processor attempts to honor the request and signals
completion by setting a control value indicating either
success or an error. The variables NAMETABLE, CLASS,
and ASSOCTATION denote the tables used by the storage
processor to keep track of stored information. VAME-
TABLE is a matrix containing the names used by the APL
programs which are being executed by the APL processor,
one per row. CLASS is a vector whose elements indicate
the kind of object denoted by the names in the corre-
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Figure 3 A theoretical construction of an APL time-sharing
system using shared-variable interfaces.

sponding rows of NAMETABLE, and ASSOCTATION is a
vector whose elements are the values associated with the
names. (In practice, of course, ASSOCITATION would
not be a vector of scalars but would be a more complex
structure. It is represented as a vector here for simplicity
in exposition.)

The kind of request is determined in statement [1],*
and the processing of a WRITE request is shown in [3]
through [18]. The name table is searched [3] and if
the name is not found, a new entry is created and the
value stored, [5] through [7]. If the name already ex-
ists, and is not a shared variable [9] but a variable [10],
the value is replaced [11]. A signal indicating success-
ful completion is then sent to the APL processor [12],
and the storage processor returns to its idling state [1]
until the APL processor requests another operation. A
request to read is processed in statements [19] through
[25]. The name table is searched [191], and if the name
is not found [201], or is neither a shared variable [21]
nor a variable [22], an appropriate error signal is re-
turned to the APL processor [32], [33]. When a vari-
able happens to be shared (detected at statements {9 ]
and [211), the storage processor passes the request to
the shared variable processor.

The APL processor requires no knowledge of the defi-
nitions of names, and depends on the storage processor
to take appropriate action and to signal with an error
indication in CONTROL when a name does not denote
a variable. The interactions between the storage con-

*Bracketed numbers in this section refer to the statements in Fig. 4.
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Figure 4 A simplified model of APL storage.

troller and the shared variable processor consist of par-
ticular values of EDP that specify the kind of request,
followed by a predetermined sequence of values which
convey any additional information. An interface which
depends on a sequence of values (or interplay) to effect
a single request will operate correctly only if there is a
mechanism to ensure that information will not be de-
stroyed in the process. Such a mechanism is discussed
later.
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A request to write a shared variable is passed to the
shared variable processor [14 through 17] by storing a
WRITE signal in EDP [14], followed by the name [15]
and value [16]. The storage controlier then reads the
result from the shared variable processor and passes it
on to the APL processor [17]. The value of a shared
variable is read by sending a READ signal [26] followed
by the name L[27]. The shared variable processor re-
turns a result which is saved and checked [28], fol-
lowed by the value if the operation was successful [29].
At successful completion of a READ, the storage proces-
sor passes the value [29] and the result indication [30]
to the APL processor.

This description of the storage processor illustrates
two ways to construct shared variable interfaces. The in-
terface between the APL processor and storage consists
of multiple variables, each with a specific meaning, while
the interface between the storage and the shared vari-
able processor consists of a single variable and a prede-
termined sequence for passing several related items of
information. In practice, the techniques used will depend
on the economics involved in a particular system, and a
combination of approaches is often found. (See, for
example, the interface between the System/360 CPU
and channels in Ref. 4.)

This formulation of a storage processor, though in-
complete in both function and detail, provides a suffi-
cient understanding of the external data path interface
for consideration of the design of a shared variable pro-
cessor. A complete formal design depends only on the
precise definition of the interface, i.e., the number of
variables which form the interface (in this case, one),
the permissible values, and the communication se-
quences.

The shared variable subsystem

The shared variable subsystem (Fig. 2) in principle con-
sists of a specialized shared variable processor and a
symbolic memory that is used to store shared variables.
The shared variable processor has two control tables —
a table with one entry for each processor connected, and
a table with one entry for each shared variable stored.
Each entry in the shared variable table contains the ex-
ternal name of the variable (i.e., the name supplied by
the sharing processors), a unique internal name created
by the shared variable processor, the identifications of
the processors sharing the variable, and access control
information.

The function of the shared variable subsystem is an-
alogous to the function of a central switching office of a
telephone system—it is activated when some processor
wishes to be connected to another, it establishes and
maintains the connection, and it terminates the connec-
tion when it is no longer needed. A processor offers to
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share a variable by submitting a request which includes
the identification of the intended partner and the name of
the variable. The shared variable processor searches its
shared variable table, and if it finds a corresponding un-
matched offer established by the partner at some earlier
time, the connection is made by noting, in the table en-
try, that the offer has been matched (accepted). Other-
wise, an internal name is created and the offer is entered
in the shared variable table. A processor may disconnect
or retract a shared variable at any time by withdrawing
the offer to share. If the variabie is connected when the
request for retraction is received, an outstanding offer to
the disconnecting processor is left, and a subsequent offer
to reshare the same variable will result in a reconnection.
If the variable is not connected, withdrawing the offer to
share causes the entry to be deleted from the shared vari-
able table.

In many applications, it is desirable to inhibit access
to a shared variable to avoid repeated tests by one pro-
cessor to determine whether its partner has accessed the
variable. For example, the external data path, EDP, in
the description of the APL storage processor shown ear-
lier will not operate correctly unless successive WRITE
attempts are inhibited until the partner has read each
value, and successive READ requests are inhibited until
the partner has supplied new values. The shared variable
processor provides the necessary inhibition as a function
of an access control vector that is associated with each
shared variable.

In the following discussion, the two processors shar-
ing a variable are identified as A and B. In the actual de-
sign of the shared variable processor, symmetry is im-
posed so that this distinction is invisible to the sharers.
Information is presented to each so that it regards itself
as system 4.

The access control vector is a four-element vector of
ZErROS and ONES, ONE meaning that a particular access
is to be controlled, as follows:

ACV[ 0] ~Two successive WRITES by 4 require an inter-
vening READ or WRITE by B.

ACV[1]—Two successive READS by B require an inter-
vening READ or WRITE by 4.

ACV[2]—Two successive WRITES by 4 require an inter-
vening WRITE by B.

ACVI3]—Two successive READS by B require an inter-
vening WRITE by 4.

The asymmetry (i.e., a READ inhibition is removed by a
WRITE but a WRITE inhibition is removed by either a
READ or a WRITE) ensures that a processor will not over-
write a value which its partner has not had the oppor-
tunity to read, but does allow the partner to ignore the
value and to overwrite it. This facility allows a processor
to deviate from a normal communication sequence when
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the value it wishes to send to its partner is independent
of the next value to be passed by the partner.

The access control vector ACV is established by the
expression ACV<CVAvCVB[1 0 3 2], where CVA and
CVB are the control vectors provided by 4 and B. The
permutation of CVB imposes symmetry.

The shared variable processor also maintains an access
state vector, AS, having the following significance:

0 0 —neither processor has written a value the other has
not read.

0 1—A4 has written and B has neither read nor written
since.

1 0—B has written and 4 has neither read nor written
since.

The access control vector, the access state vector,
and the type of access requested (READ or WRITE) to-
gether determine both the decision to permit or deny the
requested access, and the new value of the access state.
Using a ONE to denote a WRITE access and a ZERO to
denote READ, the behavior may be described by the fol-
lowing function, which returns a ONE if access is denied:

V R<AC REQ
[1] R<((2+4CV)ALS=0 1)[RER]
[2] -=R/0

[3] AS<0 1AASAREQV

The shared variable processor has no control over the
processors connected to it, and when it determines that
a particular request is inhibited, it returns an appropriate
signal on the external data path. The requesting proces-
sor will make whatever use of the information it wishes;
it may, for example, wait for a signal indicating that the
access state or access control vector has been altered by
the partner, or it may retry later.

When a shared variable is established, the access con-
trol vector is all zero, the initial access state is 0 0, and
the initial value is obtained from the first offerer.

Prototype implementation

In order to evaluate the use of shared variables in practi-
cal applications and to verify the theoretical design of
the shared variable processor, a prototype was con-
structed and put into operation at the Philadelphia Sci-
entific Center in early 1971. The prototype was designed
as a separate processor very much like the theoretical
processor described here, and the design was embodied
in a collection of APL functions which ultimately provid-
ed a working model. Implementation of the prototype
consisted in transcribing the APL model to System/360
assembly language and defining an interface analogous
to the external data path.
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The APL\360 interpreter was modified to introduce
shared variables as a recognized class of objects and to
incorporate system functions that provide APL users with
the ability to offer and to withdraw shared variables and
to specify access control.

The resulting system differed in some respects from
the theoretical design. In particular, the APL\ 360 inter-
preter differs from the ideal organization shown in Fig. 1
in that the APL processor and the storage processor are
combined. Instead of the interpreter being extensively
redesigned so that shared variables could be incorporat-
ed as objects identifiable by the storage mechanism, it
was augmented to incorporate the shared variables as
a syntactic class. This, however, is not apparent to the
user.

The prototype shared variable processor differs from
the ideal in one principal respect: it was implemented as
a program residing in the same physical computer as the
APL system rather than as a separate machine. As a re-
sult, the amount of storage space available to it is con-
strained, and this constraint is seen in two ways—the
maximum size of a single shared variable is restricted,
and the value associated with a shared variable is de-
leted from the shared variable storage when both sharing
processors are known to have read it.

Auxiliary processors

The original motivation for this project was the desire to
provide APL users with a facility for accessing informa-
tion contained in files. The formalization of shared vari-
ables and their introduction into the implementation
provide sufficient language capability, but do not in
themselves provide access to files.

Initial file applications required the ability to process
files of existing data which had been produced by con-
ventional systems. To provide access to these files,
small programs in conventional languages were written
to provide a shared variable interface to the APL user on
one side and a standard Operating System access
method interface on the other. The function of these
programs was analogous to impedance matching of elec-
trical interfaces, and they were the first of a class of pro-
grams, now called auxiliary processors, which have
shared variable interfaces and are designed to perform
services for APL programs, but because of some con-
straint cannot be written in APL.

It was at first thought that auxiliary processors should
be highly specialized, so that very little related function
would be required in APL programs. Experience so far
indicates the opposite to be desirable, i.e., auxiliary pro-
cessors should be simple, and the bulk of the function
should be implemented in APL programs. A specific
example concerns the use of high-speed printers. The
first processor to $upport printers was a complex pro-
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gram that printed the value of a shared variable as it
would appear when printed on an APL terminal. How-
ever, users soon showed a preference for the greater flex-
ibility provided by standard sequential character output,
which required all of the output to be formatted by them.

Experimental results

The prototype APL shared variable system has been in
use for over two years and has been evaluated in a large
trial number of situations. Applications have ranged from
simple sequential input-output to the direct support of
hardware devices. Conditions have varied from a dedi-
cated system running a single application to a general
data-processing system with more than one hundred
simultaneous users.

The use of shared-variable interfaces as a basis for
communication between cooperating processes has
proved to be both a practical means of providing com-
munication to APL programs and, since the technique
was also used in the design of the system, to be a sound
method of constructing systems.

The results of the evaluation of the prototype shared
variable system can be summarized as follows:

1) The system is efficient. The processing time for a
typical data processing application is competitive and
often better than for the same application programmed
in a conventional manner. The reasons for this are not
entirely understood, but contributing factors appear
to be low system overhead and easy programming.
The latter permits the user to select the best of many
trial solutions.

2) Limited storage doés not cause problems, primarily
because the average size of interface variables is
small (measured over several million data transfers,
the average variable required approxiinately 200
bytes) and because of the transient nature of inter-
faces.

3) The system is easy to use. Most of the applications
so far implemented on the shared variable prototype
have been programmed by professionals in fields
other than programming, and many of these applica-
tions had not been previously implemented on any
computing system. In cases where an application had
been programmed on a conventional system, the effort
required was at least an order of Ihagnitude greater
than in APL.

4) Shared variable interfaces impose a discipline that
results in better system designs, since they force the
designers to formulate the system as a collection of
independent processors with well-defined interfaces.
Each procéssor is then easy to implement, and the
effort required to produce a total system is substan-
tially reduced.
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Unsolved problems

Shared variable interfaces and the shared variable pro-
cessor have extended the applicability of APL, but they
have also emphasized problems which remain to be
solved:

1) The APL workspace has a finite fixed size. The avail-
ability of files for large volume storage alleviates this
somewhat, but requires defined functions to be used
in situations where an algorithm could otherwise be
stated by a single APL primitive.

2) APL has no program-controlled interrupt facility. For
example, execution errors always require manual
intervention at the terminal. When a request for
access to a shared variable is denied, APL either
waits until access is permitted or reports an execu-
tion error. There is no way for an APL program to
respond immediately to an asynchronous event.
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