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System Formulation and APL Shared  Variables 

Abstract: The problem  of  providing  communication with APL programs  was  approached by formulating systems as collections of au- 
tonomous processors communicating on interfaces consisting of shared variables.  This  paper discusses the formulation of a theoretical 
APL system and cites experience with a prototype APL shared  variable  system  which both uses and provldes  shared  variable  interfaces. 

Introduction 
This  paper  discusses  the  results of an investigation of 
the  nature of communication between  cooperating  pro- 
cesses  that was  motivated by the  desire to provide a 
communication facility for APL programs. The principal 
results  are a  formalization of shared variables as inter- 
faces between processors,  and a theoretical mechanism- 
a shared variable processor-  based  on a formalization of 
systems in general and of APL systems in particular. A 
companion paper [ l a ]  contains a  discussion of shared 
variables in the  context of the design Of APL. 

A P L \ ~ ~ O  [lb] is an implementation of APL as  an in- 
teractive system on  the IBM System/360 family of com- 
puters. The  system  was originally designed with two pri- 
mary uses in mind: as  an aid in teaching [ 2 ] ,  and  for 
system design [3].  However,  the language is suited for 
almost all aspects of data processing and,  once  an imple- 
mentation was available,  its use  spread rapidly, despite 
the  fact  that it provided  communication  only with type- 
writer terminals. There was no facility for passing large 
volumes of information across  the  workspace boundary. 
The  use of A P L \ ~ ~ O  was  therefore  restricted  to applica- 
tions where all necessary information  could  be entered 
from  a  terminal device and stored in fixed-size work- 
spaces. 

Most programming languages approach communica- 
tion and  storage  problems by defining explicit  communi- 
cation primitives such  as READ and WRITE to  transfer 
information. These specialized  primitives,  used in con- 
junction with declarative  statements  and  job  control lan- 
guages,  result in programs  which contain file-handling 
details irrelevant to  the algorithm,  and are strongly de- 
pendent  on  host operating systems  and file structures. 
This  approach was deemed inappropriate for APL be- 

cause it conflicted with many of the principles that guide 
APL design [la] ; in particular, it conflicted with the re- 
quirement  for machine-independent  theoretical defini- 
tions of primitive  functions. 

The basis for communication  with an APL program 
was established in 1964  [4] when autonomous  proces- 
sors, described in APL, were  shown communicating 
through  interfaces  consisting of shared variables having 
no  other special  properties. The  concept of communica- 
tion between  processes by means of shared variables has 
also been  used as a  theoretical  basis for  other communi- 
cation  schemes.  For  example,  Dijkstra [ 5 ]  used it to 
develop  semaphores (which are specialized shared 
variables) and the P and V functions defined on  them. 

Systems, processors, and  interfaces 
A system can be  formulated and  constructed  as a  collec- 
tion of interconnected  processors,  each of which is de- 
signed to  do a specific job. For example,  computers  are 
usually constructed with arithmetic and data  transfer 
functions  incorporated in independent processors;  chan- 
nels transfer  data  between high-speed storage and  input- 
output  devices,  concurrently with CPU processing. 

A processor can  be  described by an APL program 
[4,6,7] which does  not  terminate, i.e., all branches  are 
made  to  statements within the program. It  operates  on 
values supplied to it, and may also  store a  result on  the 
interface with another  processor. 

The interface is represented in each  processor  as  one 
or more  variables which appear in both, i.e., shared vari- 
ables. (Hardware  systems  are often constructed in this 
way. For example, in System/360, communication be- 
tween  central processors  and  channels is effected by 353 
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Figure 1 Organization of an idealized APL system, 

variables such  as  the  Channel  Status Word and  Channel 
Address  Word,  and by other interface  variables located 
in local storage  and  set by the  channel  and by the  execu- 
tion of SIO, TIO,  and H I 0  instructions in the  central 
processor.)  Either  processor may read and write the 
shared variables, and in  general, there  is  no  other  means 
of communication between them.  When a processor is 
described by an APL program, the behavior of the inter- 
face  is completely determined by the  functions applied 
to  the  shared variables. 

Some processors  are designed to be servants  to  others. 
This design is  achieved by constructing  the  processors 
so that  their  operation  is  directed by information  supplied 
on  an interface,  with analysis  and decision-making being 
performed by the  master  processor.  For example, the 
IBM 1403N1 printer  and IBM 2821 Control  Unit  are 
constructed so that  the  analysis is performed in the 
Control  Unit.  The  printer  receives interface values  which 
specify  print hammers  to be selected, based on timing 
information  supplied to  the  Control  Unit by the printer. 
Systems  are rarely constructed  where  one  processor  has 
access  to  the  control mechanism of another, so that  cor- 
rect  operation  depends entirely  upon precise specifica- 
tions  for  the  interfaces  between  the  various  processors. 

The interfaces between  the  processors  that  form  most 
conventional computing systems  are usually permanent- 
ly  established when  the  system  is installed, but  as  sys- 
tems become  larger and more complex  it  becomes in- 
creasingly desirable  to  have  temporary interfaces that 
can be  quickly connected  and  disconnected.  For example, 
multiprogramming requires  the  dynamic allocation of sub- 
sets of a system; this is, in effect, the  automatic  construc- 354 
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tion of concurrent,  temporary  systems from a pool of 
available processors  and  other  resources.  Perhaps  more 
important  is  the continuing development of telecommuni- 
cations technology, making it  both feasible and  desirable 
to  connect  entire computing systems with one  another, 
often  on a transient basis. 

An APL system 
A theoretical APL system  can be  organized as  shown in 
Fig. 1. The  system  consists of an APL processor, which 
executes all APL primitive  and defined functions,  and a 
memory which stores global and local  variables  and 
function  definitions. The APL processor  has its own local 
storage  for information relevant  to  the execution state, 
including an execution stack  and any temporary  results 
that might be  required during the evaluation of a state- 
ment.  The  memory, or storage  processor, consists of a 
processor  and a storage  device.  In  the particular case of 
an APL memory, the  contents  are  accessed by names 
that  have  no  direct relationship to the  locations at  which 
information is  stored-hence  the memory is called  a 
symbolic memory. 

Information can be  passed into  or  out of the APL sys- 
tem only by way of a variable called the external data 
path. One of the principal results of the  present investi- 
gation is  the design of a processor  that is connected 
to  the  storage  processor by sharing  this  variable  with  it, 
and acts as  an intermediary in establishing  and  maintain- 
ing transient  connections between the APL system and 
its  environment.  An organization for this shared  variable 
processor is shown in Fig. 2 .  The organization is the 
same  as  that of the APL system,  except  for  the location 
and  number of external  data paths. 

Figure 3 illustrates  how  a  multiple-user  system  like 
the  (time  sharing) A P L \ ~ ~ O  might be constructed using 
the  shared variable processor.  Each  user  has a separate 
APL system,  connected  to  its  environment by way of the 
external  data  path  that is shared as shown in the figure. 
Part of this environment is a single APL supervisor  that 
governs  the  connection of each APL system  to  its  sources 
and  repositories of information: the APL libraries, parts 
of the  host  system,  and  the  users  themselves at type- 
writer terminals. 

The organization  illustrated  in  Fig. 3 allows the APL 
system  to be  designed and  constructed so that it is inde- 
pendent of the design of other  aspects of the  environment 
(such  as  the  host operating system),  and is dependent 
only upon  the  precise definition of the interface  with the 
shared variable processor. I t  reduces  the problem of pro- 
viding a general communication facility for APL programs 
to  the problem of providing the APL system with an ex- 
plicit shared variable  facility. This problem is  approached 
in the following section by a more detailed  examination 
of the APL storage  processor. 
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Figure 2 Organization ofa shared  variable  subsystem. 

APL storage 
The APL storage  processor  determines  where informa- 
tion is stored.  It  cooperates with the APL processor 
(which is, in theory, completely unconcerned with the 
storage  process)  and with the  shared variable processor. 

The program STORAGE in Fig. 4 is a simplified model 
of APL storage; a complete APL storage is somewhat more 
complicated since it stores  functions  and  other informa- 
tion in addition to variables. It is also likely that a practi- 
cal system would require additional  information, such 
as temporary results and the execution stack,  to be  kept 
in the main storage  rather than in the APL processor,  as is 
assumed in the idealized  system  shown in Fig. 1. 

In  the function STORAGE (which is written in 0-origin) 
three  shared variables, CONTROL,  NAME, and VALUE, 
form  the interface between  the APL processor  and  the 
storage  processor.  It  is presumed that  the APL processor 
notifies the  storage  processor when access  to a  variable 
is required by setting an  appropriate value (R or W) in 
the CON!7'ROL variable, after placing necessary informa- 
tion in the NAME and VALUE variables. The  storage 
processor  attempts  to  honor  the  request  and signals 
completion by setting a control value  indicating either 
success  or  an  error.  The variables NAMETABLE, CLASS, 
and ASSOCIATION denote  the  tables used by the  storage 
processor  to  keep track of stored information. NAME- 
TABLE is a matrix  containing the names  used by the APL 
programs which are being executed by the APL processor, 
one per  row. CLASS is a vector whose elements indicate 
the kind of object  denoted by the  names in the  corre- 
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Figure 3 A theoretical  construction of an APL time-sharing 
system  using  shared-variable  interfaces. 

sponding rows of NAMETABLE, and ASSOCIATION is a 
vector  whose  elements  are  the  values associated  with the 
names. (In  practice, of course, ASSOCIATION would 
not  be a vector of scalars  but would be a more complex 
structure.  It  is  represented  as a vector  here  for simplicity 
in exposition.) 

The kind of request  is  determined in statement  [I],* 
and  the processing of a WRITE request  is shown in [31 
through  C181. The  name  table is searched  [3 1 and if 
the  name  is  not  found, a new entry is created and the 
value stored, C5l through C71. If the  name already  ex- 
ists,  and  is  not a shared variable [91  but a variable [IO], 
the  value  is replaced c111. A signal indicating success- 
ful completion is then sent  to  the APL processor  [121, 
and  the  storage  processor  returns  to its idling state E11 
until the APL processor  requests  another  operation. A 
request  to  read is processed in statements 1191 through 
[251.  The  name  table is searched  c19 1, and if the  name 
is  not found [201,  or is neither a shared variable [211 
nor a variable [22 1, an  appropriate  error signal is re- 
turned to  the APL processor E32 1 ,  [33 1. When a vari- 
able  happens to be  shared  (detected  at  statements 191  
and [211),  the  storage  processor  passes  the  request  to 
the  shared variable processor. 

The APL processor  requires  no knowledge of the defi- 
nitions of names, and  depends  on  the  storage  processor 
to take  appropriate  action  and to signal with an  error 
indication in CON!Z'ROL when a name  does  not  denote 
a' variable. The  interactions between the  storage  con- 

*Bracketed numbers in this section refer to the statements in Fig. 4. 355 
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VSTORAGE 
C11 WAIT:+(CONTROL=R,W)/READ,WRI!~E 
E21 MATT 

C3l WRI!~T:I+(NAMETABLEA.=NAME)L~ 
C41 +(Id+pNAMETABLE)/L 
C 5 1 NAMETABLE+NAMETABLE , C 0 1 NAME 
C6l CLASS+CLASS  VARIABLE 
C 71 ASSOCIATIONtASSOCIATION, VALUE 
C81 +Z 
C9l L:+(SHVAR=CLASSCII )/SW 
ClOl  +(VARIABLE#CLASS[I])/SE 
Clll ASSOCIATION[IltVALUE 
C121 Z: CONTROLrtSUCCESS 
E131 MAIT 
[14] slrw=EDP+W 
1151  EDP”N.4.” 
El61 EDBVALUE 
C171 CONTROLtEDP 
[I81 MAIT 

C191 READ:I+(NAMETABLEh.  =NAME)d 
~ 2 0 1  +(I=I+PNAMETABLE)/VE 
E211  +(SHVAR=CLASS[Il )/SVR 
C221 +( V/lRIRBLE#CLASS[I] ) /SF  
C23 1 VALlJE+ASSOCIATIONCIl 
C2 41 CONTRO~UCC!ESS 
C251 MAIT 
E261 SVR:EDptR 
[2 71 EDRNAME 
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C 2 9 1 VALVEtEDP 
C301 SVRZ: CONTROPI 
C311 MATT 

E321 SF: CONTROLt’SYNTAX  ERROR’ 
C331 MATT 
E341 VE: CONTROLrt‘VALVE  ERROR‘ 
C351 MAIT 

V. 

Figure 4 A simplified model of APL storage. 

troller and the  shared variable processor  consist of par- 
ticular values of EDP that specify the kind of request, 
followed by a predetermined sequence of values which 
convey  any  additional  information. An interface  which 
depends  on a sequence of values (or  interplay)  to effect 
a single request will operate correctly only if there is a 
mechanism to  ensure  that information will not be de- 
stroyed in the  process. Such a mechanism is discussed 
later. 

A request  to write a shared variable is passed  to  the 
shared variable processor E14 through 171 by storing a 
WRITE signal in EDP  C141, followed by the  name C151 
and  value Cl6l. The  storage  controller  then  reads  the 
result from  the  shared variable processor  and  passes it 
on to the APL processor C171. The value of a shared 
variable is read by sending  a READ signal C26l followed 
by the  name C271. The  shared variable processor  re- 
turns a  result which is saved  and  checked [28 1, fol- 
lowed  by the value if the  operation was  successful [29 1. 
At successful  completion of a READ, the  storage proces- 
sor passes  the value C291 and  the  result indication C301 
to  the APL processor. 

This  description of the storage processor illustrates 
two  ways  to  construct  shared variable  interfaces. The in- 
terface  between  the APL processor  and storage consists 
of multiple  variables, each with a specific meaning, while 
the interface  between the  storage  and  the  shared vari- 
able  processor  consists of a single variable and a prede- 
termined sequence  for passing several related items of 
information. In  practice,  the  techniques used will depend 
on  the  economics involved  in a particular system,  and a 
combination of approaches is often  found. (See,  for 
example, the interface between  the  System/360 CPU 
and channels in Ref. 4.) 

This formulation of a storage  processor, though in- 
complete in both  function  and  detail, provides a suffi- 
cient  understanding of the  external  data path  interface 
for  consideration of the design of a shared variable pro- 
cessor. A complete formal  design depends only on  the 
precise definition of the  interface, Le., the  number of 
variables which form the interface  (in  this case,  one), 
the permissible values,  and  the communication se- 
quences. 

The  shared  variable subsystem 
The  shared variable subsystem  (Fig. 2 )  in principle  con- 
sists of a  specialized shared variable processor and  a 
symbolic  memory that is used to store  shared variables. 
The  shared variable processor  has  two control tables- 
a table with one  entry  for  each  processor  connected,  and 
a table with one  entry  for  each  shared variable stored. 
Each  entry in the  shared variable table contains the ex- 
ternal name of the variable  (i.e., the  name supplied by 
the sharing processors), a unique  internal  name created 
by the  shared variable processor,  the identifications of 
the  processors sharing the variable, and  access control 
information. 

The function of the  shared variable subsystem is an- 
alogous to the function of a central switching office of a 
telephone  system-it is activated when  some processor 
wishes to be connected  to  another, it establishes  and 
maintains the  connection, and it terminates  the  connec- 
tion when it is no longer  needed.  A processor ofers to 
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share a variable by submitting a request which includes 
the identification of the intended partner  and  the  name of 
the variable. The  shared variable processor  searches  its 
shared variable  table,  and if it finds a corresponding hn- 
matched offer established by the  partner  at  some earlier 
time, the  connection is made by noting, in the  table  en- 
try,  that  the offer has been  matched (accepted).  Other- 
wise, an internal name is created  and  the offer is  entered 
in the  shared variable  table. A processor may disconnect 
or retract a shared variable at any time by withdrawing 
the offer to  share. If the  vacable is connected  when  the 
request  for  retraction is received,  an  outstanding offer to 
the disconnecting processor is left, and a subsequent offer 
to  reshare  the  same variable will result in  a  reconnection. 
If the variable is not  connected, withdrawing the offer to 
share  causes  the  entry  to be deleted from the  shared vari- 
able table. 

In many  applications, it is desirable  to inhibit access 
to a shared variable to avoid repeated  tests by one pro- 
cessor  to  determine  whether  its  partner  has  accessed  the 
variable. For example,  the  external  data  path, EDP, in 
the description of the APL storage  processor shown ear- 
lier will not operate correctly unless  successive WRITE 
attempts  are inhibited until the  partner  has  read  each 
value, and  successive READ requests  are inhibited  until 
the  partner  has supplied new values. The  shared variable 
processor provides the  necessary inhibition as a  function 
of an access control vector that is associated with each 
shared variable. 

In  the following discussion, the  two  processors  shar- 
ing a variable are identified as A and B. In  the  actual  de- 
sign of the  shared variable processor,  symmetry is im- 
posed so that this  distinction is invisible to the  sharers. 
Information is  presented  to  each so that  it regards itself 
as  system A. 

The  access  control  vector is a four-element  vector of 
ZEROS and ONES,  ONE meaning that a particular  access 
is to be controlled,  as follows: 

ACVCO] -Two  successive WRITES by A require  an  iater- 

ACVCll -Two  successive READS by B require  an inter- 

ACVC2 1 -Two  successive WRITES by A require  an inter- 

A W L 3 1  -Two  successive READS by B require an iater- 

vening READ or WRITE by B .  

vening READ or WRITE by A.  

vening WRITE by B .  

vening WRITE by A. 

The  asymmetry (Le., a READ inhibition is removed by a 
WRITE but a WRITE inhibition is removed by either a 
READ or a WRITE) ensures  that a processor will not  over- 
write a value  which its  partner  has  not  had  the  oppor- 
tunity to  read, but does allow the  partner  to ignore the 
value and to overwrite it. This facility allows  a processor 
to  deviate  from a normal  communication sequence when 
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the value it wishes to send to its partner is independent 
of the  next  value  to  be  passed by the  partner. 

The  access control vector ACV is established by the 
expression ACV+CVAvCVBCl 0 3 2 1 ,  where CVA and 
CVB are  the  control  vectors provided  by A and B. The 
permutation of CVB imposes symmetry. 

The  shared variable processor  also maintains an access 
state  vector, AS, having the following significance: 

0 0 -neither  processor  has written  a value  the  other  has 
not  read. 
0 1 - A  has written and B has  neither  read nor written 
since. 
1 0 -B has written  and A has neither read  nor  written 
since. 

The  access  control  vector,  the  access  state  vector, 
and  the  type of access  requested (READ or WRITE) to- 
gether  determine both the decision to  permit or deny the 
requested  access,  and  the new  value of the  access  state. 
Using a ONE to  denote a WRITE access  and a ZERO to 
denote READ, the behavior may be  described by the fol- 
lowing function, which returns a ONE if access is denied: 

7 R+AC REQ 
C11 R+( ( 2 + A C V ) M = O  1 )CREQI 
C21 +R/O 
C3l AS" 1 M M E Q V  

The  shared variable processor  has  no  control  over  the 
processors  connected  to it, and  when  it  determines  that 
a particular  request is inhibited, it returns  an  appropriate 
signal on  the  external  data  path.  The requesting proces- 
sor will make  whatever  use of the information it wishes; 
it may, for example,  wait for a signal indicating that  the 
access  state or access  control  vector  has been altered by 
the  partner, or it may retry  later. 

When  a shared variable is established, the  access con- 
trol vector  is all zero,  the initial access  state is 0 0, and 
the initial value  is obtained  from the first offerer. 

Prototype implementation 
In  order to evaluate  the  use of shared variables in practi- 
cal applications and to verify the  theoretical design of 
the  shared variable processor, a prototype  was  con- 
structed  and  put  into  operation  at  the Philadelphia  Sci- 
entific Center in early 197 1. The  prototype  was designed 
as a separate  processor very  much like the  theoretical 
processor  described  here,  and  the design  was  embodied 
in a  collection of APL functions which  ultimately  provid- 
ed a  working  model. Implementation of the  prototype 
consisted  in  transcribing the APL model to  System/360 
assembly  language and defining an interface  analogous 
to  the  external  data  path. 



The A P L \ 3 6 0  interpreter was modified to  introduce 
shared variables as a recognized class of objects  and to 
incorporate  system  functions  that provide APL users with 
the ability to offer and  to withdraw shared variables and 
to specify access control. 

The resulting system differed in some  respects  from 
the theoretical  design. In particular, the A P L \ ~ ~ O  inter- 
preter differs from  the ideal  organization shown in Fig. 1 
in that  the APL processor  and  the  storage  processor  are 
combined.  Instead of the  interpreter being  extensively 
redesigned so that  shared variables  could be  incorporat- 
ed  as  objects identifiable by the storage  mechanism, it 
was augmented to  incorporate  the  shared variables as 
a syntactic  class.  This,  however, is not  apparent  to  the 
user. 

The  prototype  shared variable processor differs from 
the ideal in one principal respect: it was implemented as 
a program  residing in the  same physical computer  as  the 
APL system  rather than as a separate machine. As a re- 
sult,  the  amount of storage  space available to it is con- 
strained, and  this constraint is seen in two  ways-  the 
maximum  size of a single shared variable is restricted, 
and  the value associated with a shared variable is de- 
leted from the  shared variable storage  when  both sharing 
processors  are known to  have  read it. 

Auxiliary processors 
The original motivation for this  project  was the  desire to 
provide APL users with a  facility for accessing  informa- 
tion contained in files. The formalization of shared vari- 
ables and their  introduction into  the implementation 
provide sufficient language  capability,  but do not in 
themselves  provide access  to files. 

Initial file applications  required the ability to  process 
files of existing data which  had been  produced by con- 
ventional systems. To provide  access  to  these files, 
small  programs  in conventional languages were  written 
to  provide a shared variable interface  to  the APL user  on 
one side  and a standard  Operating  System  access 
method  interface on  the  other.  The function of these 
programs was analogous to  impedance matching of elec- 
trical  interfaces,  and  they  were the first of a class of pro- 
grams, now  called auxiliary processors, which have 
shared variable  interfaces and  are designed to perform 
services  for APL programs,  but  because of some con- 
straint  cannot be  written in APL. 

It  was  at first thought  that auxiliary processors should 
be highly specialized, so that very little related  function 
would be required in APL programs. Experience so far 
indicates the  opposite  to  be  desirable, i.e., auxiliary  pro- 
cessors should be simple, and  the bulk of the  function 
should  be  implemented in APL programs. A specific 
example  concerns  the  use of high-speed printers. The 
first processor  to Support printers was  a  complex pro- 358 
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gram that printed the value of a shared variable as  it 
would appear  when printed on  an APL terminal. How- 
ever,  users soon  showed a preference  for  the  greater flex- 
ibility provided by standard sequential character  output, 
which required all of the  output  to be formatted by them. 

Experimental  results 
The  prototype APL shared variable  system has been in 
use  for  over two years  and  has been  evaluated in a large 
trial number of situations.  Applications have ranged from 
simple  sequential  input-output to  the  direct  support of 
hardware devices. Conditions  have varied  from a dedi- 
cated  system running  a single application to a general 
data-processing  system with more than one  hundred 
simultaneous users. 

The  use of shared-variable interfaces  as a  basis for 
communication between  cooperating  processes  has 
proved to be  both a practical means of providing com- 
munication to APL programs and,  since  the  technique 
was also used in the design of the  system,  to be a sound 
method of constructing  systems. 

The  results of the evaluation of the  prototype  shared 
variable system  can  be summarized as follows: 

1)  The  system is efficient. The processing  time for a 
typical data processing  application is competitive and 
often  better  than  for  the  same application  programmed 
in a conventional  manner.  The  reasons  for this are not 
entirely understood,  but contributing factors  appear 
to be low system  overhead  and  easy programming. 
The  latter  permits  the  user to select  the  best of many 
trial  solutions. 

2) Limited storage  does  not  cause problems,  primarily 
because  the  average size of interface  variables is 
small (measured  over  several million data  transfers, 
the  average variable required approximately 200 
bytes)  and  because of the  transient  nature of inter- 
faces. 

3) The  system is easy  to use. Most of the applications 
so far implemented on  the  shared variable prototype 
have  been programmed  by  professionals  in fields 
other  than programming, and  many of these applica- 
tions  had  not  been previously  implemented on  any 
computing system.  In  cases  where  an application  had 
been programmed on a conventional  system,  the effort 
required was at least  an  order of magnitude greater 
than in APL. 

4) Shared variable interfaces impose a discipline that 
results in better  system designs, since they force  the 
designers to formulate the  system  as a collection of 
independent  processors with well-defined interfaces. 
Each  processor is then  easy to implement, and  the 
effort required to  produce a total  system is substan- 
tially reduced. 
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Unsolved problems 
Shared variable  interfaces and  the  shared variable  pro- 
cessor  have  extended  the appiicability of APL, but they 
have  also emphasized  problems  which  remain to be 
solved: 

1) The APL workspace  has a finite fixed size. The avail- 
ability of files for large  volume storage alleviates  this 
somewhat, but requires defined functions  to  be used 
in situations where  an algorithm  could otherwise  be 
stated by a single APL primitive. 

) APL has  no program-controlled interrupt facility. For 
example,  execution  errors  always  require manual 
intervention at the terminal. When a request  for 
access to a shared variable is denied, APL either 
waits until access  is  permitted  or  reports  an  execu- 
tion error.  There  is no way for  an APL program to 
respond immediately to  an  asynchronous  event. 
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