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General  Arrays,  Operators  and  Functions 

Abstract: This paper discusses “general arrays,” ;.e., arrays in which the items are either scalars or other arrays. Functions are  defined 
to construct, select from, restructure, and  in general manipulate such arrays. Operators are presented as functions whose arguments or 
values are other functions that can be other than scalar functions. The exposition is shortened and  simplified  by presenting the material 
throughout in terms of APL. 

Contents 
Introduction 
Arrays as primitive objects, functions and operators 

General arrays 
Building of arrays 
Selection functions 
Generation of indices 
Operators 
Uniform arrays 
Ravel and  unravel 
Logical functions 
Less and combine 
Notation for constants 

The axis operator 
Generalized coordinates 
Empty  arrays 

Choice of  axes, coordinates and empty arrays 

Conclusions 
References 
Appendix 

introduction 
In many  applications it is  convenient  to  represent  the 
data as “general arrays,”  that  is,  arrays in which the 
items  are  themselves  structured.  Consider,  for  example, 
the manipulation of files within  a data  base.  Let A be a 
file in  which records  consist of project number  and project 
name. Let B be a file where  records  consist of part num- 
ber  and project  number. Typically,  one may request, 
when given a part  number P, the  numbers  and  names of 
the  projects  that  use  part P. 

One may interpret file A as being a vector  whose 
items  (the  records)  are  vectors of two items. In  such a 
record,  the first  item is a number  and  the  second item is 
itself a vector of characters.  File B is a vector  whose 
items  are  vectors of two numbers. If the  universe of 
discourse includes arrays  as general as  these,  the an- 
swer  to a typical  inquiry about files may  then  take the 
form of a  relatively  simple expression. 

This  paper is concerned with the definition of such 
general  -arrays  and  means to  evaluate them. The exposi- 
tion is shortened and simplified by presenting the ma- 
terial throughout in terms of APL. New  functions  for  the 
construction of, selection from, and other manipulation of 
general arrays  are provided. In addition to removing re- 
strictions and  introducing  new operators  and  functions, a 
detailed treatment of generalized coordinates and empty 
arrays is given. 

With the  introduction of general arrays  the  reasons 
for  restrictions  on  the  domains of some APL primitives 
disappear.  For example, in APL each  element of A I B  
must  be  both  scalar  and  an index to A. Hence, A is re- 
stricted  to  be a vector. If the  elements of A t B  can  be 
nonscalar, A can  be  permitted  to be any APL array.  Fur- 
ther, if A and B are  taken to be general arrays, A I B  can 
be  used in applications such  as dictionary  lookup. 

As another illustration, the APL expression ACI; J ]  
contains  one semicolon, hence A must  be of (fixed)  rank 
two  and I and J must  be  computed independently.  If a 
function 0 is defined for indexing and a vector V can be 
formed of two  items I and J ,  these  restrictions can be 
removed by replacing the  expression ACT; J I  by A+V. 
The method of indexing in APL, which has long been 
recognized as being anomalous, is then reduced  to  just 
another primitive  function. Further, APL indexing is re- 
stricted in that only rectangular  cross  sections of arrays 
may be  selected. By defining a function 0 and by being 
able  to  form  an  array of vectors  (indices) B, one may 
select  an  arbitrary collection of items  from  an  array A by 
using the  expression AoB. The  ease of selection is fur- 
ther  enhanced by allowing parenthesized  expressions  to 
appear on the left of the assignment f, for  example 
(A+B )+A+C. 
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More  important, with the introduction of general ar- 
rays, APL operators  (reduction,  etc.)  no longer  need  be 
restricted  to  scalar  functions.  For  example,  to obtain a 
representation of all points in the first quadrant of the 
plane with integer coordinates  not exceeding M and N ,  
respectively, one may write ( t M ) .  , tfl, where  the 
outer  product  operator,  denoted by ’ . ’, is applied to 
the  dyadic  function  catenate. To  obtain  vectors of the 
form 1 2 2 3 3 3 one may write (tr), .ptIV, where 
the  inner  product  operator is applied to the  dyadic  func- 
tions catenate  and  reshape. 

Additional operators of general applicability are intro- 
duced. With the  introduction of the  itemwise operator, 
the evaluation of functions  item by item on  their  array 
arguments, which had  been possible  only for  scalar prim- 
itives  in APL, is now  possible for all functions.  With 
the  introduction of the  axis  operator,  the special APL 
convention  for function  indexing is no longer necessary. 
The axis operator systematically  provides  this  facility, 
and for a  larger  collection of functions.  The fold opera- 
tor permits repeated application of functions without 
requiring  program  loops. 

A theory of arrays is discussed by T. More [ 11. Gen- 
eral  arrays  and  related  topics  have  also  been studied  by 
A. D. Falkoff and K. E. Iverson. Many of the definitions 
in the initial sections of this paper  are  adopted, some- 
times with modifications, from the  above  sources.  The 
most  fundamental concepts  adopted may be  summarized 
as follows. 

First, analogously to  set  theory,  where  one  talks only 
about  sets, in array  theory  one  talks only about  arrays. 
The individual in  Quine’s set theory  corresponds  to  the 
scalar in array  theory;  the individual is a unit  class  that 
contains itself while the  scalar is an  array  that  contains 
itself. Any  set  that  is not an individual has, as  members, 
other  sets; similarly, any  array  that  is  not a scalar  has, 
as items,  other  arrays, with the additional feature of an 
order imposed on  those items. For a comprehensive 
treatment of the relationship between  set  theory  and 
array  theory,  see  the  paper by T. More [Z]. 

Second, implicit use  has now been made of functions 
with functional  arguments in the APL operators  reduc- 
tion, scan,  inner  product  and  outer  product [3]. The 
concept of an  operator  makes  the  above usage  explicit. 
An  “operator” may be defined as a function that  has  an 
argument(s)  or result that  is itself a function.  The  func- 
tions  may  be either primitive or defined, or may them- 
selves  be the values of operators. 

This  paper is organized into  two main sections. The 
first introduces general arrays  as primitive objects  and 
the  operators and  functions defined on them. The  appen- 
dix lists these  operators  and  functions. 

The  second  section  recapitulates  the function defini- 
tions  in the first section  and  introduces  the additional 
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considerations of choice of axes, general coordinates 
and  empty  arrays. 

For  the  purpose of facilitating the exposition in this 
paper,  certain  concepts  are  introduced,  such  as “simple 
array,” “uniform array,” “item,” “component,”  “index,” 
“path,”  etc.  However,  these  concepts  are  not to be  tak- 
en as proposals for  data  objects in a  programming lan- 
guage; the only data  object is the  array. 

An intuitive  graphic  notation is employed in the exam- 
ples. The notation is that of APL\360 output  except  that 
each  nonscalar  array  is enclosed in a  box and along its 
sides the  axes of the  array  are  represented by arrows. 
Some familiarity  with APL is assumed [ 31. 

Arrays as primitive objects, functions and  operators 

General arrays 
An array may be  described  as  an  ordered collection of 
items. In APL, arrays  are  restricted  to  have  scalar  items 
only. The  arrays  considered in this paper may have any 
other  array as an item. 

Example: 

A 

Here,  array A is a vector of two items. The first item of 
A is a  matrix of four items. The  items of the matrix are 
the  scalars 1, 2, 3, and  the  vector 4 5. The  second 
item of A is  the  vector 6 7. i 

The ordering of items of an  array is visualized  in terms 
of a linearly ordered  set of axes. A vector is an  array  that 
has  one axis only. Each axis of an  array  has a nonnegative 
integral size, e.g., the  vector 1 2 3 has  one axis, the  size 
of which is 3. An empty array has  size 0 along at  least 
one axis and so has  no items.* The null 6 is the  empty 
vector  denoted by 10 in APL. The  size of an  array  is a 
vector of the sizes of its  axes, in their given order. 

A singular array has exactly one item. A single is a 
singular array  that  has  no  axes. 

Example: 

A B 

t l n  this paper a heavy dot at the end of a sentence should be read as a period 
*Empty arrays are discussed in a i a t c ~  \ccuon. 
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In this  example A is a singular array, but not a single; it 
has  two  axes  and  one item,  namely the  vector 1 2. B is 
a single. 

A scalar is a single that  has itself as its item. Scalars 
are  the only arrays  that  have  themselves as items. A 
nonempty  array  is simple if and only if every item in the 
array is a scalar.  Thus, APL\360 arrays  and  scalars  are 
simple arrays  restricted in that  their items are  either all 
numerals or all nonnumeric  characters. 

Building of arrays 
Essential to the construction of general arrays  is  the 
monadic  function enclose, denoted by <. For any  array 
A, the  array <A is a single that  has  array A as  an item. 

Example: 

< 1 2  3 

Observe  that  enclose, applied to a scalar, is the  scalar 

Closely associated with enclose is the monadic  func- 
tion disclose, denoted by >. If A is a single, then >A is 
the item of A, otherwise >A is A. This implies that ><A 
is A and  that disclose  applied to a scalar is the  scalar it- 
self. 

itself. 

Example: 

A <A ><A >A 
”” 

The function catenate, denoted by ,, has  arguments 
which are  scalar/vectors  whose items are general ar- 
rays.  Consider Z-+A,B. Z is a vector  whose items are  the 
items of A followed  by the  items of B. 

Example: 

A 

As a convenience  for writing expressions involving 
enclose  and  catenate, the functions link and pair are in- 
troduced. Link is a dyadic function, denoted by 4, and 
defined on singlelvector  arguments such  that AOB is the 
same  as  (<A) , B .  Pair is a dyadic  function,  denoted by 
T, and defined on single/vector arguments  such  that 
ATB is the  same  as ( < A  1, <B . 

The  function shape, denoted by p , applied to a gen- 
eral array  has  as its  value the size of the  array. 

The  dyadic function reshape, denoted by p, has  for  its 
right  argument a general array.  Consider Z+ApB. the 
size of Z is ,A and  the item of Z are  items of B, obtained 
in the  manner of APL. 

Example: 

Selection  functions 
Slice, denoted by 4, is a dyadic function for naming sec- 
tions of general  arrays.  Thus,  for simple arrays, M ,  I and 
J ,  MOIxJ is equivalent to M C I ;  J 1 .  

Consider Z t A O I ,  where A is a general  array  and I is 
a singlelvector having as many  items as  the  number of 
axes of A, i.e., (ppA)  is PI .  Each item of I must be a 
simple array.  The Nth item of I specifies coordinates 
along the lVth axis of A. The size of 2 is identical to  the 
catenation of the  sizes of the items of I. 

Example: 

A I 

6 

5 1  1 

The result of the slice function  is a name  that may 
occur  on  the left of assignment, e.g., (MQI;J)+M4IJ ,  
and similarly for  other selection  functions. 337 
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The index to  an item of an  array A is a scalar sim- 
plelvector.  The  items of the  index  are  in  one-to-one corre- 
spondence with the  axes of A and  each item  specifies the 
coordinate along the  corresponding  axis. A coordinate 
along an  axis is a positive  integer  less or equal  to  the 
size of the axis.* 

Example: 

A 

The  vector 1 2 is an  index  to  the item 7 of A.  

B 

( 5 1  
The  scalar 2 and  the  vector ,2 are both  indices to  the 
item 6 of B .  

C 

The  vector 6 is an index to  the item 1 2 of C (Note C is 
a single). 

Choose, denoted by 0 ,  is a dyadic function for nam- 
ing items of arrays.  Consider Z-+AoI, where I is  an  ar- 
ray of indices of A. Z is obtained by  replacing each item 
K in I by the  item of A to which K is an index. 

Example: 

C Cot?:% 

and 5 0 is 5. Note  that p Z is PI.  

Given a nonempty  nonscalar  array A, its components 
at  level 1 are  the items of A .  A component C of A is  at 
level N+l of A if and only if C is an item of a nonscalar 
component of A at level N .  A has N levels if all the com- 
ponents  at level N of A are  either  scalar or empty  arrays. 
A level is a scalar  level if and only if all components  at 
that level are  scalars. 

different ongins are discussed in a later section. 
‘General coordinates, which may be given from either end of an axis and using 

Example: 

B - 

Here, B has 2 levels. At level 1, B has  two  components: 
the  vector 1 2 and  the  scalar 3. At level 2,  B has  two 
components, namely the  scalars 1 and 2 .  

A scalar  has  no  components  and  no levels. A simple 
nonempty  array A has  one level. The  components  at lev- 
el 1 of A are  the  items of A.  For example,  the  vector 
1 2 3 has  one level. At level 1, it  has  the  scalar compo- 
nets 1, 2 and 3. 

A path P to a component C in array A is a single/ 
nonempty  vector. If P has  one  item,  that item is an in- 
dex  to C in A. If P has N+l items  and  the first N items 
are a path to a nonscalar  component B in A, then  the 
N+lth item of P is  an index to C in B .  

Example: 

A 

is a path to the component 

is a path to the  component 

is a path to the  component 3 in A. 

Reach, denoted by 2, is a dyadic function for naming 
components of arrays.  Consider Z+AzI, where I is an 
array of paths  to  components of A. Z is obtained by re- 
placing each item K in I by that  component of A to 
which K is a path. 
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Example: 

4 7 714 7 8 

Example: 

' A  I 

1- I 

B 

i":I 
J 

1 

B J  

Observe  that p Z  is PI. 
Generation of indices 

The monadic I has  for its argument a scalar/vector of 
nonnegative  integers. 11 is an  array of size ,I. If I has 
an item 0, then 11 is an empty  array which is defined in 
a subsequent section on empty  arrays.  Otherwise, an 
item of 11 at index J is ( p I ) p J .  

Example: 

12 3 

In particular, ( IS) is <e. 
Note  the identities A:Ao I ~ A  and ( p r I ) z p l p < l .  

For  the dyadic  functions I and 1, index of a vector  is 

The  dyadic I has  for it argument  general arrays.  Con- 
sider Z+AZ B. Z is obtained by replacing each item K 
of B by the  index of the first  item (in principal order) of 
A which is the  same  as K .  If no item of A is the  same  as 
K it is replaced by one plus the index to the last  item in 
A. 

restricted  to be a scalar. 

Exumple: 

A 1-1 ~ [ r n l  
A12 3 

Also ( 5  15 )E<@ and ( 5  t6)~<6. 
The dyadic  function j n d ,  denoted by 1, is defined as 

follows. Consider Z+AlB. Z is obtained  by  replacing 
each item K of B by the  vector of indices of those items 
of A which are  the  same  as K .  (If  no items of A is the 
same  as K, then K is replaced by an  empty  vector of in- 
dices.) 
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Operators 
One way to account  for  the  expression A+. xB is to con- 
sider . as a  function of arguments + and X whose  value 
is a dyadic function  (applied to  arguments A and B ) .  An 
operator is a  function where at least  one of its arguments 
or  its value is a function. Function means  primitive func- 
tion or defined function,  or  the value of an  operator. 
Syntactically, operators  behave  as  functions  but with 
higher precedence.  This rule accounts  for  the  interpreta- 
tion of X as  dyadic in the  expression  above.  The monad- 
ic operators reduction  and scan  are written to the left of 
their  (functional)  arguments, and the notation for  outer 
product  is simplified. Thus  one writes /+B instead of the 
APL expression +/B and similarly, \+B instead of +\B and 
A. +B instead of A0 . +B. 

An  important motive for  the  introduction of general 
arrays is that it permits the domain of operators to be 
extended  to all (and  not only scalar  dyadic  primitive) 
functions. Given  arrays A, B and  functions F, G, H 
the  expression A F. G. H B is  proper  and  interpreted  as 
A F. (G . H )  B. Permitting A (F. G ) . HB requires  the syn- 
tactic  change  that allows expressions  that stand for func- 
tions to  be enclosed in parentheses.  (Incidentally,  an 
identifier may be permitted to  denote  several  defined 
functions with differing numbers of arguments,  except 
for  the  case of a nil-adic function with value.) 

The  operators  discussed in this paper  are restricted to 
be  primitive and  to  have  functions  as right arguments 
and as values. Furthermore,  operators  are  not allowed to 
be arguments or values of other  operators. 

The monadic operator itemwise, denoted by , makes 
explicit a general form of the APL convention  according 
to which scalar primitives are applied to  arrays.  First, 
consider Z+"AB, where A is a  monadic  function  and B is 
an  array. Z is obtained by replacing each item K of B by 
AK. 

Example: 

Note  that  for  scalar (in  general,  single) S, "AS is <AS. 
Example: 

P I  ''I 2 

339 
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Next  consider Z+A"AB, where A is a dyadic function  and 
arrays A and B have  the  same size. Z is an  array of like 
size. Let K be  the item of A at index I, and L be the item 
of B at index I. Then KAL is  the item of Z at index I. 

Example: 

1 2",3 4 

If either A or B is singular, the APL\360 convention is 
adopted, i.e., the singular array  is  reshaped by the  size of 
the  other  array. 

Example: 

A 5",A 

where (A"l7)EA"I 7 7 and (A"I 7 7 ) ~ 2  3. 

is reshaped by the size of the  other. 
If both A and B are singular, the  array of smaller  rank 

Example: 

2 "p , 3 

pq 
The  (generalized) convention  concerning scalar func- 

tions can now be stated  as follows: 

Monadic scalar functions A are extended to nonscalar 

Example: 
arguments B by dejining AB as "'AB. 

A -A  

I I 

Dyadic scalar functions A are extended  to nonscalar 
arguments A and B by de$ning AAB as A"'AB, hence in 
particular  either A and B have  the  same  size or at  least 
one of them is  singular. 

Example: 

A B 

The monadic operator reduction, denoted by / , has a 
dyadic function A as argument  and  a  monadic  function 

340 / A  as its value. Intuitively, /AB is BlAB2A. . . ABpB. 
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More precisely, the  argument to / A  is a single/vector. 
The  operator is defined by requiring that 

(/A<B)zB 

(/A,<B):B 

and,  for  vector B of size greater  than 1 ,  that 

Example: 

A 1 +A / ,.4 

If A has  an identity I then / A 6  is I. 
The monadic operator scan, denoted by \, has a 

dyadic function A as argument  and a monadic function 
\ A  as its value. The  argument to \ A  is a single/vector. 
Consider Z+\AB. Z has  the  size of B and  the item of Z at 
index I is / A B 0  II. Taking  into  account  that 6 is an 
index to a single and 1 6  is <6 (see  the section on  empty 
arrays),  then (\A<A)_<A and (\A,<A)_,<A. 

Example: 

\,1 2  3 -1 
Note  that \ A 6  is 6. 

The monadic operator outer  product, denoted by . , 
has a dyadic function A as argument and a dyadic func- 
tion . A as  its value. Consider &A. AB. The  size of Z is 
the size of A catenated with the  size of B .  Let K be  the 
item of A at index I and L be  the item of B at index J .  
Then KAL is the item of 

Example: 
z at index I, J .  

2 . ~ 3  

The  dyadic  operator inner  product, denoted by . , has 
dyadic functions A and V as  arguments  and a dyadic 
function A .  V as its value. The  arguments  to A .  V are sin- 
gleshectors.  The  operator  is defined by  requiring that 
(M . VB)z/AA"VB and, in particular, that  either A or B 
have  the  same size or at least  one of them is singular. 

Example: 

1 2  3 , . p l  2 3 i s 1  2 2 3 3 3 

2 + . p l  2 3 i s 6  6. 
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The  dyadic  operator fold, denoted by 8, has a  non- 
negative  integer left argument N and  a  monadic  function 
as its  value. 

If A is a monadic  function, then NBAB denotes what is 
commonly denoted by A .  . . AB with N occurrences of A .  
In  addition, 

16AB is AB 
and 

O@AB is B .  

Example: 

3 Eh6 

If A is a dyadic function, then NBAB denotes what is 
commonly denoted by BABA. . . AB with N occurrences 
of B, that is, N@B is /ANp<B. In  addition, 1DB is B 
and, if A has  an identity I, then O@AB is I. For exam- 
ple, 3Bt.xB isB+.xB+.xB. 

The monadic operator limit, denoted by 6, is defined 
by requiring that (@AB) 5 K D B ,  where A is a  function 
and K the smallest  nonnegative  integer for which 
KEAB ( 1 + K  )ED. 

For  example, (E>J@<S) 6. 
The  dyadic  operator axis, denoted by :, has  as left 

argument a scalarlsingle vector of axis  numbers  (an axis 
number is a coordinate  for  the  ordered collection of 
axes).  Intuitively,  the axis operator  selects  those  axes 
along which  its  functional argument is to  be applied. 
Thus  one writes 

S: AB instead of A [ S I B  and 

A ( S : A ) B  instead of &[SIB. 
The axis operator will be discussed in more detail in a 
later  section. 

Uniform  arrays 
Level N of an  array A is uniform if all components of A at 
level N have  the  same size. An  array is uniform  to  level 
N if its initial N levels are uniform. An  array is uniform 
if and only if it is uniform at all levels. 

Example: 

A  B 

A is uniform at level 2 (not  at level I), whereas B is 
uniform. 

The  phrase "axes of B at level N," where B is uniform 
at level N ,  refers to  the  axes of any  component of B at 
level N .  

The cipher, denoted by [3, is a scalar  that is neither a 

The monadic  function form, denoted by g, is defined 
as follows. Consider Z-B. Z is a vector whose first 
item is pB and  whose N+lth item I is the size of a dom- 
ponent of B at level N if B is uniform at level N .  Other- 
wise I is ,[3. If B has a scalar level,  its scalar level is 
necessarily  uniform and  the size of a component  at  that 
level is necessarily 6. To  avoid  this redundancy, Z will 
have no item for  the  scalar level of B .  Thus Z has  as 
many items as  there  are levels for B . 

number nor a character. 

Example: 

X PX 
- - p2" 

9 10  11  12 
17 18  19 20 

Y OY 

pB is called the structure of B .  Thc  structure of a scalar 
is an empty  vector. 

The notion of principal  order on items of simple ar- 
rays as defined in APL is generalized to items of general 
arrays. Principal order is then  extended  to  components 
of arrays in the following manner. 

The  components  at level N + l  of A follow the compo- 
nents  at level N of A .  Given  the  components I and J at 
level N such  that J follows I in principal order,  the items 
of J follow the  items of I with each collection of items 
in principal order. 

Example: 

A 

The  components of A in principal order  are,  from left 
to right: 

F - 3 1 2  

The  dyadic function reform, denoted by g, is defined 
as follows. Consider Z-+AgB, where A is a singlelvector 
whose  items are  scalars/simple  vectors of nonnegative 
integers.  Intuitively, if N is the number of items of A ,  
and N > l ,  then Z is an  array, uniform to level N - I .  The 
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ravel of the first item of A becomes the  size of 2, the 
ravel of the Kth item of A becomes the size of compo- 
nents of Z at level K-1  for  K>1,  that  is, 

The  components of 2 at level N ,  in principal order, 
are  the items of B in principal order, used repeatedly if 
necessary. 

Example: 

R 

P2 3et4 

" I  

If A is empty, AtB is B .  
The  dyadic function lower, denoted by -+, is defined 

as follows. Consider Z+A&B, where A is a single/vector, 
each item of which is a scalarlsimple vector of axis 
numbers of B .  If A has N items, B must be uniform to 
level N .  Intuitively, B is "coalesced" to its level N ,  i.e., 
the  axes of B and  the  axes of the first Iv levels of B be- 
come  the  axes of 2. For J > N  the J t h  level of B becomes 
the J- f l  level of 2. The size of 2 is determined as fol- 
lows: let P be  the Kth item of A and R be  the Kth item of 
QB. ,P and R must have  the  same size. For  any  proper 
index I, RoI is the PoI th  item of the size 2. 

Note  that 2pX is 2pX and (12  3 )QX is 2 3pX. 
Example: 

The following structure-modifying functions  are  espe- 
cially useful in connection with uniform arrays. 

The dyadic  function raise, denoted by 2, is defined as 
follows: Consider Z+A+B, where A is a singlelvector, 
each item of which is a  scalar/simple vector of axis- 
numbers of B .  An  axis  number of B may appear only 
once in the items of A.  Intuitively, if the first item of A is 
P and I is any proper index of P, then the  axis POI of B 
becomes  the I t h  axis of 2. Similarly, for K>1,  if the Kth 
item of A is P and I is any  proper index of P ,  then the 
axis P O I  of B becomes  the I t h  axis at the  K-lth level of 
Z .  The remaining axes of B ,  in their original order, ap- 
pear  at level N of 2, where Iv is the  number of items of 
A .  The  Jth level of B becomes  the  J+Nth level of 2. 

Example: 

B 

1 f B  ol4B 2fB 

Further, 

D 

(3  176)J.Dis 3 0 2pO. 

If A is empty, A i B  is B.  Note  that (AiA1.B)  B, 
and ( AkAiB ) 2 B . 

The monadic  function collapse, denoted by J., is de- 
fined as follows. Consider %@. Let M be the maximal 
level number  such  that B is  uniforp  to level M and level 
M is not  a scalar level.  Intuitively, B is "coalesced" to its 
level M. The  sequence of axes of 2 is the  same  as  the 
sequence of axes of B, followed by the  sequence of axes 
of B at level 1 through level M. The  components  at level 
M+1  of B become  the  items of Z .  
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Example: 

A 

Example: 

I B 

C 

L"-l 

9 10 11 1 2  

1 3   1 4   1 5  16 
1 7   1 8  19 20 
21 22  23 24 

AyB is a name  that  can  occur  to  the left of assignment. 
For example, after  executing 

( A y 2 ) e   1 0  11 
I 

1 

Ravel  and  unravel 
The  monadic  function ravel, denoted by ¶ ,  has  as argu- 
ment  any general array. ,A is  the  vector of items of A in 
principal order. 

Example: 

1 4  5 1  

The  dyadic function mesh, denoted by #, is a selec- 
tion  function defined as follows: Consider %ARB, 
where B is a singlelvector  and A is a general  array. Z is 
obtained  by  replacing the  scalar  components of A by the 
items of the  items of B .  The  scalar  components of A of 
value K are replaced  by items of > ( ,B)  OK. This is car- 
ried out in principal order  and  the  items of >( ¶ B ) OK 
used repeatedly if necessary.  The  cases  where A is  empty 
or ,B has  no Kth item or the Kth item of .B is empty  are 
discussed  subsequently in the section on  empty  arrays. 

Example: 

B 2 1 2 2nB C A 

The monadic function unravel, denoted by U ,  is anal- 
ogous to  set  sum in set  theory. U A  is the  vector  formed 
by catenating the ravels of the  items of A in  principal 
order, i.e., U A  is a vector of the  items of the  items of A.  

Example: 

A U A  

I- I 

ASC 

I I 

B uB 
The  dyadic function compress has  for its right argu- 

ment a general  singlelvector. 
Example: 

A 1 0 1 / A  j'] 
and 1 0 O/Ais ,l. 

The  result of the  compress functior 
may occur  on  the left of assignment. 

8 I 
~~ ~~ ~ 

Precisely, UA is /, ", ,A 

Further  selection  functions 
The  dyadic  function level, denoted by y ,  is defined as 
follows: Consider Z+AyB, where B is a level number of 
A.  2 is the  vector of all components of A at level B in 
principal order. 

l i  s a name  that 

The  dyadic function expand has  for  its right  argument a 
general  singlelvector  preserving the identity that A/A\B 343 
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is ,B. Hence, as in APL, the following relation  must  hold: 

( / + A )  = / x p B .  

Examples: 

1 0 l \ B  

( 1 \ 5 )  E .5 

( 1 \ ¶ 5 )  E ,5 .  

Note  that (A\B)E, (l+-A)*<B. 
Notice  that  the item of the result which corresponds 

to  the 0 item of the left argument  has  the  same  structure 
as  an item of B,  assuming B is uniform, and  has  scalar 
components 0 .  The  cases  where B is  not uniform or is 
empty  are defined later  on in the section on  empty  arrays. 

The dyadic  function take has  for its right argument  a 
general array, 

Example: 

B 

C 

7 8  

-2 -2+c  

Notice  that  whenever  an item of the left argument  ex- 
ceeds  the size of the  corresponding  axis of the right ar- 
gument,  the result contains items that  have  the  same 
structure  as  an item of B, assuming B is uniform, and 
have  scalar  components 0. Observe  that (pA+B)z  ]A. 

Again, as in compress,  the  result of the  take function 
is a name  that may occur on the left of assignment. 

The  dyadic function drop has  for its argument a  general 
array. 

Exumple: 

B -2 +B 

5+B is an  empty  array. 
344 Observe  that pA+B is Or ( p B ) -  IA. 

Logical  functions 
Arrays A and B are identical if and only if 

1. either they are  the  same  scalar, 
2 .  or they are  empty  arrays of identical structure, 
3 .  or they have identical  size and  have identical  items 

at  the  same indices. 

The  dyadic  function identical to ,  denoted by 2, has 
value 1 if its  arguments  are identical, 0 otherwise. For 
example, 3 4 ~ 3  4 is  equal  to 1 ,  (1 2p3  4 ):3 4 is 
equal  to 0, and 1 2 ~ 3  4 is  equal  to 0 .  

The  dyadic function membership, denoted E has  for 
its arguments general arrays. AEB is a simple logical array 
such  that ~ A E B  is pA. 

Example: 

A B 

( A E B ) : ~  0. 

The  dyadic function item of, denoted by 5, has value 
1 if its left argument is an item of the right argument, 
and 0 otherwise.  For  example, ( 1  252 4 ) ~ 0  and 
(1 253, < 1  2):l. 
Note  that (AEB):A.~<B and (AgB):(<A)cB. 

8 Less  and  combine 
The  dyadic function less, denoted by -, has  as  its value 
a vector  whose  items  are  the  items of the left argument 
that  are not  items of the right argument, in principal or- 
der.  Note  that (A”):( ,-AEB)/,A. 

Example: 

A  A-3 5 

The monadic  function combine, denoted by @ is 

Consider %@B. The  size of Z is the  catenation of the 
sizes of items of B in  principal order.  The  size of each 
item of 2 is the  size of B .  Intuitively, if ravel of B has N 
items  and JK is the item at index IK of the Kth item of 
ravel of B, for K = l  . . . , N  then ( pB ) p J ,  . . . J.v is the 
item of 2 at index I, , . . . ¶IN. 

defined as follows. 
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Choice of axes,  coordinates  and  empty  arrays 

pqpjq C @C 

(Eli1 2 ) = 1   2 ,  

( 0 1   2 ) = < 1   2 .  

Notation  for  constants 
The  input-output notation for  constant  vectors whose 
components  are  either  scalar, null or  vectors of size 
greater  than  one, is defined as follows: Items of a vector 
of N levels, N21, are  separated by N-1 underscores. 

Since  the  underscore  does not appear  at  the right  end 
of such a constant, a  typed line ending in underscore may 
be interpreted as  continuation of the  expression  to  the 
next line. For  example, 

1 2- 

3 4 5- 

-6- 

- 7 8  

is identical to 1 2-3 4 5- -6"7 8 .  

The axis  operator 
Some  functions  are defined for  vector  arguments  and 
extended  to  arrays by selection of an axis along which 
they are applied. In APL the function  symbol may be  fol- 
lowed  be a bracketed  expression whose value is an axis 
number.  The axis operator, denoted by : , performs the 
same  task  as  the  above function indexing mechanism. 
The left  argument of : is a  singlelvector of distinct axis 
numbers. The right  argument of : is a  function.  Intui- 
tively, the right argument is applied  along the  axes speci- 
fied by the left argument. In  the  remainder of this sec- 
tion,  the : operator is defined for  each function that can 
be  the right argument of : (with  the aid of raise 2 and 
lower f). 

Catenate 
Let S be a  singular array whose  item is an  axis number of 
either  array A or  array B,  then: 

Example: 

A B A 1: ,B 

1 0  11 1 2  4 5 6  
7 8 9  

1 0  11 1 2  

A 2 :  ,B A 1 : , 7  8 9 4 5 6 ( 1 : , ) B  

1 0  11 1 2  

The item of S may be a  noninteger. In this case A and 
B must either  have  the  same  size,  or  else  one of them is 
singular and the singular  argument is reshaped  by the 
size of the  other.  The item of S must  be equal  to  an  axis 
number of the resulting arrays plus or minus a number in 
the  open interval ( 0 , l ) .  Then ( A ( S :  , )B)=( rS)k&B. 
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Example: 

B A 0 .5 :  ,B 

5 6 7 8  1 7   1 8   1 9  20 
9 1 0  11 12  21  22  23  24 9 10  11 12  

A1 .2  : ,B A 2 . 1 :  ,B 

7 1 3   1 4   1 5   1 6  
5 6 7 8  

1 7   1 8   1 9   2 0  

9 1 0  11 12  
21  22  23  24 

"- 
1 1 3  
2 1 4  
3 1 5  
4 1 6  

5 1 7  
6 1 8  
7 19  
8 20 

9 2 1  
10  22 
11 23 
12  24 - 

1 3   1 4   1 5   1 6  
1 7   1 8   1 9  20 
21  22  23  24 

A 0 .5 :  ,1 l p 1 3  

1 2 3 4  
5 6 7 8  
9 1 0  11 12 

1 3   1 3  13 1 3  
1 3   1 3   1 3  13 
1 3  13 13 1 3  

Slice 

(A(S :  4 )B ):A4V 

where V+"I pA and (VoS)+B, i.e., B specifies  coordi- 
nates along axes S of A. Each axis of A not specified by 
S is  taken in its  entirety. 

Example: 

A A 2 :4<1  3 

Choose 

(AG: 0 )B)E( (<s)-~A)oB, 

i.e., each item of B specifies coordinates along axes S of 
A that  have  been raised. 

Example: 

A A 2 : 0 1  3 1-1 4 5 6  

Reduction 
Let S be singular. Then 
(~:/AB)_"'/A(<(~~~B)-S)~~. 

B 1 : / p B  

Example: 

I I 

JR AND J.  MEZEI 

Scan 
Let S be singular. Then (S: \AB ) E T ~ " \ A T ~ B ,  where 
p < ( I p p B ) - S .  

Example: 

B l : \ - B  2:\-B 

-3 -3 -3 

Inner  product 
The  case of singlelvector arguments  has been  previously 
discussed.  Otherwise, let I be an  axis  number of A and J 
be  an  axis  number of B. Then 

(A(I,J):A.VB) 
- = ( ( < ( I ~ ~ A > - I ) ~ A > . A . V ( < ( ~ ~ ~ B ) - J ) ~ ~ .  

If A or B or both  are single than I or J or both, re- 
spectively, must be 6. Anagolous to the A P L \ ~ ~ o  con- 
vention, i f I  is (OtppA)+ppAand J is (OtppB)+l then 
both I and J can be simultaneously  elided. 

Example: 

1-1 jq A B A 1 2 : + . x B  

69 8 7  

((1  lp2)+.x3 4 5) : ,24 
(5+.~2 3p16) 2 25  35  45 

((1 lp5)+.x<2 2 ~ 1 4 )  E ,<2 2p5 10 15 20. 

Ravel 

(S: ,B)E, (<S)kB. 

Example: 

A 2: ,A B 

13 1 4  15 16 
1 7  18 19  20 
21  22 23 24 

( 1  3 : , B k l  5 9-2 6 10-3 7 11-4 8 12 
-13 17 21-14  18  22-15 1 9  23-16 20 24. 
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Mesh 
Consider 2 4  (S: *B ), where: 

1. A is simple, 

3. The  items of B have  the  same  rank, 
4. S selects  axes of items of B. 

items of B must have  the  same size along that axis. 

2. ( P P A ) 3  ,S, 

Consider  each  axis of items of B not  selected  by S. All 

Then 2: ( <S )&A* ( <<SI .AB. 
The “meshing” is done along the  axes S of the items 

of B. 

Example: 

B - 

c 

~ 

Compress 

J 
2 1 2  1 2 ( 1 : * ) C  

3 4  

U 

Expand 
Let S be singular. Then (A (S: \ ) B  )?S&A\SAB. 

Exumple: 

1 0 l ( l : \ ) B  

4 5 6  

Exumple: 
- 

B 2 3 ( 1   3 : + ) B  

9 10  11 
1 3   1 4   1 5  

9 10  11 12   17   18   19  
1 3   1 4   1 5   1 6  

Esample: 

1 -1(1  3 : 4 ) B  

9 10  11 12  17   18   19  
1 3   1 4   1 5   1 6  

17   18   19  20 
2 1  22  23  24 

9 Generrrlized coordincltes 
Coordinates along an axis may be given from  either  end. 
For  an  axis of size S, the  coordinates I and I-S are 
equivalent, independently of index origin. For  example, 
in index origin 0, 

( 6  7 8  9  1002):6 7 8 9 100  3, 

and in index origin 1 , 
( 6  7 8 9 1003):6 7 8 9 100  2, 

all four  expressions denoting 8.  
Indices and  hence paths may contain  general  coordi- 

nates. Accordingly, the domains of functions and opera- 
tors  are  described below, all examples being given in 
index origin 1. 

- 

- 

347 

J U L Y  1973 GENERAL  ARKAYS,  OPERATORS A N D  I I J N C I  IONS 



Slice,  choose  and  reach 
These  three  functions  are  extended to right arguments 
with general  indices. 

Example: 

A A01 2"l 0 

p q  a 
B 

( B 5 - 2 - 2  0 : 4 

Monadic I 
For negative  integers B : 

(tB)ZB+@t IB, 

i.e., ti? is a vector of (B items. The items are  succes- 
sively  smaller  integers  starting with the integer one less 
than  the  index origin. For  example, (1-3 )EO -1 -2 .  

A further extension is for B a scalar/vector of integers, 

Example: 
(tB)_@"tB. 

12 -3 

It  is in general no longer the  case  that  the item of t B  

However, ( p t B ) : ( B  and ( t B ) : (  ( t B ) o t B ) o t B .  
at  index J is J .  

Reshape 
The  reshape function is extended  to a left argument that 
is a scalarlvector of integers, and  reshape is then  de- 
fined by the identity (ApB ): ( ( 1.4 ) p B  1 0  t A. 

Example: 

2 - 3 p t 6  2 3 p t 6  
- 

I It should  be noted  that, in general, (pApB): I ,A. 

~ 

Reform 
The reform function is extended to a left argument  that 

1 348 is a  single/vector whose  items  are  scalars/vectors of 
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integers. The reform  function is then defined by the 
identity 

( A e B ) r ( ( T = T ) r < ~ p u T ) ~ ( u A ) p B ,  

where TE-ISA.  
Example: 

3-2 2 ~ 1 1 2  3"2 - 2 ~ 1 1 2  - - 
I - 

I I 

Note  that, if A has N items, A@ is uniform to level 
Nand  the following relation  holds: 

(N+~AEB): I " ,A .  

Raise  and  lower 
The raise and  lower functions are  extended  to left  argu- 
ments  with  general  axis  numbers. 

Example: 

L I a 0.4 

Note  that (O&A):2&A. 

special case of coordinates. 

Level 
This  function is extended  to right arguments with  gen- 
eral  level  numbers. 

Note  also  that level numbers, like axis  numbers,  are a 

Example: 

A 

I D  6 1  
(Ay0)r l  2 3 4 5 

Mesh 
The mesh  function is  extended  to left arguments whose 
scalar  components  are general  indices. 

Example: 

A B ARB 

And finally the  axis  operator is extended  to left  argu- 
ments  with  general axis numbers. 
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Empty  arrays 
In APL, empty  arrays may have different sizes  and two 
empty  arrays  are identical if and only if they  have  the 
same size. In general, empty  arrays may have different 
structures and  two empty  arrays  are identical if and only 
if they have  the  same  structure.  An empty array is com- 
pletely specified by its structure.  The  structure of an 
empty array is a vector  whose items are  scalars/vectors 
of nonnegative  integers. The first item  is the size of the 
empty  array and the last  item may not  be 6. All empty 
arrays  are defined to  be uniform, i.e., their structure  has 
no scalar component cipher. An empty array is simple if 
and  only if its structure is singular. The simple empty 
arrays  are  the APL empty arrays.  An  empty  array  has 
no  items,  no  components, and  no levels. The remainder 
of this section deals with cases where the domain or 
range of functions are empty arrays. 

Two  cases  arise in defining function reshape. Consider 
%Ap B . 
Case 1:  A has a zero item. 

Z is an  empty  array.  In general, the  structure of Z is 
obtained by replacing the first  item of the  structure (&B)  
of B by ,A and  any scalar component [3 in &B by 1. If 
B is scalar, Z is as defined in APL. 

E x t r m p k :  

( e B  ):",2 132 
(&OpB):",O 1 2 

Case 2: A has  no zero items and B is  empty. 

Z is nonempty and its  scalar components are 0. In 
general,  the structure of Z is obtained by replacing in the 
structure of B the first item by ,A. If A:% and B is sim- 
ple, then Z is 0. For example, 
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If (gB):", 0 3 
then ( 2 p B ) z O  0 0-0 0 0 
and (p2pB):",2 3 .  

If (eB):",3 0 
then ( e 2  pB ):", 2 0. 

If (&B):",O 2 
then (6pB):<O 0 
and (g6pB):",6-2. 

It is now possible, in order  to simplify the exposition, 
to introduce the function 
VZ+MODEL B [ l ] m p O p B V  

For uniform and  nonempty array B,  the item of 
MODEL B has  the  structure "typical" of an item of B 
(and  the scalar components of MODEL B are 0). 

Note  that MODEL B is defined for  any  array B ,  is  always 
uniform, and if it has scalar components they are 0. 

Example: (MODEL 1 2  3 )EO. 
Actually, for  any simple array A,  (MODEL A)_O. 

Also 

(MODEL 1 2-3 4 3 0  0 ,  

(MODEL 1 2-3 4"5 6-7 8 ) 3 0  0-0 0 ,  

(MODEL 1 2-3 ):<,O, 

(MODEL 12-3--4-5 6):<(,0)7,0, 

(MODEL 6 ):O, 

(MODEL 2 0pO)fO. 

I f&Bis ' ,O  2 , then 

(MODEL B):<O 0 .  .. 
IfLB is ,O 2 0, then 

(&MODEL B)=6,",2 0. 

I t  is  instructive to  compute &MODEL B from pB as 
follows. Replace all scalar components 13 of &B by 1 and 
replace the first item of &B, by 6. 

The function reform is extended  to allow its right ar- 
gument to  be  an  empty array. If B is an empty  array, then 
( AeB ):A&MODEL B . 

Example: 

( 2   3 p 2  0pO):O 0 0-0 0 0. 

The following identity  holds, in general: 

( L A ~ B )  : ( " , A ) , ~ G ~ M O D E L  B .  

Note  that  the  case of A having scalar components 0 is 

The following sections now define the remaining rele- 
defined by the  above identity. 

vant  functions. 

Catenate 
If A is an  empty  vector  and B is nonempty  singlelvector, 
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then (A,B):,B. If both A and B are  empty vectors, 
then (A,B)zOp (MODEL A) ,MODEL B. 
For example, 

( 6 , O  2gO):O 180.  

Slice 
Consider Z t A Q I .  If any of the items of I is a simple 
empty  array,  then 2 is empty and (eZ)z( ~ " p l )  
p MODEL A. In case A is empty,  at  least  one of the 
items of I must be a simple empty array and the  above 
definition holds. 

Example: 

(e l  2-3 4 ~ < 6 ) ~ " , 0  2, 

( ~ ( 2  2 p < l  2 3 1 9 1   2 - 6 ) ~ " , 2  0-3, 

(e(  0 2gO) 9<6)r", 0 2.  

If I is 6, then A must be a single and 2 is A. 

Choose 
Consider Z t A o I .  If A is nonempty array,  then I is an 
array of indices of A. If A is  empty,  then I must be emp- 
ty. In any case, the following must hold: 

(MODEL I) E MODEL I PA, 
or 
(MODEL I) : *', MODEL I pA. 

If I is empty,  then 

Zz(pI)p MODEL A. 

Example: 

IfI:2 0 3p0, 

e ( l  2-3 401)12 0 3-2, 

(602 OpO):2 opo, 

( ( 0  280)02 OpO):2 0-280. 

Reach 
If I is empty, (A21):I. Note  that if A is empty,  then I 
must be empty. 

Monudic z 
If O d ,  then 11 is empty  and  completely defined by 

( g z I )  gIp<I. 

Dyadic z 
Consider ZtAzB . If A or B or both are  empty,  then 

Z:(pB)p<l+pA 

except if A is a  vector. Then 

350 ZE(pB)pl+pA. 
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Example: 

(1 212 OpO)52 opo, 

( ( 2   2 ~ 1 4 1 1 2  OpO):2 0-280, 

(512 0 ~ 0 1 ~ 2  0-OgO. 

Find 
Consider Z+AlB. In the definition given in the  section 
on  generation of indices, if B is not  empty, an itemK of B 
that  does not occur in A is replaced by Op<pA (except in 
the  case  where A is a vector, when K is replaced by 6). 
If B is  empty,  then 

ZE( (pB)$ )&<PA, 

except if A is a vector. Then 

~ E ( ( P B ) T ~ ) B P A *  

Example: 

(1 212 OpO):2 0-ogo, 

( ( 2  2 ~ 1 4 1 1 2  OpO)52 0-0-2g0, 

(51 2 OpO 122 O-O-OgO. 

Itemwise 
For A monadic  and B empty, 

("AB):(pB)p"A MODEL B.  

Example: 

( "-6 126, 

( "-0 2 oeo )EO 2 oeo, 
('Ope): o 080, 
("0 2 oeo 120 280, 

For A dyadic  and A empty, 

(A"AB):(~A)~ (MODEL A)"'AB, 

and similar relations define the  cases where B or both A 
and B are  empty. 

Example: 
(s"r-1 )le, 
( (0  %LO> 'b6):O-0 0 080. 

Reduction 
If a function A has  an identity I then / A 6  is I. Note 
that  catenation and outer  product catenation have no 
identities. We define for  an empty B: 

( /  ,B):Op> MODEL B, 

( / . , B )?MODEL  >MODEL B . 
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Example: 

Scan 
For  an empty vector B, 

(\AB):Op</A> MODEL B.  

Example: 

(\+e):#, 
(\+O 2!20 )=6, 

( \ + O  2eO):O oeo. 
Outer  product 
For A empty, 

(A.AB)_((pA),pB)p(MODELA).AB. 
and similar relations. define the  cases where B or both A 
and B are empty. 

Example: 

(6.  pl  2-3  4)zO  2-OeO. 

Mesh 
Recall that ASB is obtained by replacing the scalar com- 
ponents of A whose value is K by items of >( ,B)oK. if 
ravel B has no Kth item  or the Kth item of ,B is  empty, 
the  above replacement is by >MODEL>MODEL B.  if 
A is empty,  then AnB is empty  and 
( e A B B k ( e A )  ,e>MODEL>MODEL B .  

Example: 

(1 3n4 5-6 7)=4 0, 

(IWO 2p0)50 0. 

Compress 
If O:/+A, then (A/B):OpMODEL B .  

Example: 

( 0  0/1 2-3 4120 2 ~ 0 ,  

(0  0/1-2 3 4)fO le0. 

Expand 
Consider Z+A\B. If A has a 0 item,  then Z is obtained 
by replacing all 0 items of A by the item of MODEL B ,  
and  the 1 items of A by the  items of B in principal order. 
If A is  empty  then 2 is B .  Precisely, 
(A\B)z,   (I+-A)S<B. 

Example: 

(o\s>ro, 
( O \ O  2&0)30 0, 

Take 
Consider Z+A+B. If / v (  IA)>pB then the items of Z at 
the additional indices are  the items of MODEL B. 

Example: 

(-3+1  2-4 5 )zO 0-1  2-4 5, 
(-31.1-2 4 5 ( 2 (  ,0)71-2 4 5. 

If Z is empty then Z:( 1A)pB. 

Example: 

(0  3+2 0-2eO )EO 3-2eO. 

Drop 
Consider Z+A+B. If / v (  1 A)>pB,  then 

z E ( o r  ( p m -  I A ) ~ B .  

Conclusions 
The main purpose of this paper is to  introduce as data 
objects arrays  whose items are also arrays.  In  order to 
manipulate such  arrays,  the functions and  operators 
listed in the appendix are defined. The exposition is car- 
ried out throughout in terms of APL. 

Programming languages such  as PL/l [4], LISP [5], 
extended GENIE [ 6 ] ,  the iBM Vienna pL/l specifica- 
tion language [7] and SETL [SI allow for  complex data 
structures.  In this paper, definitions are given that pro- 
vide the capability of representing  most data  structures 
of the aforesaid languages, while having the simplicity 

However,  the discussion in this paper  does  not ex- 
haust  the possibilities opened up by the introduction of 
general arrays and  the  general  notion of operators.  For 
example, the domains of $ and Q may be extended to 
include general arrays, and  general coordinates in the 
case of Q. Also, for  example,  the  domain of the  axis 
operator may be extended to include the functions 4, 

and 1. Further, in this paper only primitive operators 
(as distinguished from user-defined operators)  are dis- 
cussed,  and they are restricted to  take  arrays  or func- 
tions as left arguments,  functions as right  arguments, 
and to yield functions as results. The removal of these 
restrictions may be a topic for  future research. 

A problem of manipulation of files within a data  base 
was  mentioned in the introduction. Relatively simple 
expressions may now be given to  answer typical inquir- 
ies about files. For example,  the vector TJ of numbers of 
projects  that  use  part P is  obtained by TJ+( ( P = B " o l )  
/ B )  "02 and the  vector M of names of projects that  use 
par tP is  obtained by M+Ao( (A"01  )tTJ)",2. 

Of APL. 
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Appendix. Functions and operators 

Symbol  Monadic  Dyadic 

FUNCTIONS < 
> 

enclose * 
disclose * 
ravel 

shape 

iota 

form * 

collapse * 
unravel * 

catenate 
link * 
pair * 
reshape 
slice * 
choose * 
reach * 

find * 
iota 

reform * 
raise * 
lower * 

level * 
mesh * 
compress 
expand 
take 
drop 
identical to * 
membership 
item of * 
less * 

combine * 

OPERATORS itemwise * 
/ reduction 
\ scan 

ti limit * 
outer product inner product 

fold * 
axis * 

*These functions or operators are new. 
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