Ziad Ghandour
Jorge Mezei

General Arrays, Operators and Functions

Abstract: This paper discusses *‘general arrays,” i.e., arrays in which the items are either scalars or other arrays. Functions are defined
to construct, select from, restructure, and in general manipulate such arrays. Operators are presented as functions whose arguments or
values are other functions that can be other than scalar functions. The exposition is shortened and simplified by presenting the material

throughout in terms of APL.

Contents

Introduction
Arrays as primitive objects, functions and operators
General arrays
Building of arrays
Selection functions
Generation of indices
Operators
Uniform arrays
Ravel and unravel
Logical functions
Less and combine
Notation for constants
Choice of axes, coordinates and empty arrays
The axis operator
Generalized coordinates
Empty arrays
Conclusions
References
Appendix

Introduction

In many applications it is convenient to represent the
data as “‘general arrays,” that is, arrays in which the
items are themselves structured. Consider, for example,
the manipulation of files within a data base. Let 4 be a
file in which records consist of project number and project
name. Let B be a file where records consist of part num-
ber and project number. Typically, one may request,
when given a part number P, the numbers and names of
the projects that use part P.

One may interpret file 4 as being a vector whose
items (the records) are vectors of two items. In such a
record, the first item is a number and the second item is
itself a vector of characters. File B is a vector whose
items are vectors of two numbers. If the universe of
discourse includes arrays as general as these, the an-
swer to a typical inquiry about files may then take the
form of a relatively simple expression.

JuLy 1973

This paper is concerned with the definition of such
general arrays and means to evaluate them. The exposi-
tion is shortened and simplified by presenting the ma-
terial throughout in terms of ApL. New functions for the
construction of, selection from, and other manipulation of
general arrays are provided. In addition to removing re-
strictions and introducing new operators and functions, a
detailed treatment of generalized coordinates and empty
arrays is given.

With the introduction of general arrays the reasons
for restrictions on the domains of some APL primitives
disappear. For example, in APL each element of A1 B
must be both scalar and an index to 4. Hence, 4 is re-
stricted to be a vector. If the elements of A1B can be
nonscalar, 4 can be permitted to be any ApL array. Fur-
ther, if 4 and B are taken to be general arrays, 418 can
be used in applications such as dictionary lookup.

As another illustration, the APL expression A[7;J]
contains one semicolon, hence 4 must be of (fixed) rank
two and 7 and J must be computed independently. If a
function ¢ is defined for indexing and a vector ¥ can be
formed of two items I and <, these restrictions can be
removed by replacing the expression A[T;J] by A}V.
The method of indexing in APL, which has long been
recognized as being anomalous, is then reduced to just
another primitive function. Further, APL indexing is re-
stricted in that only rectangular cross sections of arrays
may be selected. By defining a function o and by being
able to form an array of vectors (indices) B, one may
select an arbitrary collection of items from an array 4 by
using the expression AoB. The ease of selection is fur-
ther enhanced by allowing parenthesized expressions to
appear on the left of the assignment <, for example
(A4B)<ArC.

335

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

336

More important, with the introduction of general ar-
rays, APL operators (reduction, etc.) no longer need be
restricted to scalar functions. For example, to obtain a
representation of all points in the first quadrant of the
plane with integer coordinates not exceeding # and N,
respectively, one may write (1%4)., 1N, where the
outer product operator, denoted by '.', is applied to
the dyadic function catenate. To obtain vectors of the
form 1 2 2 3 3 3 one may write (1N),.p1V, where
the inner product operator is applied to the dyadic func-
tions catenate and reshape.

Additional operators of general applicability are intro-
duced. With the introduction of the itemwise operator,
the evaluation of functions item by item on their array
arguments, which had been possible only for scalar prim-
itives in APL, is now possible for all functions. With
the introduction of the axis operator, the special APL
convention for function indexing is no longer necessary.
The axis operator systematically provides this facility,
and for a larger collection of functions. The fold opera-
tor permits repeated application of functions without
requiring program loops.

A theory of arrays is discussed by T. More [1]. Gen-
eral arrays and related topics have also been studied by
A. D. Falkoff and K. E. Iverson. Many of the definitions
in the initial sections of this paper are adopted, some-
times with modifications, from the above sources. The
most fundamental concepts adopted may be summarized
as follows.

First, analogously to set theory, where one talks only
about sets, in array theory one talks only about arrays.
The individual in Quine’s set theory corresponds to the
scalar in array theory; the individual is a unit class that
contains itself while the scalar is an array that contains
itself. Any set that is not an individual has, as members,
other sets; similarly, any array that is not a scalar has,
as items, other arrays, with the additional feature of an
order imposed on those items. For a comprehensive
treatment of the relationship between set theory and
array theory, see the paper by T. More [2].

Second, implicit use has now been made of functions
with functional arguments in the APL operators reduc-
tion, scan, inner product and outer product [3]. The
concept of an operator makes the above usage explicit.
An “operator” may be defined as a function that has an
argument(s) or result that is itself a function. The func-
tions may be either primitive or defined, or may them-
selves be the values of operators.

This paper is organized into two main sections. The
first introduces general arrays as primitive objects and
the operators and functions defined on them. The appen-
dix lists these operators and functions.

The second section recapitulates the function defini-
tions in the first section and introduces the additional

Z. GHANDOUR AND J. MEZE1

considerations of choice of axes, general coordinates
and empty arrays.

For the purpose of facilitating the exposition in this
paper, certain concepts are introduced, such as “simple
array,” “uniform array,” “item,” ‘“‘component,” “index,”
“path,” etc. However, these concepts are not to be tak-
en as proposals for data objects in a programming lan-
guage; the only data object is the array.

An intuitive graphic notation is employed in the exam-
ples. The notation is that of APL\360 output except that
each nonscalar array is enclosed in a box and along its
sides the axes of the array are represented by arrows.
Some familiarity with APL is assumed [3].

[T INT3

Arrays as primitive objects, functions and operators

* General arrays

An array may be described as an ordered collection of
items. In APL, arrays are restricted to have scalar items
only. The arrays considered in this paper may have any
other array as an item.

Example:
A
v 1 2 6 7
3 |us

Here, array A is a vector of two items. The first item of
A is a matrix of four items. The items of the matrix are
the scalars 1, 2, 3, and the vector 4 5. The second
item of 4 is the vector 6 7.7

The ordering of items of an array is visualized in terms
of a linearly ordered set of axes. A vector is an array that
has one axis only. Each axis of an array has a nonnegative
integral size, e.g., the vector 1 2 3 has one axis, the size
of which is 3. An empty array has size O along at least
one axis and so has no items.* The null € is the empty
vector denoted by 10 in APL. The size of an array is a
vector of the sizes of its axes, in their given order.

A singular array has exactly one item. A single is a
singular array that has no axes.

Example:

In this paper a heavy dot at the end of a sentence should be read as a period.
*Empty arrays are discussed in a later scction,

IBM J. RES. DEVELOP.

In this example 4 is a singular array, but not a single; it
has two axes and one item, namely the vector 1 2. B is
a single.

A scalar is a sihgle that has ijtself as its item. Scalars
are the only arrays that have themselves as items. A
nonempty array is simple if and only if every item in the
array is a scalar. Thus, APL\360 arrays and scalars are
simple arrays restricted in that their items are either all
numerals or all nonnumeric characters.

& Building of arrays

Essential to the construction of general arrays is the

monadic function enclose, denoted by <. For any array

A, the array <4 is a single that has array 4 as an item.
Example:

<123

123

Observe that enclose, applied to a scalar, is the scalar
itself.

Closely associated with enclose is the monadic func-
tion disclose, denoted by >. If 4 is a single, then >4 is
the item of A4, otherwise >4 is A. This implies that ><4
is 4 and that disclose applied to a scalar is the scalar it-
self.

Example:

A <4 ><4 >A

3 > B 2
12 — 123 123

The function catenate, denoted by ,, has arguments
which are scalar/vectors whose items are general ar-
rays. Consider Z<A ,B. Z is a vector whose items are the
items of 4 followed by the items of B.

Example:

A B 4,8

5

- B,

Y g u
6 6

12| 3]

’ 5
7

5
7

As a convenience for writing expressions involving
enclose and catenate, the functions link and pair are in-
troduced. Link is a dyadic function, denoted by 4, and
defined on single/vector arguments such that 44B is the
same as (<A4),B. Pair is a dyadic function, denoted by
5, and defined on single/vector arguments such that
AsB is the same as (<4),<B.

JuLy 1973

E;Eample:

124-3 4556

—— L
- 2 . —
— . - -

12]||3ulse 121l3u}|586

The function shape, denoted by o, applied to a gen-
eral array has as its value the size of the array.

The dyadic function reshape, denoted by p, has for its
right argument a general array. Consider Z<A4pB. the
size of Z is ,A4 and the item of Z are items of B, obtained
in the manner of APL.

Example:
B 2 3pB
1{23|fus|s {1 23|{us
67 67
g 1 |23

~ Selection functions ,
Slice, denoted by ¢, is a dyadic function for naming sec-
tions of general arrays. Thus, for simple arrays, M, T and
J, M$T3J is equivalent to M[T;J].

Consider Z<A$T, where 4 is a general array and T is
a single/vector having as many items as the number of
axes of 4, i.e., (ppA) is pI. Each item of T must be a
simple array. The Nth item of I specifies coordinates
along the Nth axis of 4. The size of Z is identical to the
catenation of the sizes of the items of I .

Example:
A I
1 2 34 [12 321
L 21
5 6 7
89| 10 11
A%1 3 Abl 251 2 AdT
g y12 | 2 1
34 [
586 ¥ 6 5

The result of the slice function is a name that may
occur on the left of assignment, e.g., (M$T5J)«M$IsJ,
and similarly for other selection functions.

337

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

338

The index to an item of an array 4 is a scalar sim-
ple/vector. The items of the index are in one-to-one corre-
spondence with the axes of 4 and each item specifies the
coordinate along the corresponding axis. A coordinate
along an axis is a positive integer less or equal to the
size of the axis.*

Example:

The vector 1 2 is an index to the item 7 of 4.

567

The scalar 2 and the vector ,2 are both indices to the
item 6 of B.

c

-

12

The vector € is an index to the item 1 2 of C (Note Cis
a single).

Choose, denoted by o, is a dyadic function for nam-
ing items of arrays. Consider Z«A4oI, where I is an ar-
ray of indices of 4. Z is obtained by replacing each item
K in I by the item of 4 to which X is an index.

Example:

4 I AoT
I 5 6 m [:1 IR E Y
7 8 9 - | 10 12
10 11 12 31113 3
C Co036

12 12|]12

and 5o<@is 5. Note that pZ is pI.

Given a nonempty nonscalar array 4, its components
at level 1 are the items of A. A component C of 4 is at
level N+1 of A if and only if C is an item of a nonscalar
component of 4 at level V. 4 has IV levels if all the com-
ponents at level V of 4 are either scalar or empty arrays.
A level is a scalar level if and only if all components at
that level are scalars.

*General coordinates, which may be given from either end of an axis and using
different origins are discussed in a later section.

Z. GHANDOUR AND J. MEZEI

Example:

B

12 3

Here, B has 2 levels. At level 1, B has two components:
the vector 1 2 and the scalar 3. At level 2, B has two
components, namely the scalars 1 and 2.

A scalar has no components and no levels. A simple
nonempty array A has one level. The components at lev-
el 1 of 4 are the items of 4. For example, the vector
1 2 3 has one level. At level 1, it has the scalar compo-
nets 1, 2 and 3.

A path P to a component C in array 4 is a single/
nonempty vector. If P has one item, that item is an in-
dex to Cin 4. If P has N+1 items and the first &V items
are a path to a nonscalar component B in A, then the
N+1th item of P is an index to C in B.

Example:

A

1 [2 3| y
5 6

1 2| is a path to the component 4 |in 4

17 1]is a path to the component in 4.

1 2 | is a path to the component 3 in A

Reach, denoted by o, is a dyadic function for naming
components of arrays. Consider Z<Ao7, where I is an
array of paths to components of 4. Z is obtained by re-
placing each item X in I by that component of 4 to
which X is a path.

IBM J. RES. DEVELOP.

Example:
A I AT
—— 2 3 3L
1
L B 53
12 2
B J BoJ
> — 35
12 Y
¢ 3 12 22 Y 2
Y >

Observe that pZ is p7 .
&~ Generation of indices
The monadic 1 has for its argument a scalar/vector of
nonnegative integers. 17 is an array of size ,Z. If I has
an item 0, then 1.7 is an empty array which is defined in
a subsequent section on empty arrays. Otherwise, an
item of 1.7 at index is (pI)pdJ.

Example:

12 3 1,2

- - .

110{12|[13
4

s - N

21)122¢123

In particular, (19) is <@.
Note the identities A=4o1p4 and (p17)=pTp<TI.

For the dyadic functions 1 and 1, index of a vector is
restricted to be a scalar.

The dyadic 1 has for it argument general arrays. Con-
sider Z<A1B. Z is obtained by replacing each item X
of B by the index of the first item (in principal order) of
A which is the same as X. If no item of 4 is the same as
K it is replaced by one plus the index to the last item in
A.

Example:

4 412 3

12|34

N
NN
ORI

Also (515)=<@and (516)=<6.

The dyadic function find, denoted by 1, is defined as
follows. Consider Z<A41B. Z is obtained by replacing
each item X of B by the vector of indices of those items
of A which are the same as X. (If no items of 4 is the
same as K, then X is replaced by an empty vector of in-
dices.)

JurLy 1973

Example:
47 71478

O]

~ Operators

One way to account for the expression A+.X5 is to con-
sider . as a function of arguments + and X whose value
is a dyadic function (applied to arguments 4 and B). An
operator 1s a function where at least one of its arguments
or its value is a function. Function means primitive func-
tion or defined function, or the value of an operator.
Syntactically, operators behave as functions but with
higher precedence. This rule accounts for the interpreta-
tion of x as dyadic in the expression above. The monad-
ic operators reduction and scan are written to the left of
their (functional) arguments, and the notation for outer
product is simplified. Thus one writes /+B instead of the
APL expression +/B and similarly, \ +B instead of +\ B and
A.+B instead of 4o ,+B.

An important motive for the introduction of general
arrays is that it permits the domain of operators to be
extended to all (and not only scalar dyadic primitive)
functions. Given arrays 4, B and functions F, G, H
the expression 4 F.G.H B is proper and interpreted as
A F.(G.H) B. Permitting A(F¥.G).HB requires the syn-
tactic change that allows expressions that stand for func-
tions to be enclosed in parentheses. (Incidentally, an
identifier may be permitted to denote several defined
functions with differing numbers of arguments, except
for the case of a nil-adic function with value.)

The operators discussed in this paper are restricted to
be primitive and to have functions as right arguments
and as values. Furthermore, operators are not allowed to
be arguments or values of other operators.

The monadic operator itemwise, denoted by “ makes
explicit a general form of the APL convention according
to which scalar primitives are applied to arrays. First,
consider 7« AB, where A is a monadic function and B is
an array. Z is obtained by replacing each item X of B by
AK.

Example:

B 1123

Note that for scalar (in general, single) S, ~AS is <AS.
Example:

. »

o1l 12

lE

339

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

340

Next consider Z<A 'AB, where A is a dyadic function and

arrays 4 and B have the same size. Z is an array of like

size. Let X be the item of 4 at index I, and L be the item

of B at index 7. Then KAL is the item of Z at index I.
Example:

127,34

-

>

13 24

If either 4 or B is singular, the APL\360 convention is

adopted, i.e., the singular array is reshaped by the size of

the other array.
Example:

4 57

o

L4

Y

P

6 7 8 9 567 589

where (4"17)=4"17 7and (4" 7 7)=2 3.

If both 4 and B are singular, the array of smaller rank
is reshaped by the size of the other.

Example:
2" .3

—n

s

33

The (generalized) convention concerning scalar fanc-
tions can now be stated as follows:

Monadic scalar functions A are extended to nonscalar
arguments B by defining AB as AB.
Example:

A -4

1211345 172 37478

Dyadic scalar functions A are extended to nonscalar
arguments A and B by defining AAB as A"AB, hence in
particular either A and B have the same size or at least
one of them is singular.

Example:

A B A+B

. Pou

34 56 bLe 68

(SN ;
)

The monadic operator reduction, denoted by /, hasa
dyadic function A as argument and a monadic function
/A as its value. Intuitively, /AB is BiABA...ABgp.

Z. GHANDOUR AND J. MEZE}

More precisely, the argument to /A is a single/vector.
The operator is defined by requiring that

(/A<B)=B
(/A,<B)=B
and, for vector B of size greater than 1, that

(/AB)=(>Bo1)A/ALYB.

Example:

A 1v4 /A

Jr1'23 7 8 7 8 ‘tgzgio
456 9 10 9 10

If A has an identity T then /AQ is 7.

The monadic operator scan, denoted by \, has a
dyadic function A as argument and a monadic function
\A as its value. The argument to \A is a single/vector.
Consider Z¢\AB. Z has the size of B and the item of Z at
index T is /ABo17. Taking into account that € is an
index to a single and 1€ is <@ (see the section on empty
arrays), then (\A<4)=<4 and (\A,<4)=,<4.

Example:

\,123

o

> P

1 1211123

Note that \A9 is 9.

The monadic operator outer product, denoted by .,
has a dyadic function A as argument and a dyadic func-
tion . A as its value. Consider Z<4.AB. The size of Z is
the size of 4 catenated with the size of B. Let X be the
item of A at index I and [be the item of B at index /.
Then KAL is the item of Z at index 7, .

Example:
12.,345 2.p3
1314}l 15 33
\ > > -
2311241125

The dyadic operator inner product, denoted by ., has
dyadic functions A and V as arguments and a dyadic
function A.V as its value. The arguments to A.V are sin-
gles/vectors. The operator is defined by requiring that
(4A.VB)=/AA"VB and, in particular, that either 4 or B
have the same size or at least one of them is singular.

Example:

123,.0123is122333
2+.01 2 3is6 6.

IBM J. RES. DEVELOP.

The dyadic operator fold, denoted by M, has a non-
negative integer left argument &V and a monadic function
as its value.

If A is a monadic function, then NMAB denotes what is
commonly denoted by A. . . AB with IV occurrences of A.
In addition,

1MAB is AB

and

OMAB is B.
Example:

3k<o

(I

If A is a dyadic function, then NWAB denotes what is
commonly denoted by BABA. . .AB with N occurrences
of B, that is, MWAB is /ANp<B. In addition, 1MAB is B
and, if A has an identity T, then OMAB is 7. For exam-
ple, 3+, xB is B+.XB+.XB,

The monadic operator limit, denoted by B, is defined
by requiring that (MAB) = XMWAB, where A is a function
and X the smallest nonnegative integer for which
KWAB = (1+X)HAB.

For example, (B>NW<®) = 9.

The dyadic operator axis, denoted by :, has as left
argument a scalar/single vector of axis numbers (an axis
number is a coordinate for the ordered collection of
axes). Intuitively, the axis operator selects those axes
along which its functional argument is to be applied.
Thus one writes

S AB instead of A[LS]B and
A(S:A)B instead of AA[SIB.

The axis operator will be discussed in more detail in a
later section.

o Uniform arrays
Level N of an array A is uniform if all components of 4 at
level ¥ have the same size. An array is uniform to level
I if its initial IV levels are uniform. An array is uniform
if and only if it is uniform at all levels.

Example:
A B

o B
P —

P - &

e . > X o

12| 1203 u

34
56

A is uniform at level 2 (not at level 1), whereas B is
uniform.

JuLy 1973

The phrase “axes of B at level V,” where B is uniform
at level N, refers to the axes of any component of B at
level NV.

The cipher, denoted by [, is a scalar that is neither a
number nor a character.

The monadic function form, denoted by p, is defined
as follows. Consider Z<pB. Z is a vector whose first
item is pB and whose N+1th item I is the size of a com-
ponent of B at level IV if B is uniform at level N. Other-
wise T is ,[. If B has a scalar level, its scalar level is
necessarily uniform and the size of a component at that
level is necessarily 9. To avoid this redundancy, Z will
have no item for the scalar level of B. Thus Z has as
many items as there are levels for B.

Example:
X RX
y1 2 3 41¢13 14 15 16 2 34
5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24
Y BY
12 3 2 1|@

p.B is called the structure of B. The structure of a scalar
is an empty vector.

The notion of principal order on items of simple ar-
rays as defined in APL is generalized to items of general
arrays. Principal order is then extended to components
of arrays in the following manner.

The components at level N+1 of A follow the compo-
nents at level V of A. Given the components I and J at
level IV such that J follows I in principal order, the items
of J follow the items of I with each collection of items
in principal order.

Example:

A

.
.

12 3

The components of 4 in principal order are, from left
to right:

121312

The dyadic function reform, denoted by p, is defined
as follows. Consider Z<ApB, where A is a single/vector
whose items are scalars/simple vectors of nonnegative
integers. Intuitively, if N is the number of items of 4,
and >1, then Z is an array, uniform to level N-1. The

341

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

342

ravel of the first item of 4 becomes the size of Z, the
ravel of the Kth item of A becomes the size of compo-
nents of Z at level K-1 for X>1, that is,

((p,4)4p2)=",A.

The components of Z at level &, in principal order,
are the items of B in principal order, used repeatedly if
necessary.

Example:

2 3pk P2 3p14

B

4pB

S [0
10 11 Hli 678

Note that 2pX is 2pX and (<2 3)pXis 2 3pX.

The following structure-modifying functions are espe-
cially useful in connection with uniform arrays.

The dyadic function raise, denoted by %, is defined as
follows: Consider Z<A+B, where 4 is a single/vector,
each item of which is a scalar/simple vector of axis
numbers of B. An axis number of B may appear only
once in the items of A. Intuitively, if the first item of 4 is
P and T is any proper index of P, then the axis PoI of B
becomes the Tth axis of Z. Similarly, for X>1, if the Kth
item of 4 is P and T is any proper index of P, then the
axis Po T of B becomes the Tth axis at the K-1th level of
Z. The remaining axes of B, in their original order, ap-
pear at level N of Z, where I is the number of items of
A. The Jth level of B becomes the J+Nth level of Z.

Example:

B oB
123

Vs
148 p1tB 2

+B

Also, (<1 24B) = Band ((<€)4B) = <B.

Further,
C

1

(1;6)10

oC
[<[E]

0(158)4C

= EOEE

Z. GHANDOUR AND J. MEZE1

If (D) =2 3 4 5_6 , then
(p(<3 1)4D) = 4 2_3 5_6

If 4 is empty, A4B is B.

The dyadic function lower, denoted by ¥, is defined
as follows. Consider Z<A¥B, where A is a single/vector,
each item of which is a scalar/simple vector of axis
numbers of B. If 4 has IV items, B must be uniform to
level N. Intuitively, B is “coalesced” to its level W, i.e.,
the axes of B and the axes of the first IV levels of B be-
come the axes of Z. For J>I the Jth level of B becomes
the J-I level of Z. The size of Z is determined as' fol-
lows: let P be the Kth item of A and R be the Xth item of
pB. ,P and R must have the same size. For any proper
index I, RoT is the PoTth item of the size Z.

Example:

pB A
R [oy
c

e

a|o)0] (EEE
i]l[Wl|=

(3 159)3Dis3 0 2p0.

If 4 is empty, A¥B is B. Note that (4+44B) = B,
and (4444B) = B.

The monadic function collapse, denoted by ¥, is de-
fined as follows. Consider Z«¥B. Let M be the maximal
level number such that B is uniform to level M and level
M is not a scalar level. Intuitively, B is “coalesced” to its
level M. The sequence of axes of Z is the same as the
sequence of axes of B, followed by the sequence of axes
of B at level 1 through level M. The components at level
M+1 of B become the items of Z.

IBM J. RES. DEVELOP.

Example:
B +B
-
c i«
Hzau]lse7sj|3 101115] ;éi:
[13 14 15 16—][1718 19 20 [21 22 232T] 9 10 11 12
6
’ £ 17 15 18 20
1 2 21 22 23 24

D

N

C [
. Y

s Ravel and unravel

The monadic function ravel, denoted by ,, has as argu-
ment any general array. ,4 is the vector of items of 4 in
principal order.

Example:
A A
10 11
6 7 8 9
10 11

The monadic function unravel, denoted by v, is anal-
ogous to set sum in set theory. U4 is the vector formed
by catenating the ravels of the items of 4 in principal
order, i.e., UA is a vector of the items of the items of 4.

Example:
A vd
> | 1234
12 3 4 12
B uB
- 12]34]|5678
Y1 ¢2 34
5 6
7 8

Precisely, UAis /, ", ,A

s Further selection functions

The dyadic function level, denoted by y, is defined as
follows: Consider Z<AyB, where B is a level number of
A. 7 is the vector of all components of 4 at level B in
principal order.

JuLy 1973

Example:

A Ayl Ay?2

|
Y

12 3 121345 12

AyB is a name that can occur to the left of assignment.
For example, after executing

(Ay2)«9 10 11

A

—
-

9 10 11 3

L 5

The dyadic function mesh, denoted by ¥, is a selec-
tion function defined as follows: Consider Z<AxB,
where B is a single/vector and 4 is a general array. Z is
obtained by replacing the scalar components of 4 by the
items of the items of B. The scalar components of 4 of
value X are replaced by items of >(,B)oX. This is car-
ried out in principal order and the items of >(,B)oX
used repeatedly if necessary. The cases where 4 is empty
or ,B has no Kth item or the Kth item of ,B is empty are
discussed subsequently in the section on empty arrays.

Example: '

B 2122%8 C 4
M 73 iig

~
AxC D DxC

uo

The dyadic function compress has for its right argu-
ment a general single/vector.

Example:
A 101/4

-

N

1]23|}us 1 lus
67 67

and1 0 0/4is ,1.

The result of the compress function is a name that
may occur on the left of assignment.

The dyadic function expand has for its right argument a
general single/vector preserving the identity that 4/4\B

343

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

344

is ,B. Hence, as in APL, the following relation must hold:

(/+4) = /xpB.

Examples:
B 10 1\B

12]]3w 12|[oolf3w
(1\5) = ,5
(1\ 95) _:. 95'

Note that (A\B)=, (1+~A4)%<B.

Notice that the item of the result which corresponds
to the O item of the left argument has the same structure
as an item of B, assuming B is uniform, and has scalar
components 0. The cases where B is not uniform or is
empty are defined later on in the section on empty arrays.

The dyadic function rake has for its right argument a
general array. S

Example:
B 34B
12134 12|03 ullo o
C 2 T24¢
112 3 5 6
45 6 -
. 8 3 10
78 9710

Notice that whenever an item of the left argument ex-
ceeds the size of the corresponding axis of the right ar-
gument, the result contains items that have the same
structure as an item of B, assuming B is uniform, and
have scalar components 0. Observe that (pA4B)=|A.

Again, as in compress, the result of the take function
is a name that may occur on the left of assignment.

The ‘dyadic function drop has for its argument a general
array.

Example:

B T2VB

i — P

12]13j45}6 12 3

5+vB is an empty array.
Observe that pAYB is O (pB)- | 4.

Z. GHANDOUR AND J. MEZEI

s Logical functions
Arrays A and B are identical if and only if

1. either they are the same scalar,

2. or they are empty arrays of identical structure,

3. or they have identical size and have identical items
at the same indices.

The dyadic function identical to, denoted by =, has
value 1 if its arguments are identical, O otherwise. For
example, 3 4=3 4 is equal to 1, (1 2p3 4)=3 4 is
equal to 0, and 1 2=3 4 is equal to O.

The dyadic function membership, denoted €, has for
its arguments general arrays. AeB is a simple logical array
such that pAeBis p4.

Example:
A B
123y 3
12 5
(4eB)=1 0.

The dyadic function item of, denoted by €, has value
1 if its left argument is an item of the right argument,
and 0 otherwise. For example, (1 2¢14)=0 and
(1 2€3, <1 2)=1.
Note that (AeB)=A.e<B and (4eB)=(<4)eB.

s Less and combine

The dyadic function less, denoted by ~, has as its value
a vector whose items are the items of the left argument
that are not items of the right argument, in principal or-
der. Note that (4~B)=(,~4eB)/,A.

Example:
A A~3 5
b3 N e
. 4 12
3 12

The monadic function combine, denoted by ®, is
defined as follows.

Consider Z<®B. The size of Z is the catenation of the
sizes of items of B in principal order. The size of each
item of Z is the size of B. Intuitively, if ravel of B has N
items and Jy is the item at index I, of the Kth item of
ravel of B, forK=1,... ,Vthen (pB)pd,,. .. ,J,is the
item of Z atindex 7,,...,7,.

IBM J. RES. DEVELOP.

Example:
B ®8
12]]3u4s 13|[1u4]]1s
1 o .y
23|l2u4]]25
c ®C
123 I EE
I , 56
- 6 5 6
(®<1 2)=1 2,
(®1 2)=<1 2.

Precisely, (®B)=(<pB).p/., <,B.

s Notation for constants

The input-output notation for constant vectors whose
components are either scalar, null or vectors of size
greater than one, is defined as follows: Items of a vector
of IV levels, =1, are separated by /-1 underscores.

123
12 3
Also, (1_'4B'_ 2 3 4 0)=(15'4B")4253 U430

Since the underscore does not appear at the right end
of such a constant, a typed line ending in underscore may
be interpreted as continuation of the expression to the
next line. For example,

12_
345

78
is identicalto 1 2_3 4 5__6__7 8.

JuLy 1973

Choice of axes, coordinates and empty arrays

s The axis operator

Some functions are defined for vector arguments and
extended to arrays by selection of an axis along which
they are applied. In APL the function symbol may be fol-
lowed be a bracketed expression whose value is an axis
number. The axis operator, denoted by :, performs the
same task as the above function indexing mechanism.
The left argument of : is a single/vector of distinct axis
numbers. The right argument of : is a function. Intui-
tively, the right argument is applied along the axes speci-
fied by the left argument. In the remainder of this sec-
tion, the : operator is defined for each function that can
be the right argument of : (with the aid of raise 2 and
lower ¥).

Catenate
Let S be a singular array whose item is an axis number of
either array 4 or array B, then:

1. If (ppA)=ppB then (4(S:,)B)=S+(544),54B
2. If (ppA)=1+ppB then (4(S:,)B)=5+(S+4),<B

3. If (1+ppA)=ppB then (A(S:,)B)=S+(<4),54B.

Example:
A B Ail:,B
$123] § 78 9] §1 2 3
4 56 10 11 12 L 5 6
7 8 9
10 11 12
42:,B A1:,789 456(1:,)B
vy123 7 8 9 1 2 3 l 4 5 6
4L 56 10 11 12 456 7 8 9
789 10 11 12

The item of S may be a noninteger. In this case 4 and
B must either have the same size, or else one of them is
singular and the singular argument is reshaped by the
size of the other. The item of S must be equal to an axis
number of the resulting arrays plus or minus a number in
the open interval (0,1). Then (A(S:,)B)=(1S)¥A5B.

345

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

Example:

4 B A0.5:,B
12 3 4] j13wasae| [12 34
5 6 7 8 17 18 19 20 5 6 7 8
9 10 11 12 212223 24 Y 91011 12
Al.2:,B A2.1:.5 13 14 15 16
1 2 3 4| ¢ 113 17 18 19 20
13 14 15 16 2 14 21 22 23 24
Y 3 15
s 6 7 g L 16 A_O;S:,l 1p13
17 18 19 20 | | 1 2 3 4
517 156 7 s
9 10 11 12 6 18 9 10 11 12
21 22 23 2u 7 19 {
8 20 13 13 13 13
13 13 13 13
9 21 13 13 13 13
10 22
11 23
12 24
Slice

(A(8:4)B)=A$V

where V< 1p4 and (VoS)<B, ie., B specifies coordi-
nates along axes S of A. Each axis of 4 not specified by
S is taken in its entirety.

Example:
A A2:4<1 3
l123] Y13
4586 46
Choose

(4(8:°)B)=((<5)1A)°B,

i.e., each item of B specifies coordinates along axes S of
A that have been raised.

Example:
A A 2:01 3
{123 1
456 14 36
Reduction

Let S be singular. Then

(8:/AB)= /A(<(1ppB)~S)4B.
Example:

B 1:/pB

I o
7

\]V
~
~I
)

Y

2
5 55 6 66

3
6

346

Z. GHANDOUR AND J. MEZEI

Scan
Let S be singular. Then (S:\AB)=T+ "\AT4B, where
T=<(1ppB)~S.

Example:
B 1:\-B 2:\-B
l123] 112 3 1712
456 3733 4715
Inner product

The case of single/vector arguments has been previously
discussed. Otherwise, let T be an axis number of 4 and J
be an axis number of B. Then

(A(T,J):A.VB)
=((<(pp4d)~I)2A) . A.V(<(1ppB)~J)1B.

If A or B or both are single than T or J or both, re-

spectively, must be 9. Anagolous to the APL\360 con-
vention, if T is (0#ppAd)+ppd andJ is (0#ppB)+1 then
both I and ¢/ can be simultaneously elided.

Example:
A B A1 2:+.%B
Y123 vY7 8 §39 49
456 9 10 54 68
69 87

((1 1p2)+.x3 4 5) = ,24
(5+.%x2 3p16) 25 35 u5
((1 1p5)+.%x<2 2p14) = ,<2 2p5 10 15 20.

Ravel
(8:,B)=,(<5)4B.

Example:

A 2:,A B
12 3 —r= 12 3 4
456 14 25 36 5 6 7 8
y 91011 12
13 14 15 16
17 18 19 20
21 22 23 24

(13: ,B)=1 59326103 711 _4 8 12
13 17 21 14 18 22_15 19 23_16 20 24.

IBM J. RES. DEVELOP.

Mesh
Consider Z<A(S:%B), where:

1. Ais simple,
2. (pp4)=zp,5,
3. The items of B have the same rank,
4. S selects axes of items of B.
Consider each axis of items of B not selected by S. All
items of B must have the same size along that axis.

Then 7= (<5)¥A%(<<S).1B.
The “meshing” is done along the axes S of the items
of B.

Example:
B 21212(2:%)B
[relfse 7) 155551
3 4i189 10
C 21212(1:8)C
[12][7 8 [
3419 10 i
5 6 9 10
3 4
7 8
Compress

Let S be singular. Then (A(S:/)B)=5+4/521B.

Example:
B 10 1(1:/)B
| 12 ¢ 2 2

34 56

56
Expand

Let S be singular. Then (A(S:\)B)=5+4A\S1B.

Example:
B 10 1(1:\)B
Y 123 y123
456 000
4L 56
Take

(A(S:4B)=(<8)¥A+(<S)4B.

JuLy 1973

Example:

B "2 3(1 3:4)B
Y 1 2 3 4 Y 910 11
Y 5 6 7 8| §¢13 1415
9 10 11 12 17 18 19
13 14 15 16 21 22 23
17 18 19 20
21 22 23 24
c 2(2:4)C
Y 172 3 7 1'2
456 45
Drop

(A(S:¥B)=(<8)¥A¥(<S)4B.

Example:
B 1 71(1 3:4)B
1 Qf 3 4 9 10 11
5 6 7 8 ,13 14 15
y A
Y 1
9 10 11 12 17 18 19
13 14 15 16 21 22 23
17 18 19 20
21 22 23 24
c 1(2:4)C
123 23
456 56

e Generalized coordinates

Coordinates along an axis may be given from either end.
For an axis of size S, the coordinates I and I7-S are
equivalent, independently of index origin. For example,
in index origin O,

(6789 1002)=6 7 8 9 100 3,
and in index origin 1,
(6 789 1003)=6 78 9 100 2,

all four expressions denoting 8.
Indices and hence paths may contain general coordi-
nates. Accordingly, the domains of functions and opera-
tors are described below, all examples being given in
index origin 1. 347

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

348

Slice, choose and reach
These three functions are extended to right arguments
with general indices.

Example:

A 4412710

‘7123 b2 3
456 56

56

(Be<™ 2.2 0) = &4

Monadic 1
For negative integers B:

(1B)=B+¢1 |B,

i.e., 1B is a vector of |B items. The items are succes-
sively smaller integers starting with the integer one less
than the index origin. For example, (1~ 3)=0 1 ~ 2.

A further extension is for B a scalar/vector of integers,
(1B)=e"1B.

Example:
12 73
10fl171}{1 2
Y — >—
201271}l 2 2

It is in general no longer the case that the item of 1B
atindex J is J .
However, (p1B)=[Band (1B)=((1B)°1B)o1B.

Reshape
The reshape function is extended to a left argument that
is a scalar/vector of integers, and reshape is then de-
fined by the identity (4pB)=(([4)pB)o14.

Example:

2 "3p16 T2 3p16
y 321 r 456
654 123

It should be noted that, in general, (pApB)=1,4.

Reform
The reform function is extended to a left argument that
is a single/vector whose items are scalars/vectors of

Z. GHANDOUR AND J. MEZEI

integers. The reform function is then defined by the
identity

(4pB)=((T=T)r<rpul)+(Ud)pB,
where T= 1V4.

Example:

"3_2 20112 3_72 20112
s10|ls6l}12 walys7|y12 11
1112} 78ll3u 21|{es||10 o

Note that, if 4 has IV items, ApB is uniform to level
N and the following relation holds:

(N4pApB)=1",4.

Raise and lower
The raise and lower functions are extended to left argu-
ments with general axis numbers.

Example:

T1t3

B
O

A 03A

22
I[CAGaEd] fiie

Note that (0+A4)=2+4.
Note also that level numbers, like axis numbers, are a
special case of coordinates.

Level
This function is extended to right arguments with gen-
eral level numbers.

Example:

A

12345

1 e
(Ay0)=12 3 45

Mesh
The mesh function is extended to left arguments whose
scalar components are general indices.

Example:

A B A%B

> oo
o P P na

01 1 23 4]]56 52 3

And finally the axis operator is extended to left argu-
ments with general axis numbers.

IBM J. RES. DEVELOP.

Example:

B “1:/,B

J1'23 b5 123|lsss
1

~ Empty arrays
In APL, empty arrays may have different sizes and two
empty arrays are identical if and only if they have the
same size. In general, empty arrays may have different
structures and two empty arrays are identical if and only
if they have the same structure. An empty array is com-
pletely specified by its structure. The structure of an
empty array is a vector whose items are scalars/vectors
of nonnegative integers. The first item is the size of the
empty array and the last item may not be €. All empty
arrays are defined to be uniform, i.e., their structure has
no scalar component cipher. An empty array is simple if
and only if its structure is singular. The simple empty
arrays are the APL empty arrays. An empty array has
no items, no components, and no levels. The remainder
of this section deals with cases where the domain or
range of functions are empty arrays.

Two cases arise in defining function reshape. Consider
Z«ApB.

Case 1. 4 has a zero item.

Z is an empty array. In general, the structure of Z is
obtained by replacing the first item of the structure (pB)
of B by ,4 and any scalar component [in pB by 1. If
B is scalar, Z is as defined in APL.

Example:

12134 5

(eB)=",2 @2
(p0pB)=",01 2

Case 2: 4 has no zero items and B is empty.

Z is nonempty and its scalar components are 0. In
general, the structure of Z is obtained by replacing in the
structure of B the first item by ,4. If 4A=0 and B is sim-
ple, then Z is 0. For example,

JuLy 1973

If (pB)=",0 3
then (2pB)=0 0 0_0 0 0
and (p2pB)=",2 3.
If (pB)=",3 0
then (p2pB)=",2 0.
If (pB)=",0 2
then (6pB)=<0 0
and (pOpB)=",0_2.

It is now possible, in order to simplify the exposition,
to introduce the function
VZ«MODEL B [1]1Z«0p0pBV

For uniform and nonempty array B, the item of
MODEL B has the structure “typical” of an item of B
(and the scalar components of MODEL B are 0).

Note that MODEL B is defined for any array B, is always
uniform, and if it has scalar components they are 0.

Example: (MODEL 1 2 3)=0.

Actually, for any simple array 4, (MODEL A)=0.
Also

(MODEL 1 2_3 4=<0 0,
(MODEL 1 2_3 4__5 6_7 8)=<0 0_0 0,
(MODEL 1 2_3)=<,0,
(MODEL 1 2_3__4_5 6)=<(,0)3,0,
(MODEL ¢)=0,
(MODEL 2 0p0)=0.
IfpBis ",0 2, then
(MODEL B)=<0 0.
IfpBis ~,0 2 O, then
(o MODEL B)=8,",2 0.

It is instructive to compute pMODEL B from pB as
follows. Replace all scalar components [of pB by 1 and
replace the first item of pB, by €.

The function reform is extended to allow its right ar-
gument to be an empty array. If B is an empty array, then
(4pB)=4pMODEL B.

Example:
(2 3p2 0p0)=0 0 0_0 0 O.
The following identity holds, in general:
(040B) = (",A),1+p MODEL B.

Note that the case of A having scalar components O is
defined by the above identity.

The following sections now define the remaining rele-
vant functions.

Catenate
If 4 is an empty vector and B is nonempty single/vector,

349

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

350

then (4,B)=,B. If both A and B are empty vectors,
then (4,B)=0p (MODEL A),MODEL B.
For example,

(6,0 2p0)=0 1p0.

Slice

Consider Z«<A$I. If any of the items of T is a simple
empty array, then Z is empty and (pZ)=(u’pI)
o MODEL A. In case 4 is empty, at least one of the
items of I must be a simple empty array and the above
definition holds.

Example:

(p1 2_3 4$<9)=",0 2,

(p(2 2p<1 2 3)91 2_0)=",2 0_3,

(p(0 2p0)$<0)=",0 2.

If 7 is 9, then 4 must be a single and Z is 4.

Choose

Consider Z«<Ao7I. If 4 is nonempty array, then I is an

array of indices of A. If 4 is empty, then T must be emp-
ty. In any case, the following must hold:

(MODEL I) = MODEL 104,
or
(MODEL I) = ", MODEL 1pA.

If T is empty, then
Z=(pI)p MODEL A.
Example:
If7=2 0 3p0,
p(1 2.3 4oT)=2 0 3_2,
(802 0p0)=2 000,
(0 2p0)o2 0p0)=2 0_2p0.
Reach

If T is empty, (4oT)=T. Note that if 4 is empty, then T
must be empty.

Monadic 1

If OeZ, then 17 is empty and completely defined by
(e1T) = pIp<I.

Dyadic 1

Consider Z<A1B. If 4 or B or both are empty, then
Z=(pB)p<l+p4d

except if 4 is a vector. Then

Z=(pB)pl+pA.

Z. GHANDOUR AND J. MEZEI

Example:
(1212 0p0)=2 0p0,
((22p014)12 0p0)=2 0_2p0,
(512 000)=2 0_0g0.

Find

Consider Z<41B. In the definition given in the section
on generation of indices, if B is not empty, an item X of B
that does not occur in 4 is replaced by Op<pA (except in
the case where A is a vector, when X is replaced by 9).
If B is empty, then

Z=((pB)30)p<p4,
except if A is a vector. Then
Z=((pB)30)ppA.

Example:
(1 212 0p0)=2 0_000,
((2 2p14)12 0p0)=2 0_0_200,
(512 0p0)=2 0_0_0pO0.

Itemwise
For A monadic and B empty,

("AB)=(pB)p A MODEL B.
Example:

("-9)z=6,

("0 2 0p0)=0 2 0p0,

("p®)= 0 0g0,

("p0 2 0p0)=0 200,

For A dyadic and 4 empty,

(A"AB)=(pA)p (MODEL A)"AB,

and similar relations define the cases where B or both 4
and B are empty.

Exa_mple:
(6T 1)=86,

((0 3p0)"p€)=0_0 0 0p0.

Reduction

If a function A has an identity T then /A® is T. Note
that catenation and outer product catenation have no
identities. We define for an empty B:

(/ ,B)=0p> MODEL B,
(/.,B)=MODEL>MODEL B.

IBM J. RES. DEVELOP.

Example:
(/,9)z8,
(/.,9)=0.

Scan
For an empty vector 5,

(\AB)=0p MODEL B.
Example:

(\+8)z=9,

(\+0 2p0)=86,

(\40 200)=0 0p0.

Outer product
For A empty,

(A.AB)=({(pA),pB)p (MODEL A4).AB,

and similar relations- define the cases where B or both 4
and B are empty.

Example:
(0.p1 2_3 4)=0 2_0p0.

Mesh

Recall that A%B is obtained by replacing the scalar com-
ponents of A whose value is X by items of >(,B)eK. If
ravel B has no Kth item or the Xth item of ,B is empty,
the above replacement is by >MODEL>MODEL B. If
A is empty, then A%B is empty and

(pA%B)=(pA) ,0>MODEL>MODEL B.

Example:

(1 3=4 5_6 7)=4 0,

(1%<0 2p0)=<0 0.

Compress

If 0=/+4, then (4/B)=00MODEL B.
Example:

(00/12_3 4)=02p0,

(0 0/1_2 3 4)=0 1p0.

Expand

Consider Z<A4A\B. If 4 has a 0 item, then Z is obtained
by replacing all O items of 4 by the item of MODEL B,
and the 1 items of A by the items of B in principal order.
If A is empty then Z is B. Precisely,

(A\B)=,(1+~4)§<B .

Example:
(0\®)=0,
(0\0 2p0)=<0 0,

JuLy 1973

(1 0 1\1_2 3)=15(,0)32 3,
(6\B)=B.

Take

Consider Z¢<A4B. If /v(|4)>pB then the items of Z at

the additional indices are the items of MODEL B.
Example:

(7341 2_45)=0 0_1 2_U 5,

(T341_2 4 5(=(,0)31_2 4 5.
If Z is empty then Z=(14)pB.
Example:

(0 342 0_2p0)=0 3_2p0.

Drop
Consider Z<A¥B. If /v(|4)=pB, then

Z=(0T (pB)- |A)pB.

Conclusions

The main purpose of this paper is to introduce as data
objects arrays whose items are also arrays. In order to
manipulate such arrays, the functions and operators
listed in the appendix are defined. The exposition is car-
ried out throughout in terms of APL.

Programming languages such as PL/1 [4], LISP [5],
extended GENIE [6], the IBM Vienna PL/1 specifica-
tion language [7] and SETL [8] allow for complex data
structures. In this paper, definitions are given that pro-
vide the capability of representing most data structures
of the aforesaid languages, while having the simplicity
of APL.

However, the discussion in this paper does not ex-
haust the possibilities opened up by the introduction of
general arrays and the general notion of operators. For
example, the domains of ¢ and & may be extended to
include general arrays, and general coordinates in the
case of §. Also, for example, the domain of the axis
operator may be extended to include the functions 4,
¥ and L. Further, in this paper only primitive operators
(as distinguished from user-defined operators) are dis-
cussed, and they are restricted to take arrays or func-
tions as left arguments, functions as right arguments,
and to yield functions as results. The removal of these
restrictions may be a topic for future research.

A problem of manipulation of files within a data base
was mentioned in the introduction. Relatively simple
expressions may now be given to answer typical inquir-
ies about files. For example, the vector N of numbers of
projects that use part P is obtained by N<((P=B"01)
/B) 02 and the vector M of names of projects that use
part P is obtained by M<Ae ((A o1)W) ",2.

351

GENERAL ARRAYS, OPERATORS AND FUNCTIONS

Acknowledgments Appendix. Functions and operators
We are greatly indebted to A. D. Falkoff, K. E. Iverson
and T. More, Jr. for many stimulating and instructive Symbol ~ Monadic Dyadic
discussions during the course of this work.

FUNCTIONS < enclose *
> disclose *

References . ravel catenate

1. Trenchard More, Jr., “Notes on the Development of a A link *
Theory of Arrays.” See the bibliography in IBM Philadel- 3 pair *
phia Scientific Center Report No. 320-3016, March 1973. 0 shape reshape

2. T. More Jr. “Axioms and Theorems for a Theory of Ar- ¢ slice *
rays”. IBM J. Res. Develop. 17, 135 (1973). ° choose *

3. A. Falkoff and K. Iverson, APL/360 User's Manual. IBM ° reach *
Corporation G-h20-0683, 1968. 1 jota iota

4. IBM System/360 PL[1 (F) Language Reference Manual. 1 find *
IBM Corporation (GC28-8201-3) 1970. Jo} form * reform *

5. J. McCarthy, Lisp 1.5 Programmer’s Manual. Computation 4 raise *
Center and Research Laboratory of Electronics MIT, Cam- ¥ collapse * lower *
bridge, Mass., August 1962. U unravel *

6. G. A. Sitton, “Operations on Generalized Arrays with the Y level *
Genie Compiler,” CACM 13, 284-286 (May 1970). % mesh *

7. P. Lucas, P. Lauer, and H. Stigleitner “Method and Nota- / compress
tion for the Formal Definition of Programming Languages,” \ expand
IBM Laboratory Vienna, Technical Report TR25.087, June 4 take
1968. Revised July 1970. ¥ drop

8. J. Schwartz, “Set Theory as a Language for Program Speci- = identical to *
fication and Programming,” Notes. € membership

General reference: € item of *
J. Brown, “A Generalization of APL,” Ph. D. Dissertation, ~ less *
System and Information Science, Syracuse University, Sep- &® combine *
tember 1971.

OPERATORS) itemwise *
/ reduction
Received May 25,1972 \ scan
. outer product inner product
ST *

The authors are located at the IBM Data Processing E fimit i(;lg N

Division Scientific Center, 3401 Market Street, Phila-

delphia, Pennsylvania 19104. *These functions or operators are new.

352

Z. GHANDOUR AND J. MEZE! IBM J. RES. DEVELOP.

