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Linearization of Cauchy's Problem for Quadratic 
Semilinear Partial Differential Equations 

Abstract: The  technique of linearization  is  applied  to  quadratic  semilinear  systems of II first-order  partial  differential equations. By 
introducing a related  linear  algebra yc9, we combine  analytic and algebraic  arguments to obtain a class of linearizable systems.  We relate 
the coefficients of such  systems  to  the  center of d and  show that, for  hyperbolic systems, the ideals of SP decouple  the  system  into  dis- 
joint subsystems each having its own single wave number. 

Introduction to quadratic systems 
and their related algebras 
A  partial  differential equation is quadratic if at  most  it 
is of degree  two in the  dependent variables and  their 
derivatives. I t  is semilinear if it is linear in the highest- 
order derivatives. This  paper  treats  systems of n first- 
order  equations  that  are  both semilinear and  quadratic. 
If we confine our  attention  to  equations in two indepen- 
dent variables, x and t ,  the  most general such system for 
the n unknown  functions vi = u'( t ,x )  is 

In (Q) the coefficients are  independent of the ui and 
we use  the  notation of tensor algebra: All free indices 
range from 1 to n ;  the summation convention applies 
to  an  index  repeated  as a subscript  and as a superscript. 
Also,  the  subscript notation for partial derivatives i s  
used. Thus, (Q) is a concise notation for 

= U ~ ~ U ~ U ~  + x b ' p ,  i =  l;. . ,  n. 

We use  the  term quadratic  system for  any  system of the 
form (Q).  The  purpose of this paper is to establish 
initially the  great practical and mathematical importance 
of quadratic  systems and to  explore in detail the tech- 
nique for "solving" them by transformation  to linear 
systems.  Future  papers will explore  other  techniques, 
such  as nonlinear  superposition and  approximation by 
families of particular  solutions. 

Some indication of the practical importance  and di- 
versity of quadratic  systems  is given  by the following 

n .  

a,p= 1 a=1 

31 4 four examples: 

Ut  - EU, = " U U ,  

u, == u; 

Ut - u, = au2 + pu, 

U ,  = u ;  

u - w = -uu, t x  

u, = u, 

u, = W ;  

and 

ut + k'u: = a2u2u3 + b'u', 

u: + k2u: = a2u1u3 + b2uU2, 

u: + k'u: = a3u3u2 + b3u3. 

If we  solve  the first three of these  systems  for  the vari- 
able u,  we obtain, respectively, 

ut + uu, = EU,,, 

ut = u,, + au2 + pu, 

Ut  + uu,  = u,,,. 

Equation (1 ) is a  basic equation in nonlinear optics, 
which is discussed in detail  by Lamb [ 11 and by Bloem- 
bergen [ 2 ] .  Equation (2)  is Burgers'  equation, a funda- 
mental  model of dissipative (E # 0)  and  conservative 
(E = 0)  systems. Equations (4) is  the Korteweg-deVries 
equation, which is a  model of dispersion. An excellent 
exposition on (2 ) and (4) is given by Lax [ 3 1. Equation 
(3) is Fisher's  equation, a basic model in nonlinear dif- 
fusion that  is  discussed by  Montroll [4]. These  examples, 
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along with others  from continuum  mechanics and kinetic 
theory, indicate the practical importance of quad- 
ratic systems. 

As differential equations,  quadratic  systems already 
occupy  a diverse  and interesting branch of analysis. 
Quadratic  systems  also  occupy  an  important  branch of 
algebra,  because  each  system  is closely  related to a  linear 
algebra, the related  algebra of the  system.  For  quadratic 
systems,  the related  algebra  plays the  same role as  does 
the  vector  space  for  linear  systems:  The  theory divides 
naturally  into an analytic part-  the study of the function- 
theoretic  part,  and  an algebraic part-  the study of the 
related algebra. (This idea on  the  theory of quadratic 
systems is due  to  Marcus [ 5 ] . )  

To introduce  the related algebra,  we need  some pre- 
liminary algebraic  material,  given by Definitions 1 and 2 .  

Dejinition I An algebra 9 over a field F is a vector 
space  over F with a binary  composition (multiplication) 
which is bilinear  with respect  to  the  vector  operations. 

Thus, if 9 is an algebra  and u,v E 9, the product uv E 9 
is defined and satisfies 

u ( v  + w) = uv + uw,  (v + w)u = vu + wu, 

ff(uv)  = (0lu)v = u ( a v ) ,  u,v,w E 9, a E F .  

The notation 9, ( *), 9( #), etc.  indicates that the prod- 
uct of u and v is to be written uv, u v, u # v, etc. 

If 9 is an n-dimensional  algebra  with  a  basis e,, then 
eie, is defined and  must be  a  linear  combination of the ei. 
Therefore,  there  exist nB scalars g;, E F such that 

e.e = gJkei. 

The gi, are  the structure  constants of 9 (in the basis ei). 
Conversely,  suppose 9 is  an n-dimensional vector 

space  over F with a basis e,. If gJk E F are any n3 scalars, 
then (5) defines a bilinear multiplication on 9 with struc- 
ture  constants g;,. Equation (5)  defines the  product  ofany 
two basis vectors and bilinearity defines the  product of 
arbitrary  vectors. If x = d e j ,  y = yke, xJ 97, then 

xy = (gj,X'yk )ei .  (6)  

The notation 9 = (g;,) ,indicates  that 9 is the algebra 
with structure  constants g;, (in  some fixed basis).  Gener- 
ally, algebras  are not associative,  nor  are they  commuta- 
tive. See  Schafer [6] for  an  excellent  coverage of al- 
gebras. 

I k  ( 5 )  

Dejinition 2 The related  algebra of (Q)  is the com- 
mutative  algebra d = &(*) = (ai,). 
d is commutative  because  there is no loss in generality 

in assuming that = aLj in ( Q ) ,  and  this, in ( 6 ) ,  leads  to 
x a y = y * x .  

The goal of research in quadratic  systems is to  relate 
the  analytic and  qualitative properties of the differential 
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equations  and  the algebraic properties of the related 
algebra. 

For  the remainder of this paper we treat  the initial 
value  problem  for ( Q ) ,  when the matrix C = (cj) is the 
identity  matrix I = (8;). When the  vectors v = [ u ' ( t , x ) ] ,  
+= + ( x )  = [+ ' (x) ]  are  introduced,  the matrices  A = 

( a i ) ,  B = ( b i ) ,  and the related  algebra .d = JY ( *  ) = ((I:,), 

(Q)  becomes 

v 1 + A v l = v *   v + B v ,  (7 )  

v(0,x) = +(x). ( 8 )  

In the second section, we treat  the problem of solving 
(7 )  and ( 8 )  with the technique of linearization. For 
example, find a  function f = f ( t , u )  and  matrices A,B 
[ f =  vi) ,  u =  ( u i ) ,  a = (b j ) ,  B = (4)] such thatthe 
transformation v =f(t ,u) reduces (7) to  the linear  system 
ut + i u s  = fiu. Analytic and  algebraic criteria  for  the 
existence of a  linearization are then  obtained. In par- 
ticular, if the  system (7 )  is A-ussociafive, then d ,  A , B  
satisfy 

e-"'AeR'(x * y )  = (e-"'Ae"'x), X,Y E .d, (9 1 

and we show  that a  linearization  can be constructed by 
solving the  ordinary differential equation 

h = h * h + B h ,   h ( 0 )  = 5. 
The third  section  relates  matrices A , B  that satisfy ( 9 )  

to Z ( d ) ,  the center of&, Le., the set of elements which 
associate with all elements of S. An algebra is termed 
unifal if it contains a unity.  If d is unital, all the matrices 
e Ae"' satisfying (9)  lie in the multiplication mlgebra of 
Z, i.e., the  set of  all linear operators M,:x + z x, z E 
3, x E d. A curious  outcome of this is that  these ma- 
trices form  a field when ,& is simple (Le., when d has 
no  proper  ideals). 

We consider in the  fourth section systems which are 
A-associative wave  equations.  For such systems  the 
eigenspaces of A are ideas of xt and  these  spaces de- 
couple  the system  into subsystems,  each with a single 
wave velocity. We conclude  the  paper by showing that 
the only optics  equations of the type ( 1 )  that can be 
linearized are  those with k'  = k 2  = k". 

-E l  

Complete  linearizations of the  Cauchy  problem 
Cauchy's problem for  the system of n first-order partial 
differential equations 

u: + atuz = ahpuUup + biu" 

is directed  toward an analytic solution ui  = ui ( t , x )  that 
satisfies the initial condition u ' ( 0 , x )  = $ ' ( x ) .  We assume 
that the tensors . d  = (ai,), A = (a:),  B = (b i )  are con- 
stant and that  the initial function + = ( $ ' ( x )  ) is an analy- 
tic function of x .  31 5 
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In  the notation of the first section these  equations be- 
come 

V, +Av, = v * v + Bv, (10) 

V ( 0 , X )  = JI(x), ( 1 1 )  

with v = ( d ) ,  JI = ( $i), and * the multiplication in the re- 
l a t e d a l g e b r a d = d ( * )  = (a;k) .  

It follows  from the  Cauchy-Kowalewsky theorem 
[7] that this Cauchy problem has a unique  solution 
v = v(t,x;+). We define the general  solution of ( 10) to 
be this quantity v, where + ranges over all functions 
which are  analytic  on ( - ~ , ~ ) .  

This  method of Cauchy-Kowalewsky  establishes  the 
existence of v(t,x;JI) by  showing that a unique formal 
power series for v exists  and converges. As a practical 
method  this approach  has serious drawbacks.  For ex- 
ample, in practice  the  power  series  cannot be constructed 
nor  summed; little or  no qualitative  information about  the 
solution is revealed;  and  the method does not  lead to a 
representation of the general  solution. 

Our goal is to find an  approach  to  the  Cauchy problem, 
(10) and ( 1  l ) ,  that  overcomes  the  drawbacks of the 
method of power series. To  obtain some  idea as  to how to 
start, we consider two  special cases: n = 1 ,  when (10) is 
a scalar  equation;  and A = 0, when (10) is a  system of 
ordinary differential equations. 

Taking  first the  scalar  case, we observe  that ( lo ) ,  
( 1   1 )  can  be solved by the method ofcharacteristics [8]. 
If A ,  B ,  and u are  scalars  and  we retain the notation u * u 
for au', the  characteristic  equations of ( I O ) ,  (1 1 ) are 

t =  1, t ( 0 )  =o ,  
X=A,  x ( 0 )  = u, 

v = u * v + B v ,  4 0 )  = $(u). 

Here x and t are  functions of s and u and the  derivatives 
are with respect  to s. 

The first equation  gives s = t ,  while the second  gives 
x = A s  + U, which together give u = x - A t .  The solu- 
tion of the third  equation is u = h[s,+(u)] ,  in which 
h = h ( t , ( )  is the solution of h = 11 * h + Bh, h(0 , ( )  = E .  

Combining these  results gives 

u(t,x) = h[t ,+(x-At) l ,  (12)  

this being the general  solution of the  Cauchy problem 
( l o ) ,  ( 1  1 )  when n = 1 .  

In this scalar  case,  the  equation for h is really the Ric- 
cati  equation h = ah2 + Bh, h ( 0 )  = 6, which is easily 
integrated to give 

h ( t , [ )  = BeEt(/[-a(eB' - I ) (  + B].  

31 6 This representation for u admits  an entirely  different 
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interpretation. If we  let + = + ( u )  be  an invertible  func- 
tion  with  inverse 4-', then (12) is equivalent to 

u(x, t )  = Iz[t,4(u)l = f ( t , u ) ,  ( 1 3 )  

where u = u (t,x) is the solution of the linear Cauchy 
problem 

ut +Au,  = 0, (14) 

u(0,x) = +-l[$(x)I. ( 1 5 )  

Regarding ( 13 ) as a transformation on the solutions of 
( 14), we  see  that  the pair ( 1 3 ) ,  ( 14) is a linearization of 
( 10) : If LI is a  solution of the linear equation ( 14), 

f ( t ,u)  is a  solution of the nonlinear equation (10).  The 
linearization is also complete, in the  sense  that f ( t , u )  
generates all solutions of (10) as u ranges over all solu- 
tions of (14). To solve ( I O ) ,  ( 1  I ) ,  take u to  be  the solu- 
tion of (14) which satisfies (15) .  

For n = 1, the  method of characteristics, which  led to 
the  representation ( 12),  and the method of linearization 
( 13) ,  ( 14) are  equivalent.  For n # 0, neither the method 
of characteristics  nor  the  representation (12) makes 
sense,  but  the transformation scheme  does.  This suggests 
that we attempt  to  solve (10) by finding a complete 
linearization of the form (13 ) ,  (14). 

In  an  attempt  to linearize  a  partial differential equation, 
the  choice of the linear  equation is critical. To  see if (14) 
is up  to  the  task,  we  consider  the second special case of 
(10) in which A = 0. The  Cauchy problem  then becomes 
the initial value  problem v = v * v + Bv,  v(0)  = J / .  

Here it seems natural to regard  this  equation as a non- 
linear (quadratic) deformation of a linear  equation. The 
solution then  ought to be a deformation of the solution of 
the linear  equation. This suggests the transformation 
scheme v = f (t,u), u = Bu. 

This  representation of v is also natural if we expect  the 
behavior of v to  decompose  into a  linear part, described 
by u, and a nonlinear part, described  by f. Whatever  the 
motivation, it is a  sound one,  for  complete linearizations 
of this  form abound: 

Lemma I Let f = f ( t ,u) be analytic in t,u for all u and 
all t near 0 and  let + = +(u)  = f (0,u). Then  the  trans- 
formation scheme 

v = f ( t ,u ) ,  (16) 

U = Bu, u(0) = r) (17)  

is a linearization of 

V = V * V + B V  (18)  

if and  only if 

f ( t ,u)  = h[t,+(e-%)], ( 1 %  

where h = h(t,,f) is the solution of 
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h = h * h + B h ,  h(O, 5) = t. (20) 

Proof The  steps which lead to  the formula (19)  ap- 
pear in the proof of Theorem 1. A simpler,  direct proof 
follows. 

Assume f is a linearization. The general solution of 
(17) is 

u = e  r ) ,  (21 1 
so v = f (t,eBtr)) is the unique  solution of (18)  that satis- 
fies v ( 0 )  = + ( r ) ) .  But (20)  thenimpliesv = h[t,+(r))] = 

f(t,eBtr)). Thisand  (21) imply (19). 
Conversely, if f is given by (19) and u is  the solution 

of (17),  then v is given by v(t)  = h[t,+(e?eBtq)] = 

h[t,+(r))], which is a solution of (18)  because of (20). 
Therefore f is a linearization, which completes  the proof. 

B t  

Unfortunately,  Lemma  1 is of little  practical use in 
solving ( 18).  Construction of the linearization by formula 
( 19) requires the function h, and h is already the general 
solution ( 18) ! However, the  lemma does provide a repre- 
sentation of linearizations and this can be useful. 

The lemma also shows that  the number of lineariza- 
tions is immense. There is an n-function-parameter family 
of them, since  the n functions $i in (19)  are arbitrary. 
Within this multitude  we would expect particular ones  to 
be relatively simple. This suggests approaching (18) by 
seeking side conditions  on the linearization that select 
the simple ones. An example is Euler's  linearization of 
the Riccati equation; see  Watson [9]. The  author  has 
successfully applied this approach [lo]  to a  large class 
of quadratic systems, obtaining a  generalization of Euler's 
linearization. 

Both special cases of (10) considered so far indicate 
that  the method of linearization  can be a successful ap- 
proach  to (10). The obvious  transformation  scheme to 
try  on  the general Cauchy problem  is v = f ( t ,u ) ,  ut + 
Au, = Bu, where A,B are  constant matrices. The first of 
these coincides with (13) and (16) and the second is the 
simplest  linear  equation that  can  be  made  to specialize to 
both (14) and (17). 

Formalizing our earlier  discussion, we now give a 
definition of the linearization of ( 10). 

Dejinition 3 The transformation  scheme (22) and (23) 
is a linearization of ( 10) near t = 0 if and only iff ( t ,u)  is 
a  solution of (10)  near 0 whenever u is a solution of 
(23 ). The linearization is complete if and  only if every 
solution of ( 10) and (1  1) is given by v = f ( t ,u )  for  some 
u satisfying (23). 

In  sharp  contrast  to Lemma 1, the  very existence of a 
linearization of (10) is in doubt,  and so we  proceed by 
trying to identify those equations that  can  be linearized. 
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Our  success in this search is guaranteed, since the  case 
A = 0 and the  case  for which (10) is n decoupled  scalar 
equations are examples. 

The first step is to  reduce  the  existence question to  one 
that satifies some  analytic  criteria. The following theorem 
does this  and should be regarded as a direct generaliza- 
tion of Lemma 1. 

First we  give  some  convenient  notation. If u = (u ' )  
and g = ( g ' (  u) ) , we denote  the matrix of partial  deriva- 
tives of g by g,: 

Theorem I Let f = f(t,u) be analytic in t,u for all t 
near 0 and all u, and  let + = + (u) = f(0,u). Then  the 
transformation scheme 

v = f(t,u), (22) 

ut + Au, = Bu, (23 1 
is  a  linearization of 

vt + Av, = v x v + BV (24) 

if and only if 

f(7,w) = h[~,+(e-B'w)], (25 1 
where h = h(t,() is the solution of 

h = h * h + B h ,  h(O,&) = 8, (26) 

and for all 7 near 0 and all w, + satisfies 

Ahf[7 ,+ (w) l+ , (w)e -~ '=   h f [~ ,+ (w) ]+ . (w)e -~~A^.  
(27) 

Proof There  are two steps in the proof. The first step 
is to show that f is a linearization if and  only iff satisfies 
the two equations 

Af,(T,W) = fU(T,W)A, (28 1 
ft(T,W) + fu(7,W)BW=  f(T,W).* f(T,W) $. Bf(7,W). (29) 

The second step is to  solve (29) by the method of 
characteristics  to obtain (25).  Then  (27) is  obtained by 
substituting (25) into (28). 

If we substitute  (22) into (24)  and  use  (23)  to elimi- 
nate ut, we see  that f is a linearization of (24) if and 
only if 

[Af,(t,u) - f,(t,u)A^]u, + f,(t,u) + f (t,u)Bu 

= f(t,u)  x f(t,u) + Bf(t,u) (30) 

holds whenever u is a solution of (23). 
We claim that  (30) holds  whenever u is a solution of 

(23 ) if and  only if (28) and (29) hold for all w and all 
small T .  Clearly, (28) and (29) imply (30) and so we 
need only to establish  their  necessity. 31 7 
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Intuitively we expect  that  as u ranges over all solu- 
tions of (23) u and u, will vary independently. Equation 
(30)  can  then hold  only if the coefficient of u, vanishes 
[ (Eq.  28)]  and  the remaining terms  form  an equality 

More precisely, we  have  that u and u, are  independent 
for fixed t ,x:  For each xo, small T ,  and  arbitrary  constant 
vectors w,z, there  exists a function u = u(t,x) satisfying 
(23)  and 

[(Eq. 2911. 

U(T,Xo) = W, Uz(T,Xo) 2. (31) 

Suppose  for  the  moment  that  such a u exists. Then 
(30)  must hold for u = u; and if we make this  substitu- 
tion and  set t = T and x = xo, (30)  becomes 

[Af,(.r,w) -f,(T,W)A]Z 

+ fi(T,W) f fu(7,W)6W 

= f(7,W) * f(T,W) + Bf(T,W). 

This  equation  must hold for all z and w, which implies 
(28)  and  (29). 

To establish  the  existence of u, let $ = [$(x)] be an 
analytic function such  that 

$(xo) = w, +,(x,) = 2, (32) 

-Ut + Au, = Bu, U(0,x) = $(x). (33) 

- 

and  let U be the solution of 

The  Cauchy-Kowalewsky  theorem  guarantees  the exis- 
tence of such a U, and  for x near xn, U exists  for t near 0,  
e.g., for 0 5 t < 27. 

Now  let u( t , x )  = U ( T  - t ,x).  Equation  (33) implies 
that u is a solution of (23)  and  that U(T,X) = $(x). Equa- 
tion (3 1) follows  directly from this equation  and  (32). 

We  have now established that f is a  linearization if and 
only if it satisfies (28)  and  (29).  The  particular form of 
(29) allows us to  solve it by the method of characteris- 
tics. The  characteristic  equations  are 

i =  1 ,  7(0) = 0;  3 7 ' s ;  

w=Bw,   w(o )=u;   +w=eESa;  

f = f * f + B f ,  f ) O )  = + ( a ) ;  

3 f =  h[t,I#J(a)]. 

Solving the first two of these  for s and u and substi- 
tuting them  into  the third  gives (25).  Equation  (27) 
follows  from  substituting (25)  into (28)  and replacing 
w exp(-&) by w. This  procedure is allowed because 
(28)  holds  for all w,t. This  completes  the proof. 

Theorem 1 provides the promised analytic  criterion 
for  the  existence of a linearization: It  exists if and only 
if there  exist A,B and I#J such  that  (27) holds. This  is a 
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one-parameter family of overdetermined systems of par- 
tial differential equations  for +. In  general,  such a system 
has no solution, which justifies the earlier  remark ques- 
tioning the  very  existence of a linearization of the partial 
differential equation.  When A = 0,  however,  (27) can 
be satisfied by taking A = 0 and in this case  Theorem 1 
becomes  Lemma 1 .  

The problem of identifying those  systems ( I O )  that 
can be  linearized has now  been reduced  to finding a set 
of algebraic conditions on A,B& which are the neces- 
sary  and sufficient conditions  for  (27)  to  have a solution. 
A method of constructing + should also be  provided. 

One  approach  to this  problem is  to  expand both sides 
of (27) in a Taylor  series in w. Equating coefficients of 
like powers of w then gives an infinite sequence of neces- 
sary algebraic  conditions. The problem reduces  to select- 
ing a finite number of these conditions that  are sufficient. 
Rather  than  pursue this highly involved approach to com- 
pletion, we derive  the first two  such  necessary  conditions 
and a separate sufficient condition. 

From now on we consider only complete linearizations, 
since only these  solve all Cauchy  problems and provide 
a single representation of the general  solution. In this 
case we can  assume without loss of generality that 
+ ( O )  = 0: If f is complete, + is onto  and  has a root r; 
(27) is invariant under u-translations, so we can replace 

Recall that  the notation 9 = ( g j k )  means  that 9 is the 
algebra  with structure  constants gilk in the usual  basis 
and  that  the  notation 9 = 9(#), R = E ( A )  indicates 
that  the  products in 9 and X are respectively denoted 
by x # y, x A y. 

+(u) by +(u + r) .  

Introduce  the following matrices  and algebras: 

(34)  

(35 

J n  (37) 

We must first establish the rightmost  equalities claimed 
in (36)  and  (37).  From  (26)  we  have 

h(t ,&) = h(t ,5)  :x h(t,&) + Bh(t&),  h(O,S) = 5. 
Taking  the [-derivative of this and setting 5 = 0 gives 

h,(t,O) = Bh,(t,O), h,(O,O) = I ;  

and  the solution of this  linear ordinary differential equa- 
tion is (36). 
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Similarly,  taking the second  &derivative  and  setting 
= 0 gives 

h, , ( f ,O) = 2h,(t,O) * h,(t,O) 

+ Bh,,(t,O), h,,(O,O) = 0; 

and  the solution of this linear  ordinary differential equa- 
tion is 

h,,(f,O) = 2e”‘ e-E‘h,(7,0) * h,(T,o)dT i: 
J-1 = 2e”‘ e-Br(eEr* eB‘)dT. 

This  establishes (37).  
The algebra X is time dependent  and  we  can  express 

the 2? multiplication in terms of the d = d(* ) multi- 
plication  directly: 

X A y = e-Er[(eE‘x) 2:: (e”‘y)]d~. 

From this we have x A y = 0 when f = 0; 

d/dt(x A y)  = e? [(e”‘x) * (e”‘y)I; (39) 

and 

d/d t (x  A y)lt=o = X * y. 

1: (38) 

If we utilize these  notations and evaluate (27) and its 
w-derivative at w = 0, we  obtain  two  necessary condi- 
tions: 

Lemma 2 If + = +(u)  is an analytic  solution of (27) 
near  zero  and + (0) = 0, then 

e AeB‘G = Ge-EtAeBt, 

e - B t ~ e B t [ 2 ( ~ x )  A ( c y )  + x#yl 

-E t  (40 1 

= 2(Ge-Brae”x) A ( C y )  +, (e-BgeB‘x) # y. (41) 

Proof Setting w = 0 and 7 = t in (27) gives 

Ah,(t,O)+,,(O)e-”‘ = h,(t,O)+,(0)e-B‘~; 

and substituting (34) and (36) into  thisgives 
A ~ B ‘ G ~ - B ~  - - eBtGe-E‘AA^. 

This implies (40).  

w = 0 and T = t ,  we  obtain 
If we differentiate (27) with respect to w and  set 

A [ht6(t,0)+,,(O) (+,,(O)e-”t) + h,(t,O)+, (o)e-”^’I 

= [h,,(t,O)+,,(O) (+,(O)e-”‘) + h,(t,O)+,,. (0)e-Etla. 

Substituting (34) through (37) into this and  expressing 
the resulting expression in component notation  gives 

JULY 1973 

a32h3t)h;Jt) g ; g ; q - - t )  + h:(t)g;,L;(-t)l 

= [2hk(t)h~~(t)g;g“,~(-t) + hh(t)g&LL(-t)Iq,  (42) 

where we have introduced eBt = ( h i ( f )  1. 
After multiplying both sides of (42) by xjyk  (and sum- 

ming overj,k)  and  converting back to  vector notation, we 
see  that (42) holds if and only if for all x = ( x i )  and 
y = ( y i )  we  have 

AeB‘[2(Gy) A (Gf?‘x) + y # (e-Etx)] 

= e B t [ 2 ( ~ y )  A ( G P A x )  + y # (e-”%x)l. 

Multiplying both sides by e-”‘ and replacing x by eB‘x 
gives (41), which completes  the proof. 

Neither (40) nor (41) is an algebraic  condition  be- 
cause of the  dependence  on t .  Each,  however, implies the 
infinite sequence of algebraic  conditions obtained by ex- 
panding in powers of t and equating coefficients. 

For  example, if we  equate coefficients of the first two 
terms in (40) and (41 ) and  introduce  the usual  commuta- 
tor notation [ A , B ]  =AB - BA, we  obtain  the  four alge- 
braic necessary conditions 

AG = GA, (43) 

[A,B]G = G [ A , i ] ,  (44) 

A(x  # y)  = (Ax) # y, (45 1 

= 2(GAx) * (Cy)  + [A, i ]x  # y. (46) 

2A[(Gx) * ( C y ) ]  + [A,Bl(x # Y) 

Of the  two  necessary conditions (40) and (41), the 
second is by far  the  more  indirect  and  complex: d,A,B  
have  the  property  that  there  exist 9A,B such  that (41) 
holds.  We have not  found  conditions on d,A,B which 
are  both  necessary  and sufficient for (41) to hold. An 
obviously sufficient condition is 

e-””Ae”[(Gx) A ( c y ) ]  = (e-E‘AeB‘Gx) A ( c y ) .  (47) 

This  equation, (40),  and 
A L  

e-BtAeBt(x # y) = (e-”‘Ae”‘x) # y (48) 

imply (41) ; and (48) is satisfied by the  zero algebra: 
x # y = 0. We can  show  that when G is nonsingular, 
(40) and (47) are  also sufficient conditions  for (27) to 
have a  solution, i.e., that ( 10) has a  linearization. 

We first replace (47) by a simpler condition: 

Lemma 4 Assume  that G is nonsingular. Then i fd ,A,B 
satisfy 

e AeBt[(Gx) A ( C Y ) ]  = (e-E‘Ae”‘Gx) A ( c y ) ,  (49) 

they also satisfy 

- E t  
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e AeBt[(Gx) * ( C y ) ]  = ( e  AeAtCx)   (Cy) .  ( 5 0 )  -A t  -At 

Proof If we differentiate (49) with respect  to t and use 
(39), we obtain 

e - " t [ ~ , ~ ] e B t [ ( ~ x )  A ( c y ) ]  + e - B t ~  [(eB'Cx) * ( e B t ~ y ) ]  

= { e - R t [ ~ , ~ ] e B t ~ x }  A ( c y )  + e-Bt[(AeBtGx) * ( e " ' ~ y ) ] .  
(51) 

Setting t = 0 in  this  gives A [ (Gx) * ( C y ) ]  = (AGx) 
* ( C y ) ,  and since G is nonsingular,  this implies that 

A ( x  * y)  = (Ax) * y. (52) 

Substituting (52)  into ( 5  1 )  gives 

e - B ' [ ~ , ~ ] e B t [ ( ~ x )  A ( c y ) ]  = { e - B t [ ~ , ~ ] e B ' ~ x }  A ( c y ) .  

We express  this  as 

e-Btad(B)AeB'[ (Gx)  A ( c y ) ]  

= [ e ~ " ' u d ( ~ ) ~ e " ~ ~ x ]  A (CY),  ( 5 3 )  

where  we  have  introduced  the linear operator a d ( B )  by 
a d ( B ) A  = [ B P I .  

Equation (53) shows  that if A satisfies (49), so does 
a d ( B ) A .  By induction it follows that 

e-Btad"(B)AeAt[(Gx) A ( C y ) ]  

= [ e - B t a d n ( ~ ) ~ e B t ~ x ~  A ( c y )  (54) 

for all n. 
Differentiating (54) with respect  to t ,  setting t = 0, and 

using (39) implies that 

adn(B)A[(Gx)  * ( C y ) ]  = [udf l (B)AGx]  * ( C y ) .  ( 5 5 )  

The  Campbell-Baker-Hausdorf formula (see  Hausner 
and  Schwartz [ 111 ) states  that 
e ~ t A e - ~ t  = e a d ( ~ t )  A. (56) 

If we multiply both sides of ( 5 5 )  by t"/n! and  then  sum 
the resulting equations  from n = 1 to n = w, we  obtain 

ead("')A[(cx) * ( c y ) ]  = [~"'"' 'Ac~I ( c y ) .  

This  and (56) imply (50) ,  which completes  the proof. 

We can now provide sufficient conditions for  the exis- 
tence of a  linearization: 

then 

I v = f ( t ,u) = h ( t,e?'u), 

320 ut + Au, = Bu (59 )  
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is a complete linearization of vt + Av, = v * v + Bv. 
Proof The  transformation ( 5 8 )  is just (25)  with +(u) 

= u. According  to  Theorem 1 ,  this  transformation is a 
linearization if and  only if Q satisfies (27);  and  for this 
particular +A, and (27) becomes 

Ah,(t,w)e-Bt = h,(t,w)e-B>. 

We  first show  that ( 5 7 )  implies that 

Ae-"h5(t,w) = .?h5(t,w)A, 

and  that this in turn implies (60).  
To establish ( 6  1 ), we  introduce 

. .  

L ( t )  =Ae?h,(t,w), 

R ( t )  = e  h,(t,w)A. 

Then 

-Bt 

i = Ae-"'(hp - Bh,) = Ae-Bt(2h * hp) 

= e-"[[2h * (eBtAe-"'ht)], 

3 i = 2CB'[h * (e"")], L ( 0 )  = A .  (62) 

Similarly, 
= e-"' . 

- Bh& 1, 
= [ 2h * (h& ) ] = 2e? [h * ( eateCBth& ) 3 ,  

3 R = 2?[h * (eB")] ,  R ( 0 )  = A .  (63 1 
Here  we  have used (57)  and (26). Equations (62) and 

(63) show  that L and R satisfy the  same linear ordinary 
differential equation  and  the  same initial condition. There- 
fore R = L because of the  uniqueness  theorem  for  the 
initial value  problem for ordinary differential equations. 
This  shows  that ( 5 7 )  implies (61). 

To show  that (61) implies (60),  we first observe  that 
since h is the solution of h = h * h + Bh,  h(O,&) = &, we 
have h ( t  + T,&) = h[t ,h(~ ,&)] .  

Taking r = -t gives 

h[t,h(-t,&) 1 = 6, 
3 h,[t,h(-t,5)1hg(-f,&) = 1, 

3 hi1(-t,5) =h5[t,h(-f,[)1. (64) 

Now,  since (61) holds for all t , ~ ,  it holds when  we  re- 
place w by h(-t,w), giving 

Ae-"h,[t,h(-t,w)] = e-Bth5[t,h(--t,w)]A. 

Substituting (64) into this equation gives 

Ae-Bthf'(-t,w) = e-Bth;l(-t,w)A, 

3 hg(-t,w)eBtA  =Ahp(-t,w)eBt. 

The  last  equation is (60),  which was a sufficient con- 
dition for (%), (59) to  be a linearization. The lineariza- 
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tion is complete  because + ( u )  is invertible. This  proves 
the  theorem. 

The condition (57 j would be an associative law if the 
operation * and matrix multiplication were  the  same.  For 
this reason,  we say that ( 10) is A-associative if (57) 
holds. If A and  B commute, (57 j simplifies to a t-inde- 
pendent relation. In this case we can  show  that (57) is 
necessary  as well. 

Theorem 3 Assume  that A  and  B commute:  [A,B] 
= A B  - BA = 0. Then a  linearization  with + ( O )  = 0 and 
4" (0) nonsingular exists if and only if 

A ( x *  y )  = (Ax) * y.  (65) 

Proof When [A,B] = 0, (65)  is the  same  as (57 j and 
is therefore a sufficient condition for  the  existence of a 
linearization. 

If [A,B] = 0, and G = + , ( O )  is nonsingular, then (44) 
implies [a&] = 0; and (46) then  becomes A[(Gx) 
* ( C y ) ]  = ( A C x )  -x- ( C y ) .  This  equation is equivalent 
to (65)  when G is nonsingular. 

With Theorem 2 we have identified a class of systems 
that can be completely  linearized -the A-associative 
systems.  These  systems  have  an  attractive  property: 
Solving the  Cauchy problem for them reduces  to solving 
a system of nonlinear ordinary differential equations (26) 
and to solving  a system of linear partial differential equa- 
tions. This  procedure is a great reduction in complexity, 
and we  expect  to be able  to  carry  the qualitative theory of 
such  equations quite far. 

A-associative  systems and  the  center of d. 
We recall that  the  system 

v , + A v , = v * v + B v  (10) 

is A-associative if and only if 

e-BtAeH'(~ * y j  = (e-"Ar"'x) * y. (66) 

Such systems  are completely  linearized by 

v = h (t,e-"'u), (67 1 

ut + Au, = Bu, (68) 

where h = h(r , [ )  is the solution of 

h = h * h + B h ,   h ( 0 , O  = 5. (69) 

The solution of (69) depends only on &,B and  once 
we know  this  solution we can  solve  the  set of systems 
( 10) defined by (66 ) .  This leads  naturally to  the follow- 
ing problem: Given &, find all A ,B  that satisfy (66 ) .  We 
shall express  the solution of this  problem in terms of an 
important  structure of d, i.e., the  center of d. 
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We present  the  necessary algebraic  material  before 
stating the  theorem.  For  details  see  Schafer [6]. An al- 
gebra 9 is unital if it contains a unity: an element u such 
t h a t u x = x u = x f o r a l l x E 9 .  

Let x be any element in the  commutative algebra 9. 
The multiplication operator M ,  = M(x)  determined by X 

is the linear operator M,:y +- x * y, y E 9. If Y is  any 
subset of 9, Y* is the  set of all multiplication operators 
of elements in 9, i.e., Y = {M,:x E Y } .  

If 9 is a commutative algebra, the  center of 9, 3 
= 3(9), is the  set of those  elements  that  associate 
with all elements,  i.e., 3 ( 9 j  = [z E 9:z(xy) = ( z x ) ~ ,  

We can now express  the condition for A-associativity 
vx,y E 91. 

in terms of the  center. 

Theorem 4 Assume  that d is unital. Then  the  system 
vt + Av, = v * v + Bv is A-associative if and  only if 
e Ae"' is the multiplication operator of a central 
element of d: 

e-"'AeBt E %(&)*. (70) 

Proof Assume  that ( 10) is A-associative and  that d is 
unital. Then (66) most hold and, with  x = u, the unity of 
s f ,  gives  (e-"'AeBt)y = (e-"'AeBfu) -x- y. In  terms of 
multiplication operators this is 

e AeBt= M , ,  

where z = e-"'AeeRtu. 

-R' 

-Rl 
( 7 1 )  

Substituting  this into (66) gives 

z * ( x  * y )  = (z * x)  * y (72) 

and  this is  the condition that z E a(&). Therefore (70) 
holds.  Conversely, (7 1) and (72 j imply (66) ,  which 
proves  the  theorem. 

This  theorem is an  example of the interplay between 
analytic  properties of a quadratic differential equation 
and algebraic properties of its  related  algebra. The  center 
is an  important  structure in the  study of algebras and  the 
theorem  transfers  properties of the  center  to  properties of 
the differential system. 

We briefly mention an example of such a transfer. We 
recall that 9 is an ideal of an algebra 9 if 2 is a linear 
subspace of F? and j E 2, g E F? imply that jg and gj are 
contained in 2. An ideal is proper if it is not 9 or (0). An 
algebra is simple if it has  no  proper ideals. 

It  is  easy  to  show  that x2 contains  an  (n-p)-dimensional 
ideal if and only if the  quadratic  part of (10)  can be 
weakly decoupled, i.e., if in some  coordinate  system  the 
quadratic  part of the first p equations involves  only the 
first p variables.  Therefore  there is no weak  decoupling of 
the  quadratic  part if and only if sf is simple. But, as 
shown by Schafer [ 121, if & is unital  and s i m p l e 3 ( d )  
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is a field and so then is Z*(d).  This, with Theorem 4, 
gives the following curious lemma. 

Lemma 3 If the  system (10) has  no weak  decoupling 
of the  quadratic  part,  the  set of matrices e?AeEt satis- 
fying (66 )  then  forms a  matrix field. 

A-associative wave equations 
By common  consent  the partial  differential equation 

v , + A v , = v *   v + B v  (10) 

is  termed a wave  equation  when it is hyperbolic, i.e., 
when  the matrix has only  real  eigenvalues and a complete 
set of eigenvectors. 

Assume  that (10) is hyperbolic and let A,, p = 1 ,  
' . ., m, be the  distinct eigenvalues of A and 8, the  cor- 
responding invariant  subspaces, i.e., 8, = {x:Ax = A,x}. 
Denote  the image of 8, under  the transformation e?' 
by e-Bt%'p, i.e., e-"%, = {e-Btx:x E gP}. 

The algebraic  relationship between hyperbolicity and 
A-associativity is characterized in the following lemma. 

Lemma 4 Assume  that ( I O )  is hyperbolic. Then it is 
A-associative if and only if the  spaces e-"%, are ideals of 
d for all p = 1; . ., m and all f. 

Proof Assume  that ( 10) is A-associative, so that 

e-E'A eEt(x y = (e-EtA eBtx x y. (73 1 
Since A and FEtAeBt are similar, they  have  the  same 
eigenvalues A,. Also, if  x, E g,, then 

e A e  (e x,) = CEtAxp = A,e-Btx,, 

which implies that  the  corresponding invariant subspaces 
of e-BtA eBt are e-"'g,: 

e ZF, = {x: eFBtA eBtx = A,X 1. (74) 

-Bt  Bt -E t  

-E t  

Let x, E y E d. Then, by (731,  (741, 

e AeEt(x, * y )  = (e-BtAeEtx,) -x. y = (Apxp) * y 

= A,(x,* Y ) ,  

-E t  

which implies that x, * y E Therefore e-%YP is an 
ideal of d. 

Conversely,  assume  that  the  are ideals. If 
x, E e ZF, and y E d, then xp * y E e-"%, and, by (74), 

e Ae (x,* y )  = Ap(xp d y ) .  

-E t  

-Et  E t  

Also, by (74), 
B t  (ewEtAe XJ x- y = (A,x,) x- y = A,(X~ * y) ,  

and  these  together imply 

e Ae (x, * y)  = (e-BtAeEtx,) st y. -Bt E t  

P. D. GERBER 

when y = y, E this implies in particular that 

e AeEt(x,, x- y,) -El 

= (e-BtAeEtx,) % y,, x,, Y, E e 8,. (75) 

We  claim that  (75) implies (73).  SinceA  has a com- 
plete set of eigenvectors,  the  invariant  subspaces  (74) 
decompose  the  space 112" into a direct sum: 

W = e-"%] 0. . . @e-%,. 

This  means  that  the  subspaces  are disjoint (except  for 0) 
and that  every x E %", i.e., every x E d, has a unique 
representation 

- E t  

x = x , + ~ . . + x , ,  xp E e g,. - E t  

Since  the e?&Yp are ideals of d, we  also  have 

x x- y = X] * y1 +.. . + x, x- y,. (77) 

This follows from  the  fact  that j * k = 0 if j and k lie in 
disjoint  ideals. For if 2,YY" are ideals, j E 2 and k E YE 
imply that j * k lies in both 9 and X. If 9 and X are 
disjoint, 9 n X = { 0 } ,  so j * k = 0. 

If we  use  (76),  (77),  and  (74) in (73),  we  obtain  an 
expression  that is equivalent to  (73): 

e-EtAeBt(xI * y1 +. . . + x, y,). 

= (e-E'AeBtxx,) x- y, +. . . + (e-E'Ae X,) x- y,. E1 

This  equation follows  directly from (75), which proves 
that (10) is A-associative and  proves  the lemma. 

We now give two applications of this  lemma. 

Theorem 5 Assume  that  the  system 

v , + A v , = v *   v + B v  (78 1 

is hyperbolic and  that A and B commute.  Then  (78)  has 
a linearization of the  form v = f ( t ,u) ,  ut + au,  = Bu, 
with f (0,O) = 0 and f,(O,O) nonsingular if and only if the 
&Yp decouple (*). That is, in the  unique  representation 
v = v, +. . . + v,,  v, E 8,, (*) becomes 

(av,lat) + (A,av,lax) = V, * V, + Bpyp,  

p = 1,.  . . , m, (79) 

where vp x- v, E 8, and B, is the  restriction of B to 
g,, Bpvp E gp. 

Proof A has a complete  set of eigenvectors,  and so d 
is  the  direct sum of the g,, i.e., d = &Yl 0. . . 0 8,. 

This  means  that  every v E d has a unique  direct  sum 
representation v = v1 +. . . + v,,  v, E gP. For  any 
x E d, denote  the projection of x onto 8, by (x),, i.e., 
(x),  is  the tT, component of x in the  direct  sum  represen- 
tation. In this  notation (78) is equivalent to 
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(vt), + (Av,), = (v  * VI,, + @VI,,  p = 1,. . . , m. 

Now v = v, +. . . + v,; from  (74) Av,  = Apv,; and 
also from (74) Bv,, E g,, since A B  = BA. Using  this in 
the  above  equation, we see  that  (78)  is  equivalent  to 

(&,/at)  + (A, av,/ax) = (v * v),  + Bv,, 

p = 1;. ., rn. (80) 

By Theorem 3 the required  linearization exists if and 
only if (*) is A-associative; by Lemma 4 (*) is A-asso- 
ciative if and only if the gP are ideals of d. Therefore  we 
must  show  that  the g, decouple  (81)  into  (79) if and 
only if the E?, are ideals. 

First  assume  that  the Z?, are ideals. Then, by (77), 

(v sc v),, = [ ( V I  +.”+ V,) * (VI +.”+ v,)],, 

- (VI * v1 t’ . . + v, * VJP = v, * vp. - 

Substitution of this into (80) gives (79),  where B, is 
the restriction of B to ZY,. 

Conversely,  assume  that  the ZY, decouple (80) into 
(79). Subtracting these  two  equations implies that  for 
all v E d, (v * v), = vp * vp. Replacing v by v + w 
gives 

[ (v  + w )  * (v + w ) l ,  = (v,, + w,) * (vp + wp), 

3 (v * v),  + 2 ( v  8 w),  + (w * w), = vp * vp 

+ 2 V P  * wp + w, * w,, 

3 (v * w), = v,, * wp E ZY,, 
3 V * W = V 1 * W l + ~ ~ . + V , *  w,. 

If we  take v = vp E g,, this implies v, Q w = vp * wp 
E ZY,. Therefore gP is an ideal. This  completes  the proof. 

This  result is somewhat disappointing, because  the 
systems  (80)  are really ordinary differential equations. 
Thus  the linearization process  does  not enlarge the  class 
of solvable  hyperbolic systems  when A B  = BA.  

C o r o l l a r y  I The  equations of nonlinear optics, 

ui + k’u: = a1u2u3 + b’u’ 

4: + k2u: = a2u1u3 + b2u’ . , 

4 + k3u: = a3u1u2 + b3u3 

can  be linearized as required in Theorem 5 if and only 
if k’ 1 k 2  = k3. 

P r o o f  Since A and B in (81) are diagonal matrices 
they  commute. Also, the  system is hyperbolic. The sys- 
tem is already decoupled with respect  to A and B and, 
by Theorem 5, the  quadratic  part must also  be decoupled. 
Each single equation involves  variables from  the remain- 
ing two,  and  each pair of equations involves the variable 
from  the remaining one. Therefore  there is no decoupling 
into  three single equations  or  into  one single equation 
and one pair. Thus rn = 1 and is three-dimensional, 
so k’ = k2 1 k3.  

Both of Theorems 3 and 5 indicate the need of relaxing 
the  requirements  on linearizations to  obtain larger classes 
of solvable systems. 
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