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P. D. Gerber

Linearization of Cauchy’s Problem for Quadratic
Semilinear Partial Differential Equations

Abstract: The technique of linearization is applied to quadratic semilinear systems, of »n first-order partial differential equations. By
introducing a related linear algebra .«/, we combine analytic and algebraic arguments to obtain a class of linearizable systems. We relate
the coefficients of such systems to the center of .« and show that, for hyperbolic systems, the ideals of & decouple the system into dis-

joint subsystems each having its own single wave number.

Introduction to quadratic systems

and their related algebras

A partial differential equation is quadratic if at most it
is of degree two in the dependent variables and their
derivatives, It is semilinear if it is linear in the highest-
order derivatives. This paper treats systems of n first-
order equations that are both semilinear and quadratic.
If we confine our attention to equations in two indepen-
dent variables, x and ¢, the most general such system for
the n unknown functions v’ = v'(1,x) is

i i i
U+ a v = aan‘J‘Uﬁ + b e Q)

In (Q) the coefficients are independent of the ' and
we use the notation of tensor algebra: All free indices
range from 1 to n; the summation convention applies
to an index repeated as a subscript and as a superscript.
Also, the subscript notation for partial derivatives is
used. Thus, (Q) is a concise notation for

n . o . o
3 [Cz e g Qv_]
¢ ot dx

n n
=3 aiﬁv"v‘8 + 3 b, i=1,n
a,B=1 a=1

We use the term guadratic system for any system of the
form (Q). The purpose of this paper is to establish
initially the great practical and mathematical importance
of quadratic systems and to explore in detail the tech-
nique for “solving” them by transformation to linear
systems. Future papers will explore other techniques,
such as nonlinear superposition and approximation by
families of particular solutions.

Some indication of the practical importance and di-
versity of quadratic systems is given by the following
four examples:
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u,— €U, =—uv,
U, =v;

X

2
u,—v,=au + Bu,

u,=v;

U, — w,=—uv,
U,=v,

U, = Wwj

and

u; + k'l = '’ + b,

u, + K = d’u'i® + b,

u:: + k3u'; =a*u'u® + b, (1)
If we solve the first three of these systems for the vari-

able u, we obtain, respectively,

w,+ uu,=ceu,, (2)
ut=um+au2+,8u, (3)
utuu, =, (4)

Equation (1) is a basic equation in nonlinear optics,
which is discussed in detail by Lamb [1] and by Bloem-
bergen [2]. Equation (2) is Burgers’ equation, a funda-
mental model of dissipative (¢ # 0) and conservative
(e = 0) systems. Equations (4) is the Korteweg-deVries
equation, which is a model of dispersion. An excellent
exposition on (2} and (4) is given by Lax [3]. Equation
(3) is Fisher's equation, a basic model in nonlinear dif-
fusion that is discussed by Montroll [4]. These examples,
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along with others from continuum mechanics and kinetic
theory, indicate the practical importance of quad-
ratic systems.

As differential equations, quadratic systems already
occupy a diverse and interesting branch of analysis.
Quadratic systems also occupy an important branch of
algebra, because each system is closely related to a linear
algebra, the related algebra of the system. For quadratic
systems, the related algebra plays the same role as does
the vector space for linear systems: The theory divides
naturally into an analytic part—the study of the function-
theoretic part, and an algebraic part—the study of the
related algebra. (This idea on the theory of quadratic
systems is due to Marcus [5].)

To introduce the related algebra, we need some pre-
liminary algebraic material, given by Definitions 1 and 2.

Definition | An algebra % over a field F is a vector
space over F with a binary composition (multiplication)
which is bilinear with respect to the vector operations.

Thus, if ¢ is an algebra and u,v € &, the product uv € ¥
is defined and satisfies

u(v+w)=uv+uw, (v+ w)u=vu+ wu,

a(uv) = (qu)v=ulav), wv.weY, aeF.

The notation ¢, 4 (), ¥(#), etc. indicates that the prod-
uct of uand v is to be writtenuv,u. v, u #v, etc.

If % is an n-dimensional algebra with a basis e,, then
ee, is defined and must be a linear combination of the e,
Therefore, there exist n° scalars g}k € F such that

ee, =g, (5)

The g;k are the structure constants of 4 (in the basis ;).
Conversely, suppose ¥ is an n-dimensional vector
space over F with a basis e,. If g}k € F are any n° scalars,
then (5) defines a bilinear multiplication on ¢ with struc-
ture constants g;k. Equation (5) defines the product of any
two basis vectors and bilinearity defines the product of
arbitrary vectors, If x = xjej, y= ykek x’' &, then

Xy = (g;kxiyk)ei. (6)

The notation ¥ = (g;k) lindicates that ¢ is the algebra
with structure constants g;k (in some fixed basis). Gener-
ally, algebras are not associative, nor are they commuta-
tive. See Schafer [6] for an excellent coverage of al-
gebras.

Definition 2 The related algebra of (Q) is the com-
mutative algebra & = @/(%) = (a;k).

2/ is commutative because there is no loss in generality
in assuming that a}k = a,icj in (Q), and this, in (6), leads to
XY=V %X,

The goal of research in quadratic systems is to relate
the analytic and qualitative properties of the differential
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equations and the algebraic properties of the related
algebra.

For the remainder of this paper we treat the initial
value problem for (Q)’ when the matrix C = (c-;} is the
identity matrix 'I = (8}). When the vectors v= [v'(f,x)],
¢ ={x) = [¢'(x)] are introduced, the matrices 4 =
(a;), B = (b]’:), and the related algebra .of = .o/ (%) = (ajk),
(Q) becomes

v,+Av_=vs% v+ By, (7
v{0,x) = P (x). (8)

In the second section, we treat the problem of solving
(7) and (8) with the technique of linearization. For
example, find a function f=f(s,u) and matrices 4,8
[f= (). w= ('), A=(4), B= (h))]suchthatthe
transformation v = f(r,u) reduces (7) to the linear system
u, +AAux=l§u. Analytic and algebraic criteria for the
existence of a linearization are then obtained. In par-
ticular, if the system (7) is A-associative, then &/, A,B
satisfy

e e (x 1 y) = (e Mae"x), X,y € ., (9)

and we show that a linearization can be constructed by
solving the ordinary differential equation

h(0) = &.

The third section relates matrices 4,B that satisfy (9)
to Z (), the center of <, i.e., the set of elements which
associate with all elements of &/. An algebra is termed
unital if it contains a unity. If .7 is unital, all the matrices
e ‘4 satisfying (9) lie in the multiplication algebra of
Z, 1.e., the set of all linear operators M,:x >z X, ze€
%, xe . A curious outcome of this is that these ma-
trices form a field when .« is simple (i.e., when .« has
no proper ideals).

We consider in the fourth section systems which are
A-associative wave equations. For such systems the
eigenspaces of A4 are ideas of . and these spaces de-
couple the system into subsystems, each with a single
wave velocity. We conclude the paper by showing that
the only optics equations of the type (1) that can be
linearized are those with k' = k* = k”.

h=hs=h + Bh,

Complete linearizations of the Cauchy problem
Cauchy’s problem for the system of r first-order partial
differential equations

vi + aiu'; = aiﬁvavﬁ + biv“

is directed toward an analytic solution v' = v'(z,x) that
satisfies the initial condition vi(O,x) = d;i(x). We assume
that the tensors & = (a;k), A= (a;), B = (b;) are con-
stant and that the initial function ¥ = (¢'(x)) is an analy-
tic function of x.
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In the notation of the first section these equations be-
come

v,+Av, =V v+ By, (10)
v(0,x) = ¢ (x), (11)

with v = (%), U= (llli), and * the multiplication in the re-
lated algebra & = &/ () = (a;k).

It follows from the Cauchy-Kowalewsky theorem
[7] that this Cauchy problem has a unique solution
v=v(t,x;y). We define the general solution of (10) to
be this quantity v, where ¢s ranges over all functions
which are analytic on (—o0,).

This method of Cauchy-Kowalewsky establishes the
existence of v(z,x;y¢) by showing that a unique formal
power series for v exists and converges. As a practical
method this approach has serious drawbacks. For ex-
ample, in practice the power series cannot be constructed
nor summed; little or no qualitative information about the
solution is revealed; and the method does not lead to a
representation of the general solution.

Our goal is to find an approach to the Cauchy problem,
(10) and (11), that overcomes the drawbacks of the
method of power series. To obtain some idea as to how to
start, we consider two special cases: n = 1, when (10) is
a scalar equation; and 4 = 0, when (10) is a system of
ordinary differential equations.

Taking first the scalar case, we observe that (10),
(11) can be solved by the method of characteristics [8].
If A, B, and v are scalars and we retain the notation v % v
for av®, the characteristic equations of (10), (11) are

=1, t(0) =0,
x=4A, x(0) =0,
0v=1v% v+ By, v(0) =y(o).

Here x and ¢ are functions of s and o and the derivatives
are with respect to s.
The first equation gives s = t, while the second gives
x = As + o, which together give o = x — A¢. The solu-
tion of the third equation is v = h[s,(a)], in which
h=h(1,¢) is the solutionof A= h = h+ Bh, h(0,£) =¢.
Combining these results gives

v(t,x) = h[t(x — A1)], (12)

this being the general solution of the Cauchy problem
(10), (11) whenn = 1.

In this scalar case, the equation for 4 is really the Ric-
cati equation i = ah® + Bh, h(0) = ¢, which is easily
integrated to give

h(1,¢) = Be™¢/[—a(e” — )¢ + BI.

This representation for v admits an entirely different
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interpretation. If we let ¢ = ¢(u) be an invertible func-
tion with inverse ¢, then (12) is equivalent to

v(xt) = hlt,d(u)] = f(tu), (13)

where u = u(t,x) is the solution of the linear Cauchy
problem

u,+ Au, =0, (14)
u(0,x) = ' [W(x)]. (15)

Regarding (13) as a transformation on the solutions of
(14), we see that the pair (13), (14) is a linearization of
(10): If u is a solution of the linear equation (14),
f(t,u) is a solution of the nonlinear equation (10). The
linearization is also complete, in the sense that f(t,u)
generates all solutions of (10) as « ranges over all solu-
tions of (14). To solve (10), (11), take u to be the solu-
tion of (14) which satisfies (15).

For n =1, the method of characteristics, which led to
the representation (12), and the method of linearization
(13), (14) are equivalent. For n # 0, neither the method
of characteristics nor the representation (12) makes
sense, but the transformation scheme does. This suggests
that we attempt to solve (10) by finding a complete
linearization of the form (13), (14).

In an attempt to linearize a partial differential equation,
the choice of the linear equation is critical. To see if (14)
is up to the task, we consider the second special case of
(10) in which 4 = 0. The Cauchy problem then becomes
the initial value problemv=v & v+ Bv, v(0)= .

Here it seems natural to regard this equation as a non-
linear (quadratic) deformation of a linear equation. The
solution then ought to be a deformation of the solution of
the linear equation. This suggests the transformation
scheme v=f(t,u), u= Bu.

This representation of v is also natural if we expect the
behavior of v to decompose into a linear part, described
by u, and a nonlinear part, described by f. Whatever the
motivation, it is a sound one, for complete linearizations
of this form abound:

Lemma 1 Let f=f(t,u) be analytic in ,u for all u and
all ¢ near 0 and let ¢ = ¢p(u) = £ (0,u). Then the trans-
formation scheme

v="F(t,u), (16)
u = Bu, u(0) =7 (17)
is a linearization of

vVv=vsx v+ Bv (18)
if and only if

f(tu) =h[tp(e ")), (19)

where h = h(z,&) is the solution of
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h=h *h+ Bh, h(0, &) = ¢. (20)
Proof The steps which lead to the formula (19) ap-
pear in the proof of Theorem 1. A simpler, direct proof
follows.
Assume f is a linearization. The general solution of
(17)is

u=¢"9, (21)

so v =f (1,¢"n) is the unique solution of (18) that satis-
fies v(0) = ¢p(n). But (20) then implies v = h[t,¢p(n)] =
£(7,e"n). Thisand (21) imply (19).

Conversely, if f is given by (19) and u is the solution
of (17), then v is given by v(#) = h[t,d(e " )] =
h[t,¢(n)], which is a solution of (18) because of (20).
Therefore f is a linearization, which completes the proof.

Unfortunately, Lemma 1 is of little practical use in
solving (18). Construction of the linearization by formula
(19) requires the function h, and h is already the general
solution (18)! However, the lemma does provide a repre-
sentation of linearizations and this can be useful.

The lemma also shows that the number of lineariza-
tions is immense. There is an n-function-parameter family
of them, since the n functions d)i in (19) are arbitrary.
Within this multitude we would expect particular ones to
be relatively simple. This suggests approaching (18) by
seeking side conditions on the linearization that select
the simple ones. An example is Euler’s linearization of
the Riccati equation; see Watson [9]. The author has
successfully applied this approach [10] to a large class
of quadratic systems, obtaining a generalization of Euler’s
linearization.

Both special cases of (10) considered so far indicate
that the method of linearization can be a successful ap-
proach to (10). The obvious transformation scheme to
try on the general Cauchy problem is v=f(z,u), u,+
A u, = Bu, where A,B are constant matrices, The first of
these coincides with (13) and (16) and the second is the
simplest linear equation that can be made to specialize to
both (14) and (17).

Formalizing our earlier discussion, we now give a
definition of the linearization of (10).

Definition 3 The transformation scheme (22) and (23)
is a linearization of (10) near t = 0 if and only if f (z,u) is
a solution of (10) near 0 whenever u is a solution of
(23). The linearization is complete if and only if every
solution of (10) and (11) is given by v = f (z,u) for some
u satisfying (23).

In sharp contrast to Lemma 1, the very existence of a

linearization of (10) is in doubt, and so we proceed by
trying to identify those equations that can be linearized.
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Our success in this search is guaranteed, since the case
A = 0 and the case for which (10) is n decoupled scalar
equations are examples.

The first step is to reduce the existence question to one
that satifies some analytic criteria. The following theorem
does this and should be regarded as a direct generaliza-
tion of Lemma 1.

First we give some convenient notation. If u= (ui)
and g = (g'(w)), we denote the matrix of partial deriva-
tives of g by g,

g,(w)= (%‘2)

J

Theorem 1 Let f=f(t,u) be analytic in t,u for all ¢
near 0 and all u, and let ¢ = ¢p(u) =f(0,u). Then the
transformation scheme

v={(t,u), (22)
ut+/iu$=l§u, (23)
is a linearization of

v, +Av,=v % Vv+Bv (24)
if and only if

f(r,w) = hir,d (e "w)], (25)
where h = h(t,£€) is the solution of

h(0,§) = ¢, (26)
and for all rnear 0 and all w, ¢ satisfies

Ahg[7,(W) ], (W)e ™™ =h, [r, (W) dbu(w)e 4.
(27)

h=nh = h + Bh,

Proof There are two steps in the proof. The first step
is to show that f is a linearization if and only if f satisfies
the two equations

Af, (1, w) = £, (7,w)A, (28)
f,(r,w) + fu(r,w)Bw = f(7,w)-» f(r,w) + Bf(r,w). (29)

The second step is to solve (29) by the method of
characteristics to obtain (25). Then (27) is obtained by
substituting (25) into (28).

If we substitute (22) into (24) and use (23) to elimi-
nate u,, we see that f is a linearization of (24) if and
only if

[Af,(t,u) — £,(t,w)AJu, + f,(r,u) + f (t,u)Bu
=f(t,u) % f(r,u) + Bf(t,u) 30)

holds whenever u is a solution of (23).

We claim that (30) holds whenever u is a solution of
(23) if and only if (28) and (29) hold for all w and all
small 7. Clearly, (28) and (29) imply (30) and so we
need only to establish their necessity.
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Intuitively we expect that as u ranges over all solu-
tions of (23) u and u, will vary independently. Equation
(30) can then hold only if the coefficient of u, vanishes
[(Eq. 28)] and the remaining terms form an equality
[(Eq. 29)].

More precisely, we have that u and u,, are independent
for fixed ¢,x: For each x,, small 7, and arbitrary constant
vectors w,z, there exists a function G = a(¢,x) satisfying
(23) and

i(r,x,) =w, i, (7,x,) =z (31)

Suppose for the moment that such a @ exists. Then
(30) must hold for u = u; and if we make this substitu-
tion and set 7 = 7 and x = x,, (30) becomes

[Af,(7,w) —f,(r,w)A ]z
+f,(r,w) + f,(r,w)Bw
= f(r,w) % f(r,w) + Bf(r,w).

This equation must hold for all z and w, which implies
(28) and (29).

To establish the existence of @, let § = [¢'(x)] be an
analytic function such that

Pix,) = w, ¥, (x,) =z, (32)
and let u be the solution of
—u, + Au, = Bu, u(0,x) = ¥ (x). (33)

The Cauchy-Kowalewsky theorem guarantees the exis-
tence of such a @, and for x near x,, u exists for ¢ near 0,
e.g., for0= ¢ <27

Now let @(t,x) =u(r — t,x). Equation (33) implies
that  is a solution of (23) and that @ (r,x) = ¢s(x). Equa-
tion (31) follows directly from this equation and (32).

We have now established that f is a linearization if and
only if it satisfies (28) and (29). The particular form of
(29) altows us to solve it by the method of characteris-
tics. The characteristic equations are

=1, 7(0) =0; >r=zs;
w=Bw, w(0) =0, >w=c"0;
f=f=*f+ Bf, £)0) = ¢(a);

> f=hlt¢d(a)].

Solving the first two of these for s and o and substi-
tuting them into the third gives (25). Equation (27)
follows from substituting (25) into (28) and replacing
w exp(—ér) by w. This procedure is allowed because
(28) holds for all w,z. This completes the proof.

Theorem 1 provides the promised analytic criterion
for the existence of a linearization: It exists if and only
if thére exist A,B and @ such that (27) holds. This is a
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one-parameter family of overdetermined systems of par-
tial differential equations for ¢. In general, such a system
has no solution, which justifies the earlier remark ques-
tioning the very existence of a linearization of the partial
differential equation. When 4 = 0, however, (27) can
be satisfied by taking 4 = 0 and in this case Theorem 1
becomes Lemma 1.

The problem of identifying those systems (10) that
can be linearized has now been reduced to finding a set
of algebraic conditions on A,B,< which are the neces-
sary and sufficient conditions for (27) to have a solution.
A method of constructing ¢ should also be provided.

One approach to this problem is to expand both sides
of (27) in a Taylor series in w. Equating coefficients of
like powers of w then gives an infinite sequence of neces-
sary algebraic conditions. The problem reduces to select-
ing a finite number of these conditions that are sufficient.
Rather than pursue this highly involved approach to com-
pletion, we derive the first two such necessary conditions
and a separate sufficient condition.

From now on we consider only complete linearizations,
since only these solve all Cauchy problems and provide
a single representation of the general solution. In this
case we can assume without loss of generality that
¢{(0) =0: If f is complete, ¢ is onto and has a root r;
(27) is invariant under u-translations, so we can replace
¢ (u) by d(u+r).

Recall that the notation & = (g;k) means that & is the
algebra with structure constants g, in the usual basis
and that the notation ¥ =% (#), # = # (/) indicates
that the products in ¥ and # are respectively denoted
by x #y,xAy.

Introduce the following matrices and algebras:

6= (&) = (") = g0, (34)
G#) = (g) = (aa;’j.;:,,’) = (0, (35)
H = [K(1)] =" =h,(1,0), (36)

(N = [ ()]
3
- f B (=) a8 R o) () dr = Yae ™, (10).
° (37)

We must first establish the rightmost equalities claimed
in (36) and (37). From (26) we have
h(1,€) = h(1,€) = h(1,€) + Bh(1.£), h(0,£) = ¢.
Taking the &-derivative of this and setting & = 0 gives
h,(1,0) = Bh,(1,0), h,(0,0) = I

and the solution of this linear ordinary differential equa-
tion is (36).
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Similarly, taking the second &-derivative and setting
& = Ogives
h,,(1,0) = 2h,(2,0) * h,(1,0)
+ Bh,,(1,0), h,(0,0) = 0;
and the solution of this linear ordinary differential equa-
tion is

t
e (10) =26 [ ¢ (7.0) % by (r0)dr

0

t
Bt —B B B
=2e fe ("% e )dr.
0

This establishes (37).

The algebra # is time dependent and we can express
the # multiplication in terms of the & = &/ (*) multi-
plication directly:

3
x A y =J’ e_BT[(eBTX) s (eBTy)]d’T. (38)
0
From this we have x A y = 0 when ¢ = 0;
dldt(x Ay) = e *[(e"x) * (e™y)]; (39)
and

dldt(x Ny)| o =x= Y.

If we utilize these notations and evaluate (27) and its
w-derivative at w =0, we obtain two necessary condi-
tions:

Lemma 2 If ¢ = ¢(u) is an analytic solution of (27)
near zero and ¢ (0) = 0, then
e P4e”G = Ge P4, (40)
e ¥4 [2(Gx) A (Gy) + x#y]

= 2(Ge—i”/iemx) A (Gy) +‘ (e_ét/fe&tx) #y. {41)

Proof Settingw = 0and 7 = tin (27) gives
Ah,(1,0)$. (0)e ™ = h,(£,0)$,(0)e™"4;
and substituting (34) and (36) into this gives
AeBtGe—ét _ emGe_ﬁt/f
This implies (40).

If we differentiate (27) with respect to w and set
w = 0 and 7 = ¢, we obtain
Al (60)$,(0) (u(0)e™) + b, (10)b, (0)e™]
= [h,,(£,0)$,(0) (du(0)e™™) + h(1,0) buu (0)e™ " ]A.

Substituting (34) through (37) into this and expressing
the resulting expression in component notation gives
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al [2H (1) (1) grgah! (—t) + Ko (D) gy ()]
= (2K () K (1) ghgihls(—1) + (D gk (—1)1a], (42)

where we have introduced ¢ = (ﬁ;(t) ).

After multiplying both sides of (42) by x’y* (and sum-
ming over j,k) and converting back to vector notation, we
see that (42) holds if and only if for all x = (x') and
y = (¥') we have
Ae”'[2(Gy) A (Ge

—Bt

X)+y# (e_l;tx)]
= "[2(Gy) A (Ge™™dx) +y # (e"dx)].

Multiplying both sides by ¢~* and replacing x by e’'x
gives (41), which completes the proof.

Neither (40) nor (41) is an algebraic condition be-
cause of the dependence on ¢. Each, however, implies the
infinite sequence of algebraic conditions obtained by ex-
panding in powers of ¢t and equating coefficients.

For example, if we equate coefficients of the first two
terms in (40) and (41) and introduce the usual commuta-
tor notation [4,B] = AB — BA, we obtain the four alge-
braic necessary conditions

AG =GA, (43)
[4,B1G = G[4,B], (44)
A(x#y)=(Ax) #, (45)
24[(Gx) * (Gy)] + [4.Bl(x #y)

=2(GAx) = (Gy) + [4,Blx # y. (46)

Of the two necessary conditions (40) and (41), the
second is by far the more indirect and complex: «/,4,B
have the property that there exist ?,/i,é such that (41)
holds. We have not found conditions on «/,4,B which
are both necessary and sufficient for (41) to hold. An
obviously sufficient condition is

e P4e™[(Gx) A (Gy)] = (e *4e™Gx) A (Gy).  (47)
This equation, (40), and
e P (x #y) = (e PA™x) # y (48)

imply (41); and (48) is satisfied by the zero algebra:
x # y=0. We can show that when G is nonsingular,
(40) and (47) are also sufficient conditions for (27) to
have a solution, i.e., that (10) has a linearization.

We first replace (47) by a simpler condition:

Lemma 4 Assume that G is nonsingular. Then if .« ,4,B
satisfy
e P4e™[(Gx) A (Gy)] = (e #4e™Gx) A (Gy), (49)

they also satisfy
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e B4 [(Gx) # (Gy)] = (e ¥4e”Gx) = (Gy). (50)
Proof 1f we differentiate (49) with respect to # and use

(39), we obtain

e [A,B1e¥[(Gx) A (GY)] + ePa[(e”Gx) = (*Gy)]

= {e™[4,B1¥Gx} A (Gy) + e "'[(4¥Gx) = (¢*Gy) 1.
(51)

Setting ¢ = 0 in this gives A[(Gx) = (Gy)] = (4Gx)
* (Gy), and since G is nonsingular, this implies that

A(x = y) = (Ax) % y. (52)
Substituting (52) into (51) gives
e P[4,B1* [(Gx) A (Gy)]={e ®[4.B1"'Gx} A (Gy).
We express this as
e ¥ ad(B)A4e™[(Gx) A (Gy)]

= [e "ad(B)A4”Gx] A (Gy), (53)

where we have introduced the linear operator ad(B) by
ad(B)A = [B,A4].

Equation (53) shows that if 4 satisfies (49), so does
ad(B)A. By induction it follows that

e %ad"(B)Ae™[(Gx) A (Gy)]
= [e *ad"(B)A¥Gx] A (Gy) (54)

for all n.
Differentiating (54) with respect to ¢, setting ¢ = 0, and
using (39) implies that

ad"(B)A[(Gx) # (Gy)] = [ad"(B)AGx] * (Gy). (55)

The Campbell-Baker-Hausdorf formula (see Hausner
and Schwartz [11]) states that

eBtAe—Bt - ead(Bt)A. (56)

If we multiply both sides of (55) by ¢"/n! and then sum
the resulting equations from n = 1to n = %, we obtain

EHA(Gx) * (Gy)] = [ead(Bt)AGx] x (Gy).

This and (56) imply (50), which completes the proof.

We can now provide sufficient conditions for the exis-
tence of a linearization:

Theorem 2 If &/ ,B satisfy

e 545 (x y) = (e %4e%x) y, (57)
then

v="f(tu) =h(t,e "), (58)
u,+Au, = Bu (59)
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is a complete linearization of v, + Av,=v % v+ Bv.

Proof The transformation (58) is just (25) with ¢ (u)
=u. According to Theorem 1, this transformation is a
linearization if and only if ¢ satisfies (27); and for this
particular ¢,4, and B (27) becomes

Ah (tw)e ™ =h (t,w)e 4. (60)
We first show that (57) implies that
Ae P 'h (t,w) = e "', (tw)4, (61)

and that this in turn implies (60).
To establish (61), we introduce

L(t) =Ae "0 (1,w),
R(t) = ¢ "h,(t,w)A.
Then
L=Ae™(h,—Bh,) =de ™ (2h = h,)
= e %[2h * (e"4e™n,)],
> L=2¢"[h % (L)1, L(0)=4. (62)
Similarly,
R=¢"(haA—BhdA),
= ¢ "[2h = (hA)] = 2¢"[h % (e”e "N A)],
> R=2%h=* (e"R)], R(0) =A. (63)

Here we have used (57) and (26). Equations (62) and
(63) show that L and R satisfy the same linear ordinary
differential equation and the same initial condition. There-
fore R = L because of the uniqueness theorem for the
initial value problem for ordinary differential equations.
This shows that (57) implies (61).

To show that (61) implies (60), we first observe that
since h is the solution of h=h= h + Bh, h(0,£) = £, we
have h(¢ + 7,£€) = h[t,h(1,£)].

Taking v = —t gives

h[th(-,¢)]=§,
= hfth(—1,€)Ih,(—1,€) =1,
> b, (-1,€) =h,[th(-1£)]. (64)

Now, since (61) holds for all z,w, it holds when we re-
place w by h(—z,w), giving

Ae”"n, [th(—t,w) ] =e"h [th(—r,w)]4.
Substituting (64) into this equation gives

Ae_mh;1 (—t,w) = e“mh;1 (—t,w)A,

> h,(—t,w)e” A = Ah,(—t,w)e™.

The last equation is (60), which was a sufficient con-
dition for (58), (59) tobe a linearization. The lineariza-
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tion is complete because ¢ (u) is invertible. This proves
the theorem.

The condition (57) would be an associative law if the
operation * and matrix multiplication were the same. For
this reason, we say that (10) is A-associative if (57)
holds. If 4 and B commute, (57) simplifies to a #-inde-
pendent relation. In this case we can show that (57) is
necessary as well.

Theorem 3 Assume that 4 and B commute: [4,B]
= AB — BA = 0. Then a linearization with ¢ (0) = 0 and
¢, (0) nonsingular exists if and only if

A(xx y) = (AX) = y. (65)

Proof When [4,B] =0, (65) is the same as (57) and
is therefore a sufficient condition for the existence of a
linearization.

If [4,B] =0, and G = ¢,(0) is nonsingular, then (44)
implies [4,B]=0; and (46) then becomes A[(Gx)
#* (Gy)] = (AGx) * (Gy). This equation is equivalent
to (65) when G is nonsingular.

With Theorem 2 we have identified a class of systems
that can be completely linearized —the A-associative
systems. These systems have an attractive property:
Solving the Cauchy problem for them reduces to solving
a system of nonlinear ordinary differential equations (26)
and to solving a system of linear partial differential equa-
tions. This procedure is a great reduction in complexity,
and we expect to be able to carry the qualitative theory of
such equations quite far.

A-associative systems and the center of .«7.

We recall that the system

v,+Av,=v v+ By (10)
is A-associative if and only if

e P4 (x y) = (e Pde™x) x y. (66)
Such systems are completely linearized by

u), (67)
u, + Au, = Bu, (68)

v=h(s,e”

where h = h(t,£) is the solution of
h(0,£) = €. (69)

The solution of (69) depends only on .%/,B and once
we know this solution we can solve the set of systems
(10) defined by (66). This leads naturally to the follow-
ing problem: Given .7, find all A,B that satisfy (66). We
shall express the solution of this problem in terms of an
important structure of .7, i.e., the center of <.

h=h * h + Bh,
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We present the necessary algebraic material before
stating the theorem. For details see Schafer [6]. An al-
gebra ¥ is unital if it contains a unity: an element u such
that ux = xu = xforall x € 4.

Let x be any element in the commutative algebra &.
The multiplication operator My = M (x) determined by x
is the linear operator M,.y > x*y, ye¥%. If ¥ isany
subset of ¥, &* is the set of all multiplication operators
of elements in .%, i.e., ¥ = {M;x € %}.

If ¥ is a commutative algebra, the center of ¢, &
=%(¥), is the set of those elements that associate
with all elements, ie., Z(¥) = [z e ¥:z(xy) = (zx)y,
vx,y € 4].

We can now express the condition for A4-associativity
in terms of the center.

Theorem 4 Assume that .«7 is unital. Then the system
v,+Av,=v =« v+ Bv is A-associative if and only if
e "4¢” is the multiplication operator of a central

element of &7
e 4e® € T ()*. (70)

Proof Assume that (10) is A-associative and that </ is
unital. Then (66) most hold and, with x = u, the unity of
o, gives (e ®4e®)y = (¢ P4e®u) x y. In terms of
multiplication operators this is
e 4P =M, (71)
where z = ¢ *4¢™u.

Substituting this into (66) gives

Za (X #y)=(ZX) %y (72)

and this is the condition that z € 2 (/). Therefore (70)
holds. Conversely, (71) and (72) imply (66), which
proves the theorem.

This theorem is an example of the interplay between
analytic properties of a quadratic differential equation
and algebraic properties of its related algebra. The center
is an important structure in the study of algebras and the
theorem transfers properties of the center to properties of
the differential system. '

We briefly mention an example of such a transfer. We
recall that _# is an ideal of an algebra & if # is a linear
subspace of ¥ and j € ¢, g e ¥ imply that jg and gj are
contained in _#. An ideal is proper if itis not % or {0}. An
algebra is simple if it has no proper ideals.

It is easy to show that &7 contains an (n-p)-dimensional
ideal if and only if the quadratic part of (10) can be
weakly decoupled, i.e., if in some coordinate system the
quadratic part of the first p equations involves only the
first p variables. Therefore there is no weak decoupling of
the quadratic part if and only if .« is simple. But, as
shown by Schafer [12], if < is unital and simple Z (%)
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is a field and so then is 2 ¥ (). This, with Theorem 4,
gives the following curious lemma.

Lemma 3 If the system (10) has no weak decoupling
of the quadratic part, the set of matrices ¢ ~'Ae” satis-
fying (66) then forms a matrix field.

A-associative wave equations
By common consent the partial differential equation

v,+Av,=v% v+ By (10)

is termed a wave equation when it is hyperbolic, i.e.,
when the matrix has only real eigenvalues and a complete
set of eigenvectors.

Assume that (10) is hyperbolic and let A, p=1,
-+, m, be the distinct eigenvalues of 4 and & , the cor-
responding invariant subspaces, i.e., &, = {x:dx = A x}.
Denote the image of &, under the transformation e
by e_mépp, ie., e_Bt(‘fp ={e"x:x € &t

The algebraic relationship between hyperbolicity and
A-associativity is characterized in the following lemma.

Lemma 4 Assume that (10) is hyperbolic. Then it is
A-associative if and only if the spaces e ‘¢ , are ideals of
& forallp=1,---,mandall 1.

Proof Assume that (10) is A-associative, so that

e P4 (xxy) = (e P4 x) % y. (73)

Since 4 and e *Ae™ are similar, they have the same
eigenvalues A ,. Also, if x, € &, then

—Bt Bt, —Bt __ _-—Bt _ —Bt
e Ade (e xp) =e Axp =Ne X,
which implies that the corresponding invariant subspaces
of e 4¢™ are e 7P »

e_mgp = {x:e'B'Aeth = A x} (74)
Letx, € e '€, y € . Then, by (73), (74),
e—BtAem(xp xy)= (e—B'Aethp) ®y= (xpxp) %y
=\, (%, % ¥),

which implies that x, * y € e e - Therefore e g  isan
ideal of .

Conversely, assume that the ¢ &, are ideals. If
X, € e'Btgp and y € &, then x,x y € e_mé”p and, by (74),
e—BtAeBt(xp* y) = )\p(xp *y).

Also, by (74),
(e7¥ae”x) » y= (A x,) # y = (x, % y),
and these together imply

e‘BtAeBt(xp ®y) = (e’BtAeB'xp) *® Y.
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wheny =y, e e””&,, this implies in particular that
e 4" X, * yp)

= (e_BtAethp) % Yy X, Y, € e_Btgp. (75)

We claim that (75) implies (73). Since 4 has a com-
plete set of eigenvectors, the invariant subspaces (74)
decompose the space R" into a direct sum:

R'=e"¢ @ - @e e .

This means that the subspaces are disjoint (except for 0)
and that every x e R”, ie., every x € &, has a unique
representation

x ee g . (76)

X=Xl+...+xm, - »

Since the e ”'&, are ideals of .27, we also have
X#Yy=X %Yy T+ X, %Y, (77)

This follows from the fact that j * k = 0 if j and k lie in
disjoint ideals. For if #,% are ideals, j& £ and k£ 77
imply that j % k lies in both ¢ and %" If ¢ and % are
disjoint, ¢ N % = {0},s0j*k=0.

If we use (76), (77), and (74) in (73), we obtain an
expression that is equivalent to (73):

e A (x, %yt Xy % ).
= (P4eMx,) % v, + o+ (€Ue™x,) # v,

This equation follows directly from (75), which proves
that (10) is A-associative and proves the lemma.

We now give two applications of this lemma.
Theorem 5 Assume that the system

v,+Av,=vx v+ By (78)

is hyperbolic and that A and B commute. Then (78) has
a linearization of the form v=1f(t,u), u,+ Au, = Bu,
with £(0,0) = 0 and £,(0,0) nonsingular if and only if the
&, decouple (%). That is, in the unique representation
v=v,++v, v,&e&, (*) becomes

(av,for) + (A,av,fox) =v, % v, + By,
p=1m  (79)

where V, %V, E é’p and B, is the restriction of B to
& BV, €& .

Proof A has a complete set of eigenvectors, and so &/
is the direct sum of the &, i.e., & =&, ® DE,.

This means that every v € & has a unique direct sum
representation v=v,+---+v,, v, € gfp, For any
x £ &, denote the projection of x onto &, by (x)p, ie.,
(x), is the &, component of x in the direct sum represen-
tation. In this notation (78) is equivalent to
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(v), + (v, = (v& v), + (Bv),, p=1,-- m.

Now v=v +:--+v,; from (74) Av, =My, and
also from (74) va £ é’p since AB = BA. Using this in

the above equation, we see that (78) is equivalent to
(8v,/at) + (A, av,/x) = (v v), + Bv,,
p=1,-m, (80)

By Theorem 3 the required linearization exists if and
only if (%) is A-associative; by Lemma 4 () is 4-asso-
ciative if and only if the & , are ideals of .«Z. Therefore we
must show that the &, decouple (81) into (79) if and
only if the &, are ideals.

First assume that the & , are ideals. Then, by (77),

e v),=[lv,++v)* v+ +v)],

=(ve v+ vV, w V), =V, %V,

» p

Substitution of this into (80) gives (79), where B, is
the restriction of B to &

Conversely, assume that the &, decouple (80) into
(79). Subtracting these two equations implies that for
all ve o, (vxv),= v, * v,. Replacing v by v+w
gives

[((v+w) = (vtwl = (v, +w)x (v, +w),
> (v v)p+2(v*w)p+(w*w)p=vp*vp
+2v,x w,+w, W,
P (vew),=v,xw,e&,
Dvrw=v sw + v % W,
If we take v=yv,& &, this implies Vo R WSV oW

& &,. Therefore &, is an ideal. This completes the proof.

This result is somewhat disappointing, because the
systems (80) are really ordinary differential equations.
Thus the linearization process does not enlarge the class
of solvable hyperbolic systems when AB = BA.

Corollary 1 The equations of nonlinear optics,
vt‘ + k‘v; = a'v’v’ + b’
U+ K = a4+ b (81)
vf + k3vi =a'v'v* + b’
can be linearized as required in Theorem $ if and only
if k' =K"= i%
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Proof Since 4 and B in (81) are diagonal matrices
they commute. Also, the system is hyperbolic. The sys-
tem is already decoupled with respect to 4 and B and,
by Theorem 5, the quadratic part must also be decoupled.
Each single equation involves variables from the remain-
ing two, and each pair of equations involves the variable
from the remaining one. Therefore there is no decoupling
into three single equations or into one single equation
and one pair. Thus m =1 and &, is three-dimensional,
sok'=k"=k".

Both of Theorems 3 and 5 indicate the need of relaxing
the requirements on linearizations to obtain larger classes
of solvable systems.
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