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Abstract: In nonlinear  electromagnetic  media the various  portions of a wave  can travel with different  velocities, which can  result in the 
formation of electromagnetic shock waves. The  structure of such a steady state  shock is determined by an  equilibrium between  the 
velocity  differences that tend to  sharpen  the shock and the sources of dispersion that  cause a broadening of the  shock. Several nonlin- 
ear transmission line models are examined  for the  nature  and  existence of a single-valued steady  state shock. In all cases a  nonlinear 
shunt  capacitance is assumed. If the dispersion arises  from  the relaxation  behavior caused by a resistance in series with  the  nonlinear 
capacitance, a steady shock always  exists,  its width  decreasing as  the  extent of the nonlinearity generated by the  shock  increases.  If 
the  series  resistance is itself shunted by another  capacitance,  the relaxation process is not  manifested at very high frequencies. This 
system yields a  critical  condition for the existence of a continuous single-valued steady  state  wave profile. If the line has  too little dis- 
persion, the  steady  state profile is multivalued and  therefore physically  unrealizable. 

These dispersion  requirements are equivalent to  the condition that  the velocity of small, high frequency signals ahead of the shock 
must  be  greater  than the  velocity of the  shock itself. I t  is believed that this  condition is a broadly  applicable  criterion for the existence of a 
stable,  single-valued, steady  state  wave profile. While this hypothesis is not  proved  analytically, it is  supported  here by plausibility 
arguments and by analysis of another system in which  the  dispersion is included in the linear series  inductance  rather than in the nonlin- 
ear  shunt capacitance. 

Introduction 
The  concept  that in a nonlinear wave propagation sys- 
tem the various parts of the wave  travel with different 
velocities, and  that wave fronts  (or  tails)  can  sharpen 
into shock  waves, is deeply  imbedded in the classical 
theory of fluid dynamics [ 1-31.  The  fact  that  this  same 
concept  carries  over into the  treatment of electromag- 
netic  waves  was  appreciated by Salinger [4] in a pi- 
oneering paper in 1923. However,  no  further progress 
seems  to  have occurred in this field until the 1950s, 
when practical interest  arose in ferroelectrics, in para- 
metric phenomena,  and in propagation  along  magnet- 
ically loaded  lines in memory arrays. A detailed  discus- 
sion of electromagnetic  shock wave formation  and  prop- 
agation has been  provided by one of the  authors [ 5 ] .  A 
considerable  body of experimental and theoretical  litera- 
ture  on nonlinear  transmission  lines has been  published 
since then, and we cite  here only  a small portion of that 
literature  [6- 131. With the  advent of the  laser in the 
1960s, the  concept  that different parts of a wave in a 
nonlinear medium can  move  with  different  velocities was 
used  again,  first by Chiao  et al. [ 141 in their discussion 
of the self-focusing of laser  beams. Subsequently  the 
concept of self-induced frequency  changes in amplitude- 

modulated laser  pulses was also suggested [15], elabo- 
rated upon [16],  and then  observed [ 17,181. The behav- 
ior of an additional small signal controlled by the propa- 
gation  velocity profile of a large  nonlinear signal has  also 
been treated [ 191. While the nonlinear  optical  pheno- 
mena  have undoubtedly come  to  overshadow  the earlier 
baseband  propagation  problems in their  interest,  the 
baseband  phenomena  are simpler. They  are,  therefore, a 
good ground for  conceptual exploration, and  we  return 
here  to this earlier territory, not so much with a specific 
application or experiment in mind, but simply to  under- 
stand more carefully  what determines  the  structure of a 
shock, particularly  its  width.  We are  also  interested in 
the condition under which we can in fact  expect  the res- 
olution of a  shock into a continuous, single-valued, in- 
variant, moving profile. 

The velocity  differences  found within an initially 
spread-out  portion of a wave  front  can  cause  the  front  to 
contract (or expand, depending on  the sign  of the 
changes in the nonlinear reactance). If such a contrac- 
tion continues in an unaltered  fashion, it can eventually 
lead to a multivalued function, in which one part of the 
wave has  overtaken  another. As the  wave  sharpens,  and 
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Figure 1 Transmission  line having a nonlinear  capacitance 
with a finite relaxation  time: L is the inductance, U (Q) charac- 
terizes the voltage-charge  relationship of the  nonlinear  capaci- 
tance, and R is  the  resistance  providing  the  damping. 

thus involves  higher frequencies,  dispersive effects that 
were neglected at first will inevitably  manifest them- 
selves  and  can  balance  the  contraction effects, leading to 
a profile that  propagates  without change. An analysis of 
this  balancing process arising from  the inertial and relax- 
ation  effects of charges in a dielectric  was presented 
some  years  ago [20]. Since this work  has  never  reached 
full formal  publication a portion of it is presented in the 
second  section, which  gives a detailed analysis of the 
effect of relaxation (but  without allowing for inertial 
effects) on  the  shock  wave  structure. 

The effects of dispersion on  the propagation of waves 
in a nonlinear  medium have  attracted  considerable 
attention [ 3 1. The approximation of dispersion functions 
by finite polynomials results in Burger’s equation  and in 
the Korteweg and  de  Vries  equation, which have been 
studied  extensively [3]. An  approximation of the disper- 
sion  function  by a polynomial  gives rise  to a strong dis- 
persion, especially at high frequencies,  and  always pre- 
vents  the “overtaking” phenomenon,  but  the effects of 
the original exact dispersion are still open  to  question.  In 
the third  section we  consider a transmission  line in which 
the dispersion results  from a shunt  branch,  where  the 
nonlinear capacitance is in series with  a  parallel RC 
combination. The  dispersion  can be  controlled by vary- 
ing a parameter of the  system  and  the resulting  effects 
then analyzed.  We observe  from  the solution that  the 
dispersion  must be  strong enough to balance  the con- 
traction effect that is due to the nonlinearity of the  sys- 
tem.  Otherwise, overtaking will occur, resulting  in multi- 
valued fields and showing that a critical  dispersion is 
required  for  the  existence of a single-valued, steady 
state, moving wave profile in this  nonlinear system. 

For a nonlinear dispersive  wave  system  we may de- 
fine various wave velocities. These include the low- and 

300 high-frequency wave velocities of very  small signals, 
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assuming that  the nonlinear capacitance is charged to a 
specified spatially  uniform  bias  level. We  can  also in- 
voke  shock velocities  related to  the overall, or  average, 
capacitance  associated with the shock  transmission at 
low frequencies.  The critical dispersion, which depends 
on  the nonlinearity of the  system,  can  be  expressed  as a 
relation  among some of these  wave velocities.  Because 
such  wave velocity concepts apply to many systems,  it 
is hoped that  our  present  results  can eventually  be gen- 
eralized to a larger class of nonlinear dispersive  systems. 
As  an illustration, we  also  consider in the  fourth section 
the  case of a transmission line with a dispersive  series 
inductance  and find that  the result is identical to  that 
obtained  in the third section if the  results  are  expressed 
in terms of the  wave velocities  mentioned  here. 

In  our  subsequent  discussions,  for simplicity, we fo- 
cus  on  systems in which the  shock  forms  on  the leading 
edge of a pulse.  Because the modifications required  for 
shocks  on a trailing edge  are trivial,  they are not  explicit- 
ly mentioned at  every  step. 

Shock  wave  structure  has been considered by a  num- 
ber of authors who were motivated by various  physical 
problems, including, e.g., the classical case of hydrody- 
namic shocks [2 11. Khokhlov [ 131 specifically consid- 
ered nonlinear  transmission  lines and found a shock 
thickness  that  agrees with our own results of the  next 
section. G. B. Whitham in a comprehensive  paper [22] 
discussed many aspects of shock  wave  structure,  empha- 
sizing magnetohydrodynamics,  and  anticipated some of 
the  concepts  presented throughout  this  paper. In partic- 
ular  he emphasized the view of shock structure  as  an 
equilibrium between  the nonlinear behavior  and  the dis- 
persion. He furthermore pointed out,  as  we shall, that  as 
parameters  are varied in some of these  systems  the  steady 
state profile can  make a  transition from single-valued be- 
havior to multivalued  behavior. As we  show  later in more 
detail, the multivalued profiles are, of course,  nonphys- 
ical and reflect on  the  accuracy of the  equations leading to 
them. 

Shock wave structure for simple relaxation  time 
To facilitate the discussion for  the general case in the 
next  section,  we  consider  here a special case  for which 
an explicit  solution can  be given,  showing the detailed 
structure of a shock wave. A transmission line that  has a 
nonlinear capacitance with  a  simple series  resistance is 
shown in Fig. 1. This transmission line is a special case 
of lines analyzed by Landauer  and  Thomas [20] as a 
model for  the study of TEM  wave propagation  in a fer- 
roelectric material at  a temperature  just  above  the transi- 
tion point. Riley [6] has  also given  experimental and 
theoretical  analyses of a line in which the nonlinear  ca- 
pacitance  has a resistance in series with  it.  We present 
here  an  analytic solution for a steady  state shock wave 
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in  this system, so that  the velocity  and the detailed 
structure of a shock  wave  can  be related to  the  charac- 
teristics of the medium. 

From Fig. 1 ,  the basic equations governing the fields 
can easily be obtained by invoking Kirchhoffs law of 
voltage and  current: 

aV/ax = - L ( a l / a t ) ,  ( 1 )  

allax = - aQlat, and ( 2 )  

V =  U ( Q )  + R ( a Q / a t ) ,  ( 3 )  

where V ,  I ,  and Q are  the transmission line voltage,  cur- 
rent,  and charge, respectively; L is  the  inductance  per 
unit length; R" is  the  conductance  per unit length, 
which characterizes  the damping  mechanism; and U is 
the voltage across  the nonlinear capacitor  and is as- 
sumed  to be  a  single-valued  function of the  charge Q. 

For a wave of constant profile, we assume a  solution 
of the form 

Q = Q ( 0 ) ;  8 = x - ut,  (4) 

where LI is  the  constant shock wave velocity character- 
izing the  charge variation as well as  the variation of volt- 
age V and  current I .  With this assumption  Eqs. ( 1 )  and 
( 2 )  become V' = uLI' and I' = uQ' ,  respectively, where 
the primes denote differentiation  with respect  to  the 
argument of the function. These  two  equations  can 
readily be integrated to yield 

v = U'LQ. ( 5  1 
In obtaining the last equation,  we  have  set  the integra- 

tion constant equal to  zero, which is  correct  for a shock 
transition  propagating  along an initially uncharged line. 
With the notation U ( Q )  = ( l/Co) [Q + n ( Q ) ] ,  where C, 
is the linear or small-signal capacitance of the transmis- 
sion line and n ( Q )  represents  the nonlinear behavior of 
the  capacitance, Eqs. (3) and ( 5 )  can be  combined to 
yield 

aQ = n ( Q )  + T , ( d Q / a t ) .  (6) 

In  Eq. (6) we  have invoked the following notation: 
2 2  a = 11 1U" - 1, 

uo2 = l /LC,,  and r, = RC,,  

in which a represents  the deviation of the shock  wave 
velocity from  the linear characteristic  wave velocity u,, 
and will be  related to  the shock strength  later; and T, is 
the relaxation  time for a small signal on  the uncharged 
line. In terms of a ,  Eq. ( 5 )  can  be written 

V =  (l/CJ (1 + a )  Q. (7) 

Physically, Eq. (6) states  that  the nonlinearity  and the 
relaxation offset each  other's effect, resulting in a modi- 
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Figure 2 Typical  shock  wave form: 

Q 2 ( x -  u r )  =@,'[1 - tanh (x-  u r ) / w , ] .  

fication of the linear capacitance,  as is evident from Eq. 
(7). For  the functional form given in Eq. (41, Eq. (6) 
becomes 

uT,dQ/dB = n ( Q  ) - aQ, (8) 

which determines  the detailed  waveform of the steady 
state  shock. 

The waveform depends  on  the nonlinearity of the 
medium. For  example,  for  the  lowest  order nonlinearity 
in a medium with a center of inversion, the cubic case: 
n ( Q )  = TJ Q3, where is the nonlinear constant.  In  that 
case  Eq. (8) can be  integrated to yield 

Qz(cx-ut )=~Q~[ l - tanh(x -x , , -u t ) /w , ] ,  (9 1 
where Qs in the shock wave amplitude  and x, is the 
integration constant  that  determines  the initial position 
of the shock wave.  The shock  velocity and  (half) width, 
u and wo, are related to  the shock  amplitude by 

u = v,( 1 + TJ Qs2)i, and (10) 

w, =  UT,/^ e,". ( 1 1 )  

A typical  waveform of the shock  given by Eq. (9) is 
plotted in Fig. 2, which agrees with Riley's numerical 
calculations and with his experimental results [6]. From 
Eqs. (10) and (1 1) we observe  that a larger  shock  am- 
plitude gives a  higher  shock  velocity and a narrower 
shock  transition. The  shock width w, is linearly propor- 
tional to  the relaxation  time 7,. Hence  the experimental 
measurements of the  shock width may be  used for  the 
direct  determination of the relaxation process in a  non- 
linear  material. 
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Figure 3 Dispersive nonlineru; capacitance transmission  line. 

Figure 4 Dispersion curves of the transmission  line of Fig. 3;  
K, and K~ are  the real and the imaginary parts of the propagation 
constant, respectively. There  are additional  solutions to Eq. 
( 16) not  shown here,  for which o is purely imaginary and K is 
real. These additional  modes correspond to a relaxation  pro- 
cess,  rather  than to propagation. 

Equation (8)  may also  be integrated for other  types of 
nonlinearity; e.g., for  the  case of quadratic nonlinear- 
ity, n ( Q )  = 7 @, the shock width is w, = 2p ro/Q Qs. 
Khokhlov [ 131 treats essentially  the same problem as 
we  discuss here. He  considers  the  quadratic nonlinearity 
and sinusoidal excitation rather  than a single voltage 
transition. He finds the  same shock  width that  we  quote 
here for  the  quadratic nonlinearity. 

Dispersive nonlinear capacitance transmission line 
In this section we introduce a more  complicated  disper- 
sion process in which a  linear capacitance  is  added in 
parallel with the  resistance, as shown in Fig. 3. Roughly 
speaking, low- and high-frequency currents  pass through 
the resistive and  capacitive  branches, respectively, in 
the lower  portion of the  shunt circuit. A low frequency 
wave thus  “sees” a capacitance  equal  to  the nonlinear 
capacitance, but a high frequency  wave  sees a capaci- 
tance  equal  to  that of the nonlinear  and  linear  capaci- 

tances in series.  Consequently,  the low  frequency capac- 
itance is larger than  the high frequency capacitance,  and 
a high frequency  wave  propagates  at a  higher  velocity 
than does a low frequency wave. 

Two  extreme  cases of this  transmission line are easily 
understood. When C, -+ 0, the nonlinear capacitance  has 
a simple relaxation  time and  this  is  the  case  we  have 
analyzed in the preceding section, with the conclusion 
that a  single-valued, steady  state shock  wave exists.  The 
other  extreme  occurs when C, -+ a, in which the resis- 
tance is short-circuited and  the transmission line is loss- 
less  and dispersionless. In this case it has been shown 
that a wave  continues  to  distort as it propagates along 
the line [ 5 ] .  This eventually results in multivalued fields 
which are  considered physically  unacceptable. As is 
shown in the next section,  the value of 1/C, can be taken 
as a measure of the dispersion of the transmission line. 
Thus,  the effect of linear  dispersion on  the shock wave 
structure  can be studied by varying the value of C , .  In 
particular, the  two special cases  discussed  here suggest 
that  there must exist  an intermediate  value of C, above 
which no single-valued, steady  state shock wave  can 
exist. In  other  words, a minimum (or  critical) dispersion 
of the nonlinear  transmission line is required for a steady 
state shock  wave to remain  single-valued and  we  deter- 
mine here this  critical dispersion. 

With reference to Fig. 3 ,  the governing equations  can 
easily be obtained  by invoking Kirchhoffs laws of volt- 
age and  current: 

avlax = - L(allatj, (12) 

allax = - aQlat, ( 1 3 )  

V =  U ( Q )  + RJ, and (14) 

J + T, ( U l a t  j = a Q / a t ;  r ,  = R C , ,  (15) 

where V and I are  the transmission line voltage and 
current, Q and U are  the  charge and voltage associated 
with the nonlinear capacitance, J is the  current flowing 
through  the  resistance, and T, is the relaxation  time as- 
sociated with the  capacitance C,. 

Linear  dispersion 
In  the  absence of nonlinearity in the  capacitance we 
have U(Q j = ( I/C,,)Q, where C, is the linear part of 
the nonlinear capacitance.  In this case,  we  obtain  the 
dispersion  relation 

in which u t  = 1/LC, and r,, = RC,, 

where K is  the propagation constant, o is the  frequency, 
u, is the  characteristic velocity of low frequency waves, 
and T~ is the linear  relaxation  time of the  nonlinear 



capacitance when it is unc:harged. The real and imaginary 
parts of K are plotted as functions of real values of o in 
Fig. 4. It is evident  from Fig. 4 that ul and uh are re- 
spectively the low- and high-frequency wave velocities 
and  are given by u1 = u,, and 

Equivalently, we  can define the low- and  high-frequency 
capacitances of the transmission line as, respectively, 

C,  = C,, and 

c, = c,c,/ (C ,  + C , ) ,  (17 )  

where C ,  is the total capacitance of C ,  and C ,  in series,  as 
can be seen  directly in Fig. 3. It  is also  evident in Fig. 4 
that  the  wave velocity increases monotonically  from ul to 
uh. Keeping C, and u, fixed, we can control C,  or uh by 
varying the value of C,; the smaller the value of C , ,  the 
smaller the value of C,. With this  smaller  value comes a 
stronger dispersion. 

Steady  state shock wave 
For a steady  state  shock  wave propagating  with a con- 
stant profile, we assume  once again  a  solution of the 
form Q = Q (0)  ; 0 = x - ut,  and similarly for V ,  I ,  and J 
in Eqs.( 12) through( 1 5 ) .  In  terms of 0 these  equations 
become  the  ordinary differential equations 

v, = UL I , ,  

I ,  = u Q,, 
V =  U ( Q )  + RJ,  and 

J - u T ,  J ,  = - "Q,. (21) 

The  subscript 8 denotes differentiation  with respect  to 
0. Equations (18) and (19) can  readily  be  integrated 
to yield 

v = U'LQ. (22) 

In arriving at  the last equation,  we  have again set  the 
integration constant equal to  zero.  This is appropriate in 
the special case of a  shock  transition  starting  from an 
initially uncharged line and  leaving  a charge density Qs 

after  its passage. Eliminating V and J from Eqs. (20) 
through (22)  we obtain 

with 

f ( Q )  = (l/R)[u'L Q - U(Q11. (24) 

Equation (23) determines  the shock wave  for a  given 
function U .  
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As an example,  let us consider again the nonlinear 
voltage-charge  relation, U ( Q )  = ( l /Co) [Q + r)  Q 3 ] ,  as 
in the preceding section.  In this case,  Eq. (23) becomes 

with 

a = (1/3r))  [ ( T , / T , )  - q A 1 ,  

A =  ( I /?)  [(u'/u,') - 1 1 .  

Equation (25) can  then be  integrated to yield 

(0 - 0,)/w = ( 1  -6)lnlA - Q'l - ln1Q21, (27) 

where 8, is an integration constant  that specifies the 
initial position of the shock and w and 6 are  constants 
defined by w = 3u~,a/2A and 6 = -Ala. 

For  the nonlinear coefficient r )  > 0, Eq. (27) is plotted 
for  different values of a in Fig. 5 .  Since Q' > 0, the 
branches below Q2 = 0 are irrelevant and may be ig- 
nored.  Thus,  for  the charge  distribution of a steady  state 
shock profile, we must choose  the  branches within the 
range 0 5 Q' f A. These  branches  represent a  transi- 
tion between  an uncharged state, Q 2  = 0, and a  charged 
state, Q' = Q," = A.  The  branches  above Q2 = A give 
rise to  unbounded  solutions, unrelated to  an initially 
uncharged  line, and  hence must  be rejected.  The portion 
of the shock profiles which is relevant, between Q'= 0 
and Q' = A, is shown in the figure in heavier  lines. We 
observe  that  for  the  case r )  > 0, the profile of a steady 
state  shock  wave is single-valued if a > 0 and double- 
valued if a < 0. The value of a is related to  the disper- 
sion of the  system  and it is from  this effect of a on  the 
steady  state shock profile that we determine  the critical 
dispersion required  for  the  existence of a single-valued 
shock. 

We now  relate a to  the dispersion of the  system. For a 
shock  transition between  two  states, Q = 0 and Q = Qs,  

from Eq. (261, we obtain 

A = Q Z  and (28) 

a = (1/3q) [T,/T, - r)Qs'l. (29) 

As shown by Eq. ( 16), T,/T, is a measure of the  disper- 
sion in the  system.  The value of a thus,  changes with 
T J T , ,  assuming that Qs is held fixed. For r )  > 0, a has 
the range a > amin = - %Q:. In this  range we recall 
that a = 0 is the critical  value that  divides single-valued 
and multivalued steady  state shock  waves.  Right at  the 
critical  value of a no bounded  solution  exists. Therefore 
the condition for  the  existence of a  bounded, single- 
valued, steady  state shock wave is a > 0, or,  after in- 
voking Eq. (291, 

T,/T, = C,/C, > TQ:. 



Figure 5 Complete curves of the shock wave solutions for different values of a. 

Since 1/C, is a measure of the dispersion  in the  system, 
E q .  (30) specifies the minimum or critical  dispersion 
needed to  prevent a wave  from becoming  multivalued. 

The multivalued steady  state shock wave is nonphysi- 
cal and  arises  because  our  equations  do not accurately 
represent  the  behavior of the system. This situation is 
analogous to  the condition presented by the transmission 
line of Fig. 1 for  the  case R = 0, in which we find the 
over-taking phenomenon  and multivalued  solutions. 
The  latter  disappear,  however, when we go  to a more 
accurate  treatment, applicable in the  presence of fast 
changes. Thus, taking R # 0 in Fig. 1 leads  to a single- 
valued wave with a finite width. One similarly expects 
that, in the  case of Fig. 3, allowing C ,  itself to be asso- 
ciated with'a finite relaxation  time of its own (i.e., a se- 
ries resistance) will avoid  multivalued wave  forms. Al- 
ternatively one can take  the view proposed by Whitham 
[22] that  the multivalued behavior in the steady state 
profile is avoided by the formation of discontinuities. 
But that  leads again to  questions  about  the real profile 
of such a  discontinuity and  therefore  to  the need for a 
better physical representation than exists in Fig. 3. Using 
Whitham's approach we would then find a discontinuous 
initial rise in Q, followed by a subsequent  continuous 
portion, which is still a  solution of Eq.  (23)  and  is  there- 
fore  represented in Fig. 5 (b).  The leading edge shock 
would terminate  on  the  upper  branch of the heavy curve 
in Fig. 5 (b) at a point  selected so that  the velocity of the 
leading edge shock equals  that of the remaining wave 
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Returning to  the general case,  Eq.  (23)  can be  put in 
the form 

Before and  after shock  passage dQld0 vanishes. Hence 
Q as a function of 0 must  vary between  the  two  roots of 
the  equationf(Q) = 0. For  the shock  transition between 
Q = 0 and Q = Q, > 0, we  have,  from  Eq. (24),f(Q,) = 
(1/R) [u'LQ, - U ( Q , ) ]  = 0. From this we  obtain  the 
shock wave  velocity 

u = (LC,)+, (31 1 
where C ,  is the shock capacitance defined by 

C, = Q,/U(Q,).  

For 0 < Q < Qs, we observe  that f (Q) > 0. In  order 
for  the  steady  state shock  wave to be  single-valued, we 
must have d0/dQ < 0, which requires, from (23a), 

1 - T , ~ ' ( Q )  > 0, 

or, after invoking Eq. (24),  

1 - C,[Lu2 - U f ( Q ) ]  > 0. 

Substituting Eq. (3 1 )  into (32) we obtain 

(33) 

with the differential capacitance C , ( Q )  = l / [dU(Q)/  
del. 
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Equation (33) must be satisfied for all values of Q 
within the range of the shock  transition. For U (Q)  = 

( l / c o )  [Q + qQ3] with 7 > 0, l / c d ( Q )  is smallest 
when Q = 0. Therefore  Eq. (33) is most  demanding at 
Q = 0 and it can easily  be shown  that this  condition is 
identical to  that given in Eq. (30).  

When the relation l/C, =I (l/C,) - ( l /C,) is invoked, 
in which C ,  and C,  are  the high- and low-frequency  ca- 
pacitances, respectively, as defined in Eq. ( 17), Eq. (33), 
can  now be  written as 

(llC,) - (UCJ > ( K , )  - ( I /Cd,  

or, in terms of wave velocities, 
2~ 2 2  

u, - uf > us - ud 9 (34) 

where uh and ul are  the high- and low-frequency  wave 
velocities,  respectively, and us and ud are  the shock ve- 
locity (Le., the velocity of the steady state profile)  and 
the velocity for small, low frequency signals. This condi- 
tion states  that  the velocity  difference  resulting  from the 
dispersive  character of a system must  be  large  enough to 
overcome  the velocity  difference  resulting from  the non- 
linearity of the  system. 

We observe  that condition (34) is most  demanding €or 
the part of the shock in which ud has its  smallest  value, 
i.e., on  the uncharged line ahead of the moving shock. 
There ud = ul and  Eqs. (34) simplifies to 

Uh u, 3 (35 1 
requiring high frequency  components on the uncharged 
line to  be able to  pass  ahead of the  shock. High frequen- 
cy components  at  some higher  level of charge will, of 
course,  have  even higher velocities and will therefore 
also  run through and  ahead of the  shock.  In  the  case of a 
shock  forming at  the trailing edge of a wave,  Eq. (34) 
applies  without  modification; Eq. (35) applies if it i s  
understood  that uh is the small-signal, high frequency 
velocity ahead of the  shock. 

Since similar wave velocities appear in any nonlinear 
dispersive  system, it will be interesting to  see  whether 
this  condition on  the  wave velocities  applies to  other 
systems  as well. For this purpose, we consider  another 
type of dispersion  in the  next section. 

2 2  

Dispersive  inductance  transmission line 
Instead of a frequency dispersion  in  the  nonlinear capac- 
itance itself, we now consider  the  case of frequency dis- 
persion in the linear inductance,  as shown in Fig. 6. The 
governing equations of the  system  are 

av/ax = - L,(arlat) - L,  ( a J l a t ) ,  (36) 

allax = - aQlat, (37) 

I = J + daJlat)  ; r = L J R ,  and (38) 
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Figure 6 Dispersive  inductance transmission line. 
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where V ,  I ,  and Q are  the transmission  line  voltage, cur- 
rent,  and  charge,  respectively; J is the  current flowing in 
the L,  branch; T is  the relaxation time;  and U is a single- 
valued  function of Q which characterizes  the voltage- 
charge relationship of the  capacitance. 

For a steady  state  shock wave, we  assume  that Q = 
e(@), with 0 = x  - ut,  and similarly for V ,  I ,  and J. 
Equations (4.1) through (4.3) can  then be  integrated to 
yield 

” dB ur[f’(Q) + u2L,] 
dQ - f ( Q )  
in  which 

f ( Q )  = u(Q)  - i2LQ;  L = Lo + L,. 

As in the preceding section, for the  shock transition 
between two  constant  states, Q = 0 and Q = Qs, we ob- 
tain, from f (Q , )  = 0, the shock wave velocity: u = 
l/m, Cs = QlU (Q).  The condition that d0ldQ < 0 
requires  thatf’ (Q) + u’L, > 0, from which,  with a little 
algebra, we can  obtain, 

l/(CdLo) > 1/(csL)9 

where 1 / ( CdLo) is the high frequency velocity on a uni- 
formly  charged line. Its lowest value along the shock is 
l/(CoLo) = uh2, i.e., the high frequency value on the un- 
biased  line ahead of the  shock. We therefore  once again 
obtain 

as in the preceding section. We emphasize  the  fact  that 
the  equivalence  between  Eqs.( 35) and( 33) depends  on 
the  use of wave velocities.  If expressed instead in terms 
of transmission line parameters  the  equivalence disap- 
pears. 
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Physical considerations 
Our  result, in the form of Eq. (35), has a form which 
suggests a greater generality and  also invites  physical 
analysis. At this  point we admittedly depart  from a strict 
analytical  basis and  enter  the realm of speculation. In 
the  process of self-steepening, leading to shock forma- 
tion, higher frequency  components  are  generated.  At a 
particular  point  when the waveform has become  verti- 
cal,  just before the  onset of over-taking, we have very 
high frequencies.  Clearly, if such high frequency compo- 
nents move faster than the  shock, they will move ahead 
of the  shock  and  prevent  the  wave form  from ever 
reaching the  stage at which derivatives  do in fact  be- 
come  unbounded. We can  thus also see, at least  on  an 
intuitive  level, that  our monotonic steady  state profiles 
are  stable solutions.  A  very spread-out transition will 
sharpen  up,  whereas a  transition  having  very steep  por- 
tions will lose those  portions, since they will move 
through  the transition and  ahead of it. After  separating 
from  the  shock,  the high frequency  components will be 
attenuated. Clearly there  is a need for a broadly  applica- 
ble analytic  version of the  concepts suggested here. 
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