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Effects of Dispersion on Steady State
Electromagnetic Shock Profiles

Abstract: In nonlinear electromagnetic media the various portions of a wave can travel with different velocities, which can result in the
formation of electromagnetic shock waves. The structure of such a steady state shock is determined by an equilibrium between the
velocity differences that tend to sharpen the shock and the sources of dispersion that cause a broadening of the shock. Several nonlin-
ear transmission line models are examined for the nature and existence of a single-valued steady state shock. In all cases a nonlinear
shunt capacitance is assumed. If the dispersion arises from the relaxation behavior caused by a resistance in series with the nonlinear
capacitance, a steady shock always exists, its width decreasing as the extent of the nonlinearity generated by the shock increases. If
the series resistance is itself shunted by another capacitance, the relaxation process is not manifested at very high frequencies. This
system yields a critical condition for the existence of a continuous single-valued steady state wave profile. If the line has too little dis-
persion, the steady state profile is multivalued and therefore physically unrealizable.

These dispersion requirements are equivalent to the condition that the velocity of small, high frequency signals ahead of the shock
must be greater than the velocity of the shock itself. It is believed that this condition is a broadly applicable criterion for the existence of a
stable, single-valued, steady state wave profile. While this hypothesis is not proved analytically, it is supported here by plausibility
arguments and by analysis of another system in which the dispersion is included in the linear series inductance rather than in the nonlin-

ear shunt capacitance.

Introduction

The concept that in a nonlinear wave propagation sys-
tem the various parts of the wave travel with different
velocities, and that wave fronts (or tails) can sharpen
into shock waves, is deeply imbedded in the classical
theory of fluid dynamics [1-3]. The fact that this same
concept carries over into the treatment of electromag-
netic waves was appreciated by Salinger [4] in a pi-
oneering paper in 1923. However, no further progress
seems to have occurred in this field until the 1950s,
when practical interest arose in ferroelectrics, in para-
metric phenomena, and in propagation along magnet-
ically loaded lines in memory arrays. A detailed discus-
sion of electromagnetic shock wave formation and prop-
agation has been provided by one of the authors [5]. A
considerable body of experimental and theoretical litera-
ture on nonlinear transmission lines has been published
since then, and we cite here only a small portion of that
literature [6—13]. With the advent of the laser in the
1960s, the concept that different parts of a wave in a
nonlinear medium can move with different velocities was
used again, first by Chiao et al. [14] in their discussion
of the self-focusing of laser beams. Subsequently the
concept of self-induced frequency changes in amplitude-
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modulated laser pulses was also suggested [15], elabo-
rated upon [16], and then observed [17,18]. The behav-
ior of an additional small signal controlled by the propa-
gation velocity profile of a large nonlinear signal has also
been treated [19]. While the nonlinear optical pheno-
mena have undoubtedly come to overshadow the earlier
baseband propagation problems in their interest, the
baseband phenomena are simpler. They are, therefore, a
good ground for conceptual exploration, and we return
here to this earlier territory, not so much with a specific
application or experiment in mind, but simply to under-
stand more carefully what determines the structure of a
shock, particularly its width. We are also interested in
the condition under which we can in fact expect the res-
olution of a shock into a continuous, single-valued, in-
variant, moving profile.

The velocity differences found within an initially
spread-out portion of a wave front can cause the front to
contract (or expand, depending on the sign of the
changes in the nonlinear reactance). If such a contrac-
tion continues in an unaltered fashion, it can eventually
lead to a muitivalued function, in which one part of the
wave has overtaken another. As the wave sharpens, and
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Figure 1 Transmission line having a nonlinear capacitance
with a finite relaxation time; L is the inductance, U (Q) charac-
terizes the voltage-charge relationship of the nonlinear capaci-
tance, and R is the resistance providing the damping.

thus involves higher frequencies, dispersive effects that
were neglected at first will inevitably manifest them-
selves and can balance the contraction effects, leading to
a profile that propagates without change. An analysis of
this balancing process arising from the inertial and relax-
ation effects of charges in a dielectric was presented
some years ago [20]. Since this work has never reached
full formal publication a portion of it is presented in the
second section, which gives a detailed analysis of the
effect of relaxation (but without allowing for inertial
effects) on the shock wave structure.

The effects of dispersion on the propagation of waves
in a nonlinear medium have attracted considerable
attention [3]. The approximation of dispersion functions
by finite polynomials results in Burger’s equation and in
the Korteweg and de Vries equation, which have been
studied extensively [3]. An approximation of the disper-
sion function by a polynomial gives rise to a strong dis-
persion, especially at high frequencies, and always pre-
vents the “overtaking” phenomenon, but the effects of
the original exact dispersion are still open to question. In
the third section we consider a transmission line in which
the dispersion results from a shunt branch, where the
nonlinear capacitance is in series with a parallel RC
combination. The dispersion can be controlled by vary-
ing a parameter of the system and the resulting effects
then analyzed. We observe from the solution that the
dispersion must be strong enough to balance the con-
traction effect that is due to the nonlinearity of the sys-
tem. Otherwise, overtaking will occur, resulting in multi-
valued fields and showing that a critical dispersion is
required for the existence of a single-valued, steady
state, moving wave profile in this nonlinear system.

For a nonlinear dispersive wave system we may de-
fine various wave velocities. These include the low- and
high-frequency wave velocities of very small signals,
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assuming that the nonlinear capacitance is charged to a
specified spatially uniform bias level. We can also in-
voke shock velocities related to the overall, or average,
capacitance associated with the shock transmission at
low frequencies. The critical dispersion, which depends
on the nonlinearity of the system, can be expressed as a
relation among some of these wave velocities. Because
such wave velocity concepts apply to many systems, it
is hoped that our present resuits can eventually be gen-
eralized to a larger class of nonlinear dispersive systems.
As an illustration, we also consider in the fourth section
the case of a transmission line with a dispersive series
inductance and find that the result is identical to that
obtained in the third section if the results are expressed
in terms of the wave velocities mentioned here.

In our subsequent discussions, for simplicity, we fo-
cus on systems in which the shock forms on the leading
edge of a pulse. Because the modifications required for
shocks on a trailing edge are trivial, they are not explicit-
ly mentioned at every step.

Shock wave structure has been considered by a num-
ber of authors who were motivated by various physical
problems, including, e.g., the classical case of hydrody-
namic shocks [21]. Khokhlov [13] specifically consid-
ered nonlinear transmission lines and found a shock
thickness that agrees with our own results of the next
section. G. B. Whitham in a comprehensive paper [22]
discussed many aspects of shock wave structure, empha-
sizing magnetohydrodynamics, and anticipated some of
the concepts presented throughout this paper. In partic-
ular he emphasized the view of shock structure as an
equilibrium between the nonlinear behavior and the dis-
persion. He furthermore pointed out, as we shall, that as
parameters are varied in some of these systems the steady
state profile can make a transition from single-valued be-
havior to multivalued behavior. As we show later in more
detail, the multivalued profiles are, of course, nonphys-
ical and reflect on the accuracy of the equations leading to
them.

Shock wave structure for simple relaxation time

To facilitate the discussion for the general case in the
next section, we consider here a special case for which
an explicit solution can be given, showing the detailed
structure of a shock wave. A transmission line that has a
nonlinear capacitance with a simple series resistance is
shown in Fig. 1. This transmission line is a special case
of lines analyzed by Landauer and Thomas [20] as a
model for the study of TEM wave propagation in a fer-
roelectric material at a temperature just above the transi-
tion point. Riley [6] has also given experimental and
theoretical analyses of a line in which the nonlinear ca-
pacitance has a resistance in series with it. We present
here an analytic solution for a steady state shock wave
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in this system, so that the velocity and the detailed
structure of a shock wave can be related to the charac-
teristics of the medium.

From Fig. 1, the basic equations governing the fields
can easily be obtained by invoking Kirchhoff’s law of
voltage and current:

aV/ox =— L(aljat), (1)
allax = — 3Q/at, and (2)
V=U(Q)+ R(3Q[at), (3)

where V, I, and Q are the transmission line voltage, cur-
rent, and charge, respectively; L is the inductance per
unit length; R™' is the conductance per unit length,
which characterizes the damping mechanism; and U is
the voltage across the nonlinear capacitor and is as-
sumed to be a single-valued function of the charge Q.

For a wave of constant profile, we assume a solution
of the form

Q=0(6);

where u is the constant shock wave velocity character-
izing the charge variation as well as the variation of volt-
age V and current 1. With this assumption Egs. (1) and
(2) become V' = ul]' and I' = uQ’, respectively, where
the primes denote differentiation with respect to the
argument of the function. These two equations can
readily be integrated to yield

V =1’LQ. (5)

0=x—ut, (4)

In obtaining the last equation, we have set the integra-
tion constant equal to zero, which is correct for a shock
transition propagating along an initially uncharged line.
With the notation U(Q) = (1/C,) [Q + n(Q)], where C
is the linear or small-signal capacitance of the transmis-
sion line and »(Q) represents the nonlinear behavior of
the capacitance, Eqs. (3) and (5) can be combined to
yield

aQ = n(Q) +7,(8Q/at). (6)
In Eq. (6) we have invoked the following notation:
a=ulv, — 1,

v, = 1/LC,, and 7,= RC,,

in which « represents the deviation of the shock wave
velocity from the linear characteristic wave velocity v,,
and will be related to the shock strength later; and 7, is
the relaxation time for a small signal on the uncharged
line. In terms of , Eq. (5) can be written

V=/C) (1+a)0. (7)

Physically, Eq. (6) states that the nonlinearity and the
relaxation offset each other’s effect, resulting in a modi-
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Figure 2 Typical shock wave form:
Q% (x — ur) = 3051 — tanh (x — ut)/w,].

fication of the linear capacitance, as is evident from Eq.
(7). For the functional form given in Eq. (4}, Eq. (6)
becomes

ur,dQ/dd = n(Q) — aQ, (8)

which determines the detailed waveform of the steady
state shock.,

The waveform depends on the nonlinearity of the
medium. For example, for the lowest order nonlinearity
in a medium with a center of inversion, the cubic case:
n(Q) = v Q°, where 7 is the nonlinear constant. In that
case Eq. (8) can be integrated to yield

O'(x —ut) =4 0][1 — tanh (x — x, — ut)[w,], 9)

where Q; in the shock wave amplitude and x, is the
integration constant that determines the initial position
of the shock wave. The shock velocity and (half) width,
u and w,, are related to the shock amplitude by

u=1y,(1 +7;Qs2)%, and (10)
w, = urfn Q. (11)

A typical waveform of the shock given by Eq. (9) is
plotted in Fig. 2, which agrees with Riley’s numerical
calculations and with his experimental results [6]. From
Eqgs. (10) and (11) we observe that a larger shock am-
plitude gives a higher shock velocity and a narrower
shock transition. The shock width w, is linearly propor-
tional to the relaxation time 7,. Hence the experimental
measurements of the shock width may be used for the
direct determination of the relaxation process in a non-
linear material.
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Figure 3 Dispersive nonlinear capacitance transmission line.
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Figure 4 Dispersion curves of the transmission line of Fig. 3.
x; and «; are the real and the imaginary parts of the propagation
constant, respectively. There are additional solutions to Eq.
(16) not shown here, for which o is purely imaginary and « is
real. These additional modes correspond to a relaxation pro-
cess, rather than to propagation.

Equation (8) may also be integrated for other types of
nonlinearity; e.g., for the case of quadratic nonlinear-
ity, n{Q) = Q°, the shock width is w,=2u 7,/n Q..
Khokhlov [13] treats essentially the same problem as
we discuss here. He considers the quadratic nonlinearity
and sinusoidal excitation rather than a single voltage
transition. He finds the same shock width that we quote
here for the quadratic nonlinearity.

Dispersive nonlinear capacitance transmission line
In this section we introduce a more complicated disper-
sion process in which a linear capacitance is added in
parallel with the resistance, as shown in Fig. 3. Roughty
speaking, low- and high-frequency currents pass through
the resistive and capacitive branches, respectively, in
the lower portion of the shunt circuit. A low frequency
wave thus “sees” a capacitance equal to the nonlinear
capacitance, but a high frequency wave sees a capaci-
tance equal to that of the nonlinear and linear capaci-
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tances in series. Consequently, the low frequency capac-
itance is larger than the high frequency capacitance, and
a high frequency wave propagates at a higher velocity
than does a low frequency wave.

Two extreme cases of this transmission line are easily
understood. When C| — 0, the nonlinear capacitance has
a simple relaxation time and this is the case we have
analyzed in the preceding section, with the conclusion
that a single-valued, steady state shock wave exists. The
other extreme occurs when C, — <, in which the resis-
tance is short-circuited and the transmission line is loss-
less and dispersionless. In this case it has been shown
that a wave continues to distort as it propagates along
the line [5]. This eventually results in multivalued fields
which are considered physically unacceptable. As is
shown in the next section, the value of 1/C, can be taken
as a measure of the dispersion of the transmission line.
Thus, the effect of linear dispersion on the shock wave
structure can be studied by varying the value of C,. In
particular, the two special cases discussed here suggest
that there must exist an intermediate value of C, above
which no single-valued, steady state shock wave can
exist. In other words, a minimum (or critical) dispersion
of the nonlinear transmission line is required for a steady
state shock wave to remain single-valued and we deter-
mine here this critical dispersion.

With reference to Fig. 3, the governing equations can
easily be obtained by invoking Kirchhoff’s laws of volt-
age and current:

aViex =— L(allat), (12)
allox =— aQlot, (13)
V=U(Q)+RJ,and (14)

J+ 7, (aJ]or) = a0l ar; 7, =RC,, (15)

where V and I are the transmission line voltage and
current, Q and U are the charge and voltage associated
with the nonlinear capacitance, J is the current flowing
through the resistance, and 7, is the relaxation time as-
sociated with the capacitance C,.

s Linear dispersion
In the absence of nonlinearity in the capacitance we
have U(Q) = (1/C,)Q, where C, is the linear part of
the nonlinear capacitance. In this case, we obtain the
dispersion relation

2
2 w

K =-— - : )
v,°[1 + jor/(1 + jor,)]

(16)

in which v,* = 1/LC, and 7, = RC,),

where « is the propagation constant,  is the frequency,
v, 1s the characteristic velocity of low frequency waves,
and 7, is the linear relaxation time of the nonlinear

IBM J. RES. DEVELOP.




capacitance when it is uncharged. The real and imaginary
parts of « are plotted as functions of real values of w in
Fig. 4. It is evident from Fig. 4 that v, and v, are re-
spectively the low- and high-frequency wave velocities
and are given by v, = v,, and

C,+C\
amu G2

Equivalently, we can define the low- and high-frequency
capacitances of the transmission line as, respectively,

C,=C, and
C,=C,CJ/(Cy+C)), (17)

1

where C, is the total capacitance of Cjand C| in series, as
can be seen directly in Fig. 3. It is also evident in Fig. 4
that the wave velocity increases monotonically from v, to
v,. Keeping C, and v, fixed, we can control C, or v, by
varying the value of C,; the smaller the value of C, the
smaller the value of C,. With this smaller value comes a
stronger dispersion.

s Steady state shock wave

For a steady state shock wave propagating with a con-
stant profile, we assume once again a solution of the
form Q = Q(8); 6 =x— ut, and similarly for V, I, andJ
in Eqgs.( 12) through( 15). In terms of § these equations
become the ordinary differential equations

V,=uL I, (18)
ly=uQ, (19)
V=U(Q)+ RJ, and (20)
J—ur Jy=—uQ, (21)

The subscript 6 denotes differentiation with respect to
6. Equations (18) and (19) can readily be integrated
to yield

V=u'LO. (22)

In arriving at the last equation, we have again set the
integration constant equal to zero. This is appropriate in
the special case of a shock transition starting from an
initially uncharged line and leaving a charge density Qs
after its passage. Eliminating V and J from Eqs. (20)
through (22) we obtain

o Q)
T YA (23)
with

fl@)= (1JR)[«’L 0 — U(Q)]. (24)

Equation (23) determines the shock wave for a given
function U.
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As an example, let us consider again the nonlinear
voltage-charge relation, U(Q) = (1/C,) [Q + 7 Q°], as
in the preceding section. In this case, Eq. (23) becomes

j—g=—3u71 a;l—t%, (25)
with

a= (1/3n) [(r,/r,) —mAl,

A= (1/n) [(@*]v,}) — 1]. (26)
Equation (25) can then be integrated to yield

(6= 8,)w = (1-8)InjA — Q| — In|Q’, (27)

where 6, is an integration constant that specifies the
initial position of the shock and w and & are constants
defined by w = 3ur,/2A and 8 = —A/a.

For the nonlinear coefficient > 0, Eq. (27) is plotted
for different values of « in Fig. 5. Since Q2 > 0, the
branches below Q=0 are irrelevant and may be ig-
nored. Thus, for the charge distribution of a steady state
shock profile, we must choose the branches within the
range 0 < Q° =< A. These branches represent a transi-
tion between an uncharged state, Q° = 0, and a charged
state, 0= Q. = A. The branches above 0'=A give
rise to unbounded solutions, unrelated to an initially
uncharged line, and hence must be rejected. The portion
of the shock profiles which is relevant, between Q° = 0
and Q° = A, is shown in the figure in heavier lines. We
observe that for the case » > 0, the profile of a steady
state shock wave is single-valued if @ > 0 and double-
valued if « < 0. The value of « is related to the disper-
sion of the system and it is from this effect of « on the
steady state shock profile that we determine the critical
dispersion required for the existence of a single-valued
shock.

We now relate « to the dispersion of the system. For a
shock transition between two states, Q = 0 and Q = Q,,
from Eq. (26), we obtain

A=Q. and (28)
a=(1/37n) [TO/TI—T)Qsz]. (29)

As shown by Eq. (16), 7,/7, is a measure of the disper-
sion in the system. The value of « thus, changes with
7,/7,, assuming that Q; is held fixed. For n > 0, « has
the range a > oy, = — Y307, In this range we recall
that o = 0 is the critical value that divides single-valued
and multivalued steady state shock waves. Right at the
critical value of « no bounded solution exists. Therefore
the condition for the existence of a bounded, single-
valued, steady state shock wave is o > 0, or, after in-
voking Eq. (29},

707, = CJC, > Q" (30)
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Figure 5 Complete curves of the shock wave solutions for different values of a.

Since 1/C, is a measure of the dispersion in the system,
Eq. (30) specifies the minimum or critical dispersion
needed to prevent a wave from becoming multivalued.

The multivalued steady state shock wave is nonphysi-
cal and arises because our equations do not accurately
represent the behavior of the system. This situation is
analogous to the condition presented by the transmission
line of Fig. 1 for the case R =0, in which we find the
over-taking phenomenon and multivalued solutions.
The latter disappear, however, when we go to a more
accurate treatment, applicable in the presence of fast
changes. Thus, taking R # 0 in Fig. 1 leads to a single-
valued wave with a finite width. One similarly expects
that, in the case of Fig. 3, allowing C, itself to be asso-
ciated with a finite relaxation time of its own (i.e., a se-
ries resistance) will avoid multivalued wave forms. Al-
ternatively one can take the view proposed by Whitham
[22] that the multivalued behavior in the steady state
profile is avoided by the formation of discontinuities.
But that leads again to questions about the real profile
of such a discontinuity and therefore to the need for a
better physical representation than exists in Fig. 3. Using
Whitham’s approach we would then find a discontinuous
initial rise in Q, followed by a subsequent continuous
portion, which is still a solution of Eq. (23) and is there-
fore represented in Fig. 5(b). The leading edge shock
would terminate on the upper branch of the heavy curve
in Fig. 5(b) at a point selected so that the velocity of the
feading edge shock equals that of the remaining wave
form.
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Returning to the general case, Eq. (23) can be put in
the form

4 _ 1-nf(Q)
dQ uf(Q)

Before and after shock passage dQ/d6 vanishes. Hence
Q as a function of # must vary between the two roots of
the equation f(Q) = 0. For the shock transition between
Q@ =0and Q = Q, > 0, we have, from Eq. (24),f(Q;) =
(1/R) [u’LQ,— U(Q,)] = 0. From this we obtain the
shock wave velocity

u= (LC), (31)

(23a)

where C; is the shock capacitance defined by
Ci=QJU(Qy).

For 0 < Q < Q,, we observe that f(Q) > 0. In order
for the steady state shock wave to be single-valued, we
must have d9/dQ < 0, which requires, from (23a),

1 —'rlf'(Q) >0,
or, after invoking Eq. (24),

1—C,[Ld’—U'(Q)] > 0. (32)
Substituting Eq. (31) into (32) we obtain

1 1 1

>, 33
C, G, CiQ) (33)

with the differential capacitance Cq(Q) = 1/[dU(Q)/
do].
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Equation (33) must be satisfied for all values of Q
within the range of the shock transition. For U(Q) =
(1/c,) [Q +7Q*] with >0, 1/C4(Q) is smallest
when Q = 0. Therefore Eq. (33) is most demanding at
Q = 0 and it can easily be shown that this condition is
identical to that given in Eq. (30).

When the relation 1/C, = (1/C,) — (1/C,) is invoked,
in which C, and C, are the high- and low-frequency ca-
pacitances, respectively, as defined in Eq. (17), Eq. (33),
can now be written as

or, in terms of wave velocities,

vl = v’ >0l — v, (34)
where v, and v, are the high- and low-frequency wave
velocities, respectively, and v, and v, are the shock ve-
locity (i.e., the velocity of the steady state profile) and
the velocity for small, low frequency signals. This condi-
tion states that the velocity difference resulting from the
dispersive character of a system must be large enough to
overcome the velocity difference resulting from the non-
linearity of the system.

We observe that condition (34) is most demanding for
the part of the shock in which v, has its smallest value,
i.e., on the uncharged line ahead of the moving shock.
There vy = v, and Eqgs. (34) simplifies to

v, > vl (35)

requiring high frequency components on the uncharged
line to be able to pass ahead of the shock. High frequen-
cy components at some higher level of charge will, of
course, have even higher velocities and will therefore
also run through and ahead of the shock. In the case of a
shock forming at the trailing edge of a wave, Eq. (34)
applies without modification; Eq. (35) applies if it is
understood that v, is the small-signal, high frequency
velocity ahead of the shock.

Since similar wave velocities appear in any nonlinear
dispersive system, it will be interesting to see whether
this condition on the wave velocities applies to other
systems as well. For this purpose, we consider another
type of dispersion in the next section.

Dispersive inductance transmission line

Instead of a frequency dispersion in the nonlinear capac-
itance itself, we now consider the case of frequency dis-
persion in the linear inductance, as shown in Fig. 6. The
governing equations of the system are

aV/ox=— L,(allat) — L,(aJ/at), (36)
allox =— 9Q/a1, (37)
I=J+7(aJ/at); 7=L /R, and (38)
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Figure 6 Dispersive inductance transmission line.

vV =U(Q), (39)

where V, I, and Q are the transmission line voltage, cur-
rent, and charge, respectively; J is the current flowing in
the L, branch; 7 is the relaxation time; and U is a single-
valued function of Q which characterizes the voltage-
charge relationship of the capacitance.

For a steady state shock wave, we assume that Q =
Q(#), with §=x— ut, and similarly for V, I, and J.
Equations (4.1) through (4.3) can then be integrated to
yield

o wrlf'(Q) + 'L
Qo Q) ’
in which

fQ)=U(Q) —¥'LQ;

As in the preceding section, for the shock transition
between two constant states, O = 0 and Q = Q,, we ob-
tain, from f(Q,) =0, the shock wave velocity: u =
1IVLC,;, C,= Q/U(Q). The condition that d6/dQ < 0
requires that f'(Q) + «’L, > 0, from which, with a little
algebra, we can obtain,

1/(CoLy) > 1(CL),

L=1L,+L,

where 1/(C4L,) is the high frequency velocity on a uni-
formly charged line. Its lowest value along the shock is
1/(CyL,) = vhz, i.e., the high frequency value on the un-
biased line ahead of the shock. We therefore once again
obtain

v, > v, (35)

as in the preceding section. We emphasize the fact that
the equivalence between Eqs.( 35) and( 33) depends on
the use of wave velocities. If expressed instead in terms
of transmission line parameters the equivalence disap-
pears.
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Physical considerations

Our result, in the form of Eq. (35), has a form which
suggests a greater generality and also invites physical
analysis. At this point we admittedly depart from a strict
analytical basis and enter the realm of speculation. In
the process of self-steepening, leading to shock forma-
tion, higher frequency components are generated. At a
particular point when the waveform has become verti-
cal, just before the onset of over-taking, we have very
high frequencies. Clearly, if such high frequency compo-
nents move faster than the shock, they will move ahead
of the shock and prevent the wave form from ever
reaching the stage at which derivatives do in fact be-
come unbounded. We can thus also see, at least on an
intuitive level, that our monotonic steady state profiles
are stable solutions. A very spread-out transition will
sharpen up, whereas a transition having very steep por-
tions will lose those portions, since they will move
through the transition and ahead of it. After separating
from the shock, the high frequency components will be
attenuated. Clearly there is a need for a broadly applica-
ble analytic version of the concepts suggested here.
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