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Numerical Calculation of Self-Focusing and Trapping
of a Short Light Pulse in Kerr Liquids

Abstract: Self-focusing and trapping of an intense, short light pulse is discussed on the basis of a parabolic scalar wave equation which
includes a quadratic nonlinear refractive index. When the finite relaxation time of the nonlinear index is taken into account, the propa-
gation properties of the transient solution differ considerably from those of the time-independent solution. Based mainly on the results
of our numerical calculations, we show that contraction of the self-focusing pulse stops at a finite radius and that part of the pulse re-
mains trapped beyond this focal point. The limiting radius decreases rather rapidly with increasing input power as well as with pulse
width. However, if we assume a cutoff radius, the resulting filament accounts for experiments performed with multimode lasers. Ef-

fects of stimulated Raman scattering and dispersion are also discussed.

Introduction

The purpose of this paper is to show that various phenom-
ena associated with the self-focusing of intense light
pulses in Kerr liquids that are excited by multimode or
mode-locked lasers can be explained rather naturally on
the basis of the simplest wave equation having a quad-
ratic nonlinear term. If phenomena in the very short
time region of several picoseconds are ignored, bright
spots and streaks observed in self-focusing are known
[1,2] to be the tracks of the focal points which move
through the medium in accordance with the change in
light intensity. On the other hand, many observations,
especially those obtained with multimode lasers, show
evidence of optical “filament” formation. It has been
understood that this trapping is a transient phenomenon,
possibly associated with the finite response time of the
optical Kerr effect. A model for the transient filament has
also been proposed [3]. But the kind of formulation
sufficient to explain transient phenomena remained un-
known. Consequently, we have numerically integrated
the equations proposed by Fleck and Kelley [4], which
describe the propagation of a cylindrically symmetric
light pulse in a nonlinear medium with finite relaxation:
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The calculations enable us to explain certain common-
ly observed phenomena in self-focusing in liquids which
were not found by the authors of Ref. 4 because of limi-
tations in their numerical calculations. In the above equa-
tions the time ¢ is normalized by the relaxation time of the
nonlinear refractive index x.;, and z by 2ka®, where k is
the linear wave vector in the medium. The radial normali-
zation factor a may be chosen arbitrarily. In the follow-
ing numerical integrations it is usually the 1/e power ra-
dius of the input Gauss1;an beams. The field amplitude E
is normalized by (g /e, )?/ka, wlhere the steady state non-
linear index is expressed as 807|E|2/2k2a2.

In the next section some previously published experi-
mental results are briefly reviewed. In the third section
the time-independent theory is discussed and the rea-
sons clarified for considering the transient character of
the problem. Numerical results for Eqs. (1) and (2) are
given in the fourth section, showing how these formula-
tions provide an appropriate model for observed trap-
ping phenomena. Dispersion effects and stimulated
Raman scattering are then discussed in the final section.

The beam breakup problem [5- 10], which is outside
the scope of the cylindrical equation, (1), is not treated.
We do not prove or disprove the existence of particular
types of optical “filaments™ that have been proposed in
the past. But we do try to explain the most commonly
observed phenomena in well-investigated liquids, such
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as CS, or benzene, on the basis of a simple model with a
quadratic nonlinear refractive index.

Experimental observations

The most immediate evidence of self-focusing of multi-
mode lasers is obtained from observations of the spatial
structure of the laser beam that emerges from a nonlin-
ear liquid. The beam contains a large number of small
bright spots which could not be seen at the entrance of
the liquid cell [11,12]. These bright spots are usually
formed from several millimeters to several centimeters
away from the entrance of the light into the nonlinear
liquid. The spots usually disappear if the path length in
the cell is longer than 50 to 100 cm. The total energy of
a spot ranges between 1 and 10 ergs, and the diameter
varies from 5 to 10 um. These values depend on the
medium as well as on the characteristics of the laser.
For some spots the persistence time can be estimated
from the modulation observed in the frequency spectrum
[13,14]. The result is usually several picoseconds.
Shorter durations of about 1 ps have been observed with
a Nd mode-locked laser [15].

The question has been asked whether the bright spots
result from rod-shaped trapped regions of the beam prop-
agating through the liquid [1,2,16]. For a mode-locked
laser it was clearly shown, from the time-resolved side
picture of induced birefringence [15], that the trapped
region actually propagates as much as several centi-
meters. For other types of lasers there was no defi-
nite experimental verification. The radial uniformity
of the modulation pattern in the frequency spectrum
{13,14,17], however, strongly suggested that the bright
spots produced in this case also had a similar origin. The
trapped region seemed to have a more or less uniform
radius, though the existing experimental results were not
accurate enough to discuss the detailed shape of the re-
gion.

The field intensity in those filaments can be estimated
from the above data. Using typical values, S um for the
radius, S ps for the duration, and 1 erg for the energy
(values appropriate to CS,), the intensity is calculated
to be 10" Wjcm®. The refractive index change is then
approximately 3 X 107 [18]. This value is also support-
ed by other observations. The emission angle of the anti-
Stokes rings in stimulated Raman scattering is slightly
smaller than the longitudinal wave-matching direction.
The difference corresponds to the same refractive index
change [19,20]. The frequency broadening of filaments
in CS, extends up to 10 or 20 percent of the laser fre-
quency. If we assume an index increase of 10>, the re-
quired propagation distance to produce such broadening
is 5 to 10 cm, which is close to the maximum propaga-
tion distance of filaments observed experimentally with
a mode-locked Nd laser [15].
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These experimental values strongly suggest that Eqgs.
(1) and (2) should describe filament formation fairly
well. For an index change of 107" the lowest-order non-
linear index should be sufficient. The radius observed
should also be large enough to justify treating the optical
field as a scalar field. Finally, the second derivative
of z can be ignored, since the focusing distance is rela-
tively long.

It should be emphasized that not all the observed
spots are filaments. Even for mode-locked lasers, bright
spots are also observed by focusing the camera inside
the cell [15]. This means that some spots are strongly
scattering regions. In the fourth section it is explained
that scattering regions should exist if Eqs. (1) and (2)
are to describe filaments having the observed diameter.
Furthermore, the streaks of light observed from the side
cannot be considered as parts of filaments. The small
total energy of a filament could not produce a very
strong scattering. It is important, for the proper under-
standing of the phenomenon, to note that the energy in
the trapped region is only a fraction of the total laser
energy that participates in the self-focusing process.

Time-independent solutions

A review is given in this section of time-independent re-
sults obtained with Eq. (1) and the instantaneous quad-
ratic response

xn = |EI. (3)

Chiao, Garmire and Townes [21] have shown numeri-
cally that there exists a steady state solution in which
the optical field propagates in the medium without
change in its cross-sectional shape. The scaling charac-
teristics of the equations indicate that the solution could
take any radial size, provided the beam power is kept
constant:

P =2x [ r|E|’dr =Py, =585

The threshold power P, may be considered as the
power level at which the focusing effect due to the nonli-
near refractive index xy; exactly cancels the radial ex-
pansion of the beam that is due to linear diffraction.
When P is larger than P, and if the incoming beam is
collimated and has a smooth radial shape, the beam col-
lapses at a finite distance z;. For high power the self-fo-
cusing distance z; varies proportional to P%[ZZ]. When
P is slightly smaller than Py, the beam can remain at an
approximately constant radius many times its diffraction
length before diverging again [23]. This is particularly
true for prefocused beams. The radial size of the beam
in this elongated focal region is then much smaller than
the radius at the linear focal point. However, the input
power range in which the focal region can be regarded as
a trapped filament is very small [23].
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Figure 1 Multiple focusing with a cubic loss (see text). The
two curves show the development of the intensity at the center
and of the total beam power P. Each time the beam self-focuses,
it loses energy approximately equal to the threshold power
Py |Elw is the square of the input field in the center.

As far as the self-focusing distance is concerned, the
agreement with experiments is relatively good. In early
experiments the approximate relation z; « P~ was veri-
fied [24]. However, the self-focusing solution of Eqs.
(1) and (3) does not lead to the kind of trapped filament
that was thought to be the source of the bright spots
observed. The solution has been shown to collapse rath-
er than to stabilize to a finite radius [22]. In fact, the
steady state solution has been reported to be unstable
against small perturbations [10].

In view of the large field intensity, saturation of the
nonlinear index was first considered as a mechanism to
limit the radius and to lead to a stable filament [25,26].
If Eq. (3) is replaced by a real function of |E|*,

XNL = f(|E|2), (4)

which is linear at small |E|* and saturates at large |E|’,
one can usually obtain steady state solutions for all
power levels above P,[26]. In this case the radial size
has a unique relation to P. When the index change is due
to the reorientational Kerr effect, the radius becomes
almost constant at higher power. The calculated size,
however, is more than one order of magnitude smaller
than the observed spot radius [26]. A more serious
difficulty is that the solution of Eqs. (1) and (4) does
not usually lead to a trapped state beyond the focal
point. The beam has been observed to diverge and focus
alternately [27,28]. This behavior is qualitatively under-
standable from the symmetry of Eq. (1). If the phase of
the electric field is constant in the focal plane, the solu-
tion is symmetric across this plane. This condition is
approximately satisfied for a relatively low input power.
If the input power is made extremely high compared to
Py, the phase at z; becomes rather complicated and, in
this case, so is the behavior of the beam [28].

Nonlinear absorption could be considered as an alter-
native mechanism to stop beam collapse. The results of

numerical integration have an amazing resemblance to
the solutions for the case of index saturation. The beam
ceases to collapse and multiple foci are produced. Fig. 1
shows numerical results for a third-order nonlinear loss,

XNt = ‘E‘Z - ial‘E‘4~ (5)

The input beam has a Gaussian shape and 20 times the
threshold power. The loss coefficient o, = 0.01 was cho-
sen arbitrarily to limit the radius contraction at around
10~%. The curves show the development of the central
intensity and of the total beam power and are normal-
ized to the input value and to Py, respectively. Repeated
focusing is clearly seen [29] in the figure. At each focal
region the beam loses power by an amount approximate-
ly equal to Py,. A diffracted wave with large angle starts
simultaneously from the same region, interfering with
the field in the wing, which is still focusing. As the beam
repeatedly focuses and defocuses, the field in the wing
develops a rather complicated interference pattern.
Numerical integration has not been continued beyond
the fifth focal region because the existence of the large-
angle scattered wave made further integration too time-
consuming. At higher input power, or higher loss, the
solution does not show clean, repeated focusing, as is
seen in Fig. 1. Under these conditions, an appreciable
variation of the phase occurs around the center of the
beam at the focal point. This is similar to the case of re-
fractive index saturation [28]. The results with |E|® and
|E|*losses are qualitatively similar to those with a third-
order loss. Repeated focusing was not found with a sec-
ond-order loss term |E|”.

Only a part of the total power focuses at each focal
region. In the geometrical-optics approximation this was
explained as the aberration of self-focusing [27,30].
The numerical solution of Egs. (1) and (3) seems to
indicate that problems of stability are also involved. The
beam shape near its center has a strong tendency to ap-
proach the steady state trapped solution as z approaches
z; regardless of its input shape or power [29]. This ten-
dency is clearly seen if one looks at the power contained
inside the 1/e power radius near the focal point. Fig. 2
shows the variation of the self-focused power Py, of a
Gaussian-shaped input beam as a function of the central
field intensity, where Py, is defined as # times the 1/e
power radius times the square of the central field am-
plitude. Five curves are drawn for five input powers
IO"IZPm, where n runs from 1 to 5. At the entrance to
the medium P,, is equal to the input power, correspond-
ing to the left end of each curve. As the beam propa-
gates and increases in intensity at the center, Py, de-
creases rapidly. Even when the input power is larger
than 100P,, P, approaches the value 0.78 Py, which
is the value of P, corresponding to the steady state solu-
tion.
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Examination of the beam shape near z; also shows that
it approaches the steady state shape rather than a Gaus-
sian one. The same evolution was observed for other
input shapes: Lorentzian, quadratic and exp (—r).

These results should be kept in mind when consider-
ing the gain in any stimulated scattering process which
is accompanied by the self-focusing. The over-all stimu-
lated gain can increase to infinity only very slowly, as
the radius at the focal point approaches zero. When the
beam contraction stops at a finite value, the gain en-
hancement due to self-focusing is not always larger than
that which could be produced by linear focusing. In
a linear medium the over-all gain of stimulated scatter-
ing for a focused Gaussian beam is proportional to

exp {2, f " |Eldz} = exp (2Pg,). 6)

—o

where g, is an approximately normalized gain coefficient
for the stimulated scattering.

This result is independent of the radial size at focus, or
of the focal length of the lens. Although the formula is
invalid for nonlinear focusing, the gain calculated from
numerical solutions is not far from the over-all gain,
Eq. (6), where P is now replaced by P,. For example,
in the solution of Fig. 1 the gain in a single focal region
is approximately exp 4 P,.g,, whereas the linear focusing
is exp 40 Pg.g,. Therefore, in a truly steady state situation
the self-focusing of a beam will enhance the stimulated
scattering gain only if the cell length is much shorter
than a distance approximately equal to the linear diffrac-
tion length of the incoming beam.

Transient solutions

The discussions in the previous sections indicate that
time-independent theories are inadequate to account for
experimental evidence of beam trapping. It should be
noted that definite experimental evidence of trapping has
usually been obtained for very fast phenomena in the
time range of 10™"' s. Since the relaxation time of the
reorientational Kerr effect is of that order of magnitude,
transient effects cannot be neglected [30-36). In this
section Egs. (1) and (2), which provide the simplest
description including a relaxation time, are shown to
constitute an appropriate model to explain observed
trapping phenomena.

One has to be careful when applying terms that usu-
ally specify propagation characteristics of a stationary
light beam to a light beam changing rapidly in time. In
this paper we use terms like “focusing” and “trapping”
as terms that specify spatial propagation characteristics
of each temporal part of a light pulse. A part of a light
pulse may be called “trapped” if that part of the pulse
propagates in the medium without changing its radius
much beyond the linear diffraction length. Equations (1)
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Figure 2 Change of the self-focused power P,, with the inten-
sity at the center. Five curves are for input powers 10" sz,
where n =1, 2,- -, 5. The self-focused power Py, is equal to the
input power of the Gaussian beam at the entrance to the me-
dium, corresponding to the left end of each curve. As the beam
focuses, for all input powers Py, approaches 0.78 Py, which is
equal to the value for the steady state trapped case. The central
field intensity is normalized to the field E;, of a Gaussian beam
having power Py, and the input radius.

and (2) guarantee that each temporal part of a pulse can
be distinguished from other parts throughout the propa-
gation in the nonlinear medium, because each part of the
pulse propagates with identical velocity v,. There is no
ambiguity, therefore, in the above definition. It should
be noted that, contrary to the stationary case, trapping
of a light pulse does not necessarily mean the existence
of a rod-shaped light beam having uniform radius. Vari-
ous parts of the pulse can be trapped at different radii.
The term “filament” is used in a less restrictive way. It
specifies the part of a pulse which has roughly a rod
shape and is trapped in the above sense. It will be shown
that the filaments obtained by numerical integrations in
this section have complex structures.

e Changes in pulse radii

The effect of the finite relaxation time is that yy, (¢) is
not determined by the instantaneous intensity |E(¢)|*, but
rather by past values integrated over a time period of the
order of the relaxation time. In consequence, xx. IS Zero
at the leading edge of the pulse. Another important con-
sequence is that yy;, at a given space-time point is affect-
ed by previous temporal variations of the pulse shape at
the same radial point.

The propagation of a pulse that is square-shaped in
time and has a power larger than Py, is described as fol-
lows. The front edge diverges according to normal, lin-
ear diffraction. The following portion starts to contract
and contracts faster towards the tail. Linear diffraction
increases as the radius decreases. In the case of instan-
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Figure 3 A schematic diagram of pulse propagation. (a) Input
pulse; (b) the tail starts to contract; (¢) the pulse reaches its
limiting radius; (d) from (c) on, the pulse expands proportional
to the linear diffraction of its leading edge. The dashed line indi-
cates linear diffraction.
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Figure 4 The filament length T, as a function of beam power,
from the steady state solution with finite relaxation time.

taneous response this is exactly compensated for by an
increase of the focusing effect, since xy. is inversely
proportional to the square of the radius. With a finite
relaxation time, however, the situation is somewhat dif-
ferent. The decrease in radius simultaneously enhances
the temporal variation at a given radial point. Since Xy
is determined by the integral intensity, the increase in
X1 18 then insufficient to compensate for the increase in
diffraction. As a result, the diffraction and the focusing
effects balance when the variation in radius becomes
sufficiently fast. From this point on, the entire pulse
gradually expands approximately at the same rate as the
expansion of the front edge. If the radius of the tail end
is much smaller than the radius of the front end, the tail
propagates many times its linear diffraction length with-
out an appreciable change in radius. One may say that
this part of the pulse is trapped. The schematic picture
of such a propagation is represented in Fig. 3.

The existence of a finite rate of change of radius for
which linear diffraction will balance against the focusing
effect is justified by the existence of a steady state solu-
tion. It is easy to verify by substitution that E and xx.
have solutions to Eqs. (1) and (2) of the forms

E = kf(xr)exp (iAx’z) and (7)
Xn1, = Kzg(Kr), (8)
with k = exp [(r — z/v,}/T,],

where A and T, are constants, and f and g are real func-
tions. This solution has a constant power at all times and
propagates without change in its intensity profile. Nu-
merical integration shows that a sotution of Egs. (1) and
{2) of the form (7), with a finite cross-sectional power,
exists for powers above threshold Py,. The constant T, is
a measure of the time during which the beam retains an
approximately constant radius. The constant can be
considered as the filament duration at the pulse tail. The
power dependence of T, is shown in Fig. 4. At high
power, T, decreases almost linearly with P~'. The exis-
tence of a solution of the form of Eq. (7) implies that a
focusing pulse will stop contracting, at least in the math-
ematical sense, at some finite intensity. Furthermore, it
is easy to see why previous attempts [4] to stabilize the
filament radius by this mechanism have failed. Because
the limiting pulse shape is an exponential horn, one must
take a sufficiently fine grid size in the numerical inte-
gration to prevent an apparent divergence for input pulses
of arbitrary length and intensity.

e Stabilization of pulse radius

The question remains as to whether the focusing pulse
does stabilize to a finite radius. It was shown in the last
sections that, with instantaneous saturation, the beam
diverges back beyond the focal point. With finite relaxa-
tion time the steady state solution can be considered
more stable, because only those perturbations which are
in phase over the duration of the relaxation time can
change xn. appreciably. However, when the pulse be-
comes longer, the behavior of this solution should ap-
proach the time-independent solution. We integrated
numerically Egs. (1) and (2) for Gaussian input pulses

E =E, exp[—(#*12T") — (*’2)], ©)

for pulse lengths up to 20 times the relaxation time (7 =
10). The result shows that for shorter pulses the trap-
ping is stable and that the above description is qualita-
tively correct.

Figures 5 and 6 show typical results for a short pulse.
The input peak power is 5.4 Py, or |E|* = 0.045 and the
duration T = 1.5. Figures 5(a) and (b) show the inten-
sity at the center and the width viewed at various dis-
tances in the medium as a function of local time. They
are normalized to the input values. The distances are
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chosen at equal intervals z = 0.0666n, where n runs
from one to eight. The top curve corresponds to n =1
and the bottom to n = 8. The zero in the horizontal scale
indicates the center of the input pulse and the left side
corresponds to the front. Except for the accompanying
oscillation, trapping of the pulse is clearly indicated. At
the tail the radius shrinks to approximately 1/20th of the
input value at around z = 0.2, and remains at practically
the same value until z = 0.666, where the calculation
was terminated. Accordingly, the intensity at the center
increases approximately 100 times in this part of the
pulse. Although intensity and radius are not completely
constant, the latter part of the pulse with duration 7 =
1.5 can be considered as a filament. The frequency
spectra at the center and at z = 0.533 are shown in Fig.
6. This distance corresponds to the n = 8 curve in Fig.
S. It reproduces fairly well the spectrum observed in
CS,. The spectrum is also quite similar to that obtained
by one-dimensional calculation [14]. No appreciable
radial variation is found in the filament spectrum [35].
This result is expected since the different parts of the
beam cross-section are constantly being mixed by dif-
fraction in a trapped beam.

The oscillations in intensities and radii in Fig. 5 ap-
pear in all numerical solutions shown in this paper and
are well correlated to each 27 phase shift in the field E.
The oscillation starts because of a time lag between the
wavefront distortion and the radial contraction. When
the pulse is focusing, the wavefront is concave in the
propagation direction and remains concave until the ra-
dius contracts beyond its stationary value. Then diffrac-
tion gradually bends the wavefront in the opposite direc-
tion. The radius, therefore, always undershoots at the
focal point before expanding again. This behavior is also
seen in the time-independent solutions discussed in the
last section. However, with finite relaxation time the
nonlinear index xy;, does not follow rapid changes in the
field intensity. Contrary to the time-independent solu-
tion, the radius does not expand much beyond its sta-
tionary value; this expansion is usually 10 to 20 percent
of the filament radius. As the pulse propagates farther,
the radius continues to oscillate by approximately the
same amount instead of approaching a stationary value.
This is probably due to the difference in phase modula-
tion among various radial parts of the pulse. In the
steady state solution Eq.(7), the phase in the wing ex-
actly follows the phase at the beam center. However, in
the above numerical solution, the phase in the far wings
is found to be constant, independently of 1 — z/v . Since
phase modulation accumulates at beam center, the
wavefront is inevitably distorted.

Calculation on a shorter pulse with T = 0.5 shows
similar results. With a peak power input of 12 Py, the
radius contracts to approximately 1/15 and the pulse
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Figure 5 (a) The intensity at the center and (b) the 1/e radius
of a pulse with duration T = 1.5 and power 5.4 P, The lines are
at distances z = 0.0666 n, where n =1, 2,- - -, 8. Zero in the hori-
zontal scale corresponds to the center of the input pulse. The
base lines were shifted vertically as shown to improve visibility.

forms a filament of length 0.6. A pulse of duration T = 5
with input power 2.4 P forms a filamentary structure
of length three. For a longer pulse the tail part of the
filament seems to be less stable. For a pulse of dura-
tion T = 10 with power 1.7 P, the tail of the filament
diverges after passing through the focal points. Even
when it does diverge the preceding part of the filament
remains trapped and propagates stably.

s Effects of input power

The filament length changes only slowly with input
power. However, the filament radius decreases very rap-
idly with increasing power, and the relation between the
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Figure 6 The frequency spectrum at a distance z = 0.533, cor-
responding to the n = 8 line in Fig. 5. Zero designates the origi-
nal laser frequency. The frequency f is normalized to the re-
laxation time.
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Figure 7 The change in absolute minimum radius with input
power for various input pulse lengths. The radius is measured at
the peak of the central field intensity |E|". The dashed line is the
radius at which the peak of the pulse reaches its first minimum
and decreases again. The minimum radius decreases more rap-
idly for a long pulse.

minimum radius and the power is shown for three pulse
lengths in Fig. 7. The radius decreases almost exponen-
tially with power, which is to be expected from the
steady state solution in Eq. (7). Therefore, it is clear
that the physical radius of the filament would soon be-
come extremely small as the input power is raised. How-
ever, the observed filament radius is much smaller than
that which is calculated from the known value for the
reorientational Kerr effect. The most plausible explana-
tion is that the pulse is cut off by nonlinear absorption or
scattering when its radius becomes smaller than a critical

radius r, of a few micrometers. The preceding part of the
pulse has the observed radius and remains trapped.

The propagation of a pulse with arbitrary input power
can be described as shown schematically in Fig. 8. The
horizontal scale indicates the position in the pulse by the
local time ¢’ =t~z/vg. The heavier solid line is the
trajectory of the destructive point at which the radius
becomes smaller than the critical radius r.. The heavy
line starts at the distance z =z, and from the position
t'=1t,. The energy in the neighborhood of this point
is dissipated either by nonlinear absorption or by scat-
tering. As the pulse propagates, this destructive point
advances towards the front or possibly towards the
back. The heavy line corresponds to the trajectory of
moving foci in the time-independent theory [2]. When
the destructive point advances to t,” at z = z,, the mini-
mum radius becomes larger than r, and the destructive
point ceases to exist.

The propagation of the portion ' < t,” is the same as
that of the “well-behaved” pulse previously described.
The portion between ¢,’ and t,’, which has a length of
the order of one and has approximately a constant radius
of the order of r., can be considered as being a filament.
This filament gradually expands and disappears at
around the diffraction length z, of the leading edge. The
boundary of the filament cannot be uniquely defined.
One may extend the trajectory of the moving foci be-
yond t,’ by defining it as the trajectory of the point at
which the radius attains its minimum value. At the front
edge of the pulse this trajectory ends at the linear focal
distance and for our input condition is z = 0. This por-
tion, however, shown by a dashed line in Fig. 8, does
not represent the front edge of the filament. Particularly
in a short pulse, the trajectory disappears at a distance
much shorter than z4. For a long pulse the minimum radi-
us decreases very rapidly with power above P,. There-
fore most of the pulse contracts to a radius smaller than
re. In addition, z, is very large, because the self-focusing
distance diverges at P = Py, for an infinitely long pulse.
Therefore the destructive point is observed at any dis-
tance in the medium. As the input pulse becomes short-
er, the distance z, — z, shortens and z, decreases. As a
result the probability of observing filaments increases.

Figures 9 and 10 show the result with |E|" loss,
which represents a sharp cutoff. The duration of the in-
put pulse is 7 = 3 and the poweris 12.1 Py,. A loss term
— 2 x 107%|E|" is added to the right side of Eq. (1).
Figure 9 shows the central intensity at various distances.
The curve for z = 0.088 corresponds approximately to
the distance at which the first focal point is formed.
Since the pulse length is relatively short, the focal point
quickly spreads to both sides of the pulse. The tail part
is cut off due to the disturbance caused by the nonlinear
loss. The part of the pulse for which — 2 <" < I, re-
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mains trapped and propagates. Figure 10 shows the
spectrum at the same distances as in Fig. 9. The spec-
trum has large components around the original frequency
and is complicated compared to the well-behaved fila-
ment shown in Fig. 6.

In these examples the filament sizes were selected to
be approximately 0.05. For a T = 1.5 pulse, a larger
power of 8 P, was also tried. The stability of the trapping
was not affected by this larger power. However, the evo-
lution towards the final radius is more complicated in
this case. The spectral broadening starts well before the
radius reaches its final size [37]. The radius of the por-
tion that shrinks fastest hits the first minimum when the
frequency begins to broaden. Then the pulse gradually
approaches its absolute minimum radius by reaching
repeated minima and maxima. The relation between the
radius at the first minimum and the input power is shown
in Fig. 7 by dashed lines. This radius tends to saturate
with power.

In principle, the contraction ratio of the radius can be
estimated from Fig. 7 if the filament power and the dura-
tion are known. Actually this is rather difficult to esti-
mate in view of the rapid change of radius with power.
Typical filaments in CS, produced by mode-locked Nd
lasers have 1 ps duration [15] and 400 GW/cm® power
density [38]. This means that the filament radius is ap-
proximately 0.1. If the input power is twice as large, it is
reduced to 0.01. These values are often still larger than
the ratios of the radii of the filaments to that of the laser
beams in usual experimental conditions. However it is
known that, in multimode lasers, the self-focusing starts
from hot spots much smaller than the beam diameter
[39,40].

We have shown in the last section that only a fraction
of the beam power self-focuses in the time-independent
solutions. A similar behavior is found for the transient
focusing, which is very critical to the time dependence
of the input pulse. When the puise is square, the situa-
tion is similar to that for time-independent focusing. If
the pulse, is triangular, however, with a ramp speed
dP|dt equal to several times the numerical value of Py,
most of the power is trapped. For the pulse in Fig: 5,
more than half of the beam power is trapped in the fila-
ment.

Stimulated Raman scattering and dispersion

The results in the preceding sections do not include two
important effects that usuvally accompany the filaments
produced by short pulses. These effects are stimulated
Raman scattering and linear dispersion. In most cases a
strong Raman-Stokes component is observed in fila-
ments. The importance of stimulated Raman scattering
does not decrease for short pulses, since the Raman
process is usually faster than the reorientational Kerr
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effect in liquids. In the absence of frequency broadening,
and for a pulse longer than several picoseconds, disper-
sion would not have a large effect on pulse propagation
over several centimeters. However, the intense, trapped
part of the pulse produces a large frequency broadening.
The new frequency components start to distort the fila-
ment envelope by dispersion. In considering the effect
on filament stability by these disturbances, one should
note that the filament is supported by the refractive in-
dex change created by the preceding “horn™ (see Fig.
3), which has less intensity. These disturbances, on the
other hand, are initially created inside the filament.
Therefore, if the disturbances do not affect the horn, the
filament may be treated approximately as a light pulse
that is trapped and propagates in a dielectric waveguide.
Planewave theories will describe qualitatively the fila-
ment propagation. Such theories have been discussed in
detail for the pulse distortion due to nonlinear refractive
index [31,41,42] as well as for the transient stimulated
Raman effect [43-48]. If the disturbances affect the
horn, the results will be qualitatively different from those
of one-dimensional theories.

The main purpose of this section is to consider the
stability of the filament itself. Because of the large num-
ber of parameters involved in these processes, it is rath-
er difficult to investigate numerical solutions for a wide
range of conditions, and so only two examples are in-
cluded.

First we consider the effect of Raman-Stokes wave
generation with a large frequency shift, as in the C-H
stretching mode. We add to Eq. (1) an equation for the
propagation of the Raman-Stokes field E:

@ 19
l:i""(i_A)“a_]ES:—(gg—(—z"'__)Es
0z v, at @, — Wy \gyf 1 or

Wy

(10)

LW —
+i @ xviEs

0
in which A is the group velocity mismatch.

The nonlinear susceptibility xy. is now the sum of two
contributions

(11)

where x;p is the nonlinear refractive index and xy is the
Raman susceptibility. These are governed by the equa-
tions

XL = X t X

(Xl 9t) + xo = |E|* + |Es|’. (12)

(Ixe/or) + <%+ iwv)XRz grE Eg*. (13)

This formulation assumes that the degree of frequency
broadening is much smaller than the vibrational frequen-
¢y w,. Linear dispersion is taken into account in the
lowest-order approximation through the group velocity
mismatch A. In most liquids these assumptions provide
sufficiently good approximations if the input pulse is
longer than a few picoseconds. The additional equations
(10) through (13) will affect the solution in the follow-
ing way. The nonlinear refractive index x;, decreases
by a factor (w, — wy)/w, as the laser field E is converted
into the Stokes field Eg. This change in x;, will advance
towards the leading edge of the pulse as Eg advances
because of the group velocity mismatch A.

Equations (1) and (10) through (13) were integrated
with input conditions T = 1.5 and P = 5.4 Py,, which are
the same as those of Fig. 5. A constant value of 5.4 X
107*Py, was taken for the input of |[Eg|’. Other parame-
ters were chosen as follows:. A =0.01666, gp =8, 7a =
0.2, and (0, — w,)/w,= 0.792. The latter value corre-
sponds to a vibrational mode of 3000 cm' for a ruby
laser. The other parameters are chosen so that E; grows
sufficiently fast compared to the frequency broadening
and that it advances into the horn before the filament
disappears by diffraction. Figure 11 shows the develop-
ment of the laser pulse and Fig. 12 that of the Stokes
pulse.

The Stokes pulse starts to grow from the tail of the
filament as the filament is formed (n = 1). It gradually
depletes the laser field from the tail of the filament (n =
2). At this stage the nonlinear refractive index yp is
already substantially affected by conversion of the laser
field into a Stokes field. However, the filament radius
retains its size approximately, because the horn is not
yet affected. The Stokes field advances relative to the
laser field because of group velocity dispersion. The
Stokes field gradually thrusts into the horn and depletes

IBM J. RES. DEVELOP.




60
40

«~& |

53]

< L
(']

w L.

Z 201

£

8 e

E

) L

[}

=]

= L

E (a)
S o ;

0.5

(b)

Power radius, 1 / ¢

-3 0

Local time, ¢’

Figure 11 Propagation of a filament in the presence of strong
stimulated Raman scattering. (a) The intensity at the center of
the laser field; (b) the 1/e power radius. Five curves are at dis-
tances z=0.2 + 0.011 n, where n =1, 2,---, 5. The input pulse
is of length T = 1.5 and power P = 5.4 Py,

the laser field (n = 3,4 and 5). Then the filament radius
starts to expand rapidly, which may be seen especially
clearly in the Stokes component in Fig. 12. The small
leftover energy of the laser component becomes ex-
tremely unstable, because the refractive index change
created by the expanded Stokes filament cannot main-
tain the laser component at its original size. If the veloc-
ity mismatch A is set to zero, the Stokes component
does not advance beyond the front of the filament,
where stability is not affected. This stability was con-
firmed by an independent integration using the same
values for the other constants.

In some liquids the frequency broadening often ex-
ceeds the Raman shift. In this case the Raman and laser
fields cannot be artificially separated. Numerical integra-
tion becomes extremely time-consuming because a very
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Figure 12 The development of the Stokes field in the pulse
represented in Fig. 11. As the Stokes filament advances into the
horn, the radius expands to the horn size at the front edge of the
Stokes filament.

fine grid size is required on the time axis. We consider
the following equations, which include dispersion and
stimulated Raman scattering in the simplest form:

9 19 @& 149 . 19
<~+ —)E— (——+—-—)E + 1<1 + Z’_o 6t>XNLE

dz v, dt 9t ror
2
—in2E

ot (14)
XnL = Xip T Xro (15)
9X1p
TI_+XID= |E|2’ (16)
BZXR 2 dxr 2 2
?‘F;E—‘vaXR:galEl- (17)
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Figure 13 Effect of dispersion and stimulated Raman scatter-
ing on a very short filament. (a) Intensity at the center; (b) the
power 27 [r|E['dr. The curves are for distances z=0.103 +
0.033 n, where n=1, 2, 3 and 4. At n =1 the filament has just
formed. The input pulse has T = 0.25 and P = 35 Py,

Here the slowly varying part of the field E is used to
represent the entire field. For a better approximation, the
first term on the right side of Eq. (14) would have to be
multiplied by (1 — e, '/a¢). This factor was neglected
in our computations. For the parameters selected in the
following numerical example, this factor, as well as (1 +
wo_la/at) in the second term, does not have a large effect
on pulse propagation. However, the latter was retained
in order to insure the proper reduction in |E|” as the fre-
quency is shifted downwards. The last term in Eq. (14)
represents linear dispersion. The Raman susceptibility
Xr is governed by Eq. (17).

We integrated these equations for relatively small w,,
so that the integration was feasible. The input pulse had
a Gaussian shape with 7 = 0.25 and a power of 35Py,.
The values of the constants were chosen so that the so-
lution simulated approximately the filament propagation

of a Nd mode-locked laser pulse. These were o, = 3900,
w, =271, A'=-2.5 x 107°, 7= 10, and gg’ = 400. Fig-
ure 13(a) shows the center intensity and 13(b) the
power 27 [r|E{*dr. Figure 14 shows the radius and Fig.
15 the frequency spectrum. To reduce calculation time,
the dispersion term in Eq. (14), and the stimulated
Raman effect in Eq. (17), were introduced after the first
focal point was formed at z /7 0.1.

The change in the central intensity qualitatively agrees
with a one-dimensional calculation [49]. At extremely
high intensities pulses deform in such a way as to form a
shock at the tail because of the intensity-dependent re-
fractive index {41]. In the intensity range of the fila-
ments, the linear dispersion is found to be more impor-
tant to pulse distortion [42,49] than is refractive index.,
For a short filament most of the pulse experiences a
downward frequency shift and this portion advances.
The pulse first becomes triangular and then produces a
sharp spike at its leading edge. This spike soon disap-
pears, but the shock continues to advance. The pulse
distortion does not necessarily cause a decrease in the
nonlinear refractive index x,, since the frequency shift
is small compared to w,. Therefore the filament radius
does not expand immediately, even after the horn has
begun to distort. The filament radius begins to be seri-
ously disturbed at the distance at which the shock reach-
es the front of the pulse. Because the frequency broad-
ening is large compared to the grid size for our integra-
tion, the last curve may not be accurate. Nevertheless, it
is believed to show the general tendency of the pulse
shape.

Conclusion

The moving-foci model of self-focusing assumes implic-
itly that the focused beam diverges beyond its focal
point, a characteristic substantiated by solutions of the
time-independent equations. The model is successful in
explaining the streaks of scattered light observed with
single-mode lasers [1]. The assumption of beam diver-
gence beyond its focal point, however, is not correct in
all cases. We have shown that the inclusion of a finite
relaxation time allows the beam to be trapped in the best
conceivable sense for a beam of finite duration. The
properties of the resulting filaments do not contradict the
existing experimental observations.

The present results, however, do not explain the ob-
served filament size of several micrometers. Various
saturation mechanisms have been proposed for this ob-
servation [26, 50~52]. An important conclusion of our
numerical integrations is that not only can a simpie satu-
ration of the nonlinear refractive index serve as a mech-
anism to limit the filament radius, but also that any non-
linear scattering or absorption can provide the mecha-
nism.
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