
Fuji0 Shimizu 

Numerical  Calculation of Self-Focusing  and  Trapping 
of a Short  Light  Pulse in Kerr  Liquids 

Abstract: Self-focusing and trapping of an intense,  short light pulse is discussed  on  the basis of a parabolic scalar  wave equation  which 
includes  a quadratic nonlinear refractive index.  When the finite relaxation  time of the  nonlinear  index is taken into account,  the propa- 
gation  properties of the  transient solution differ considerably  from those of the time-independent  solution. Based mainly on  the  results 
of our numerical  calculations,  we show  that  contraction of the self-focusing pulse stops  at a finite radius and  that  part of the pulse  re- 
mains trapped beyond this focal  point. The limiting radius decreases  rather rapidly  with  increasing  input power as well as with pulse 
width. However, if we  assume a cutoff radius, the resulting filament accounts  for  experiments performed  with  multimode lasers. Ef- 
fects of stimulated  Raman  scattering and dispersion are also discussed. 

Introduction 
The  purpose of this  paper is to  show  that various phenom- 
ena  associated with the self-focusing of intense light 
pulses in Kerr liquids that  are excited  by  multimode or 
mode-locked lasers can be explained rather naturally on 
the basis of the simplest wave  equation having a quad- 
ratic nonlinear term. If phenomena in the  very  short 
time region of several  picoseconds  are ignored, bright 
spots and streaks  observed in self-focusing are known 
[ 1,2] to be the  tracks of the focal points which  move 
through the medium in accordance with the  change in 
light intensity. On  the  other  hand, many observations, 
especially those obtained  with  multimode lasers,  show 
evidence of optical “filament” formation.  It  has  been 
understood  that this  trapping is a transient phenomenon, 
possibly associated with the finite response time of the 
optical Kerr effect. A model for  the  transient filament has 
also been  proposed [3] .  But the kind of formulation 
sufficient to explain transient  phenomena remained  un- 
known. Consequently,  we  have numerically integrated 
the  equations proposed by Fleck  and Kelley [4], which 
describe  the propagation of a cylindrically  symmetric 
light pulse in a  nonlinear medium with finite relaxation: 

The calculations enable us to explain certain  common- 
ly observed phenomena in self-focusing in liquids  which 
were not found by the  authors of Ref. 4 because of limi- 
tations in their  numerical  calculations. In  the  above  equa- 
tions  the time t is normalized by the relaxation  time of the 
nonlinear  refractive index xsr,, and z by 2ka2, where k is 
the  linear  wave  vector in the medium. The radial normali- 
zation factor a may be chosen arbitrarily. In  the follow- 
ing numerical  integrations it is usually the l/e power ra- 
dius of the input Gaussian  beams.  The field amplitude E 
is normalized by (~ . , / e , )T /ka ,  There  the  steady  state non- 
linear  index is expressed  as q,~lE1’/2k2u2. 
In the  next  section  some previously  published experi- 

mental results  are briefly reviewed.  In  the third  section 
the time-independent theory is discussed and the rea- 
sons clarified for considering the  transient  character of 
the problem. Numerical  results  for  Eqs. ( 1 ) and ( 2 )  are 
given in the fourth  section,  showing how these formula- 
tions  provide an  appropriate model for  observed  trap- 
ping phenomena.  Dispersion effects and stimulated 
Raman  scattering are then  discussed in the final section. 

The beam breakup problem [ 5  - lo], which is outside 
the  scope of the cylindrical equation, ( 1 ), is not treated. 
We do  not  prove  or  disprove  the  existence of particular 
types of optical “filaments” that  have been  proposed in 
the past. But we  do  try  to explain the most  commonly 
observed  phenomena in well-investigated  liquids, such 
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as CS, or  benzene,  on  the basis of a simple model with  a 
quadratic nonlinear refractive index. 

Experimental  observations 
The most  immediate evidence of self-focusing of multi- 
mode lasers is obtained from observations of the spatial 
structure of the  laser beam that emerges  from  a nonlin- 
ear liquid. The beam contains a  large number of small 
bright spots which  could  not be  seen  at  the  entrance of 
the liquid cell [ 1 1,121. These bright spots  are usually 
formed  from several millimeters to several centimeters 
away from the  entrance of the light into the  nonlinear 
liquid. The  spots usually disappear if the  path length in 
the cell is longer than 50 to 100 cm.  The  total energy of 
a spot ranges between 1 and 10 ergs, and the  diameter 
varies  from 5 to  10pm.  These  values  depend  on  the 
medium as well as on the characteristics of the  laser. 
For  some  spots  the  persistence time can  be estimated 
from the modulation observed in the  frequency  spectrum 
[ 13,141. The result is usually several  picoseconds. 
Shorter  durations of about 1 ps  have been observed with 
a Nd mode-locked laser [ 151. 

The  question  has been  asked whether  the bright spots 
result  from  rod-shaped  trapped  regions of the beam  prop- 
agating through the liquid [ 1,2,16]. For a  mode-locked 
laser it was clearly shown,  from  the time-resolved  side 
picture of induced  birefringence [IS], that the  trapped 
region actually propagates  as much as  several centi- 
meters.  For  other  types of lasers  there  was  no defi- 
nite  experimental verification. The radial uniformity 
of the modulation pattern in the  frequency  spectrum 
[ 13,14,17], however,  strongly  suggested that  the bright 
spots produced in this case  also had a similar origin. The 
trapped region seemed to  have a more  or  less uniform 
radius,  though the existing experimental  results  were not 
accurate enough to  discuss  the detailed shape of the re- 
gion. 

The field intensity in those filaments can be  estimated 
from the  above  data. Using  typical  values, 5 pm for  the 
radius, 5 ps for  the  duration,  and 1 erg for  the energy 
(values  appropriate  to CS,), the intensity is calculated 
to be 10" W/cm'. The refractive  index change is then 
approximately  3 X [ 181. This value is also  support- 
ed by other  observations.  The emission angle of the anti- 
Stokes rings in stimulated Raman scattering is slightly 
smaller  than the longitudinal wave-matching direction. 
The difference corresponds  to  the  same refractive  index 
change [ 19,201. The  frequency broadening of filaments 
in CS, extends up to 10 or 20 percent of the  laser fre- 
quency. If we  assume  an index increase of the  re- 
quired  propagation distance  to  produce  such broadening 
is 5 to 10 cm, which is close to  the maximum  propaga- 
tion distance of filaments observed experimentally  with 
a mode-locked Nd  laser [ 151. 

These  experimental values  strongly  suggest that  Eqs. 
( 1)  and (2)  should describe filament formation fairly 
well. For  an index change of the  lowest-order non- 
linear  index  should  be sufficient. The  radius  observed 
should also be large enough to  justify treating the optical 
field as a scalar field. Finally, the  second  derivative 
of z can  be ignored,  since the focusing distance is rela- 
tively long. 

It should  be  emphasized that not all the  observed 
spots  are filaments. Even  for mode-locked  lasers, bright 
spots  are  also  observed by focusing the  camera inside 
the cell [ 151. This  means  that some spots  are strongly 
scattering  regions. In  the  fourth section it is explained 
that scattering  regions  should exist if Eqs. ( 1 ) and (2)  
are  to  describe filaments having the  observed  diameter. 
Furthermore,  the  streaks of light observed from the side 
cannot be  considered as  parts of filaments. The small 
total energy of a filament could not produce a very 
strong  scattering.  It is important,  for  the  proper  under- 
standing of the  phenomenon,  to  note  that  the energy in 
the  trapped region is only  a  fraction of the  total  laser 
energy that  participates in the self-focusing process. 

Time-independent solutions 
A review is given in this  section of time-independent  re- 
sults obtained  with Eq. ( 1)  and  the  instantaneous  quad- 
ratic  response 

XNL = IEI'. ( 3 )  

Chiao,  Garmire  and  Townes  [21]  have  shown numeri- 
cally that  there  exists a steady  state solution in which 
the  optical field propagates in the medium  without 
change in its cross-sectional  shape.  The scaling charac- 
teristics of the  equations indicate that  the solution  could 
take any  radial  size,  provided the beam power is kept 
constant: 

P E 2 r  som rlEI2dr= P t h  = 5.85  

The threshold power f,, may be  considered  as  the 
power level at which the focusing effect due  to  the nonli- 
near refractive  index xNL exactly  cancels  the radial ex- 
pansion of the beam that is due  to linear  diffraction. 
When P is larger  than P,,, and if the incoming beam is 
collimated and  has a smooth radial shape,  the beam col- 
lapses  at a finite distance zf. For high power  the self-fo- 
cusing distance zf varies  proportional to f3 [22]. When 
P is slightly smaller than P t h ,  the beam can remain at  an 
approximately constant radius many times  its diffraction 
length before  diverging  again [23].  This  is particularly 
true  for prefocused beams.  The radial  size of the beam 
in this  elongated  focal region is then much smaller than 
the radius at  the linear  focal  point. However,  the input 
power range in which the focal region can be  regarded as 
a  trapped filament is very small [23]. 
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Figure 1 Multiple  focusing with a cubic loss (see text). The 
two curves show the development of the intensity at the center 
and of the total  beam  power P .  Each  time the beam self-focuses, 
it loses energy  approximately equal to the threshold power 
Pth. ]ElIN' is the square of the input field in the center. 

As  far as the self-focusing distance is concerned,  the 
agreement with experiments is relatively good. In early 
experiments  the  approximate relation zf a P"'. was veri- 
fied [24].  However,  the self-focusing solution of Eqs. 
( 1 ) and  (3)  does  not lead to  the kind of trapped filament 
that  was  thought to be  the  source of the bright spots 
observed.  The solution has been  shown to collapse rath- 
er  than  to stabilize to a finite radius  [22].  In  fact,  the 
steady  state solution has been reported  to  be  unstable 
against small perturbations [ lo]. 

In view of the large field intensity,  saturation of the 
nonlinear  index was first  considered as a mechanism to 
limit the radius and to lead to a stable filament [ 25,261. 
If Eq.  (3) is replaced by a real function of [El2,  

which is linear at small (El2 and  saturates  at large (El2,  
one  can usually obtain  steady  state solutions for all 
power levels above  Pth[26].  In this case  the radial size 
has a  unique  relation to P. When the index change is due 
to  the  reorientational  Kerr effect, the radius becomes 
almost  constant  at higher  power. The calculated  size, 
however,  is  more  than  one  order of magnitude  smaller 
than the  observed  spot radius [26]. A more  serious 
difficulty is that  the solution of Eqs. ( 1 )  and (4)  does 
not  usually  lead to a trapped  state  beyond  the focal 
point. The beam has been observed  to diverge and  focus 
alternately [27,28].  This  behavior is qualitatively under- 
standable  from  the  symmetry of Eq. ( 1 ). If the  phase of 
the electric field is constant in the focal plane, the solu- 
tion is symmetric  across this  plane. This  condition is 
approximately satisfied for a  relatively  low  input power. 
If the input power  is  made  extremely high compared  to 
Pth, the phase  at zf becomes  rather complicated and, in 
this case, so is the  behavior of the beam [ 281. 

Nonlinear  absorption could  be considered  as  an  alter- 
288 native mechanism to  stop beam  collapse. The  results of 
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numerical  integration have  an amazing  resemblance to 
the solutions for  the  case of index saturation.  The beam 
ceases  to collapse and multiple foci are produced. Fig. 1 
shows numerical results  for a third-order  nonlinear loss, 

xNI. = (E(' - ial(~14. ( 5  1 
The input beam has a Gaussian  shape  and 20  times the 
threshold  power. The loss coefficient a ,  = 0.01  was cho- 
sen arbitrarily to limit the radius contraction  at  around 
IO-'. The  curves  show  the  development of the  central 
intensity and of the  total beam power and are normal- 
ized to  the input  value and  to Pth, respectively. Repeated 
focusing is clearly seen  [29] in the figure. At  each focal 
region the beam loses  power by an  amount  approximate- 
ly equal  to Pth. A  diffracted wave with large  angle Starts 
simultaneously from  the  same region,  interfering  with 
the field in the wing, which is still focusing. As  the beam 
repeatedly focuses  and  defocuses,  the field in the wing 
develops a rather complicated  interference pattern. 
Numerical integration has not  been continued beyond 
the fifth focal region because  the  existence of the large- 
angle scattered  wave  made  further integration too time- 
consuming. At higher input  power,  or higher loss, the 
solution does not show  clean,  repeated focusing, as is 
seen in Fig. 1. Under  these conditions, an  appreciable 
variation of the  phase  occurs  around  the  center of the 
beam at the focal point. This is similar to  the  case of re- 
fractive index saturation  [28].  The  results with lE16 and 
IE)810sses are qualitatively similar to  those with a third- 
order loss. Repeated focusing was  not found  with a sec- 
ond-order loss term (E( ' .  

Only a part of the total power  focuses  at  each focal 
region. In  the geometrical-optics  approximation  this  was 
explained as  the  aberration of self-focusing [27,30]. 
The numerical  solution of Eqs. ( 1 )  and (3)  seems  to 
indicate that  problems of stability are  also involved. The 
beam shape  near  its  center  has a strong tendency  to  ap- 
proach  the steady state  trapped solution as z approaches 
zf regardless of its  input shape  or  power  [29].  This ten- 
dency is clearly seen if one  looks  at  the  power  contained 
inside  the I/e power  radius  near  the focal  point. Fig. 2 
shows  the variation of the self-focused power Ptp of a 
Gaussian-shaped  input  beam  as a  function of the  central 
field intensity,  where P,, is defined as n- times the l/e 
power radius  times the  square of the  central field am- 
plitude. Five  curves  are  drawn  for five input powers 
1On"Pth, where n runs from I to 5 .  At  the  entrance  to 
the medium P,, is  equal to the  input  power,  correspond- 
ing to  the left end of each curve. As  the beam  propa- 
gates and  increases in intensity at  the  center, Pt, de- 
creases rapidly. Even when the  input  power is larger 
than 100Pth, Ptp approaches  the value 0.78 Pth, which 
is the value of Pt, corresponding  to  the  steady state soh- 
tion. 
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Examination of the beam shape  near zf also  shows  that 
it approaches  the  steady  state  shape  rather than a Gaus- 
sian one.  The  same evolution was  observed  for  other 
input  shapes:  Lorentzian,  quadratic and exp (-r4). 

These  results should  be kept in mind when consider- 
ing the gain in any  stimulated  scattering process which 
is accompanied by the self-focusing. The over-all stimu- 
lated gain can  increase  to infinity only  very  slowly, as 
the  radius  at  the focal point approaches  zero. When the 
beam contraction  stops  at a finite value,  the  gain  en- 
hancement  due  to self-focusing is not always  larger  than 
that which  could be produced by linear focusing. In 
a  linear medium the over-all gain of stimulated scatter- 
ing for a focused  Gaussian beam is proportional to 

exp {g,  Jm I E I ~ ~ )  = exp ( 2 ~ g , ) ,  (6)  

where g, is an approximately  normalized gain coefficient 
for  the stimulated  scattering. 

This result is independent of the radial size at  focus,  or 
of the focal length of the lens.  Although the formula is 
invalid for nonlinear  focusing, the gain calculated  from 
numerical  solutions is not far  from  the over-all  gain, 
Eq. (6),  where P is now  replaced by P t h .  For example, 
in the solution of Fig. 1 the gain in a single focal region 
is approximately exp 4 P,,g,, whereas  the linear  focusing 
is exp 40 P,,g,. Therefore, in a truly steady  state situation 
the self-focusing of a  beam will enhance  the stimulated 
scattering gain only if the cell length is much shorter 
than a distance approximately equal  to  the linear diffrac- 
tion length of the incoming beam. 

Transient solutions 
The  discussions in the previous sections indicate  that 
time-independent theories  are  inadequate  to  account  for 
experimental evidence of beam  trapping. It should  be 
noted that definite experimental evidence of trapping has 
usually been  obtained for very fast  phenomena in the 
time  range of 10”’ s. Since  the relaxation  time of the 
reorientational Kerr effect is  of that  order of magnitude, 
transient effects cannot be  neglected [30-361. In this 
section Eqs. ( 1)  and ( 2 ) ,  which  provide the simplest 
description including a  relaxation  time, are  shown  to 
constitute  an  appropriate model to explain observed 
trapping phenomena. 

One  has to be  careful when applying terms  that usu- 
ally specify  propagation characteristics of a stationary 
light beam to a light beam  changing rapidly in time.  In 
this paper we use  terms like “focusing” and “trapping” 
as  terms  that specify  spatial  propagation characteristics 
of each temporal  part of a light pulse.  A part of a light 
pulse may be called “trapped” if that  part of the pulse 
propagates in the medium without  changing  its  radius 
much beyond the linear diffraction length. Equations ( 1 ) 

-m 
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Figure 2 Change of the self-focused power P, with the inten- 
sity at  the  center.  Five  curves are for input  powers 10“’2Pth, 
where n = 1 ,  2, .  . ., 5.  The self-focused power PI, is equal to  the 
input power of the  Gaussian beam at  the  entrance  to  the me- 
dium, corresponding to  the left end of each  curve. As the beam 
focuses,  for all input powers P,, approaches 0.78 Pth, which is 
equal to  the value for  the  steady  state  trapped case. The  central 
field intensity is normalized to  the field Eth of a Gaussian beam 
having power PI,, and  the input  radius. 

and (2) guarantee  that  each  temporal  part of a pulse can 
be  distinguished  from other  parts  throughout  the  propa- 
gation in the nonlinear  medium, because  each  part of the 
pulse propagates with identical  velocity u,. There  is  no 
ambiguity, therefore, in the  above definition. It should 
be  noted that,  contrary  to  the  stationary  case, trapping 
of a light pulse does  not necessarily  mean the  existence 
of a  rod-shaped light beam having uniform radius.  Vari- 
ous parts of the pulse can be trapped  at  different radii. 
The term  “filament” is used in a less  restrictive way. It 
specifies the  part of a  pulse which has roughly a  rod 
shape and is trapped in the  above  sense.  It will be shown 
that the filaments obtained by numerical  integrations in 
this section have complex structures. 

Changes in pulse  radii 
The effect of the finite relaxation  time is  that xNL(t) is 
not  determined by the  instantaneous intensity I E ( t )  1 2 ,  but 
rather by past values  integrated over a time  period of the 
order of the relaxation  time. In  consequence, xNL is zero 
at  the leading  edge of the pulse. Another  important  con- 
sequence is that xNL at a given  space-time point is affect- 
ed by previous  temporal  variations of the pulse shape  at 
the  same radial  point. 

The propagation of a  pulse that is square-shaped in 
time and  has a power larger  than P t h  is described  as fol- 
lows. The  front edge diverges according to normal, lin- 
ear diffraction. The following portion starts  to  contract 
and  contracts  faster  towards  the tail. Linear diffraction 
increases  as  the radius decreases.  In  the  case  of instan- 
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(a) (b) ( e )  (d)  

Figure 3 A schematic  diagram of pulse  propagation. (a) Input 
pulse; (b) the tail starts to contract; (c) the pulse reaches its 
limiting radius; (d) from (c) on, the pulse expands  proportional 
to the linear  diffraction of its leading edge. The  dashed line indi- 
cates linear  diffraction. 

I Filament  length, T ,  

Figure 4 The filament  length T ,  as a function of beam power, 
from  the  steady state solution with finite  relaxation  time. 

taneous  response this is  exactly  compensated  for by an 
increase of the focusing  effect,  since xNL is inversely 
proportional to  the  square of the radius. With a  finite 
relaxation time,  however,  the situation is somewhat dif- 
ferent. The  decrease in radius  simultaneously enhances 
the temporal  variation at a given  radial  point. Since xNL 
is determined by the integral  intensity, the  increase in 
xNL is  then insufficient to  compensate  for  the  increase in 
diffraction. As a result,  the diffraction and  the focusing 
effects  balance when  the variation in radius  becomes 
sufficiently fast.  From  this  point  on,  the  entire  pulse 
gradually expands approximately at  the  same  rate  as  the 
expansion of the  front edge.  If the radius of the tail end 
is much smaller than  the radius of the  front  end,  the tail 
propagates many  times its linear diffraction length with- 
out  an  appreciable  change in radius. One may say  that 
this part of the  pulse is trapped.  The  schematic picture 
of such a propagation is represented in Fig. 3. 

The  existence of a finite rate of change of radius for 
which  linear diffraction will balance against the focusing 
effect is justified by the  existence of a steady  state solu- 
tion. It is easy  to verify by substitution that E and xNL 
have solutions to  Eqs. (1)  and (2)  of the  forms 

E = Kf(Kr)eXp  (iAK'z) and 
X N I ,  = K 2 & ( K r )  3 

with K = exp [ ( t  - z/v,)/T,], 

where A and T ,  are  constants,  and f and g are real func- 
tions. This solution has a constant  power  at all times  and 
propagates without change in its  intensity profile. Nu- 
merical integration shows  that a  solution of Eqs. ( l )  and 
(2) of the  form (7),  with  a finite cross-sectional  power, 
exists  for powers above threshold Pt,,. The  constant T ,  is 
a measure of the time during which the beam retains  an 
approximately constant  radius.  The  constant  can  be 
considered as  the filament duration at  the pulse tail. The 
power  dependence of T ,  is shown in Fig. 4. At high 
power, T ,  decreases  almost linearly  with P-l. The exis- 
tence of a solution of the  form of Eq. (7) implies that a 
focusing  pulse will stop contracting, at  least in the  math- 
ematical sense,  at  some finite intensity. Furthermore, it 
is easy  to  see why previous attempts [4] to stabilize the 
filament radius by this  mechanism have failed. Because 
the limiting pulse shape is an exponential horn,  one  must 
take a sufficiently fine grid size in the numerical  inte- 
gration to prevent  an  apparent  divergence  for  input  pulses 
of arbitrary length and intensity. 

Stabilization of pulse radius 
The  question remains as  to  whether  the focusing pulse 
does stabilize to a finite radius. It  was shown in the  last 
sections  that, with instantaneous  saturation,  the beam 
diverges back  beyond  the focal point. With finite relaxa- 
tion time the  steady  state solution can be considered 
more stable,  because only those  perturbations which are 
in phase  over  the  duration of the relaxation  time can 
change xNL appreciably. However, when the pulse  be- 
comes longer, the  behavior of this  solution  should ap- 
proach  the time-independent  solution.  We  integrated 
numerically Eqs. ( 1 ) and (2)  for  Gaussian  input  pulses 

E = E,  exp[-(t2/2f) - ( r 2 / 2 ) ] ,  (9 1 
for  pulse lengths  up to 20 times the relaxation  time ( T  = 
10). The result shows  that  for  shorter pulses the trap- 
ping is  stable  and  that  the  above description is qualita- 
tively correct. 

Figures 5 and 6 show  typical results  for a short pulse. 
The input  peak power  is 5.4 Pth, or IE(' = 0.045  and the 
duration T = 1.5. Figures  5(a)  and  (b)  show  the  inten- 
sity at  the  center  and  the width viewed at various  dis- 
tances in the medium as a  function of local time. They 
are normalized to  the  input  values.  The  distances  are 
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chosen  at equal  intervals z = 0.066611, where n runs 
from one  to eight. The  top  curve  corresponds  to n = 1 
and  the bottom to n = 8. The  zero in the horizontal  scale 
indicates the  center of the  input pulse  and the left  side 
corresponds  to  the  front.  Except  for  the accompanying 
oscillation,  trapping of the pulse is clearly  indicated. At 
the tail the radius shrinks  to approximately 1/20th of the 
input value at  around z = 0.2, and remains at practically 
the  same value until z = 0.666, where  the calculation 
was  terminated. Accordingly, the intensity at  the  center 
increases approximately 100 times in this part of the 
pulse.  Although  intensity  and  radius are  not completely 
constant,  the  latter  part of the pulse with duration T = 

1.5 can  be  considered as a filament. The  frequency 
spectra  at the center  and  at z = 0.533 are  shown in Fig. 
6. This  distance  corresponds  to  the n = 8 curve in Fig. 
5. It  reproduces fairly well the  spectrum  observed in 
CS,. The  spectrum is also  quite similar to that obtained 
by one-dimensional  calculation [ 141. No appreciable 
radial variation is found in the filament spectrum [ 3 5 ] .  
This  result is expected since the different parts of the 
beam cross-section  are constantly being mixed by dif- 
fraction in a  trapped beam. 

The oscillations in intensities  and radii in Fig. 5 ap- 
pear in  all numerical  solutions shown in this paper and 
are well correlated to each 271. phase shift in the field E .  
The oscillation starts  because of a time lag between  the 
wavefront  distortion and  the radial contraction. When 
the pulse is focusing, the  wavefront is concave in the 
propagation  direction  and  remains concave until the ra- 
dius  contracts beyond  its  stationary value. Then diffrac- 
tion  gradually bends  the wavefront in the  opposite  direc- 
tion. The radius, therefore,  always  undershoots  at  the 
focal  point  before  expanding  again. This  behavior  is  also 
seen in the time-independent  solutions discussed in the 
last  section.  However, with finite relaxation  time the 
nonlinear  index xNI, does not follow rapid changes in the 
field intensity.  Contrary  to  the time-independent solu- 
tion, the radius does  not expand  much beyond  its  sta- 
tionary value; this expansion is usually 10 to 20 percent 
of the filament radius. As the pulse propagates  farther, 
the radius continues  to oscillate by approximately the 
same  amount instead of approaching  a stationary value. 
This is probably due  to  the difference in phase modula- 
tion among various radial parts of the pulse. In  the 
steady  state solution Eq.( 7 ) ,  the  phase in the wing ex- 
actly  follows the  phase  at  the beam center.  However, in 
the  above numerical  solution, the  phase in the  far wings 
is found to be constant, independently of t - z/v,. Since 
phase  modulation accumulates  at beam center,  the 
wavefront is inevitably distorted. 

Calculation on a shorter pulse with T = 0.5 shows 
similar  results. With a  peak power input of 12 Pth, the 
radius contracts  to approximately 1/15 and the pulse 
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Figure 5 (a) The intensity at  the  center  and (b)  the l /e radius 
of a  pulse with duration T = 1.5 and  power 5.4 Pth. The lines are 
at  distances z = 0.0666 n, where n = 1 ,  2;. .. 8. Zero in the  hori- 
zontal scale  corresponds  to  the  center of the input pulse. The 
base lines were  shifted  vertically as shown to improve visibility. 

forms a filament of length 0.6. A pulse of duration 7‘ = 5 
with input power 2.4 Pth forms a filamentary structure 
of length three.  For a  longer  pulse the tail part of the 
filament seems  to  be  less stable. For a  pulse of dura- 
tion T = 10 with power 1.7 P,,, the tail of the filament 
diverges after passing through the focal points. Even 
when it does diverge the preceding  part of the filament 
remains trapped  and propagates stably. 

Efsects of input power 
The filament length changes only slowly with input 
power.  However,  the filament radius decreases  very rap- 
idly with  increasing  power,  and the relation  between the 



1 Normalized frequency, j 

Figure 6 The  frequency  spectrum at a distance z = 0.533,  cor- 
responding to  the n = 8 line in Fig. 5 .  Zero designates  the origi- 
nal laser  frequency.  The  frequency f is normalized to  the re- 
laxation time. 

O ' T  0.3 

0.2 

nput power, €'/Pth 

Figure 7 The  change in absolute minimum radius  with  input 
power  for  various  input pulse  lengths. The  radius is measured  at 
the peak of the  central field intensity IEl*. The  dashed line is the 
radius at which the peak of the pulse reaches its first minimum 
and  decreases again. The minimum radius decreases  more rap- 
idly for a long pulse. 

minimum radius and  the  power is shown  for  three pulse 
lengths in Fig. 7.  The  radius  decreases  almost  exponen- 
tially with power, which is to  be  expected from the 
steady  state solution in Eq. (7) .  Therefore,  it is clear 
that  the physical  radius of the filament would soon be- 
come extremely small as  the  input  power  is raised. How- 
ever,  the  observed filament radius is much  smaller than 
that which is calculated  from the known  value for  the 
reorientational K e n  effect. The most  plausible  explana- 
tion is that  the  pulse is cut off  by nonlinear absorption or 
scattering when its  radius becomes smaller  than  a  critical 

radius r, of a few micrometers. The preceding part of the 
pulse has  the  observed radius and remains trapped. 

The propagation of a  pulse  with arbitrary  input  power 
can be  described as shown  schematically in Fig. 8.  The 
horizontal  scale  indicates  the  position in the pulse by the 
local time t' = t - z/v,. The  heavier solid line is the 
trajectory of the  destructive point at which the  radius 
becomes  smaller  than the critical  radius rc.  The heavy 
line starts at the  distance z = z ,  and  from  the position 
t' = I , ' .  The energy in the neighborhood of this  point 
is dissipated  either by nonlinear absorption  or by scat- 
tering. As the pulse  propagates,  this destructive point 
advances  towards  the  front  or possibly towards  the 
back. The heavy line corresponds  to  the  trajectory of 
moving foci in the time-independent  theory [2].  When 
the  destructive point advances  to t,' at z = z,, the mini- 
mum radius  becomes  larger  than r;, and the  destructive 
point ceases  to  exist. 

The propagation of the portion t' < t,' is the  same  as 
that of the "well-behaved"  pulse  previously described. 
The portion  between I , '  and I , ' ,  which has a length of 
the  order of one  and  has approximately a constant  radius 
of the  order of r,, can be  considered as being a  filament. 
This filament  gradually expands  and  disappears  at 
around  the diffraction length zd of the leading edge.  The 
boundary of the filament cannot  be uniquely defined. 
One may extend  the  trajectory of the moving foci be- 
yond t,' by defining it as  the  trajectory of the point at 
which the radius attains its minimum value. At  the  front 
edge of the pulse  this trajectory  ends  at  the linear  focal 
distance and for  our input  condition is z = 0. This por- 
tion, however,  shown by a dashed line in Fig. 8, does 
not represent  the  front edge of the filament. Particularly 
in a short pulse, the  trajectory  disappears  at a distance 
much shorter than zd. For a long pulse the minimum radi- 
us decreases very rapidly with power  above Pth. There- 
fore most of the pulse contracts  to a  radius  smaller  than 
r,. In addition, z ,  is very  large, because  the self-focusing 
distance diverges at P = Pth for  an infinitely long pulse. 
Therefore  the  destructive point is observed  at  any tlis- 
tance in the medium. As the  input pulse becomes  short- 
er,  the  distance z ,  - z ,  shortens  and z ,  decreases. As a 
result  the probability of observing filaments increases. 

Figures 9 and 10 show the result with (E l '6  loss, 
which represents a sharp cutoff. The duration of the in- 
put  pulse is T = 3 and  the  power is 12.1 Pth. A loss term 
- 2 X 10-6ilE11' is added to the right side of Eq. ( 1 ) .  
Figure 9 shows  the  central intensity at various distances. 
The  curve  for z = 0.088  corresponds approximately to 
the  distance  at which  the first focal point is formed. 
Since the pulse length is relatively short,  the focal point 
quickly spreads  to both  sides of the pulse. The tail part 
is cut off due  to  the  disturbance  caused by the nonlinear 
loss. The part of the pulse for which - 2 < t' < I ,  re- 
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mains trapped  and propagates. Figure 10 shows  the 
spectrum  at  the  same  distances  as in Fig. 9. The  spec- 
trum  has large components  around  the original frequency 
and is complicated  compared to  the well-behaved fila- 
ment  shown in Fig. 6. 

In  these  examples  the filament sizes were  selected to 
be  approximately 0.05. For a T = 1.5 pulse,  a  larger 
power of 8 P,,, was also tried. The stability of the trapping 
was not affected by this  larger power.  However,  the  evo- 
lution towards  the final radius is more  complicated in 
this case.  The  spectral broadening starts well before the 
radius reaches its final size [ 371. The radius of the por- 
tion that shrinks fastest hits the first minimum when the 
frequency begins to  broaden.  Then  the pulse  gradually 
approaches its absolute minimum radius by reaching 
repeated minima and maxima. The relation between  the 
radius at  the first minimum and the input power is shown 
in Fig. 7 by dashed lines. This radius tends  to  saturate 
with power. 

In principle, the contraction  ratio of the radius can be 
estimated from Fig. 7 if the filament power  and the  dura- 
tion are known.  Actually  this is rather difficult to esti- 
mate in view of the rapid change of radius with power. 
Typical filaments in CS, produced by mode-locked Nd 
lasers  have 1 ps duration [ 151 and 400 GW/cm2 power 
density [38]. This means that  the filament radius is ap- 
proximately 0.1. I f  the input power is twice as large, it is 
reduced to 0.0 1 .  These values are often still larger than 
the  ratios of the radii of the filaments to  that of the  laser 
beams in usual experimental  conditions. However it is 
known that, in multimode lasers,  the self-focusing starts 
from  hot spots much  smaller  than the beam diameter 
[ 39,401. 

We have shown in the last  section that only a fraction 
of the beam  power  self-focuses in the time-independent 
solutions.  A similar behavior is found for  the  transient 
focusing, which is very  critical to  the time dependence 
of the input  pulse.  When the pulse is square,  the situa- 
tion is similar to  that  for time-independent  focusing. If 
the pulse, is triangular, however, with a ramp  speed 
dP/dt equal to several  times the numerical  value of Pth, 
most of the  power is trapped.  For  the pulse in Fig: 5, 
more  than half of the beam power is trapped in the fila- 
ment. 

Stimulated Raman scattering and dispersion 
The  results in the preceding sections  do not  include two 
important effects that usually accompany the filaments 
produced by short pulses. These effects are stimulated 
Raman scattering and linear dispersion.  In most cases a 
strong  Raman-Stokes  component is observed in fila- 
ments.  The  importance of stimulated  Raman  scattering 
does not decrease  for  short  pulses, since the Raman 
process is usually faster than the reorientational Kerr 
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Figure 8 A schematic diagram explaining the moving foci 
(thick line) and the filament (shaded  area)  for a short pulse.  The 
solid line is  the  destructive track. The dashed line is the locus  of 
the well-behaved minimum radius. Local time t' = I - L. U" 
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Figure 9 The propagation of a pulse with tail cut off by a 
sharp nonlinear loss. The pulse length is T = 3 and the power  is 
12 Pth. The loss is proportional to lE1I6. The  top  curve corre- 
sponds approximately to the distance  at which the first focal 
point is formed. Local time t' is normalized to the relaxation 
time of the Kerr nonlinearity. 293 
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Figure 10 The development of the frequency spectrum for the 
data in Figure 9. Zero designates the original laser frequency. 

effect in liquids. In  the  absence of frequency broadening, 
and for a  pulse  longer than  several  picoseconds, disper- 
sion would not  have a large effect on pulse  propagation 
over several centimeters.  However,  the  intense,  trapped 
part of the pulse produces a large frequency broadening. 
The new frequency  components  start  to  distort  the fila- 
ment envelope by dispersion. In considering the effect 
on filament stability by these  disturbances,  one should 
note  that  the filament is supported by the refractive in- 
dex  change  created by the preceding "horn" (see  Fig. 
3) ,  which has less  intensity. These  disturbances,  on  the 
other hand, are initially created inside the filament. 
Therefore, if the  disturbances  do  not affect the horn, the 
filament may be treated approximately as a light pulse 
that is trapped  and  propagates in a  dielectric  waveguide. 
Planewave theories will describe qualitatively the fila- 
ment propagation.  Such theories  have been discussed in 
detail for  the pulse  distortion due  to nonlinear  refractive 
index [3 1,41,42] as well as  for  the  transient stimulated 
Raman effect [43 -481. If the  disturbances affect the 
horn, the results will be qualitatively  different  from those 
of one-dimensional theories. 

The main purpose of this  section is to  consider  the 
stability of the filament  itself.  Because of the large  num- 
ber of parameters involved in these  processes, it is rath- 
er difficult to investigate  numerical  solutions for a wide 
range of conditions, and so only  two examples  are in- 
cluded. 

First we consider  the effect of Raman-Stokes  wave 
generation  with  a large frequency  shift, as in the  C-H 
stretching mode. We  add to Eq. (1) an  equation  for  the 

294 propagation of the  Raman-Stokes field E,: 

in which A is the  group velocity  mismatch. 

contributions 

XNL = XID + XR, ( 1 1 )  

where xID is the nonlinear  refractive  index and xR is the 
Raman susceptibility. These  are governed by the equa- 
tions 

The nonlinear  susceptibility xNL is now the sum of two 

This formulation assumes  that  the  degree of frequency 
broadening is much  smaller than  the vibrational  frequen- 
cy a,. Linear dispersion is  taken  into  account in the 
lowest-order  approximation  through  the group  velocity 
mismatch A.  In  most liquids these  assumptions provide 
sufficiently good approximations if the input  pulse is 
longer  than  a few picoseconds. The additional equations 
(10) through (13) will affect the solution in the follow- 
ing way. The nonlinear  refractive  index xln decreases 
by a factor (aO - w,) /w, ,  as the  laser field E is converted 
into  the  Stokes field E,. This  change in xIo will advance 
towards  the leading edge of the pulse as E ,  advances 
because of the  group velocity  mismatch A. 

Equations ( 1 )  and (10) through ( 1 3 )  were  integrated 
with  input  conditions T = 1.5 and P = 5.4 Pth, which are 
the  same as those of Fig. 5. A constant value of 5.4 X 

10-20Pth was  taken  for  the input of IESl2. Other parame- 
ters  were  chosen  as follows:. A = 0.01666, g ,  = 8, T~ = 

0.2, and (w,, - w,)/w,, = 0.792. The  latter value corre- 
sponds  to a  vibrational  mode of 3000 cm" for a  ruby 
laser.  The  other  parameters  are  chosen so that E ,  grows 
sufficiently fast compared  to  the  frequency broadening 
and  that it advances  into  the  horn before the filament 
disappears by diffraction. Figure 1 1  shows  the  develop- 
ment of the  laser pulse and Fig. 12 that of the  Stokes 
pulse. 

The  Stokes pulse starts  to  grow  from  the tail of the 
filament as  the filament is formed ( n  = 1 ) .  It  gradually 
depletes  the  laser field from the tail of the filament ( n  = 

2).  At this stage  the nonlinear  refractive  index xIo is 
already substantially affected by conversion of the  laser 
field into a Stokes field. However,  the filament radius 
retains  its  size  approximately, because  the horn is not 
yet affected. The  Stokes field advances relative to  the 
laser field because of group  velocity  dispersion. The 
Stokes field gradually thrusts  into  the horn and  depletes 
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Figure 11 Propagation of a filament in the  presence of strong 
stimulated  Raman  scattering. (a)   The intensity  at  the  center of 
the  laser  field; (b) the  l/e  power radius.  Five  curves  are  at  dis- 
tances z = 0.2 + 0.01 1 n,  where n = 1, 2 ; .  ., 5 .  The input  pulse 
is of length T = 1.5 and  power P = 5.4 Pth. 

the  laser field ( n  = 3,4  and 5 ) .  Then  the filament  radius 
starts  to expand  rapidly, which may be seen especially 
clearly in the  Stokes  component in Fig.  12. The small 
leftover  energy of the  laser  component  becomes  ex- 
tremely unstable,  because  the refractive  index change 
created by the expanded  Stokes filament cannot main- 
tain the laser component  at  its original size. If the veloc- 
ity mismatch A is set  to  zero,  the  Stokes  component 
does not advance beyond the  front of the filament, 
where stability is not  affected. This stability was con- 
firmed by an  independent integration using the  same 
values for  the  other  constants. 

In  some liquids the  frequency broadening  often  ex- 
ceeds  the Raman  shift. In this case  the  Raman  and  laser 
fields cannot be artificially separated.  Numerical integra- 
tion becomes  extremely time-consuming because a very 

3 

fine grid size is required  on  the time  axis. We  consider 
the following equations, which  include  dispersion and 
stimulated Raman  scattering in the simplest  form: 
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Figure 13 Effect of dispersion  and stimulated Raman scatter- 
ing on a very short filament. (a) Intensity at the center; (b) the 
power 2 ~ r J r ( E l ' d r .  The curves are for distances z = 0.103 + 
0.033 n, where n = 1,  2, 3 and 4. At n = 1 the filament has just 
formed. The input pulse has T = 0.25 and P = 35 Pth. 

Here  the slowly varying part of the field E is used to 
represent  the  entire field. For a better  approximation,  the 
first term  on  the right  side of Eq. (14) would have  to  be 
multiplied by (1 - w,"d/dt) .  This  factor  was neglected 
in our computations.  For  the  parameters selected in the 
following numerical  example,  this factor,  as well as ( I  + 
a,, a l a r )  in the second term,  does  not  have a  large effect 
on pulse  propagation. However,  the  latter  was retained 
in order  to  insure  the  proper reduction in /E l2  as  the  fre- 
quency is shifted downwards.  The  last term in Eq. (14) 
represents linear  dispersion. The  Raman susceptibility 
X, is governed  by Eq. (17). 

We  integrated these  equations  for relatively small w,, 

so that  the integration was feasible. The input  pulse  had 
a Gaussian  shape with T = 0.25 and a power of 35Pth. 
The values of the  constants  were  chosen so that  the so- 
lution  simulated  approximately the filament propagation 

-1  

of a Nd mode-locked laser pulse. These  were w,, = 3900, 
w, = 27 1 ,  A' = -2.5 X 7 = 10, and g,' = 400. Fig- 
ure 13(a) shows the  center intensity  and 13(b)  the 
power 2~ Jr (E( 'dr .  Figure 14 shows  the radius and  Fig. 
15 the  frequency  spectrum. To reduce calculation  time, 
the dispersion term in Eq. (14),  and  the stimulated 
Raman effect in Eq. (17),  were introduced after  the first 
focal  point was formed at z M 0.1. 

The  change in the  central intensity  qualitatively agrees 
with a  one-dimensional  calculation [49]. At extremely 
high intensities pulses deform in such a way as  to form  a 
shock at  the tail because of the  intensity-dependent re- 
fractive index [41]. In  the intensity  range of the fila- 
ments,  the linear dispersion is found  to  be  more impor- 
tant  to pulse distortion [42,49] than is refractive  index. 
For a short filament most of the pulse experiences a 
downward  frequency shift and this  portion advances. 
The  pulse first becomes triangular and  then  produces a 
sharp  spike  at  its leading  edge. This spike soon  disap- 
pears,  but  the  shock  continues  to  advance.  The pulse 
distortion  does  not necessarily cause a decrease in the 
nonlinear  refractive  index xID, since  the  frequency shift 
is small compared  to w,,. Therefore  the filament radius 
does  not  expand immediately, even  after  the  horn  has 
begun to  distort.  The filament radius begins to  be seri- 
ously disturbed  at  the  distance  at which the  shock  reach- 
es  the  front of the pulse.  Because the  frequency  broad- 
ening is large compared to the grid size  for  our integra- 
tion, the  last  curve may not be accurate.  Nevertheless, it 
is believed to show the general tendency of the pulse 
shape. 

Conclusion 
The moving-foci model of self-focusing assumes implic- 
itly that  the focused  beam  diverges  beyond its focal 
point,  a characteristic  substantiated by solutions of the 
time-independent equations.  The model is successful in 
explaining the  streaks of scattered light observed with 
single-mode lasers [ 11. The  assumption of beam diver- 
gence beyond  its  focal  point, however, is not correct in 
all cases. We have  shown  that  the inclusion of a finite 
relaxation  time  allows the beam to  be  trapped in the  best 
conceivable sense  for a  beam of finite duration.  The 
properties of the resulting filaments do not contradict  the 
existing experimental  observations. 

The  present  results,  however,  do  not explain the  ob- 
served filament size of several  micrometers.  Various 
saturation mechanisms have been proposed  for this ob- 
servation [26,50-521. An  important conclusion of our 
numerical  integrations is that not  only can a simple satu- 
ration of the nonlinear  refractive index  serve as a mech- 
anism to limit the filament radius,  but  also  that  any non- 
linear  scattering or  absorption  can provide the  mecha- 
nism. 
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Figure 14 The  development of the radius  for the pulse shown 
in Fig. 13. 
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