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Asymptotic  Expansion  for  Small  Magnetic  Fields 
of Acoustoelectric  Attenuation in Nondegenerate 
Semiconductors 

Abstract: The semiclassical  analysis of acoustoelectric effects  involves an infinite sum S ( c , x )  = ic exp ( - x )  ::-, ( n  + i c ) - 'Zn(x) ,  in 
which both  arguments c and x depend on the magnetic field B .  Recently Lebwohl,  Carlson,  and Mosekil F e have  found an integral 
representation  for this  sum,  through which now  we  identify S(c,x) as a generalized  hypergeometric  function. Moreover we derive  an 
asymptotic  series  for S(c ,x )  in  the limit of small B ,  whose coefficients, in a parameter z ,  involve the  iterated integrals of the comple- 
mentary error function. 

Introduction 
In  recent  years  Spector [ 1,2] has considered  sound-wave 
propagation in nondegenerate  semiconductors  and  pro- 
vided a semiclassical discussion of the  acoustoelectric 
effect, while Route  and  Kino  [3]  have generalized 
Spector's  treatment to drifting electron  distributions 
and  compared  their analytical  result with experiments 
in InSb.  In this work the  expressions  for conductivity 
and  absorption contain the infinite sum 

S(C,X) = ic exp(-x) ( n  + jc)-'Zn(x), (1) 

which is sometimes  hard to  evaluate numerically. Here 
Z,(x)  is a modified Bessel  function  and 

c = ( 1  + i ~ ) / p B ,  

x =  (k l /pB) ' /2 ,  

v = w - k w ,  (2 1 
where w is the  acoustic  frequency, k is the  acoustic  wave 
number, B is the magnetic field strength, w is the  electron 
drift  velocity, T is the  electron relaxation  time, 1 is  the 
electron mean free  path, and p is  the zero-field electron 
mobility. 

More immediately Lebwohl,  Carlson, and  Mosekilde 
[4] have rewritten the sum ( 1) as  an integral 

S(c,x) = [c/sinh(c.ir)] 

+m 

n="m 

x [ expix  cos 0 - x)cosh(c.ir - c0)dO. ( 3 )  

have approximated  this  integral for small B ,  and  have 
recovered  an  expression  for B = 0 obtained  previously 
by Route  and  Kino  [3].  They  have  also pointed out  the 
chief problem in this  analysis: the integral for S(c,x) as 

a  function of B has  an essential singularity at the  point 
B = 0. In this  communication we derive a systematic 
expansion  as B + 0+, but first we  obtain  some new rep- 
resentations for the integral ( 3 ) .  These should afford 
some additional  insight into  the functional  form of 
S(c,x). 

Let us regard c as a fixed parameter  and  consider 
S(c,x) as a function of  x. If also we put + = .ir - 0 and 
define 

T(c,x)=exp(x)S(c,x) 

= [c/sinh(cn)]  exp(-xcos  +)cosh(c+)d+, l (4 1 

then the resulting integral for T ( c , x )  suggests  a repre- 
sentation of Zff,(x) [5,Eq.(9.6.20)].  Indeed through 
substitution  from (4) and integration by parts  we find 
that 

x'd'Tldx' + xdTldx + (c' - x') T = c2 exp  (x). ( 5 )  

Also, by examination of (4), we note  that T ( c , x )  is 
analytic for 1x1 < co and that 

S(c,O) = T(c,O) = 1. (6)  

This ordinary differential equation is solvable  through 
variation of parameters,  since  the  corresponding homo- 
geneous equation is satisfied by 

Th(C,X)  = C+1+ic(X) + C-Z-i,(X). (7 1 
Moreover,  any function ( 7 )  with nontrivial constants 
C ,  has a branch point at  the origin, whence  the problem 
( 5 )  - (6) has a  unique  solution T ( c , x )  with a Taylor ex- 
pansion at  the origin. 

IBM J .  RES. DEVELOP. 



Also,  from (4) and ( 5 ) ,  we find that 

x2d2S/dx2 + (2x2 + x)dS/dx + (x + c')S = c2 ( 8 )  

and by the preceding remarks  we may assume  that 

S(c,x) = 2 sn(c)xn with so(c) = 1. (9 1 

By substitution we  obtain,  for n > 0, the  recursion for- 
mula 

m 

n=o 

(n' + c2)sn(c) = ( n  - 3 )  [-2sn-,(c)]  (10) 

and thus,  for S(c,x), the  convergent  series 

S ( c , x )  = 'F2  (3, 1 ; 1 + ic, 1 - ic; -2x) 

In  other  words, S (CJ) can be expressed [6,  pp.373- 3841 
as a generalized  hypergeometric function, 2F2, and  thus 
as a Meijer G-function, G2,3''2. A search  among special 
identities for such functions suggests that we should not 
expect a  simpler form  for S (c,x). 

Expansion 
Both arguments in S (c,x) are  functions of B .  Hence,  to 
achieve a convenient  form  for  the  desired  expansion, 
we  introduce  the new  variables 

t = kl/pB, 
u = sin(8/2), 
z = (1 + iv.r)/kl, 

and  we  decompose  the integral (3 ): 

S(c,x) = [c/sinh(c.rr)l 

R(z,t) = C exp(--t2U'- 2z tu)~(z t ,u )du ,  

P(zr,u) = ( 1  - u2)-+ exp[2ztu - 2zt sin-'(u)].  (13) 

x [exp(c.rr)R(z,t) + exp(-c.rr)R(-z,t)l, 

The  expansion of sin-' ( u )  - u in powers of u has 
leading term u3/6, whence  the  expansion of P(zt,u) in 
powers of u has  general form 

?D 

P(zt,u) = pm(zt)urn  (14) 
m=o 

with p ,  a polynomial of degree i m / 3 .  However,  for  any 
complex z, we  note  that I exp (--tZu2 - 2ztu) undu 

= t-"-'(-2)-"(a/az)" exp(-u2 - 2zu)du 

=~it-n-1(-2)-n(a/aZ)n  exp(2)   erfc(z)  

=htn!t-n-l  exp($)in  erfc(z),  (15) 
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where in erfc(z) is the nth iterated integral of the comple- 
mentary  error function [ 5 ,  Eq.(7.2.9)]. If we  substitute 
(14) into  R (z,t),  extend  the integration to $00, and inte- 
grate  term by term,  then  we  obtain a formal expansion 

R(z,t) - 4.rri 5 m!pm(zt)t-m-l  exp(z2)im  erfc(z)  (16) 

as t + SOO. Now ( 16)  can  be  rearranged  as a series in 
t-' with coefficients involving z, whence S ( c , x )  can be 
expressed  as a series in B by ( 12)  and ( 13). We  need 
only show  that  (16) is an  asymptotic  series  for large t .  

These manipulations might perhaps  be justified  through 
some general theorem of asymptotic  analysis (e.g., [7] 1, 
but they can quickly be validated  through a few direct 
estimates of remainder  terms.  Indeed,  for  any real a and 
b  with 0 < a  < b < 1, wenote 

m=u 

as t + -b. On  the interval [O,b], furthermore,  (14) con- 
verges absolutely and uniformly, so that 

IR(z,t) - 2 pm(zt) exp(-t2u2 - 2zru)umdul 
n- 1 

m=o 0 

+ K(b)lztIni3 [ exp(-t2u2 + 21zltu)u"du 

We have now verified the  expansion ( 16) and  need 
only compute  the first few  terms.  However,  from ( 13 ) 

P(zt,u) = 1 + (1/2)u2- (Zt/3)U3 

+ (3/8)u4-  (19  zt/60)u5 

+ [(z2t2/30) + (5/16)]u6 + 0(z tu7  + z2t'u8) 
(20) 

as u + 0; and  thus,  from  (161, 

+ t f 5 (  9i4 - 38zi5 + 24z2i6) + 0 ( t f7) ]  erfc ( z )  
(21 1 

as t + $00. By the detailed  form of the expansion for 
P(zt,u), only odd  powers o f t  can  occur in (21 1. Finally, 
from  (13), 271 
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2 sinh(n  zt)S(c,x)/$ z exp(z’) - exp(r   z t )  [io + t-’(i’ - 2zi3) 

+ tC4(9i4 - 38zi5 + 24z2i6) +. . .] erfc(z) 

+ exp (T zt [io + t-’ (i’ + 2zi3) 

+ t-’(9i4 + 38 zi5 + 24z2i6) +. . .] erfc(-z) (22) 

as t + +. We may retain  exponentially  small terms if 
we  interpret  (22)  as a multiple asymptotic  expansion 
in the  sense of Shere [8]. If we substitute t = kl/pB from 
( 12),  then  we  get  the  desired  expansion  for small B .  

Through  the  recursion  formulas [5, Eq. (7.2.5) ] 

ain  erfc(z) + zin-l erfc(z) - +in-’ erfc(z) = 0, (23 1 
the  functions im erfc(z) in these  series  can all be com- 
puted  numerically  via an algorithm of Gautschi  [9, 101 
or related simply to  the basic  pair 

i-’ erfc (z I = 2n+ exp (-z‘), 

io erfc(z) = erfc(z).  (24) 

The leading term of (22) is the  result of Lebwohl,  Carl- 
son,  and Mosekilde [4],  but it appears in our  analysis 
as  part of a complete  expansion. We hope  that  (22) will 
facilitate the  understanding of acoustoelectric phe- 
nomena in the region of small B .  
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