Asymptotic Expansion for Small Magnetic Fields of Acoustoelectric Attenuation in Nondegenerate Semiconductors

Abstract: The semiclassical analysis of acoustoelectric effects involves an infinite sum $S(c,x) = ic \exp(-x) \sum_{n=-\infty}^{+\infty} (n+ic)^{-1} I_n(x)$, in which both arguments c and x depend on the magnetic field B. Recently Lebwohl, Carlson, and Mosekilde have found an integral representation for this sum, through which now we identify S(c,x) as a generalized hypergeometric function. Moreover we derive an asymptotic series for S(c,x) in the limit of small B, whose coefficients, in a parameter z, involve the iterated integrals of the complementary error function.

Introduction

In recent years Spector [1,2] has considered sound-wave propagation in nondegenerate semiconductors and provided a semiclassical discussion of the acoustoelectric effect, while Route and Kino [3] have generalized Spector's treatment to drifting electron distributions and compared their analytical result with experiments in InSb. In this work the expressions for conductivity and absorption contain the infinite sum

$$S(c,x) = ic \exp(-x) \sum_{n=-\infty}^{+\infty} (n+ic)^{-1} I_n(x),$$
 (1)

which is sometimes hard to evaluate numerically. Here $I_n(x)$ is a modified Bessel function and

$$c = (1 + i\nu\tau)/\mu B,$$

$$x = (kl/\mu B)^2/2,$$

$$\nu = \omega - kw,\tag{2}$$

where ω is the acoustic frequency, k is the acoustic wave number, B is the magnetic field strength, w is the electron drift velocity, τ is the electron relaxation time, l is the electron mean free path, and μ is the zero-field electron mobility.

More immediately Lebwohl, Carlson, and Mosekilde [4] have rewritten the sum (1) as an integral

$$S(c,x) = [c/\sinh(c\pi)]$$

$$\times \int_{0}^{\pi} \exp(x \cos \theta - x) \cosh(c\pi - c\theta) d\theta, \qquad (3)$$

have approximated this integral for small B, and have recovered an expression for B=0 obtained previously by Route and Kino [3]. They have also pointed out the chief problem in this analysis: the integral for S(c,x) as

a function of B has an essential singularity at the point B=0. In this communication we derive a systematic expansion as $B\to 0+$, but first we obtain some new representations for the integral (3). These should afford some additional insight into the functional form of S(c,x).

Let us regard c as a fixed parameter and consider S(c,x) as a function of x. If also we put $\phi = \pi - \theta$ and define

$$T(c,x) = \exp(x)S(c,x)$$

$$= [c/\sinh(c\pi)] \int_0^{\pi} \exp(-x\cos\phi)\cosh(c\phi)d\phi,$$
(4)

then the resulting integral for T(c,x) suggests a representation of $I_{\pm ic}(x)$ [5,Eq.(9.6.20)]. Indeed through substitution from (4) and integration by parts we find that

$$x^{2}d^{2}T/dx^{2} + xdT/dx + (c^{2} - x^{2})T = c^{2} \exp(x).$$
 (5)

Also, by examination of (4), we note that T(c,x) is analytic for $|x| < \infty$ and that

$$S(c,0) = T(c,0) = 1.$$
 (6)

This ordinary differential equation is solvable through variation of parameters, since the corresponding homogeneous equation is satisfied by

$$T_{h}(c,x) = C_{+}I_{+ic}(x) + C_{-}I_{-ic}(x). \tag{7}$$

Moreover, any function (7) with nontrivial constants C_{\pm} has a branch point at the origin, whence the problem (5)-(6) has a unique solution T(c,x) with a Taylor expansion at the origin.

Also, from (4) and (5), we find that

$$x^{2}d^{2}S/dx^{2} + (2x^{2} + x)dS/dx + (x + c^{2})S = c^{2}$$
 (8)

and by the preceding remarks we may assume that

$$S(c,x) = \sum_{n=0}^{\infty} s_n(c)x^n$$
 with $s_0(c) = 1$. (9)

By substitution we obtain, for n > 0, the recursion formula

$$(n^{2} + c^{2})s_{n}(c) = (n - \frac{1}{2})[-2s_{n-1}(c)]$$
 (10)

and thus, for S(c,x), the convergent series

$$S(c,x) = {}_{2}F_{2}(\frac{1}{2}, 1; 1 + ic, 1 - ic; -2x)$$

$$= \sum_{n=0}^{\infty} \frac{(-2x)^{n}(n - \frac{1}{2}) \cdots (1 - \frac{1}{2})}{(n + ic) \cdots (1 + ic)(n - ic) \cdots (1 - ic)}.$$
(11)

In other words, S(c,x) can be expressed [6, pp.373-384] as a generalized hypergeometric function, ${}_2F_2$, and thus as a Meijer G-function, $G_{2,3}^{1,2}$. A search among special identities for such functions suggests that we should not expect a simpler form for S(c,x).

Expansion

Both arguments in S(c,x) are functions of B. Hence, to achieve a convenient form for the desired expansion, we introduce the new variables

$$t = kl/\mu B,$$

$$u = \sin(\theta/2),$$

$$z = (1 + i\nu\tau)/kl,$$
(12)

and we decompose the integral (3):

$$S(c,x) = [c/\sinh(c\pi)] \times [\exp(c\pi)R(z,t) + \exp(-c\pi)R(-z,t)],$$

$$R(z,t) = \int_0^1 \exp(-t^2u^2 - 2ztu)P(zt,u)du,$$

$$P(zt,u) = (1 - u^2)^{-\frac{1}{2}} \exp[2ztu - 2zt\sin^{-1}(u)].$$
 (13)

The expansion of $\sin^{-1}(u) - u$ in powers of u has leading term $u^3/6$, whence the expansion of P(zt,u) in powers of u has general form

$$P(zt,u) = \sum_{m=0}^{\infty} p_m(zt)u^m$$
 (14)

with p_m a polynomial of degree $\leq m/3$. However, for any complex z, we note that

$$\int_{0}^{\infty} \exp(-t^{2}u^{2} - 2ztu)u^{n}du$$

$$= t^{-n-1}(-2)^{-n}(\partial/\partial z)^{n} \int_{0}^{\infty} \exp(-v^{2} - 2zv)dv$$

$$= \frac{1}{2}\pi^{\frac{1}{2}}t^{-n-1}(-2)^{-n}(\partial/\partial z)^{n} \exp(z^{2}) \operatorname{erfc}(z)$$

$$= \frac{1}{2}\pi^{\frac{1}{2}}n!t^{-n-1} \exp(z^{2})i^{n} \operatorname{erfc}(z), \tag{15}$$

where i^n erfc(z) is the *n*th iterated integral of the complementary error function [5, Eq. (7.2.9)]. If we substitute (14) into R(z,t), extend the integration to $+\infty$, and integrate term by term, then we obtain a formal expansion

$$R(z,t) \sim \frac{1}{2} \pi^{\frac{1}{2}} \sum_{m=0}^{\infty} m! p_m(zt) t^{-m-1} \exp(z^2) i^m \operatorname{erfc}(z)$$
 (16)

as $t \to +\infty$. Now (16) can be rearranged as a series in t^{-1} with coefficients involving z, whence S(c,x) can be expressed as a series in B by (12) and (13). We need only show that (16) is an asymptotic series for large t.

These manipulations might perhaps be justified through some general theorem of asymptotic analysis (e.g., [7]), but they can quickly be validated through a few direct estimates of remainder terms. Indeed, for any real a and b with 0 < a < b < 1, we note

$$\int_{b}^{1} \exp(-t^{2}u^{2} - 2ztu)P(zt,u)du = o[\exp(-a^{2}t^{2})],$$

$$\int_{b}^{\infty} \exp(-t^{2}u^{2} - 2ztu)u^{n}du = o[\exp(-a^{2}t^{2})],$$
(17)

as $t \to +\infty$. On the interval [0,b], furthermore, (14) converges absolutely and uniformly, so that

$$|P(zt,u) - \sum_{m=0}^{n-1} p_m(zt)u^m| \le K(b) |zt|^{n/3} u^n.$$
 (18)

Thus, by (17) and (18),

$$|R(z,t) - \sum_{m=0}^{n-1} p_m(zt) \int_0^\infty \exp(-t^2 u^2 - 2ztu) u^m du|$$

$$\leq o[\exp(-a^2 t^2)]$$

$$+ K(b)|zt|^{n/3} \int_0^b \exp(-t^2 u^2 + 2|z|tu) u^n du$$

$$\leq o[\exp(-a^2 t^2)] + O(t^{-1-2n/3}) \quad \text{as } t \to +\infty.$$
(19)

We have now verified the expansion (16) and need only compute the first few terms. However, from (13)

$$P(zt,u) = 1 + (1/2)u^{2} - (zt/3)u^{3}$$

$$+ (3/8)u^{4} - (19 zt/60)u^{5}$$

$$+ [(z^{2}t^{2}/30) + (5/16)]u^{6} + O(ztu^{7} + z^{2}t^{2}u^{8})$$
(20)

as $u \to 0$; and thus, from (16),

$$R(z,t) = \frac{1}{2}\pi^{\frac{1}{2}} \exp(z^{2}) \left[t^{-1}\mathbf{i}^{0} + t^{-3}(\mathbf{i}^{2} - 2z\mathbf{i}^{3}) + t^{-5}(9\mathbf{i}^{4} - 38z\mathbf{i}^{5} + 24z^{2}\mathbf{i}^{6}) + O(t^{-7}) \right] \operatorname{erfc}(z)$$
(21)

as $t \to +\infty$. By the detailed form of the expansion for P(zt,u), only odd powers of t can occur in (21). Finally, from (13),

$$2 \sinh(\pi zt) S(c,x) / \pi^{\frac{1}{2}} z \exp(z^{2})$$

$$\sim \exp(\pi zt) [\mathbf{i}^{0} + t^{-2} (\mathbf{i}^{2} - 2z\mathbf{i}^{3})$$

$$+ t^{-4} (9\mathbf{i}^{4} - 38z\mathbf{i}^{5} + 24z^{2}\mathbf{i}^{6}) + \cdots] \operatorname{erfc}(z)$$

$$+ \exp(-\pi zt) [\mathbf{i}^{0} + t^{-2} (\mathbf{i}^{2} + 2z\mathbf{i}^{3})$$

$$+ t^{-4} (9\mathbf{i}^{4} + 38z\mathbf{i}^{5} + 24z^{2}\mathbf{i}^{6}) + \cdots] \operatorname{erfc}(-z)$$
(22)

as $t \to +\infty$. We may retain exponentially small terms if we interpret (22) as a multiple asymptotic expansion in the sense of Shere [8]. If we substitute $t = kl/\mu B$ from (12), then we get the desired expansion for small B.

Through the recursion formulas [5, Eq.(7.2.5)]

$$ni^{n} \operatorname{erfc}(z) + zi^{n-1} \operatorname{erfc}(z) - \frac{1}{2}i^{n-2} \operatorname{erfc}(z) = 0,$$
 (23)

the functions i^m erfc(z) in these series can all be computed numerically via an algorithm of Gautschi [9, 10] or related simply to the basic pair

$$\mathbf{i}^{-1}\operatorname{erfc}(z) = 2\pi^{\frac{1}{2}}\exp(-z^{2}),$$

$$\mathbf{i}^{0}\operatorname{erfc}(z) = \operatorname{erfc}(z).$$
 (24)

The leading term of (22) is the result of Lebwohl, Carlson, and Mosekilde [4], but it appears in our analysis as part of a complete expansion. We hope that (22) will facilitate the understanding of acoustoelectric phenomena in the region of small B.

References

- 1. H. N. Spector, "Magnetoacoustic effects in nondegenerate
- semiconductors," *Phys. Rev.* **125**, 1880 (1962).

 2. H. N. Spector, "Magnetic field dependence of the amplification of sound by conduction electrons," Phys. Rev. 131, 2512 (1963).
- 3. R. K. Route and G. S. Kino, "Acoustoelectric amplification in InSb," IBM J. Res. Develop. 13, 507 (1969).
- 4. P. A. Lebwohl, D. G. Carlson, and E. Mosekilde, "On the acoustoelectric gain in magnetic fields," J. Appl. Phys. 43, 1284 (1972)
- 5. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, U. S. Government Printing Office, Washington, D.C., 1964.
- 6. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. I, McGraw Hill Book Co. Inc., New York, 1954.
- 7. D. S. Jones, "Asymptotic behavior of integrals," SIAM Review 14, 286 (1972).
- 8. K. D. Shere, "On multiple asymptotic expansions," SIAM J. Math. Anal. 3, 272 (1972).
- 9. W. Gautschi, "Recursive computation of the repeated integrals of the error function," Math. Comp. 15, 227 (1961).
- 10. W. Gautschi, "Efficient computation of the complex error function," SIAM J. Numer. Anal. 7, 187 (1970).

Received January 5, 1973

The author is located at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.