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Asymptotic Expansion for Small Magnetic Fields
of Acoustoelectric Attenuation in Nondegenerate

Semiconductors

Abstract: The semiclassical analysis of acoustoelectric effects involves an infinite sum S (¢,x) = ic exp (—x)

o (n+ ic)_lln(x), in

n=—co

which both arguments ¢ and x depend on the magnetic field B. Recently Lebwohl, Carlson, and Mosekilde have found an integral
representation for this sum, through which now we identify S(c,x) as a generalized hypergeometric function. Moreover we derive an
asymptotic series for S(c,x) in the limit of small B, whose coefficients, in a parameter z, involve the iterated integrals of the comple-

mentary error function.

Introduction

In recent years Spector [1,2] has considered sound-wave
propagation in nondegenerate semiconductors and pro-
vided a semiclassical discussion of the acoustoelectric
effect, while Route and Kino [3] have generalized
Spector’s treatment to drifting electron distributions
and compared their analytical result with experiments
in InSb. In this work the expressions for conductivity
and absorption contain the infinite sum

+oo
S(cx) =icexp(—x) ¥ (n+ ic)7',(x), (1)
which is sometimes hard to evaluate numerically. Here
1,(x) is a modified Bessel function and

c= (1+ivr)/uB,
x= (klluB)*/2,
v=w—kw, (2)

where w is the acoustic frequency, & is the acoustic wave
number, B is the magnetic field strength, w is the electron
drift velocity, 7 is the electron relaxation time, [ is the
electron mean free path, and u is the zero-field electron
mobility.

More immediately Lebwohl, Carlson, and Mosekilde
[4] have rewritten the sum (1) asan integral

S(c,x) = [cfsinh(cm)]
X f” exp(x cos 8 — x)cosh{(cm — ¢6)do, (3)
¢

have approximated this integral for small B, and have
recovered an expression for B = 0 obtained previously
by Route and Kino [3]. They have also pointed out the
chief problem in this analysis: the integral for S(c.x) as

a function of B has an essential singularity at the point
B =0. In this communication we derive a systematic
expansion as B —> 0+, but first we obtain some new rep-
resentations for the integral (3). These should afford
some additional insight into the functional form of
S(c,x).

Let us regard ¢ as a fixed parameter and consider
S(c,x) as a function of x. If also we put ¢ =7 — # and
define

T(cx)=exp(x)S(c,x)

= [c/sinh(cm)] fﬂ exp(—x cos ¢)cosh(cp)dd,
0 (4)

then the resulting integral for 7'(c,x) suggests a repre-
sentation of 7, (x) [5,Eq.(9.6.20)]. Indeed through
substitution from (4) and integration by parts we find
that

Ld*Tldx* + xdTldx + (" — x*)T = ¢* exp(x). (5)

Also, by examination of (4), we note that T(c,x) is
analytic for |x] < « and that

S(c,0) =T(c,0)=1. (6)

This ordinary differential equation is solvable through
variation of parameters, since the corresponding homo-
geneous equation is satisfied by

Twicx)=C1,, (x)+C_I_,.(x). (7)

+ic

Moreover, any function (7) with nontrivial constants
C. has a branch point at the origin, whence the problem
(5)-(6) has a unique solution 7' (c,x) with a Taylor ex-
pansion at the origin.
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Also, from (4) and (5), we find that
Ld°Sldx + (2x° + x)dSldx + (x + )S = (8)

and by the preceding remarks we may assume that

S(ex) = i s, (c)x"

n=0

with 5,(c) = 1. 9)

By substitution we obtain, for n > 0, the recursion for-
mula

(n* + s, (c) = (n—$)[-2s,_,(c)] (10)
and thus, for S(c,x), the convergent series
S(cx)=,F,3 1;1+ic, 1 —ic; —2x)

3 (=2x)"(n—%)--- (1 -}
"2=0 (n+ic) - (1+icy(n—ic) - (1 —ic)
(11)

In other words, S (¢.x) can be expressed [6, pp.373-384]
as a generalized hypergeometric function, ,F,, and thus
as a Meijer G-function, 02’31’2. A search among special
identities for such functions suggests that we should not
expect a simpler form for § (¢,x).

Expansion

Both arguments in S(c,x) are functions of B. Hence, to
achieve a convenient form for the desired expansion,
we introduce the new variables

t =kl{uB,
u=1sin(8/2),
z = (1+ivr)/kl, (12)

and we decompose the integral (3):

S(c,x) = [c/sinh(cm)]
X [exp(cm)R(z,t) + exp(—cm)R (—z,t)],

R(z,t) =f exp(—fu” — 2ztu)P(zt,u)du,
0
P(ztu) = (1— u®) 2 exp[2ztu — 2zt sin” ' (u)].  (13)

The expansion of sin '(«) — u in powers of u has
leading term 1*16, whence the expansion of P(zt,u) in
powers of « has general form

P(ztu) = i p(zt)u” (14)

with p, a polynomial of degree =m/3. However, for any
complex z, we note that

f exp (—rfu® — 2ztu)u"du
0
=z‘"“(—2)‘"(a/az)"f exp(—v" — 2zv)dv
0

= 4t (=2) " (8/02)" exp(*) erfe(z)

T exp ()i erfc(z), (15)
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where i" erfc(z) is the nth iterated integral of the comple-
mentary error function [5, Eq.(7:2.9)]. If we substitute
(14) into R(z,t), extend the integration to +, and inte-
grate term by term, then we obtain a formal expansion

R(zt) ~tat 3 mip, (2 ™ exp(H)i" erfec(z) (16)
m=0
as t — +w, Now (16) can be rearranged as a series in
' with coefficients involving z, whence S(c,x) can be
expressed as a series in B by (12) and (13). We need
only show that (16) is an asymptotic series for large ¢.
These manipulations might perhaps be justified through
some general theorem of asymptotic analysis (e.g., [7]),
but they can quickly be validated through a few direct
estimates of remainder terms. Indeed, for any real a and
b with 0 < a < b < 1, we note

1
j exp(—"u’ — 2ztu)P(zt,u)du = o[exp(—a’t’) ],
b

f exp (—£14® — 2ztu) " du = o[exp(—a’t’) ], (17)
b

as t — +oo. On the interval [0,6 ], furthermore, (14) con-
verges absolutely and uniformly, so that

n—-1
IPGtu) = 3 p(z0)u™ = K(b) lzt|™ u". (18)
m=0

Thus, by (17) and (18),
n—1

|R{z,t) — 2 Pzt f exp(—u’ — 2ztu)u"du|
m=0 0
< o[exp(—d’r’)]

+ K b))zt f exp(—u” + 2|z|tu)u"du

0

< olexp(—d’'f)] + 0(1_1_2"/3) as t — +owo,

(19)

We have now verified the expansion (16) and need
only compute the first few terms. However, from (13)

Plztu) =1+ (1/2)d* — (zt/3)d’
+ (3/8)u* — (19 z1/60)u°
+ [(zzt2/30) +(5/16)1u® + O (ztu” + 22ru®)
(20)

as u — 0; and thus, from (16),

R(z,t) = 4a? exp(2)) [ + (i — 2zi°)
+ 391" — 38zi° + 247%1%) + 0(+77)] erfe(z)
(21)

as ¢t — +o, By the detailed form of the expansion for
P(zt,u), only odd powers of # can occur in (21). Finally,
from (13),
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2 sinh (7 ZI)S(C,X)/’)T% z exp(zz)
~ exp(m zt)[i* + 172 (iF — 2zi°)
+7*(9i* — 382 + 247%°) +- ] erfc(z)
+ exp(—m zt) [i* + (@ + 220°)
+ 719" + 38 zi® + 247%°) +- ] erfc(—z) (22)

as t — +w. We may retain exponentially small terms if
we interpret (22) as a multiple asymptotic expansion
in the sense of Shere [8]. If we substitute ¢ = kl/uB from
(12), then we get the desired expansion for small B.
Through the recursion formulas [5, Eq.(7.2.5)]

ni® erfe(z) + zi* " erfe(z) — #* * erfe(z) =0, (23)

the functions i" erfc(z) in these series can all be com-
puted numerically Via an algorithm of Gautschi [9, 10]
or related simply to the basic pair

i erfc(z) = 27 exp(—2%),
i’ erfe(z) = erfc(z). (24)

The leading term of (22) is the result of Lebwohl, Carl-
son, and Mosekilde [4], but it appears in our analysis
as part of a complete expansion. We hope that (22) will
facilitate the understanding of acoustoelectric phe-
nomena in the region of small B.
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