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Abstract: This paper outlines a resource allocation strategy called deadline scheduling, which is intended for use in interactive systems.
Experiments are reported in which simplified versions of deadline scheduling and two time slicing strategies are modeled and com-
pared under identical conditions. Results suggest that deadline scheduling, primarily by reducing paging overhead, provides faster re-
sponse and supports more interactive users concurrently than do the two time slicing methods.

Introduction
Performance of interactive computer systems is judged
in accordance with several different standards, such as
transaction throughput and resource utilization. How-
ever, these criteria usually rank behind subjective judg-
ments of terminal response time by users of the system.
Response times are usually judged relative to the users’
estimate of the productive work done by the system in
processing each transaction. For example, a user may
expect a very fast response to a trivial editing command,
but be content to wait several minutes for compilation of
a large program. Users’ estimates of the complexity of
their transactions do not always correspond to the actual
load placed by these transactions on the resources of the
system. Nevertheless, a system that is consistently slow
in responding to seemingly simple commands will frus-
trate its users and will be judged accordingly.

The performance of an interactive system depends to
a large extent on the scheduling algorithm that controls
the allocation of system resources among users’ transac-
tions. Much work has gone into devising and refining
these algorithms [1-8]. A number of distinct approach-
es have evolved, such as multilevel time slicing [1] and
policy-driven scheduling [2]. Generally, the idea under-
lying all of them is to distribute the system’s resources in
some sense equitably over the set of transactions that
are currently in process. Usually, this is achieved by, in
effect, decreasing the “eligibility” of a transaction to the
extent that it is consuming resources, so that at some
point in time it is forced to yield its resources to a com-
peting transaction (as in “‘time slice end”).
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In general, current scheduling strategies do not make
explicit use of the user’s expectation with regard to a
transaction. Rather, they accumulate information about
each transaction by observing the transaction as it is
being executed (for example, a long transaction may be
treated the same as a short one until some number of
time slices have elapsed.) This principle has the advan-
tage that no a priori information is required about the
transactions. It has the disadvantages that the measure-
ment process (e.g., time slicing) results in nonproduc-
tive overhead (e.g., repeated page fetches), and that
inappropriate allocations may be made during the initial
period before the system has gathered sufficient informa-
tion about a new transaction. For example, a long trans-
action, which should be given low priority, is treated
with high priority until its nature is recognized.

An alternative approach to scheduling, called deadline
scheduling, has been proposed [9] and is outlined in this
paper. Deadline scheduling explicitly uses the reason-
ably expected response time of each transaction as a
scheduling parameter called a deadline. System re-
sources are allocated according to a priority ordering
among transactions, where priority is based on the
relative closeness of each transaction to its deadline. It
was expected that deadline scheduling would result in
the following advantages over a schedular based on time
slicing:

1. A reduction in nonintrinsic overhead due to CPU-
switching, page swapping, etc.,
2. A more favorable distribution of response times, and
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Figure 1 Scheduling stack for deadline scheduling.

3. The ability to support a larger number of concurrent-
ly active users with a given response quality.

In this paper we report on a modeling experiment de-
signed to investigate these contentions. We first describe
simplified models of a deadline scheduler and of two
schedulers based on time slicing. We then outline the
general structure of the experiment and describe the
load to which the schedulers were subjected. Finally we
report and discuss the experimental results.

Deadline scheduling

Deadline scheduling assumes that each transaction,
when it arrives in the system, has a completion deadline.
This approach creates a new problem, i.e., translating a
priori information about each transaction into an appro-
priate deadline. Since this problem is not the subject of
this paper, it suffices to observe that the nature of com-
mands (e.g., EDIT, EXECUTE) and their parameters (e.g.,
file size) are generally adequate for determining a first
approximation to a user-acceptable deadline. Dead-
lines could thus be assigned by higher-level subsystems
(such as editors, compilers, and command interpreters)
according to the characteristics of the transaction. (This
would of course incur some additional overhead, which
is not reflected in our model.) The original estimate could
be refined dynamically if necessary on the basis of the
measured behavior of the transaction.

In our model, transactions are sorted into a number of
discrete categories, each with its own deadline. These
categories are described in greater detail later. In the
simplified version of deadline scheduling used in the
model, each transaction is assigned an initial urgency of
1 when it arrives in the system. Its urgency is then dou-
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bled whenever half of the remaining time to its deadline
has elapsed, until the urgency reaches a ceiling (8 for
the runs described here). Thus, as illustrated in Fig. 1,
all transactions in the system are dynamically ordered in
a scheduling stack according to their urgency, and within
a given urgency class according to their deadline.

At each instant, a working page set size [9] is asso-
ciated with each transaction. (The exact meaning of this
term and the method by which working set size is gener-
ated are described later.) Pages that spontaneously be-
come available (for example, by termination of a
transaction) are allocated to the most urgent transaction
that has fewer allocated pages than its working set size.
CPU’s that spontaneously become available are given to
the most urgent transaction that has its full set of allocat-
ed pages but lacks a CPU. (The strategy is capable of
handling multiple CPU’s.) Partial page allocations, i.e.,
allocations of fewer pages than a transaction’s full work-
ing set size, may be stolen and given at any time to a
more urgent transaction that requests more pages. Full
page allocations, however, are never stolen unless some
transaction’s urgency reaches the ceiling.

When the urgency of any transaction reaches the ceil-
ing, the system reconsiders the allocation of all re-
sources. The system scans the transaction stack (see
Fig. 1) from the top, ensuring that CPU’s and pages are
allocated to the topmost transactions, stealing resources
from less urgent transactions as necessary. To steal re-
sources, the system scans the stack from the bottom. It
is expected that resources will be stolen in this way only
rarely, since the urgencies of the various transactions
tend to remain in the same relative order as all the trans-
actions progress toward their respective deadlines (the
main exception is due to newly arriving transactions of
relatively early deadlines). To the extent that this is true,
the rate of forced page fetches and task switches re-
mains relatively low as the system load approaches ca-
pacity, and ‘““‘thrashing” is avoided.

Time slicing strategies

For the simplified time slicing strategies to be used in
the model, we define a “multiprogramming ring,”” which
at any given instant contains some subset of the transac-
tions known to the system. Only the transactions in the
multiprogramming ring are considered candidates for
allocation of pages or CPU’s. Transactions not in the
multiprogramming ring are said to be dormant.

The number of transactions in the multiprogramming
ring is governed by the number of pages in memory. The
“most eligible” dormant transaction is promoted into the
multiprogramming ring when there are enough unallocat-
ed pages in memory to accommodate its current working
set, plus a small additional reserve of unused pages.
When a transaction is placed in the multiprogramming
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ring, it is immediately allocated enough pages to hold its
working set. CPU'’s are allocated among transactions in
the multiprogramming ring on a round-robin basis.

A transaction remains in the multiprogramming ring
until it has used a fixed amount of CPU time (called a
time slice) or until it requests allocation of more pages
than are currently available. At this time the transaction
is made dormant and its pages are made available for
other transactions. The reserve of unused pages enables
the system to satisfy new requests for pages and thus
prevents frequent demotions of running transactions to
the dormant stage. For the experiments described in this
paper, the reserve has been set to ten pages.

The two time slicing strategies differ only in their defi-
nition of the “most eligible” dormant transaction. In
one-level time slicing, the most eligible dormant transac-
tion is the transaction that has been dormant for the
longest time. In two-level time slicing, the most eligible
transaction is the longest-dormant transaction that has
not yet completed a time slice; if none, then the longest-
dormant transaction that has completed one or more
time slices.

Figures 2 and 3 illustrate one- and two-level time slic-
ing, respectively.

The model

In our model, discrete event techniques are used to sim-
ulate the allocation of processing time and main memory
to a number of contending transactions, neglecting con-
tention for other resources. This is a rather simplified
view of an operating system. The model is nevertheless
believed to be meaningful because the simplifications
have comparable effects on all strategies modeled, and
because the interacting effects of contention for more
than one class of resources (processors and memory
space) are included in the model.

The model takes into account the delay incurred in
fetching the contents of a newly referred to page. No
attempt is made to keep track of the identity of page
contents. The user of the model specifies, as parameters
of each run, the numbers of CPU’s and pages available
in the system, the page fetch time, the characteristics of
the system load, and which of the three scheduling strat-
egies is to be used.

The model, which was coded in PL/1, consists of
three parts:

1. A transaction stream generator, which, at the begin-
ning of a run, generates the stream of transactions
used to load the system during the run.

2. A calendar-driven simulator. At each instant of sim-
ulated time, the calendar contains an ordered list of
all future events known to the model. The basic cy-
cle, which is executed repeatedly, is as follows:
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Figure 2 One-level time slicing.
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Figure 3 Two-level time slicing.

a. Update simulated time to the nearest future event.
b. Simulate this event. (This may generate addition-
al future events that are placed on the calendar in
their proper chronological order.)
3. An output analysis routine, which gathers and prints
data on the behavior of the system. 265
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The load

Before a simulation run begins, a set of transactions is
generated to serve as the system load. Each transaction
is described by the time of its arrival in the system and
by its processing and storage needs. The processing
demand of a transaction is simply given by its total exe-
cution time. The most detailed description possible of
the storage demands of a given transaction is a complete
list of its page references. For the purpose of this model,
however, we have chosen to characterize storage de-
mands by assigning to each transaction a “working page
set size”, which fluctuates as the transaction is executed.
We assume that execution of a transaction can continue
only if it is allocated a number of pages at least equal to
its working set size.

In this model the working set includes all the pages
referred to by a transaction in a certain time period
(until the next working set size change). If the working
set decreases, pages are released to the system; if it in-
creases requests for additional pages are issued.

Various algorithms have been proposed for the ap-
proximate measurement of working set size as a dy-
namic parameter [9]. Our experiment replaces such an
algorithm by an « priori generated distribution. The
working set size of each transaction is generated, as a
function of elapsed execution time of the transaction, by
the load generator, and is made available for use by the
various scheduling strategies. Thus, the profile of each
transaction is given by its arrival time and a list of
“events” that occur after the transaction has accumulated
certain amounts of CPU time. These events represent
changes in the working set size. For each transaction the
working set size fluctuates about a mean. The final event
of each transaction is its termination.

A typical time-sharing system must be expected to
handle several types of transactions, each with its own
unique set of characteristics; for example, it might simul-
taneously run interactive terminal transactions and back-
ground compute-bound transactions. Qur model reflects
this by allowing the user to specify several “categories”
of transactions. The total load on the system is a combina-
tion of transactions generated from all the categories.

The arrival times and resource requirements of the
transactions, and the timing of the events within each
transaction, are randomly generated according to the
distributions to be described. For each category of trans-
actions, the model user specifies:

1. Mean interarrival time. (The model distributes actual
transaction arrivals randomly throughout the simu-
lated run according to a uniform distribution.)

2. The mean and standard deviation of CPU time used
before termination. (The model uses a Gaussian dis-
tribution for assigning CPU time requirements, mod-
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ified by taking the absolute value of the generated
time. A Gaussian distribution was chosen because it
was felt that separate parameters were needed for
controlling the mean and the standard deviation).

3. The deadline for transactions in the category, ex-
pressed as elapsed real time after arrival in the sys-
tem. (The model assumes identical deadlines for all
transactions in a category.)

4. The mean working page set size among all transac-
tions in the category. (The mean working set for a
particular transaction is chosen from a Poisson dis-
tribution; the instantaneous working set of a particu-
lar transaction then varies randomly as a function of
execution time about the mean for that transaction,
again using a Poisson distribution.)

Experimental results

Our experimental results are based on a simulated sys-
tem having two CPU’s and one megabyte of main stor-
age. We assume 4K bytes per page and that 150 pages
are occupied by the resident system, leaving 100 pages
for user transactions. The simulated page fetch time is
set at 20 ms.

For the first part of our experiment we wish to mea-
sure the relative capacities of the three strategies to sup-
port interactive terminal users in the presence of a back-
ground load. Accordingly, we set the load generator to
produce a category of “background” transactions. The
following characteristics were chosen for this category:

Mean arrival rate: 3 per min
Mean CPU usage: 16 s
Mean working set size: 50 pages
Deadline: 180 s
CPU load factor: 40%

A CPU load factor of 40% denotes that the background
transactions alone would consume 40% of the capacity
of the system’s two CPU’s, neglecting idleness due to
contention for pages.

In addition to the background transaction category,
we set the load generator to produce a category of “ter-
minal” transactions having the following characteristics:

Mean CPU usage: 0.8s
Mean working set size: 20 pages
Deadline: 4s

We vary the mean arrival rate of terminal transactions
from one experiment to another in order to simulate
various numbers of terminal users. Statistics on existing
interactive systems indicate that the average terminal
user generates a transaction about every 30 to 60 sec-
onds. (See Appendix.) Using the 30-second figure, Ta-
ble 1 shows the approximate numbers of terminal users
that correspond to the various arrival rates used in the
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experiments, and the CPU load factor for each. We see
that a mean arrival rate of 90 interactive transactions per
minute, in addition to the background load, produces a
total CPU load factor of 100 percent. Since any real
resource allocation strategy will result in some CPU
idleness while pages are being fetched, we do not expect
any of the strategies modeled to successfully handle 90
interactive transactions per minute.

It might be noted here that the inhomogeneous nature
of the load is such that a simple first-come, first-served
scheduler without time slicing would be quite unsuitable.
In such a scheduling discipline two background transac-
tions would seize the two CPU’s and hold them until
completion, during which time a great many terminal
transactions would arrive in the queue. The result would
be unacceptably long response times for terminal trans-
actions.

In order to fairly compare the load-handling ability of
deadline and time slicing schedulers, we have optimized
the time slicing schedulers by selecting for each the time
slice length capable of handling the largest load. For this
purpose, a series of runs were made to find the maxi-
mum arrival rate of terminal transactions (in addition to
the background load) that could be supported by the
two time slicing strategies for various time slice lengths.
In each run, a stream of transaction arrivals was gener-
ated statistically as described above for the first 100
simulated seconds of the run. This input transaction
stream was then duplicated in each successive 100 simu-
lated seconds until the end of the run. A record was kept
of queue length (number of transactions that have ar-
rived but not yet terminated) vs. time for at least 1200
simulated seconds of each run. The system was judged
to support the load if the queue length became stable
and periodic with period equal to some multiple of 100
seconds (the input period). If the queue grew without
bound as a linear function of time, the system was
judged not to support the load.

The maximum transaction arrival rate supported by
the three scheduling strategies is plotted in Fig. 4. The
deadline scheduler has no parameter that can be “‘tuned”
in analogy to the time slice length, since deadlines are
properties of the transactions rather than of the strategy.
The regions of uncertainty marked on the curves of Fig.
4 denote experiments for which the system queue length
neither became periodic nor grew linearly. These uncer-
tainties are due to the stochastic nature of the experi-
ments. We see from the plot that deadline scheduling
supports the highest rate of interactive transactions un-
der the given conditions, followed by two-level time slic-
ing and one-level time slicing. We also note that the
load-handling ability of the time slicing strategies drops
sharply as the time slice approaches (from above) the
average duration of a terminal transaction. This phenom-
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Figure 4 Maximum load supported by three scheduling strate-
gies.

Table 1 Number of terminal users corresponding
to arrival rates used in experiments.

Mean interactive Approx. no. CPU load factor for
arrival rate of terminal terminal transactions
(trans./min) users (percent)

30 15 20
36 18 24
42 21 28
48 24 32
54 27 36
60 30 40
66 33 44
72 36 48
78 39 52
84 42 56
90 - 45 60

enon is probably due to the lost time involved in re-
fetching the pages belonging to a terminal transaction if
that transaction requires more than one time slice to
complete.

For the second part of our experiment, we wish to
compare the responsiveness of deadline scheduling to
that of the other two strategies under the same load. We
use the deadlines as a standard of performance for all
three strategies, although only the deadline scheduler
uses them explicitly as scheduling parameters. We define
a ‘‘response ratio” as the turnaround time of a transac-
tion divided by its deadline. Ali transactions with a re-
sponse ratio greater than one are “late.”
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Figure 5 Response ratio distributions for three scheduling
strategies.

We will compare the responsiveness of the three strat-

egies, loaded with 48 interactive transactions per minute .

plus background, which was the largest load that all
three strategies were able to support. Once again, in
order to be fair to the time slicing strategies, we deter-
mine the time slice length that produces the most favor-
able results. For the one-level and two-level time slicing
strategies, a series of runs were made with the above
load. The runs used various time slice lengths, and each
run had a duration of 20 simulated minutes. The average
response ratio of all terminal transactions in each run is
shown in Table 2. We see that there is no simple rela-
tionship between time slice length and average response
ratio for either of the time slicing strategies. Neverthe-
less, we selected the time slice length that produced the
most favorable average response ratio for each strategy
(3.5 s for one-level, 2.0 s for two-level.)

Next we investigated the reponse-time distribution of
each time slicing strategy more fully, using its most fa-
vorable time slice length as determined above, and com-
pared it with that of deadline scheduling. A run of 30
simulated minutes was made, with a load of 48 interac-
tive transactions per minute plus background, for each
of the strategies. For each run, a plot was made of the
distribution of response ratios among all transactions in
the run (see Fig. 5.) We see that the most favorable dis-
tribution of response ratios (greatest percentage of
transactions ‘‘on time” or “early’’) is produced by dead-
line scheduling, followed by two-level time slicing and
one-level time slicing.

For the same runs that produced the results in Fig. 5,
a count was Kept of the total number of page fetches and
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Table 2 Average response ratio for interactive transactions
(load = 48 interactive trans./min plus background).

Time slice One-level Two-level
length (s) time slicing time slicing
1.0 * *

1.5 * 1.149
2.0 * 0.991
2.5 1.549 1.418
3.0 1.471 1.343
3.5 1.394 1.287
4.0 1.446 1.269
5.0 1.532 1.225

*Unstable queues

CPU dispatches in each run, as a measure of the relative
overhead costs of the three strategies. The results are
shown in Table 3. We see that the three strategies are
close to each other in terms of total number of CPU dis-
patches. However, deadline scheduling results in
markedly fewer page fetches than does two-level time
slicing, which in turn has fewer than one-level time
sticing. The low level of page fetching produced by dead-
line scheduling is probably due to the fact that the dead-
line scheduler revokes a page allocation only in the rela-
tively rare event of some transaction reaching the urgen-
cy threshold, whereas the time slicing strategies revoke
page allocations on every time slice end.

Conclusions

Given the particular environment on which our experi-
ments were based, i.e., a mixed interactive and back-
ground load as characterized earlier, and neglecting
contentions for resources other than CPU’s and pages,
the time slicing and deadline approaches to scheduling
compared as follows:

1. Deadline scheduling can support more interactive
users than time slicing.

2. Deadline scheduling results in faster average response
than time slicing.

3. The three strategies studied are roughly equivalent
as regards CPU dispatching overhead. However,
deadline scheduling is markedly superior as far as
paging overhead is concerned.

These results appear to corroborate the soundness of
the underlying philosophy of deadline scheduling, which
strives to make intelligent guesses at the true priorities
of the various transactions in the system. The favorable
response ratio distribution of deadline scheduling is evi-
dence that the strategy successfully avoids delaying crit-
ical transactions in favor of less critical ones. The im-
proved load-carrying capacity of deadline scheduling is
explained by the reduced level of page fetching overhead
of this strategy as compared with time slicing. Since the
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Table 3 QOverhead costs in 30-minute run (load = 48
interactive trans./min plus background).

No. of page No. of CPU

Strategy fetches dispatches
Deadline
scheduling 46104 5009
One-level
time slicing
(slice=3.5s) 58248 5084
Two-level
time slicing
(slice=2.0s) 51614 4994

“cost” of a page fetch is represented in the model by a
20-ms delay, the repeated page fetches induced by time
slicing cause a reduction in system throughput.

These results must be considered preliminary, because
the strategies and the modeling environment were con-
siderably abstracted from their real counterparts. A
number of avenues for further research suggest them-
selves, including an investigation of various ways of as-
signing deadlines to transactions, and the sensitivity of
the deadline scheduler to the deadlines chosen. Another
interesting extension to our experiments would be a
study of the relationship between response ratio and
CPU requirements for transactions in a heterogeneous
transaction load, under the various scheduling strategies.

Appendix. User expectations of interactive systems

Pioneering work in measuring the behavior of interactive
users was done by Scherr [10], whose analysis of the
CTSS system at MIT revealed that on the average, a
terminal user completes a transaction approximately
every 36 seconds (35.2 s for 1/0 and user think time,
plus 0.9 s of computation), and by Bryan [11], who
showed that the “‘average” user of the JOSS system at
RAND Corp. generated a transaction every 34 s (24 s
thinking and typing request, 10 s for system to reply).
Later studies were made by Fuchs, Jackson, and Stubbs
[12,13], who consider that both user requests and
system replies are composed of a “thinking” period
followed by several “bursts” of characters. Their mea-
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surements on three time-sharing systems showed that an
average user request was completed every 72.8 s (21.4 s
to enter request, 51.4 s for system reply) [13] (amended
in [12] to 57.3 s, 21.1 by user and 36.2 by system).
Any attempt to interpret transaction rate in terms of
number of users is complicated by the known fact that
the transaction submittal rate of a user drops as the sys-
tem response time increases. Since the results of our
experiment are expressed as transaction rates, they are
independent of this effect.
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