
D. D. Chamberlin 
H. P. Schlaeppi 
1. Wladawsky 

Experimental  Study of Deadline  Scheduling  for 
Interactive  Systems 

Abstract: This  paper outlines a resource allocation strategy called deadline scheduling, which is intended for  use in interactive systems. 
Experiments  are reported in which simplified versions of deadline  scheduling  and two time slicing strategies are modeled and com- 
pared under identical conditions. Results suggest that deadline  scheduling, primarily by reducing paging overhead, provides faster re- 
sponse  and  supports  more interactive users concurrently than  do  the  two time slicing methods. 

Introduction 
Performance of interactive  computer  systems is judged 
in accordance with several different standards,  such  as 
transaction throughput and  resource utilization. How- 
ever,  these criteria  usually rank behind subjective  judg- 
ments of terminal response time  by users of the  system. 
Response times are usually judged  relative to  the users’ 
estimate of the  productive work done by the  system in 
processing each  transaction. For example,  a user may 
expect a very fast response  to a trivial editing command, 
but be  content  to wait several  minutes for compilation of 
a large program. Users’  estimates of the complexity of 
their  transactions  do not always  correspond  to  the actual 
load placed by these  transactions on the  resources of the 
system.  Nevertheless, a system  that is consistently  slow 
in responding to seemingly  simple commands will frus- 
trate its users and will be judged  accordingly. 

The  performance of an interactive  system  depends  to 
a  large extent  on  the scheduling  algorithm that  controls 
the allocation of system  resources among  users’ transac- 
tions. Much work has gone into devising  and refining 
these algorithms [ 1 - 81. A number of distinct approach- 
es  have evolved, such  as multilevel time slicing [ 11 and 
policy-driven scheduling [2].  Generally,  the idea  under- 
lying all of them is to  distribute  the system’s resources in 
some  sense equitably over  the  set of transactions  that 
are  currently in process. Usually, this is achieved by, in 
effect, decreasing the “eligibility” of a transaction  to  the 
extent  that it is consuming resources, so that  at  some 
point in time it is forced  to yield its  resources  to a com- 
peting transaction  (as in “time  slice end”). 

In  general,  current scheduling  strategies do not make 
explicit use of the user’s expectation with regard to a 
transaction. Rather, they accumulate information about 
each transaction by observing the  transaction as it  is 
being executed  (for  example, a long transaction may be 
treated  the  same  as a short  one until some  number of 
time  slices have elapsed. j This principle has  the  advan- 
tage that  no a priori information is required about  the 
transactions.  It  has  the disadvantages that  the measure- 
ment  process (e.g., time  slicing) results in nonproduc- 
tive overhead (e.g.,  repeated  page fetches j ,  and that 
inappropriate allocations may be made during the initial 
period  before the  system  has gathered sufficient informa- 
tion about a new transaction.  For example, a long trans- 
action, which should  be  given low priority, is treated 
with high priority until its nature is recognized. 

An  alternative  approach  to scheduling,  called  deadline 
scheduling, has been  proposed [9] and is outlined in this 
paper. Deadline  scheduling explicitly uses  the  reason- 
ably expected  response time of each  transaction  as a 
scheduling parameter called a deadline. System re- 
sources  are allocated  according to a priority  ordering 
among transactions,  where priority is based on  the 
relative closeness of each  transaction  to its  deadline. It 
was expected  that deadline  scheduling would result in 
the following advantages  over a schedular based on time 
slicing: 
1. A reduction in nonintrinsic overhead  due  to CPU- 

switching,  page  swapping, etc., 
2. A more favorable distribution of response times, and 263 

MAY 1973 DEADLINE  SCHEDULING 



Urgency 
class 

x( 
4 {  

2 {  

Most  urgcnt 

” - - - - - - - - - 3 1% of time to dcadline  rcmaming 

-” - -” - _ _  9” of time to deadline  remaining 

1- New  transactions 
Least urgent 

(Transactions  ordered by deadline  with~n each  urgency  class) 

Figure 1 Scheduling stack for  deadline  scheduling. 

3. The ability to  support a  larger  number of concurrent- 
ly active  users with  a  given response quality. 

In this paper we report  on a modeling experiment  de- 
signed to investigate these  contentions. We  first describe 
simplified models of a deadline  scheduler  and of two 
schedulers  based  on time slicing. We  then  outline the 
general structure of the experiment  and describe  the 
load to which the  schedulers were  subjected.  Finally we 
report  and  discuss  the experimental  results. 

Deadline scheduling 
Deadline scheduling assumes  that each transaction, 
when it arrives in the  system,  has a completion  deadline. 
This  approach  creates a new problem, i.e., translating a 
priori information about  each  transaction  into  an  appro- 
priate deadline. Since this  problem is not the  subject of 
this paper, it suffices to  observe  that  the  nature of com- 
mands (e.g., EDIT,  EXECUTE) and  their  parameters (e.g., 
file size)  are generally adequate  for determining a first 
approximation to a user-acceptable deadline. Dead- 
lines could thus  be assigned by higher-level subsystems 
(such as  editors, compilers,  and  command interpreters) 
according to  the  characteristics of the  transaction.  (This 
would of course  incur  some additional overhead, which 
is not reflected in our model.)  The original estimate could 
be refined dynamically if necessary  on  the basis of the 
measured behavior of the  transaction. 

In our model, transactions  are  sorted  into a number of 
discrete  categories,  each with its own deadline. These 
categories are  described in greater detail  later. In  the 
simplified version of deadline  scheduling  used in the 
model,  each transaction is assigned an initial urgency of 

264 I when it arrives in the  system.  Its urgency is then  dou- 

D.  D. CHAMBERLIN,  ET  AL. 

bled whenever half of the remaining time to its  deadline 
has  elapsed, until the urgency reaches a ceiling (8 for 
the  runs  described  here).  Thus, as illustrated in Fig. 1, 
all transactions in the  system  are dynamically ordered in 
a scheduling stack according to  their urgency,  and within 
a  given  urgency class according to  their deadline. 

At  each  instant, a working  page set size [9] is asso- 
ciated with each transaction. (The  exact meaning of this 
term and the method by which working set size is gener- 
ated  are  described  later.) Pages that  spontaneously be- 
come available (for example, by termination of a 
transaction)  are allocated to  the  most  urgent  transaction 
that has fewer allocated pages than its  working set size. 
CPU’s  that  spontaneously  become available are given to 
the most  urgent transaction  that  has its full set of allocat- 
ed pages  but  lacks a CPU.  (The strategy is capable of 
handling  multiple CPU’s.)  Partial page  allocations, i.e., 
allocations of fewer pages than a transaction’s full work- 
ing set size,  may be stolen  and  given at any  time to a 
more urgent transaction  that  requests  more pages.  Full 
page  allocations, however,  are  never stolen  unless some 
transaction’s  urgency reaches  the ceiling. 

When the urgency of any transaction  reaches  the ceil- 
ing, the system reconsiders  the allocation of  all re- 
sources.  The  system  scans  the  transaction  stack  (see 
Fig. 1)  from  the  top, ensuring that  CPU’s and  pages are 
allocated to  the  topmost  transactions, stealing resources 
from  less urgent transactions  as  necessary. To  steal  re- 
sources,  the  system  scans  the  stack  from  the  bottom.  It 
is expected  that  resources will be  stolen in this way only 
rarely,  since  the urgencies of the various transactions 
tend to remain in the  same relative order as all the trans- 
actions progress toward  their  respective  deadlines  (the 
main exception is due  to newly  arriving transactions of 
relatively  early deadlines). To  the  extent  that this is true, 
the  rate of forced  page fetches  and  task  switches re- 
mains  relatively  low as  the  system load approaches ca- 
pacity, and  “thrashing” is avoided. 

Time slicing strategies 
For  the simplified time slicing strategies to be  used in 
the model, we define a  “multiprogramming  ring,” which 
at  any given instant  contains  some  subset of the  transac- 
tions  known to  the  system. Only the  transactions in the 
multiprogramming ring are considered candidates for 
allocation of pages or CPU’s.  Transactions not in the 
multiprogramming ring are said to be dormant.  

The number of transactions in the multiprogramming 
ring is governed by the  number of pages in memory. The 
“most eligible” dormant  transaction is promoted into  the 
multiprogramming ring when there  are enough  unallocat- 
ed pages in memory to  accommodate its current working 
set, plus a small additional reserve of unused pages. 
When a transaction is placed in the multiprogramming 

IBM J .  RES.  DEVEL,OP. 



ring, it is immediately  allocated  enough pages to hold its 
working set.  CPU’s  are allocated  among transactions in 
the multiprogramming ring on a round-robin basis. 

A transaction remains in the multiprogramming ring 
until it has used a fixed amount of CPU time  (called a 
time slice) or until it requests allocation of more pages 
than are currently  available. At this  time the  transaction 
is made  dormant and  its pages are  made available for 
other  transactions.  The  reserve of unused pages enables 
the  system  to satisfy new requests  for pages and  thus 
prevents  frequent demotions of running transactions  to 
the  dormant stage. For the  experiments  described in this 
paper,  the  reserve  has been set  to  ten pages. 

The  two time slicing strategies differ only in their defi- 
nition of the  “most eligible” dormant  transaction.  In 
one-level  time slicing, the most eligible dormant  transac- 
tion is the  transaction  that  has been dormant  for  the 
longest  time. In two-level time slicing, the most eligible 
transaction is the longest-dormant transaction  that  has 
not yet completed  a  time  slice; if none,  then  the longest- 
dormant  transaction  that has  completed one or more 
time  slices. 

Figures 2 and 3 illustrate  one- and two-level time slic- 
ing, respectively. 

The model 
In our model, discrete  event  techniques  are used to sim- 
ulate the allocation of processing  time and main memory 
to a number of contending transactions, neglecting con- 
tention for  other  resources.  This is a rather simplified 
view of an operating  system. The model is nevertheless 
believed to be meaningful because  the simplifications 
have  comparable effects on all strategies  modeled,  and 
because  the interacting  effects of contention  for more 
than one  class of resources  (processors  and memory 
space)  are included in the model. 

The model takes  into  account  the delay  incurred in 
fetching the  contents of a newly referred to page. No 
attempt is made to  keep  track of the identity of page 
contents.  The  user of the model specifies, as  parameters 
of each  run,  the  numbers of CPU’s  and pages  available 
in the  system,  the page fetch time, the  characteristics of 
the  system load, and which of the  three scheduling strat- 
egies is to  be used. 

The model, which was coded in PL/ l ,  consists of 
three  parts: 

1. A transaction  stream  generator, which, at  the begin- 
ning of a run, generates  the  stream of transactions 
used to load the  system during the run. 

2. A  calendar-driven  simulator. At  each  instant of sim- 
ulated  time, the  calendar  contains  an  ordered list of 
all future  events known to the model. The  basic cy- 
cle, which is executed  repeatedly, is as follows: 

MAY 1973 

Dormant 
queue 

(FIFO 
order) 

New transactions - 

Time slice end 
or  
Transaction  requcsted 
too  many  pages 

(Transactions  promoted to  multiprogramming  ring 
when  enough  pages  are  available) 

Figure 2 One-level  time slicing. 

Multi- 

ring 

(round-mhin 
CPU scheduling) 

L Most  ehgible 

Level I 

( n o  time 

complctcd) 
slice 

Level 2 

( a t  least 
I time slice 
complcted) 

I / 

Transaction 
requested 
too  many 
pages 

transaction 
completed 
one time 

transaction slice? 

4 

(Lcvel 2 transactions  promoted  only if Level I is empty) 

Figure 3 Two-level  time slicing. 

a. Update simulated  time to the  nearest  future  event. 
b. Simulate  this event.  (This may generate addition- 

al future  events  that  are placed on  the  calendar in 
their  proper chronological order.) 

3. An  output analysis routine, which gathers  and prints 
data  on  the  behavior of the system. 265 

DEADLINE  SCHEDULING 



The load 
Before a simulation  run begins, a set of transactions is 
generated  to  serve  as  the  system load. Each  transaction 
is described by the time of its  arrival in the  system and 
by its  processing and  storage needs. The processing 
demand of a transaction is simply given  by  its  total exe- 
cution  time. The most  detailed  description  possible of 
the  storage  demands of a given transaction is a complete 
list of its page  references. For  the  purpose of this  model, 
however, we have  chosen  to  characterize  storage  de- 
mands by assigning to each  transaction a  “working  page 
set  size”, which  fluctuates as  the  transaction is executed. 
We  assume  that  execution of a transaction  can  continue 
only if it is allocated  a number of pages at  least  equal  to 
its  working set size. 

In this model the working set includes all the pages 
referred to by a transaction in a certain time  period 
(until the  next working set size change). If the working 
set  decreases, pages are released to  the  system; if it in- 
creases  requests  for additional  pages are issued. 

Various algorithms have  been  proposed  for  the ap- 
proximate measurement of working set  size  as a dy- 
namic parameter [9]. Our  experiment  replaces  such  an 
algorithm by an a priori generated distribution. The 
working set size of each  transaction is generated,  as a 
function of elapsed execution  time of the  transaction, by 
the load generator,  and is made available for  use by the 
various  scheduling  strategies. Thus,  the profile of each 
transaction  is given  by its arrival  time and a list of 
“events”  that  occur  after  the  transaction  has  accumulated 
certain amounts of CPU time. These  events  represent 
changes  in the working set size. For  each  transaction  the 
working set size  fluctuates about a  mean. The final event 
of each  transaction is its  termination. 

A typical  time-sharing system must  be expected to 
handle several  types of transactions,  each with its  own 
unique set of characteristics;  for example, it might simul- 
taneously  run interactive terminal transactions and back- 
ground compute-bound transactions. Our model reflects 
this by allowing the  user  to specify  several  “categories” 
of transactions.  The  total load on  the  system is a combina- 
tion of transactions  generated  from all the categories. 

The arrival  times and  resource  requirements of the 
transactions,  and  the timing of the  events within each 
transaction,  are randomly generated according to  the 
distributions to be  described. For  each  category of trans- 
actions,  the model user specifies: 

1. Mean interarrival  time. (The model distributes  actual 
transaction  arrivals randomly throughout  the simu- 
lated run according to a uniform distribution.) 

2. The mean and  standard deviation of CPU time  used 
before  termination. (The model uses a Gaussian dis- 

266 tribution for assigning CPU time requirements, mod- 

D. D. CHAMBERLIN. ET AL. 

ified by taking the  absolute value of the  generated 
time.  A Gaussian distribution was  chosen  because  it 
was felt that  separate  parameters  were needed for 
controlling the mean and  the  standard  deviation). 

3. The deadline  for  transactions in the  category, ex- 
pressed  as elapsed real time after arrival in the sys- 
tem. (The model assumes identical  deadlines for all 
transactions in a category.) 

4. The mean  working  page set size  among all transac- 
tions in the  category.  (The  mean working set  for a 
particular transaction is chosen  from a Poisson dis- 
tribution; the  instantaneous working set of a particu- 
lar  transaction  then varies  randomly as a  function of 
execution  time  about  the  mean  for  that  transaction, 
again  using a Poisson  distribution.) 

Experimental results 
Our  experimental  results  are based on a  simulated  sys- 
tem having two  CPU’s  and  one megabyte of main stor- 
age. We  assume 4K bytes  per page and  that 150 pages 
are occupied by the resident system, leaving 100  pages 
for  user  transactions.  The simulated  page fetch  time  is 
set  at  20 ms. 

For  the first part of our  experiment we wish to mea- 
sure  the relative  capacities of the  three strategies to sup- 
port  interactive terminal users in the  presence of a back- 
ground  load.  Accordingly, we set  the load generator  to 
produce a category of “background”  transactions.  The 
following characteristics  were  chosen  for this  category: 

Mean arrival rate: 3 per min 
Mean CPU usage: 16 s 
Mean working set  size: 50 pages 
Deadline: 180 s 
CPU load factor: 40% 

A CPU load  factor of 40% denotes  that  the background 
transactions alone would consume 40% of the capacity 
of the system’s two  CPU’s, neglecting idleness due  to 
contention  for pages. 

In addition to  the background transaction  category, 
we  set  the load generator  to  produce a category of “ter- 
minal” transactions having the following characteristics: 

Mean CPU usage:  0.8 s 
Mean working set size:  20  pages 
Deadline: 4 s  

We  vary  ‘the  mean arrival rate of terminal transactions 
from  one  experiment  to  another in order  to simulate 
various numbers of terminal  users. Statistics  on existing 
interactive  systems indicate that  the  average terminal 
user  generates a transaction  about  every 30 to 60 sec- 
onds. (See  Appendix.) Using the 30-second figure, Ta- 
ble l shows  the  approximate  numbers of terminal users 
that  correspond  to  the various  arrival rates used in the 

IBM J. RES. DEVELOP. 



experiments,  and  the CPU load factor  for  each. We see 
that a  mean  arrival rate of 90 interactive  transactions  per 
minute, in addition to  the background load,  produces a 
total CPU load factor of 100 percent.  Since  any real 
resource allocation strategy will result in some CPU 
idleness while pages are being fetched, we do  not  expect 
any of the strategies modeled to successfully  handle 90 
interactive  transactions  per minute. 

It might be  noted here  that  the inhomogeneous nature 
of the load is such  that a  simple  first-come,  first-served 
scheduler without  time slicing would be  quite unsuitable. 
In  such a  scheduling  discipline two background transac- 
tions would seize  the  two CPU’s and hold them until 
completion,  during  which  time a great many terminal 
transactions would arrive in the  queue.  The result would 
be unacceptably long response times for terminal trans- 
actions. 

In  order  to fairly compare  the load-handling  ability of 
deadline and time slicing schedulers, we have optimized 
the time slicing schedulers by selecting for  each  the time 
slice length capable of handling the largest load. For this 
purpose, a  series of runs were made  to find the maxi- 
mum arrival rate of terminal transactions (in  addition to 
the background load)  that could  be supported by the 
two time slicing strategies for various  time  slice  lengths. 
In  each  run, a stream of transaction arrivals was gener- 
ated  statistically as described above  for  the first 100 
simulated seconds of the run. This input transaction 
stream was then duplicated in each  successive 100 simu- 
lated seconds until the end of the run. A record  was  kept 
of queue length (number of transactions  that  have ar- 
rived  but not  yet  terminated) vs.  time for  at  least 1200 
simulated seconds of each run. The  system was  judged 
to  support  the load if the  queue length became  stable 
and periodic with period  equal to  some multiple of 100 
seconds  (the input period). If the  queue grew  without 
bound as a linear  function of time, the  system was 
judged  not to  support  the load. 

The maximum transaction arrival rate  supported by 
the  three scheduling  strategies is plotted in Fig. 4. The 
deadline scheduler  has  no  parameter  that can be  “tuned” 
in analogy to  the  time slice  length, since deadlines are 
properties of the  transactions  rather  than of the  strategy. 
The regions of uncertainty marked on  the  curves of Fig. 
4 denote  experiments  for which the  system  queue length 
neither  became  periodic nor grew  linearly. These uncer- 
tainties are  due  to  the  stochastic  nature of the experi- 
ments.  We see  from  the plot that  deadline scheduling 
supports  the highest rate of interactive  transactions un- 
der  the given  conditions, followed by two-level time  slic- 
ing and  one-level  time slicing. We also  note  that  the 
load-handling ability of the  time slicing strategies  drops 
sharply as  the time slice  approaches  (from  above)  the 
average  duration of a terminal transaction.  This phenom- 

MAY 1973 

80 Deadline scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
- 

70 - 

60 - - 
fi . ‘g 50 
2 

- 

E 
- 7 30 

2 40 - 
4J 
I 

.- 
L 

T T  2-lcvcl T.S. 
I 

” 

_””“ 1“ 

.- 3 20-  
0 
L 

5 I O  - Ik-Mean processing time of terminal transaction 
... 
x 

I ,  I I I 1 5 0  
I 

0 I .o 2.0 3.0 4.0 5.0 6 

Time slice length 

Figure 4 Maximum load supported by three scheduling strate- 
gies. 

Table 1 Number of terminal  users  corresponding 
to arrival rates used in experiments. 

Mean  interactive Approx. no. CPU load  factor  for 
arrivul  rate of terminal terminal  transactions 
(trans.lmin) users (percent) 

30 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 

15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 

20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 

enon is probably due  to  the  lost time  involved in re- 
fetching the pages belonging to a terminal transaction if 
that  transaction  requires  more than one time  slice to 
complete. 

For  the  second  part of our experiment,  we wish to 
compare  the  responsiveness of deadline  scheduling to 
that of the  other  two strategies under  the  same load.  We 
use  the deadlines as a standard of performance  for all 
three  strategies, although  only the  deadline  scheduler 
uses them explicitly as scheduling parameters.  We define 
a “response ratio”  as the  turnaround time of a transac- 
tion  divided  by its deadline. AI1 transactions with a  re- 
sponse  ratio  greater than one are “late.” 267 

DEADLINE  SCHEDULING 



I Response ratio 

Figure 5 Response ratio distributions for three scheduling 
strategies. 

We will compare  the  responsiveness of the  three  strat- 
egies, loaded with 48 interactive  transactions  per  minute 
plus  background, which was the largest load that all 
three  strategies  were  able to support.  Once again,  in 
order  to be  fair to  the time slicing strategies, we deter- 
mine the  time  slice length that  produces  the  most  favor- 
able results. For  the one-level  and two-level time slicing 
strategies, a series of runs  were  made with the  above 
load. The  runs used  various  time  slice  lengths, and  each 
run had a duration of 20 simulated  minutes. The  average 
response  ratio of all terminal transactions in each run is 
shown in Table 2.  We  see  that  there is no simple rela- 
tionship between time  slice  length and  average  response 
ratio  for  either of the time slicing strategies. Neverthe- 
less, we selected  the time  slice length that produced the 
most  favorable  average  response ratio for  each  strategy 
(3.5 s for one-level, 2.0 s for two-level.) 

Next  we investigated the reponse-time  distribution of 
each time slicing strategy  more fully, using its  most  fa- 
vorable time slice length  as determined  above, and com- 
pared it with that of deadline  scheduling. A run of 30 
simulated  minutes  was made, with a load of 48 interac- 
tive  transactions  per minute  plus  background, for  each 
of the strategies. For  each  run, a plot was  made of the 
distribution of response ratios  among all transactions in 
the run (see Fig. 5.) We see  that  the most favorable dis- 
tribution of response  ratios  (greatest  percentage of 
transactions “on  time” or  “early”) is produced by dead- 
line scheduling, followed by two-level time slicing and 
one-level  time slicing. 

For  the  same  runs  that  produced  the  results in Fig. 5 ,  
268 a count  was  kept of the  total  number of page fetches  and 

Table 2 Average response ratio for interactive transactions 
(load = 48 interactive trans./min plus background). 

Time  slice  One-level  Two-level 
length (s) time  slicing  time  slicing 
_____________ 

1 .o 
1.5 1.149 
2.0 0.99 1 
2.5  1.549  1.418 
3 .O 1.47 1 1.343 
3.5  1.394  1.287 
4.0 1.446  1.269 
5.0 1.532  1.225 

- ” 

* $ 

* 
* 

*Unstable queues 

CPU dispatches in each  run,  as a measure of the relative 
overhead  costs of the  three  strategies.  The  results  are 
shown in Table 3. We  see  that  the  three strategies are 
close  to  each  other in terms of total  number of CPU dis- 
patches.  However, deadline  scheduling results in 
markedly fewer page fetches  than  does two-level time 
slicing, which in turn  has  fewer  than one-level  time 
slicing. The low level of page  fetching produced by dead- 
line scheduling is probably due  to  the  fact  that  the  dead- 
line  scheduler  revokes a page  allocation  only in the rela- 
tively rare  event of some transaction reaching the urgen- 
cy threshold,  whereas  the time slicing strategies revoke 
page  allocations on  every time  slice end. 

Conclusions 
Given  the  particular  environment  on which our experi- 
ments were based, i.e., a mixed interactive  and back- 
ground load as  characterized  earlier,  and neglecting 
contentions  for  resources  other than CPU’s and pages, 
the time slicing and deadline approaches  to scheduling 
compared  as follows: 

1. Deadline scheduling can  support more interactive 
users  than time slicing. 

2.  Deadline scheduling results in faster  average  response 
than time slicing. 

3. The  three  strategies studied are roughly  equivalent 
as  regards CPU dispatching overhead.  However, 
deadline  scheduling is markedly  superior as  far  as 
paging overhead  is  concerned. 

These  results  appear  to  corroborate  the  soundness of 
the underlying  philosophy of deadline scheduling, which 
strives  to  make intelligent guesses at the  true priorities 
of the various transactions in the system. The  favorable 
response  ratio  distribution of deadline scheduling is evi- 
dence  that  the  strategy successfully avoids delaying  crit- 
ical transactions in favor of less critical ones.  The im- 
proved  load-carrying capacity of deadline  scheduling is 
explained by the  reduced level of page  fetching overhead 
of this  strategy as  compared with time slicing. Since  the 

D. D. CHAMBERLIN, ET AL. IBM J. RES.  DEVELOP. 



Table 3 Overhead  costs in 30-minute run (load = 48 
interactive trans./min plus  background). 

N o .  of page N o .  of C P U  
Strategy  fetches  disputches 

~~ .. ”” ~ ~ ” ~ _ _ _ _ _ _ ” _ ~  

Deadline 
scheduling 46 104  5009 
One-level 
time slicing 
(slice = 3.5 s )  58248 5084 
Two-level 
time slicing 
(slice = 2.0 s )  51614  4994 

“cost” of a page fetch is represented in the model by a 
20-111s delay,  the  repeated page fetches induced by time 
slicing cause a  reduction in system  throughput. 

These  results  must be  considered  preliminary, because 
the  strategies and the modeling environment were  con- 
siderably abstracted  from their real counterparts. A 
number of avenues  for  further  research suggest  them- 
selves, including an investigation of various  ways of as- 
signing deadlines to  transactions, and the sensitivity of 
the deadline scheduler  to  the  deadlines  chosen.  Another 
interesting  extension to our experiments would be  a 
study of the relationship  between response ratio and 
CPU requirements for  transactions in a heterogeneous 
transaction load, under  the various  scheduling  strategies. 

Appendix. User expectations of interactive systems 
Pioneering  work in measuring the behavior of interactive 
users  was done by Scherr  [lo],  whose analysis of the 
CTSS  system  at  MIT revealed that  on  the  average, a 
terminal user  completes a transaction approximately 
every 36  seconds  (35.2 s for 1/0 and  user think time, 
plus 0.9 s of computation),  and by Bryan [ 111, who 
showed that  the  “average”  user of the JOSS system  at 
RAND  Corp.  generated a transaction  every  34 s (24 s 
thinking and typing request, 10 s for system to  reply). 
Later  studies were made by Fuchs,  Jackson,  and  Stubbs 
[ 12,131, who consider  that  both  user  requests  and 
system replies are composed of a  “thinking”  period 
followed by several  “bursts” of characters.  Their mea- 

MAY 1973 

surements  on  three time-sharing systems  showed  that  an 
average  user  request was completed every  72.8 s (21.4 s 
to  enter  request, 5 1.4 s for  system  reply) [ 131 (amended 
in [12] to 57.3 s ,  21.1 by user  and 36.2 by system). 
Any  attempt  to  interpret  transaction  rate in terms of 
number of users is complicated by the  known  fact  that 
the  transaction submittal rate of a user  drops  as  the sys- 
tem response time increases. Since the  results of our 
experiment  are  expressed  as  transaction  rates, they are 
independent of this effect. 

References and footnote 
1. M. T.  Alexander, Time Sharing  Supervisor  Programs, 

University of Michigan Computing  Center, 1970. 
2. A. J. Bernstein and J. C.  Sharp,  “A  Policy-Driven Schedu- 

ler for a Time-sharing  System,” Communicurions of the 
A C M  14, 2, 74-78  (February  1971). 

3. E. G. Coffman, Jr.  and L. Kleinrock, “Computer Schedul- 
ing Methods and their Countermeasures,” Proc. 1968 SJCC, 
11-21. 

4. W. J.  Doherty,  “The Effects of Adaptive Reflective Sched- 
uling in TSS/360,” Proc. 1970 FJCC, 97- 1 1  1. 

5. H. Hellerman,  “Some  Principles of Time-sharing Schedu- 
ler  Strategies,” IBM  SysternsJournul 8, No. 2 ( 1969). 

6. B. W. Lampson, “A Scheduling  Philosophy for Multipro- 
cessing Systems,” Communications of the A C M  11,5, 347- 
360 (May  1968). 

7. R. Mahl, “An Analytical Approach  to  Computer  Systems 
Scheduling,”  Ph.D. Thesis, Univ. of Utah,  Salt  Lake  City, 
Utah  (June  1970). 

8. R. R. Muntz,  and E. G. Coffman, “Pre-emptive Scheduling 
of Real-Time Tasks  on  Multiprocessor  Systems,” Journal 
of t h e A C M  17,2,324-338  (April  1970). 

9.  The  concept of deadline  scheduling was first described in 
internal  memoranda by Hans P. Schlaeppi. 

10. A.  L.  Scherr, An  Analysis of Time-shared  Computer  Sys- 
tems,  The  MIT  Press,  Cambridge, Mass.,  1967. 

11. G .  E. Bryan, “JOSS: 20,000 Hours  at a Console-A Sta- 
tistical  Summary,” Proc. 1967 FJCC, 769 -777. 

12. E. Fuchs  and P. E. Jackson,  “Estimates of Distributions 
of Random Variables for Certain  Computer  Communication 
Traffic Models,” Communications  of  the A C M  13, 12,752- 
757 (December  1970). 

13. P. E.  Jackson  and C. D. Stubbs,  “A Study of Multiaccess 
Computer Communications,” Proc. 1969 SJCC, 49 1 - 504. 

Received  December 27 ,1972;  revised  February 15, I973 

The  authors  are  located  at  the IBM Thomas J .  Watson 
Research  Center,  Yorktown  Heights, New York 10598. 

269 

DEADLINE  SCHEDULING 


