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Theory and Computer-aided Analysis of Lossless

Transmission Lines

Abstract: A theoretical analysis of coupled and uncoupled lossiess transmission lines is presented. A new method for deriving_ the
conductance matrix G is described. Networks containing such lines have been simulated in the time domain and some results obtained

from simulation of two example networks are given.

1. Introduction

This paper presents a theory of coupled and uncoupled
lossless transmission lines and some practical numerical
techniques for using a digital computer to simulate cir-
cuits containing such lines. The simulation problem has
been a subject of much recent interest [1-4]; primary
among the reasons for this interest are 1) the current
trend toward large-scale integration (LSI), which has
increased the density of circuits and brought them and
their interconnecting transmission lines closer together
than ever before; as a result, the electrical interactions
among circuits and transmission lines are much more
significant than they were with prior technologies; and 2)
advances in sparse-matrix and implicit integration tech-
niques have made it feasible for more circuits and ele-
ments to be analyzed simultaneously than was previ-
ously possible.

Although cut-off frequency and rise time specifica-
tions influence the importance of the dc resistance of
transmission lines for each application, the resistance
value is known to be negligible for many practical cases.
In this paper we assume that the lines are lossless. The
coupling material is allowed to be either homogenous or
inhomogenous. [See Figs. 1(a) and (b).]

The paper is organized as follows: In Section 2 the
properties of coupled lines are discussed. The conduc-
tance matrix G is derived in a new and compact form
from transmission-line equations written in time-domain
variables. The time-domain simulation problem is
treated in Section 3, where a new and simple equiva-
lent circuit is obtained. Some novel numerical tech-
niques for integrating a set of differential-difference
equations resulting from networks containing transmis-
sion lines are reported in Section 4 and numerical exam-
ples are given.
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2. Properties and conductance matrix of coupled
lines

To study the coupling effects of parallel transmission
lines, we start with the self and mutual inductances and
capacitances among the lines. Those parameters charac-
terize the coupling in the vector form of the familiar
telegrapher’s equations as follows:

de(x,t) d(x,t)

ax T L ax 0, (D
di(x,1) delx,t)

o +C P 0, 2)
where

e(x,f) = [e,(x1), e,(x,1), e, (x,0)]"
and

iCet) = [1,00t), i, (x0), - £, (e ) 7.

These vectors represent the line voltages and currents,
respectively. (The superscript T is used here and
throughout to indicate the transpose of a matrix or vec-
tor.) Distance and time are denoted by x and ¢, respec-
tively, and L and C are symmetric inductance and capac-
itance matrices, respectively.

It can be easily shown that L is positive definite with all
elements positive and that C is hyperdominant. (A hyper-
dominant matrix C = [c;;] is defined as follows: ¢; > 0,
¢;; <0,and ¢; > 31l

Given a set of transmission lines as shown in Fig. 1
(b), the L and C matrices can be computed numerically
with existing techniques [5] once the geometries of the
lines and the dielectric constant and permittivity of the
inhomogenous coupling material are specified.
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(a)

(b)

Figure 1 Coupled transmission lines. (a) In a homogenous
medium, (b) in an inhomogenous medium.

It should be pointed out that the telegrapher’s equa-
tions are inexact for accurately predicting transmission
line voltages and currents if certain physical conditions
exist. For example, if the wavelengths for the frequen-
cies of interest are of comparable magnitude with the
physical dimensions of the cross sections of the lines
and the distances between them, then Maxwell’s equa-
tions should be used directly. Nonetheless, for most
practical applications, the telegrapher’s equations yield
good approximations.

Equations (1) and (2) can be manipulated to yield

Filat) _ qq Sty
2~ =CL >, 3
axt ¢ or’ ®
Pe(xt) _y o delxt) (4)
ax’ ET

If we now assume that conditions exist for a transverse
electromagnetic (TEM) solution for the line voltage, we
have the relation

e(x,t) =f(x —vt), (5)

where v is the speed of wave propagation. Substituting
(5) into (4), we obtain

(1-LC) " (x—uvt)=0.

It is thus clear that the speed of propagation is related to
the eigenvalues A of the matrix L C as follows:

Y, =’i1/\/)\_j,

where n is the number of coupled lines and the the =
sign implies that the wave can travel in both the positive
and negative directions along the x axis.

j:l,z’...,”’ (6)

Now, taking any speed v, We use the method of char-
acteristics [2] to combine

dxfdt =+, )
with

de(x.t) = aeg’;” D g+ ae(;;” ) g, 8)
i) = &L gy D) 4, (9)

and Bgs. (1) and (2). This set of equations can be used
to cancel some of the partial derivative terms to yield,
for +v;

dle(x,t) + L i(x,2) vj]/dt
t=9[(1 — L Cu) e(x,t)]/or (10)

and, for dx/dt = ;s

dle(x,t) — Li(xt) vl/dt
=3[(1—LCuy’) e(xt)]for. (1)

Consider now the coupled line system [Fig. 1(b)]
under the following conditions. The n lines are initially
at rest, and at r = 0, n voltage sources are applied to the
input side (x =0). The magnitude of the first voltage
source is equal to the first component of the jth ei-
genvector of the matrix L C, the second source is equal
to the second component, and so on. Hence, line voltage
e(x,t) is proportional to the jth eigenvector at all times
and the right-hand sides of Egs. (10) and (11) become
zero.

Next, let us derive from Eq. (11) the time-dependent
voltage-current relationships at the input and output
ends of the lines. Integrating the left-hand side of {11)
along the characteristic dx/dt =—v; from x =d and t =
t—7tox=0 and ¢t = ¢, we obtain

e(0,t) — L i(0,0) vy = e(dt — 7].) — Li(dt— Tj) Ujs (12)

where 7, is the delay for speed v; (7; = dlv;).

The right-hand side of Eq. (12) represents a wave
that has travelled to the output side of the line and is
returning to the input side. Since it takes 27, for a round
trip, if + < 2 7;, the right-hand side of (12) is zero, and we
have the relation

e(0,1) =L i(0,1) v;. (13)

Equation (13) characterizes the voltage relationship
at the input end of the transmission line set for the speci-
fied voltage sources and the time period 0 < ¢ < 27, If
we label this particular pair of voltage and current vec-
tors e, and i;, respectively, Eq. (13) can be written in the
general form

lepey s e, =L [ipd o 1,1 (0], (14)
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where [v;] is a diagonal matrix with elements v;, v,," ",
v,. Since the ej(O,t) are defined to be the eigenvectors of
matrix L C, we next want to show that the currents i
given in Eq. (14) are actually the eigenvectors of matrix
C L, or, equivalently

in] = [ipig" ] in][)\,] . (15)

To show that Eq. (15) is valid, we manipulate Eq.
(14) to yield

CL [i,

lihyo 1,0 =L7" [e, e, -5 €, ] [v,]7

which implies that

CL [i i, ~i,] = CLL™ [e,e,, e, ][v,]™
=L'LC [e.e, - e,][v] -,

The fact that [e e, - e,] are the eigenvectors of L C
enables us to state, using Eq. (6), the relation
CL [ijh, 4 i,]=L" [e.e, - e][y]7". (16)

Equation (14) is then substituted into (16) and Eq.
(15) is obtained. Hence we have established that if we
drive the transmission line system with voltage sources
having magnitudes equal to the components of an ei-
genvector of matrix L C, then, for 0 <1 < 27, the mag-
nitudes of the resultant line currents are equal to the
component values of the eigenvector of matrix C L hav-
ing the same eigenvalues as those of L C.

We now present the following theorem, which relates
the eigenvectors of matrices L C and C L.

Theorem: Given positive definite and symmetric ma-
trices L and C, we define the conductance matrix G as
follows:

G=L"[LCJ, (17)

where superscript Y2 denotes the matrix obtained by
taking the positlivelsquare root of its eigenvalues. Hence,
we have A = A7 A2,

Further, let E= [ee,, -+, e,] and 1= [i,i, -, i,]
where the e; are the eigenvectors of L. C and the i; are
the eigenvectors of C L. Then

(a) G is positive definite and symmetric, and
(b) I=GE. (18)

1 ..
Proof: Consider the matrix L? C LZ. The fact that it is
symmetric can be shown by inspection. It is also positive
definite because its quadratic form, for any vector X, is

0=(LCLIX X)=(C (LX), (1L X)) = 0.

This is so because matrix C is positilve definite. We can

L L. . .
therefore decompose matrix L2 C L? into its canonical
form as follows:

LCcLu=U"Dnu, (19)
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where U forms an orthogonal transformation and D is
diagonal with positive-valued elements. Using Eq. (19),
we can manipulate matrix L C into the form

LC=LL*CLILZ=L:U"DUL?,

and, therefore,

(LC)Y=L:U"DIUL™

Using the definition of G given by Eq. (17), we have
G=L"'(LC):=L}U"DIUL™. (20)

The matrix G is seen to be symmetric by inspecting Eq.
(20). The eigenvalues of G are the1 positlive square roots
of the eigenvalues of the matrix L2 C Lz which has just
been shown to be positive. Therefore G is positive de-
finite and symmetric.

To prove Eq. (18) we use the notation I and E to sub-
stitute for [i, i,; - ~i,] and [e e, - -e,] in Eqs. (14) and
(15), respectively. This yields

E=LI [v] 21
and
CLI=I[y]™ (22)

Also, by definition, the matrix E contains the eigenvectors
of matrix L C, and therefore,

LCE=E [y]™ (23)

Multiplying the right-hand side of Eq. (22) by [v;] and
using Eq. (21) to eliminate L I [v;], we obtain

I=CE [y]. (24)

We now prove Eq. (18) by first assuming its validity and
then by showing that G is indeed defined by Eq. (17). We
produce the matrix G as follows.

Put Eq. (18) into Egs. (21) and (24) to obtain, re-
spectively,

E=LGE[vj] (25)
and
GE=CE [y]. (26)

From Eq. (26)

E[y]=C"GE.

We substitute this into Eq. (25) to obtain

E=LGC ' GE, (27)
which, when postmultiplied by E™, yields
1=LGC'G=LG(LC)'LG. (28)

Then,

(LG '=@e) Lc)y?
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and after inverting both sides, we have
LG=LC (LG)™'

or

(LG)’'=LC.

1t follows directly from L G = (L C)lz that

G=L"(LC), (29)

which is Eq. (17), and thus the theorem is proved.

Consider now the general case in which the trans-
mission-line system is driven by a set of arbitrary voltage
sources. At any given time, the arbitrary voltage-source
values can be considered as a linear combination of n sets
of voltages, each set having its values proportional to the
components of one eigenvector of L C; i.e., one column
vector of E. Hence, before the reflected wave returns to
the input, the line voltages can be represented as

e(x,t)=Eals). (30)

This means that e(x,7) is a linear combination of the
eigenvectors of L C and that «a(f) is a time-varying
weighting vector for any given distance x. It follows from
the linearity property of Eqgs. (1), (2) and the argument
leading to Eq. (15) that the resultant line currents are
determined by the same linear combinations, but with the
eigenvectors of C L, or

i(x,t) =T a(s). (31)

From Egs. (30), (31) and (18), we conclude that

i(x,t) =G e (x,1). (32)

Therefore, under the stated conditions of analysis, the
transmission line system behaves like a resistive n-port
with its conductance matrix G defined by Eq. (17).

To conclude this section, the problem of synthesizing
the conductance matrix G into a (n + 1)-terminal resis-
tive network is considered. It is well known that the
necessary and sufficient condition for a given conduc-
tance matrix to be realizable as an (n + 1)-terminal re-
sistive network without transformers is that the matrix
must be hyperdominant [6]. For the coupled lines, the
conductance matrix is considered for the following three
different configurations:

(a) The coupling material is homogenous. For this
case the matrix L C is diagonal. Hence L' is hyperdom-
inant. From Eq. (17), G is the matrix product of a hy-
perdominant matrix and a diagonal matrix and is there-
fore hyperdominant. Thus G can be realized as a resis-
tive network without transformers.

(b) The coupling material has inhomogenous dielec-
tric permittivity € and magnetic permeability . For this
case a hyperdominant matrix C and a positive definite

matrix L have been found such that G is not hyperdomi-
nant. An example is given by the matrices

[40 3.8 3.5

L=|3.8 50 4.8 wH/in.
3.5 48 5.0
and
[ 3.1 —1.0 —2.0
C=|-1.0 42 3.0 pF/n,

=20 —3.0 s.sj

where the corresponding G matrix is calculated to be

1.593 —1.024 -—-0.328
G=]-1.024 3930 -2.946
—0.328 —2.946  3.523

which is not hyperdominant because the summation of
terms in the second row is less than zero.

Thus, in general, G cannot be realized as a resistive
network without transformers.

(¢) The coupling material has homogenous perme-
ability pu but inhomogenous dielectric permittivity €. This
case is important in practice, for most coupled lines fall
within this category. Homogenous u implies that L™ is
hyperdominant — a fact that may be useful in proving the
hyperdominance of G. A proof or disproof of the hyper-
dominance of G under these conditions is not available
to the author’s knowledge and the problem seems to be
open.

3. Simulation

For analysis in the time domain, an equivalent network
consisting of lumped elements can be derived to replace
the coupled lines. Let us observe for example a coupled
line system at the input end (x = 0). Since the line volt-
age is the sum of the incoming voltage wave e and the
outgoing voltage wave e, while the line current is the
difference between the two current waves, i* and i,

e(0.0) = e (0,1) + e (0,1), (33)
i(0,0) =i"(0,) —i (0,2). (34)
If we define R to be the inverse of G, then from (32)

e (0,6) =Ri'(0,), (35)
e (0,1) =Ri (0,¢). (36)

Multiply Eq. (34) by R and use Egs. (35) and (36) to
obtain

Ri(0,2) =e'(0,0) — e (0,1).
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Substitution of this equation into (33) yields
e(0,1) =R i(0,¢) + 2¢7(0.1) . (37)

The equivalent circuit will be based on Eq. (37). Note
in Eq. (37) that the term 2e (0,f) denotes the voltage
wave that starts from the receiving end, x =d, and
reaches the sending end. The voltage wave that enters
the receiving end can be derived from Eqs. (33) - (36) to
obtain

2e’(dt) =e(d,t) — Ri(dyt). (38)

Since there are different delays due to different speeds
of propagation, we need to decompose the voltage given
by Eq. (38) into its components. This is achieved by
using Eq. (30) to multiply the right-hand side of Eq.
(38) by E". Each element of the resultant vector, which
collectively represent the magnitudes for each different
speed, is then delayed by different amounts. On reaching
the sending end, the resultant voltages are then obtained
by combining all the components by using E. We there-
fore have

2¢7(0,r) =E {E"'[e(d,t) —Ri(d,1)]} (t— 1), (39)

where (¢ — 7) is used as an operator that changes the
argument of the ith element of the vector in brackets
fromrtot — 7,

Upon substituting Eq. (39) into (37), there results

e(0,r) =R i(0,t) + E{E ' [e(dt) —Ri(d,1)]} (t—7).
(40)

Similarly, we have

e(d,t) =—Ri(dt) + E{E"'[e(0,t) + Ri(0,)]} (t—1).
(41)

Equations (40) and (41) can be considered as the
branch constitutive relations for the voltage sources
shown in Fig. 2. These two equations can be pro-
grammed straightforwardly to simulate coupled line sys-
tems in the time domain.

4. Programming considerations and numerical
examples '
To simulate circuits containing transmission lines in the
time domain, it is necessary to account for the fact,
shown in the last section, that delays are introduced into
the circuit equations. The circuit equation thus becomes
a set of differential-difference equations. In this section,
our attention is focused on the numerical techniques
used to control the step sizes for integrating such equa-
tions to achieve accuracy and stability.

In using multiple-step implicit integration formulae,
the time delays in the equations in effect introduce addi-
tional multiple back steps. The resultant difference equa-
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o i(0,1) i(dt) o
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Figure 2 An equivalent network.
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tion is, in general, not absolutely stable. An analytical
approach that assures numerical stability appears to be
difficult to achieve. However, practical experience has
shown that the following techniques are effective in con-
trolling time steps.

(a) The look back feature: Before accepting a time
step & in the variable step size integration scheme, for
each delay 7, of every transmission line system, we go
back 7, seconds to get the previous time step h,. The size
of h is then reduced to k h, if h > k h;, where k is a posi-
tive number with typical values ranging from 2 to 4.

(b) The look ahead feature: In variable step size inte-
gration schemes, the step sizes are usually determined
by controlling the truncation errors to be within a given
bound. The values of transmission line voltage sources
are known in advance because they are the values from
the reflected voltage waves. Hence, to determine whether
a time step is too large for the transmission line ele-
ments, the equivalent voltage-source values at the new
time point are first estimated by extrapolation using
the back time points. The estimated values are then
compared to the known values previously stored to de-
termine if the truncation error is allowable. The step
size can therefore be reduced if necessary.

(¢) Overshoot considerations: An overshoot occurs if
and when the magnitude of the time step exceeds some
of the delays. It is easily seen that if overshoot occurs
for some delays in the network, the techniques discussed
in part (a) and part (b) become ineffective for those
delays. Nevertheless, experience has shown that over-
shoot can be permitted in most practical cases for the
sake of saving computation time if the starting step size is
small, if the techniques in part (a) and (b) are used when-
ever possible, and if the following iteration scheme is
implemented. For those delays smaller than the time step,
the corresponding values for transmission line voltage
sources are first estimated by extrapolation. The result is
used to solve for the circuit variables. Then after the first
and each subsequent Newton iteration those values can
be and therefore are updated by interpolation. The pro-
cess continues until convergence is observed for the
time step.

e d, 1)

©
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Figure 3 A network containing cascaded transmission lines.

0.6 The following examples illustrate some of the tech-

niques discussed in the paper.
041 Example 1. The network shown in Fig. 3 is driven by a
voltage source E;,(t) shown in Fig. 4. The transmission
02~ lines are all lossless. The inductance and capacitance of
the lines are L = 0.00138 pH/in. and C = 0.198 pF/in.,
0 respectively. The length in inches of each line is also
shown in Fig. 3. The network is to be analyzed from
—02}- t=—50 ns to = 125 ns and equilibrium is assumed to
exist at the start of the analysis. From the inductance and
> 04r the capacitance per unit length, the delays of the lines are
;s 06l | | calculated to be between 0.03306 ns and 0.2645'ns, re-
40 0 n 20 120 spectively. The network is first analyzed by using the
techniques discussed in this section with no limitation

Time (ns)

placed on the maximum step size. The result is that 304
time steps are taken with 632 Newton passes. The mini-
mum and maximum time steps are 0.0066 ns and 8.5 ns,
respectively. The network is analyzed again by limiting
the time step size to be equal to the minimum delay of
0.03306 ns. The result is that 5182 time steps are taken
osk with an equal number of Newton passes. The plots of the
voltages across the capacitors CA and CB in the network
are shown in Fig. 5. It is therefore seen that substantial
saving of computation time is achieved by the techniques
presented if the step size is not limited to be smaller than
the delays.

Figure 4 Voltage source E,(t).

0.3

(=]
—
T
e

-0.1+ Example 2. A network containing a system of three
coupled transmission lines in a homogenous medium is
shown in Fig. 6 where the inductance and the capaci-

tance matrices for the coupled lines are:

_0.2 —

e

Response to applied voltage (V)

-0.3] | |
- 40 0 40 80 120 0.00793 0.00301 0.00105

Time (ns) L= 10.00301 0.00984 0.00301| uH/fin.,
Figure 5 Voltages VCA(¢) and VCB(¢). 0.00105 0.00301 0.00793

IBM J. RES. DEVELOP.




and
472 —-1.42 -0.085
C=|—1.42 423 —1.42 | pF/in.
—0.085 —1.42 4.72 |

The length of the line is 11 inches. The delay for the
transmission line is calculated to be 2 ns. The input volt-
age E;,(¢) is shown in Fig. 7. The network is analyzed
from t = 0 to 40 ns with the use of a variable-step, vari-
able-order integration scheme. A total of 488 time steps
are taken. The plots of VR1(z) and VR2(t) are also
shown in Fig. 7.

5. Conclusions

The conductance matrix G for coupled transmission
lines has been derived in a new and compact form and
some of its properties have been discussed. The matrix
G can be readily computed by using its relationship to
both the capacitance and the inductance matrices.

The network simulation problem has been considered.
A simple equivalent circuit for the transmission lines in
the time domain has been obtained such that writing a
simulation program is a straightforward matter. A sub-
stantial amount of computer time can be saved by using
the numerical techniques shown in Section 4 to analyze
circuits containing transmission lines in the time domain.
In particular, the number of computing passes was re-
duced by a factor of 8 for the first example given.
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