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Theory  and Computer-aided Analysis of Lossless 
Transmission Lines 

Abstract: A theoretical analysis of coupled and uncoupled lossless transmission lines is presented. A new method for deriving  the 
conductance matrix G is described. Networks containing such lines have been simulated  in the time  domain and some results obtained 
from simulation of two example networks are given. 

1. Introduction 
This  paper  presents a theory of coupled  and  uncoupled 
lossless transmission lines  and some practical numerical 
techniques for using a digital computer  to simulate cir- 
cuits containing such lines. The simulation problem  has 
been  a  subject of much  recent  interest [ 1 -41; primary 
among the reasons  for this  interest are 1 )  the  current 
trend toward  large-scale  integration (LSI), which has 
increased the density of circuits  and  brought  them  and 
their  interconnecting  transmission  lines  closer  together 
than  ever before; as a  result, the electrical  interactions 
among  circuits and transmission  lines are much more 
significant than they were with prior  technologies;  and 2 )  
advances in sparse-matrix and implicit integration  tech- 
niques have made  it  feasible for more  circuits  and ele- 
ments to  be analyzed simultaneously than was previ- 
ously possible. 

Although cut-off frequency  and  rise  time specifica- 
tions influence the importance of the  dc  resistance of 
transmission lines for  each application, the  resistance 
value is known to be negligible for many practical cases. 
In this paper we assume that the lines are lossless. The 
coupling material  is allowed to  be  either homogenous or 
inhomogenous. [See Figs. 1 (a) and (b).] 

The  paper is organized  as follows: In Section 2 the 
properties of coupled  lines are discussed. The conduc- 
tance matrix G is derived in a new and  compact  form 
from  transmission-line  equations  written in time-domain 
variables. The time-domain simulation problem is 
treated in Section 3, where a new and  simple  equiva- 
lent  circuit is obtained.  Some  novel  numerical  tech- 
niques for integrating a set of differential-difference 
equations  resulting from networks containing transmis- 
sion lines are  reported in Section 4 and numerical exam- 
ples are given. 

2. Properties and  conductance matrix of coupled 
lines 
To study the coupling effects of parallel transmission 
lines,  we start with the self and mutual inductances  and 
capacitances among the lines. Those  parameters charac- 
terize  the coupling in the  vector form of the familiar 
telegrapher's  equations as follows: 

These vectors represent  the line voltages and currents, 
respectively. (The superscript T is used  here  and 
throughout to indicate the  transpose of a matrix or vec- 
tor.)  Distance and  time are  denoted by x and t ,  respec- 
tively, and L and C are symmetric  inductance  and  capac- 
itance  matrices,  respectively. 

It  can  be easily shown that L is positive definite with all 
elements  positive  and that C is hyperdominant. (A hyper- 
dominant matrix C = [ c t j ]  is defined as follows: cii > 0, 
c i j  < 0, and cii > xj+iIcij  I.) 

Given a set of transmission lines as shown in Fig. 1 
(b) ,  the L and C matrices can  be computed numerically 
with existing techniques [5]  once  the geometries of the 
lines and the dielectric constant and permittivity of the 
inhomogenous coupling material are specified. 249 
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Figure 1 Coupled transmission lines. (a) In a homogenous 
medium, (b) in an inhomogenous medium. 

It should be pointed out  that  the telegrapher's  equa- 
tions are  inexact for  accurately  predicting  transmission 
line  voltages  and currents if certain physical  conditions 
exist. For example, if the wavelengths for  the frequen- 
cies of interest are of comparable magnitude with the 
physical dimensions of the  cross sections of the lines 
and the distances between them,  then Maxwell's equa- 
tions  should be used  directly. Nonetheless,  for most 
practical  application?, the telegrapher's  equations yield 
good approximations;. 

Equations (1) and (2) can  be manipulated  to yield 

If we now assume  that conditions  exist  for  a transverse 
electromagnetic (TEM) solution for  the line  voltage, we 
have  the relation 

e(x,t) = f(x - u t )  , ( 5  1 
where u is the speed of wave propagation. Substituting 
( 5 )  into (4), we  obtain 

(1 - L c u2)  f"  (x - u t )  = 0 .  

It is  thus  clear that  the speed of propagation is related to 
the eigenvalues Aj of the matrix L C as follows: 

u j = * l / q ,  j =  1,2;.., n ,  (6 1 
where n is the number of coupled lines and the the 2 
sign implies that the wave  can travel in both  the  positive 

250 and negative directions along the x axis. 

c .  w. no 

Now, taking any speed uj, we  use  the method of char- 
acteristics [2] to combine 

dx/dt = f uj (7 ) 

with 

de(x,t) = 7 ae(x,t) dx I a 4 . x ~ )  d t ,  
at (8) 

and  Eqs. ( 1 ) and (2). This  set of equations can  be used 
to cancel  some of the partial  derivative terms  to yield, 
for +uj, 

d[e(x,t) + L i(x,t) uj]/dt 

I= a [ ( l -  L c uj2) e(x,t)]/at (10) 

and,  for dxldt = -uj, 

d[e(x,t) - L i(x,t) u j ] /d t  

= a [ ( l -  L c u j2)  e(x,t)]/at. (11) 

Consider now the coupled  line  system  [Fig.  1 (b)] 
under  the following conditions. The n lines are initially 
at  rest, and at t = 0, n voltage sources  are applied to the 
input  side (x = 0). The magnitude of the first voltage 
source is equal to  the first component of the j th ei- 
genvector of the matrix L C, the second source is equal 
to  the second  component,  and so on. Hence, line voltage 
e(x,t) is proportional to  the  jth eigenvector at all times 
and the right-hand sides of Eqs.  (10) and (1 1) become 
zero. 

Next, let us derive  from Eq. ( 1 1) the  time-dependent 
voltage-current  relationships at the  input  and output 
ends of the lines.  Integrating the left-hand side of ( 11 ) 
along the  characteristic dx/dt = -uj from x = d and t = 
t - r j  to x = 0 and t = t ,  we obtain 

e(0,t) - L i(0,t) uj = e(d,t - r j )  - L i(d,t - r j )  uj, (12) 

where r j  is the delay for  speed uj ( r j  = d/uj) .  
The right-hand side of Eq.  (12)  represents a  wave 

that  has travelled to  the  output side of the line and is 
returning to  the  input side. Since it takes 2rj for a round 
trip, iff < 2 ri, the right-hand side of (12) is zero,  and we 
have  the relation 

e(0,t) = L i(0,t) uj. (13) 

Equation ( 13)  characterizes  the voltage relationship 
at  the input end of the transmission line set  for  the speci- 
fied voltage sources and the time period 0 < t < 2rj. If 
we label this particular  pair of voltage and current vec- 
tors ej and ij, respectively, Eq. ( 13) can  be written in the 
general form 

[e,,e,, . . ., e,] = L [i,,i,, . . ., i,l [ujl , (14) 
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where [uj] is a diagonal matrix  with elements u l ,  u 2 , .  . ., 
u,. Since  the ej(O,t) are defined to  be  the  eigenvectors of 
matrix L C, we  next  want  to  show  that  the  currents ij 
given in Eq. (14) are actually the  eigenvectors of matrix 
C L, or, equivalently 

C  L [il,i2,. . ', in] = [il,4,. . ., in] [hi] . (15) 

To show  that  Eq. (15) is valid, we manipulate Eq. 
(14) to yield 

[i1,i2; . ., in] = L" [eye2; . ., e,] [uj]-' 

which implies that 

c L [i1,i2; . .,in] = c L L-' [e1,e2; . ., e,] [u j ] - '  

=L" L c [e1,e2; . ., e,] [ u j ] - l .  

The  fact  that [el,e2,. . ., e,] are  the  eigenvectors of L C 
enables us to state, using Eq. (6), the relation 

c L [i1,i2; . ., in] = L-' [el,e2,. . ., e,] [ u ~ I - ~ .  (16) 

Equation (14) is then  substituted  into (16) and  Eq. 
(15) is obtained. Hence  we  have established that if we 
drive  the  transmission line system with  voltage sources 
having  magnitudes equal to the  components of an ei- 
genvector of matrix L  C, then, for 0 < t < 2rj, the mag- 
nitudes of the  resultant line currents  are  equal  to  the 
component values of the eigenvector of matrix C L hav- 
ing the  same eigenvalues as  those of L C. 

We now present  the following theorem, which relates 
the  eigenvectors of matrices L C and C  L. 

Theorem: Given positive definite and  symmetric ma- 
trices L and C, we define the  conductance matrix G as 
follows: 

G = L" [L C]i, (17) 

where  superscript 112 denotes  the matrix obtained by 
taking the posit,ivelsquare root of its  eigenvalues. Hence, 
we have A = AT AT. 

Further, let E = [e1,e2, . . ., e,] and I = [i1& . . ., in] 
where  the ej are  the  eigenvectors of L C and the ij are 
the  eigenvectors of C L. Then 

(a) G is positive  definite and symmetric, and 

(b) I = G  E. (18) 

Proof Consider  the matrix Li C Li. The  fact  that it is 
symmetric can be  shown by inspection. It is also positive 
definite because  its  quadratic  form,  for any vector X, is 

Q = (Li C L* X, X )  = (C (Li X ) ,  (Li X ) )  2 0. 

This is so because matrix C is positive definite. We can 
therefore  decompose matrix Li C Li into  its  canonical 
form as follows: 

Li C Li = UT D U, (19) 

where U forms  an orthogonal  transformation and D is 
diagonal with positive-valued elements. Using Eq. (19), 
we  can manipulate  matrix L C into  the  form 

1 1  I L C = L7I L T  C LT L-i = L* UT D U L 3 ,  

and,  therefore, 
I 1  (L C)T = LT UT Di U L-i. 

Using  the definition of G given  by Eq. (17), we  have 

G = L" (L C ) i  = L-4 UT Di U (20 1 

The matrix G is seen to be  symmetric by  inspecting Eq. 
(20). The eigenvalues of G are  thelpositpe  square  roots 
of the eigenvalues of the matrix LT C LZ which has  just 
been shown  to  be positive. Therefore G is positive  de- 
finite and symmetric. 

To prove  Eq. (18) we  use  the notation I and E to sub- 
stitute  for [il,iz; . .,in] and [e,,e,; . .,e,] in Eqs. (14) and 
( 15), respectively. This yields 

E = L I [uj] (21 1 
and 

c L I = I [u j ] -z .  (22) 

Also, by definition, the matrix E contains  the  eigenvectors 
of matrix L C, and  therefore, 

L C E = E [uj]- ' .  (23 1 
Multiplying the right-hand  side of Eq. (22) by [ u j ]  and 
using Eq. (2 1) to eliminate L I [ u j ] ,  we obtain 

I = C E  [ u j ] .  (24) 

We now prove Eq. ( 18) by first  assuming its validity and 
then by showing that G is indeed defined by Eq. ( 17). We 
produce  the  matrix G as follows. 

Put  Eq. ( 18) into  Eqs. (21 ) and (24) to  obtain, re- 
spectively, 

E = L G E [uj] (25 1 

and 

G  E = C E [ u j ] .  (26 1 

From  Eq. (26 ) 

E [uj] = 6" G E. 

We substitute this into  Eq. (25) to  obtain 

E = L G C " G E ,  (27 

which,  when  postmultiplied  by E-', yields 

1 = L  G C" G = L G (L C)-'  L G. (28 

Then, 

(L  G)- '=   (L  G)  (L C)-' 

1 

1 
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and  after inverting both sides, we  have 

L G = L C (L G)" 

or 

(L  G)'= L C. 

It follows  directly from L G = (L C); that 

G = L-' (L e);, (29) 

which is Eq. (17), and  thus  the  theorem is proved. 
Consider now the general case in which the  trans- 

mission-line system is driven by a set of arbitrary voltage 
sources. At any given time, the  arbitrary voltage-source 
values can  be considered as a linear  combination of n sets 
of voltages, each  set having its  values  proportional to  the 
components of one eigenvector of L C; i.e., one column 
vector of E. Hence, before the reflected wave  returns  to 
the input, the line voltages can be represented  as 

e ( x , t ) = E a ( t ) .  (30) 

This  means  that e ( x , t )  is a linear  combination of the 
eigenvectors of L C and  that a( t )  is a  time-varying 
weighting vector  for  any given distance x. It  follows from 
the linearity property of Eqs. ( 1 ) , (2) and  the  argument 
leading to  Eq. ( 15) that  the  resultant line currents  are 
determined by the  same linear  combinations, but with the 
eigenvectors of C L, or 

i(x,t) = 1 a( t ) .  ( 3 1 )  

From  Eqs. (30), (3  1) and (18), we  conclude  that 

i(x,t) = G e ( x , t ) .  (32) 

Therefore,  under  the  stated conditions of analysis, the 
transmission line system  behaves like a resistive n-port 
with  its conductance matrix G defined by Eq. ( 17). 

To conclude this section,  the problem of synthesizing 
the  conductance matrix G into a ( n  + 1 )-terminal resis- 
tive network is considered. I t  is well known that  the 
necessary  and sufficient condition for a  given conduc- 
tance matrix to be  realizable as  an ( n  + l)-terrninal re- 
sistive network  without  transformers is that  the  matrix 
must  be hyperdominant [6]. For  the coupled  lines, the 
conductance matrix is considered for  the following three 
different  configurations: 

( a )  The  coupling  material is homogenous. For this 
case  the matrix L C is diagonal. Hence L-' is hyperdom- 
inant. From  Eq. (17), G is the matrix product of a hy- 
perdominant matrix and a  diagonal  matrix and  is  there- 
fore  hyperdominant.  Thus G can be realized as a  resis- 
tive network  without  transformers. 

( b )  The  coupling  material  has  inhomogenous  dielec- 
tric permittivity E and  magnetic  permeability p. For this 
case a hyperdominant  matrix C and a positive  definite 

matrix L have  been found such  that G is  not hyperdomi- 
nant.  An  example  is given  by the  matrices 

and 

where  the  corresponding G matrix is calculated to  be 

1.593  -1.024  -0.328 

G =  -1.024  3.930  -2.946 

L0.328 -2.946 3 . 5 2 j  

which is not hyperdominant  because  the summation of 
terms in the  second  row  is  less  than  zero. 

Thus, in general, G cannot  be realized as a resistive 
network without  transformers. 

( c )  The  coupling  material  has  homogenous perrne- 
ability p but  inhomogenous  dielectric  permittivity E .  This 
case is important in practice,  for most  coupled  lines fall 
within this  category. Homogenous p implies that L-I is 
hyperdominant - a fact  that may be  useful  in  proving the 
hyperdominance of G .  A proof or disproof of the hyper- 
dominance of G under  these conditions is not available 
to  the  author's knowledge and  the problem seems  to be 
open. 

3. Simulation 
For analysis in the time  domain, an equivalent network 
consisting of lumped elements  can  be  derived to replace 
the coupled  lines. Let us observe  for  example a  coupled 
line system  at  the  input  end (x = 0). Since the line volt- 
age is the sum of the incoming voltage wave e- and  the 
outgoing voltage wave e', while the line current  is  the 
difference between  the  two  current waves, i+ and i - ,  

e(O,t)  = e+ ( O J )  + e-(O,t) , (33) 

i(O,t) = i+(O,t) - i-(O,t) . (34) 

If we define R to  be  the  inverse of G,  then from (32) 

e*(O,t) = R i+ (O , t ) ,  (35) 

e-(O,t) = R i - (O, t ) .  (36) 

Multiply Eq. (34) by R and  use  Eqs. (35) and (36) to 
obtain 

R i(0,t) = e+(O,t) - e-(O,t) .  
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Substitution of this equation into ( 3 3 )  yields 

e ( 0 , t )  = R i ( 0 , t )  + 2e-(O,t)  . (37)  

The equivalent  circuit will be based  on  Eq. ( 3 7 ) .  Note 
in Eq. (37)  that  the  term 2e-(O,t)  denotes  the voltage 
wave  that  starts  from  the receiving end, x = d ,  and 
reaches  the sending end.  The voltage wave  that  enters 
the receiving end  can be  derived from  Eqs. (33 ) - (36)  to 
obtain 

2 e t ( d , t )  = e ( d , t )  - R i ( d , t ) .  (38)  

Since  there  are different delays  due  to different speeds 
of propagation, we need to  decompose  the voltage  given 
by Eq. (38)  into its  components.  This is achieved by 
using Eq. (30)  to multiply the right-hand  side of Eq. 
(38)  by E-'. Each  element of the  resultant  vector, which 
collectively represent  the magnitudes for  each different 
speed, is then delayed  by  different amounts.  On reaching 
the sending end,  the  resultant voltages are  then  obtained 
by  combining a l l  the  components by using E. We there- 
fore  have 

2e-(O,t)  = E {E"[e(d,r)  - R i(d,t)]} ( t  - T )  , (39)  

where ( t  - T )  is used  as  an  operator  that  changes  the 
argument of the ith element of the  vector in brackets 
from t to t - T ~ .  

Upon substituting Eq. (39)  into (37) ,  there  results 

e ( 0 , t )  = R i ( 0 , t )  + E(E"[e (d , t )  - R i ( d , t ) ] }  ( t  - T )  . 
(40) 

Similarly, we  have 

e ( d , t )  =-R i(d,t) + E{E"[e(O,t)  + R i ( O , t ) ] }   ( t  - T )  . 

(41) 

Equations (40) and (41) can  be  considered  as  the 
branch  constitutive relations for  the voltage sources 
shown in Fig. 2.  These  two  equations  can  be pro- 
grammed  straightforwardly to simulate  coupled line  sys- 
tems in the time  domain. 

4. Programming considerations and numerical 
examples 
To simulate  circuits  containing  transmission  lines in the 
time domain, it is necessary to account  for  the  fact, 
shown in the last section,  that  delays are introduced  into 
the circuit equations.  The circuit equation  thus  becomes 
a set of differential-difference equations.  In this  section, 
our  attention is focused  on  the numerical techniques 
used to  control  the  step  sizes  for integrating such equa- 
tions to achieve  accuracy  and stability. 

In using multiple-step implicit integration  formulae, 
the time delays in the  equations in effect introduce addi- 
tional multiple back  steps.  The  resultant difference equa- 
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Figure 2 An  equivalent  network. 

tion is, in  general, not absolutely stable.  An analytical 
approach  that  assures numerical  stability appears  to  be 
difficult to achieve. However, practical experience  has 
shown  that  the following techniques  are effective in con- 
trolling time steps. 

( a )   T h e  look  back  feature: Before accepting  a  time 
step h in the variable step size  integration scheme,  for 
each delay T~ of every transmission line system, we go 
back T~ seconds  to  get  the previous  time step hi. The size 
of h is then reduced  to k hi if h > k hi, where k is a posi- 
tive number with  typical values ranging from 2 to 4. 

( b )   T h e  look ahead  feature: In variable step size  inte- 
gration schemes,  the  step sizes are usually determined 
by  controlling the  truncation  errors  to be within a given 
bound. The values of transmission line voltage sources 
are known in advance  because they are  the values  from 
the reflected voltage  waves. Hence,  to  determine  whether 
a time step is too large for  the transmission line ele- 
ments,  the equivalent  voltage-source  values at the new 
time  point are first estimated by extrapolation using 
the back  time  points. The estimated values  are  then 
compared  to  the  known values  previously stored  to de- 
termine if the truncation error is allowable. The  step 
size can  therefore  be reduced if necessary. 

(c) Overshoot  considerations: An  overshoot  occurs if 
and  when  the magnitude of the time step  exceeds  some 
of the delays. I t  is easily seen  that if overshoot  occurs 
for some delays in the  network,  the  techniques  discussed 
in part (a) and  part (b) become ineffective for  those 
delays.  Nevertheless,  experience  has  shown  that over- 
shoot  can  be  permitted in most  practical cases  for  the 
sake of saving  computation  time if the starting step size is 
small, if the  techniques in part (a) and (b)  are  used when- 
ever possible,  and if the following iteration scheme is 
implemented. For  those  delays smaller than  the time step, 
the corresponding values  for transmission  line  voltage 
sources  are first estimated by extrapolation. The result is 
used to  solve  for  the circuit  variables. Then  after  the first 
and  each  subsequent  Newton iteration those values can 
be  and  therefore  are updated by interpolation. The pro- 
cess  continues until convergence is observed  for  the 
time  step. 253 
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Figure 3 A network  containing  cascaded  transmission  lines. 
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254 Figure 5 Voltages VCA(r) and VCB(t). 
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The following examples  illustrate  some of the tech- 
niques  discussed in the paper. 
Example I .  The network  shown in Fig. 3 is  driven by a 
voltage source Ein(t) shown in Fig. 4. The transmission 
lines are all lossless. The inductance  and  capacitance of 
the lines are L = 0.00138 pH/in. and C = 0.198 pF/in., 
respectively. The length in inches of each line is also 
shown in Fig. 3. The network  is to be analyzed  from 
t = -50 ns  to t = 125 ns and equilibrium is  assumed to 
exist  at  the  start of the analysis. From  the inductance  and 
the  capacitance  per unit  length, the delays of the lines are 
calculated to be between 0.03306 ns and 0.2645 ns, re- 
spectively. The network  is first analyzed by using the 
techniques  discussed in this  section with no limitation 
placed  on the maximum step size. The result  is that 304 
time steps  are  taken with 632 Newton passes. The mini- 
mum and maximum time steps are 0.0066 ns and 8.5 ns, 
respectively. The network  is  analyzed again by limiting 
the time step size to  be equal to  the minimum delay of 
0.03306 ns. The result is that 5182 time steps are taken 
with an equal number of Newton passes. The plots of the 
voltages across  the  capacitors CA and CB in the network 
are shown in  Fig. 5. I t  is  therefore  seen that substantial 
saving of computation  time  is  achieved by the techniques 
presented if the  step size is not limited to  be smaller  than 
the delays. 

Example 2. A network  containing a system of three 
coupled  transmission lines in a homogenous medium is 
shown in Fig. 6 where the inductance  and the capaci- 
tance matrices for the coupled  lines are: 
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and 

C = -1.42  4.23  -1.42 1 pF/in. r 4.72  -1.42 4 . 0 8 5  

4 . 0 8 5  -1.42  4.72 - I 
The length of the  line is 1 1  inches. The delay for  the 
transmission line is calculated  to be 2 ns. The input volt- 
age E i , ( t )  is  shown in Fig. 7 .  The network is analyzed 
from t = 0 to 40 ns with the  use of a variable-step, vari- 
able-order  integration  scheme. A total of 488 time steps 
are  taken.  The plots of V R l ( t )  and V R 2 ( t )  are also 
shown in Fig. 7 .  

5. Conclusions 
The  conductance matrix G for coupled  transmission 
lines has  been  derived in a new and compact form and 
some of its properties have been discussed. The matrix 
G can  be readily  computed by using its  relationship to 
both the capacitance and  the inductance  matrices. 

The network simulation problem has been  considered. 
A simple equivalent  circuit  for the transmission lines in 
the time domain has been  obtained such  that writing a 
simulation program is a straightforward  matter. A sub- 
stantial amount of computer time can be saved by using 
the numerical techniques  shown in Section 4 to analyze 
circuits containing transmission  lines in the time domain. 
In particular,  the number of computing passes was  re- 
duced by a factor of 8 for  the first example given. 
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