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Abstract: The aim of this paper is to provide an overview of an on-going collaborative effort of research physicians, computer scien-
tists, and statisticians to develop a quantitative way of understanding the clinical course of a critically ill and injured patient. The
method is based on a multivariable analysis of time series of individual physiologic measurements. The ultimate goal is to reduce a
large body of complex physiologic data to an information base that is relatively small and simple so that abnormal patterns may be
exposed in a manner that can be directly interpreted and utilized at the bedside by the attending clinician to improve patient care. In
this paper we describe some contributions made toward reaching this goal.

Introduction

Medical and social progress have increased the expec-
tancy of life by sustaining many who would have suc-
cumbed in an earlier age to congenital or acquired dis-
eases. This progress has increased the number of aged
and other younger, but high-risk, patients who require
major surgical procedures for the correction or palliation
of their disease processes. It has also increased the
magnitude of the medically abnormal population who are
at risk from accidental injury or intentional trauma. In
contrast to younger or physiologically more normal indi-
viduals, these patients frequently manifest more than
one pathologic process, mainly degenerative diseases and
neoplasms. Nearly all have some degree of arteriosclero-
sis—even if this is not clinically diagnosed —and many
have associated chronic cardiac, renal, hepatic, or pulmo-
nary disease. Anemia and low-grade subacute infections
of urinary tract, bowel, and lung are also common. Be-
cause of these factors and others they constitute a group
at higher risk from any trauma, be it surgical or acci-
dental.

In such patients, it becomes critical that the surgeon
have available some technique of physiologic assessment
to classify the patient’s present state and progress. The
work of several groups of investigators [1-9] has sug-
gested that an individual patient’s ability to survive an
acute stress is a product of the complex interaction
among the functional adequacy of the mechanisms for
myocardial, peripheral vascular, and pulmonary com-
pensation.
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The aim of this paper is to describe a quantitative way
of understanding the clinical course of a critically ill and
injured patient based on the multivariable analysis of the
time series of individual physiologic measurements. By
expanding the concept of obtaining a physiologic state
classification to accommodate both a more comprehen-
sive view of organ and system dysfunction, and to en-
compass change and the direction of change over time,
we believe we can develop earlier predictors of crisis
situations than currently exist.

We wish to define a parametric quantification of func-
tional organ interactions (cardiopulmonary and cardio-
vascular) in terms of a measurement set that can be con-
veniently monitored on a continuous or frequent intermit-
tent basis. Our objective is to analyze the data in order
to utilize fewer and less destructive measurements for the
on-going assessment of patients. This requires evaluation
of various clinical measurements with regard to their
ability to give early indications of significant pathophys-
iologic change.

Ultimately, we wish to use our analytic techniques to
reduce the dimensionality of the complex physiologic
data to relatively simple information that summarizes
and exposes the abnormal patterns. The results will be
presented in a manner that can be directly interpreted
and utilized at the bedside by the attending clinician to
improve patient care in the different areas of trauma as
modified by intercurrent disease.

In this paper we describe some of the contributions
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that have been made toward this ultimate goal. In our
view the most significant aspect of our work has been
the establishment of a multivariate frame of reference
within which one can begin to interpret human physio-
logic data from the desperately sick. This frame of refer-
ence has permitted the identification of physiologic pat-
terns that can help the physician make decisions con-
cerning the care and treatment of critically ill patients.

Multivariable state classification in human shock

In order to develop our classification techniques, a com-
puter data bank of patient information was established
from cases arising from the surgical services of a large
metropolitan hospital. This data bank currently contains
clinical, cardiovascular, metabolic, and therapeutic data
on 245 patients. The data originate from sources includ-
ing bedside cardiac catheterizations, patient records,
laboratory determinations, and physicians’ and nurses’
notes. The patients were studied over a time period
ranging from less than one day to nearly one month; the
number of detailed studies on individual patients ranged
from 1 to 62. Each study consisted of a set of measure-
ments centered on a determination of cardiac output. In
some cases up to 151 primary variables of the type indi-
cated above were involved and up to 61 additional de-
rived variables were produced. The present data bank of
245 patients contains 1485 such measurement sets. The
data are cross-sectional with regard to the measurement
sets of all patients and longitudinal with regard to many
sets on an individual patient. This is diagrammed in Fig.
1, in which the clinical histories of two variables for two
patients are plotted. The various measurements on an
individual patient at a point in time are keyed to the de-
termination of cardiac output with a dye dilution method.
The physician’s clinical description of his patient may
change from one time period to another. In addition to
the digital type of data indicated above, analog recordings
of the dye dilution measurement performed at the bed-
side are available.

Figure 2 shows dye curves for two patients with my-
ocardial infarction shock and indicates that the curves
may have very different shapes even though the levels of
cardiac output are essentially identical, i.e., the areas
under the curves are nearly equal. OQur previous clinical
and experimental work has demonstrated that a dye
curve can be described by a functional mathematical
model with serial components of delay, dispersion, and
mixing [10]. This model quantifies the magnitude and
shape of the dye curve in terms of four independent pa-
rameters. One of these, the flow, is inversely proportional
to the area under the dye curve, and the three others are
the delay (TA), the mixing mean transit time (TM), and
the dispersive mean transit time (TD) across the car-
diac-pulmonary circuit. On the basis of experimental and
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Figure 1 Clinical condition histories of two patients. (a) Car-
diac output; (b) mean blood pressure. The notations N, I, and
S refer to the clinical conditions “Control,” “Infection,” and
“Infection plus Shock,” respectively. In this and following
Figures, fictitious initjals are used to identify patients. (After
Fig. 1 [12].)

clinical studies, we developed a physiologic interpreta-
tion for the parameters. Delay is primarily related to
passage through the large vessels. Mixing time (TM) is
related to the durational aspects of left ventricular pres-
sure development [11]. Thus, it is a correlate of the maxi-
mum velocity of contractile element activity and hence
reflects changes in ventricular contractility [5,7,10,11].
Experimental data suggest that dispersive time (TD)
usually indicates the mean transit time through the small
vessels of the pulmonary vascular bed [10]. However,
an excessive prolongation of TD can often indicate a
significant area of myocardium that has no intrinsic con-
tractile activity [10,11].

Clinical, physiologic, and mathematical judgment pro-
vided the basis for choosing the following physiologic
variables for detailed analysis: the cardiac index (CI),
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Figure 2 Dye curves and model parameters from two patients
with acute myocardial infarction shock. These patients had not
been aided with mechanical support therapy prior to the time
these data were obtained. (After Fig. 2 [5].)

the mean blood pressure (MBP), the arterial-venous
oxygen content difference (AVDIF), the heart rate
(HR), the cardiac ejection time (ET), the central venous
pressure- (CVP), the mixing mean transit time (TM),
and the dispersive time (TD). (The cardiac index is the
cardiac output normalized by dividing by the patient’s
body surface area. The cardiac ejection time is the time
during the heart beat that the aortic valve is open and
blood is ejected from the heart.) A logarithmic transfor-
mation of these variables was used, since various linear
combinations of the logarithms of these primary variables
have a direct physiologic interpretation. The additional
physiological variables, venous pH (VPH), venous pO,
(VPO2), and venous pCO, (VPCO2) were also in-
cluded, making a set of eleven variables containing in-
formation concerning the state of the heart and of the
peripheral circulation. (pO, and pCO, are the partial
pressures of oxygen and carbon dioxide, respectively.
The pH is the negative log of the hydrogen ion concen-
tration. )

In this discussion, “samples’ are thus vectors of these
eleven physiologic measurements taken simultaneously
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on a patient at a discrete moment in time and may be
considered as points in an eleven-dimensional space.
Just as the physician may consider his patient to be in
different clinical “‘states’ at different times in his clinical
course, the assumption was made that a patient’s mea-
surement sets may reflect different physiologic *“‘states.”
Therefore, it seemed reasonable to analyze all patient
sample sets independently of their relationship in real
time. We thus assumed that the totality of the patient
samples describes the range of pathophysiologic states.
Also, we thus did not explicitly treat the covariance
structure within an individual patient’s set. All samples
from patients who had evidence of cirrhotic liver disease
were deleted from the analysis since this entity has phys-
iologic features similar to a variety of septic states and
therefore blurs classification of septics. It is also a rather
complicated chronic condition with other prominent fea-
tures that permit its clinical diagnosis on the basis of
other measurements.

An initial step was to seek to establish a way of look-
ing at the data in this eleven-dimensional space that the
physician could relate to his knowledge and information
on these patients as stored in the computer. In this study
it was possible to define a “basal,” or reference, set of
samples on purely clinical grounds. This was done by
deleting from the analysis samples from patients who
had acute myocardial infarction (MI) and samples taken
from patients under anesthesia, obtained during infection,
or when there was clinical evidence of septic or nonseptic
shock. The remaining patients had an age spread and
range of chronic disease processes similar to the septic
and MI group, but were not acutely ill. The idea behind
the analytic approach was to view the possible different
patterns of physiologic adaptation in the septic and other
shock samples as being departures from the ‘“‘basal”
group of similar high-risk patient samples. It was both
desirable and necessary to refer the measurements to a
control group derived from the patients under study,
since this group is the clinical population from whom all
the patient sets arise and the measurements used are not
routinely performed on healthy individuals. A healthy
person, even of the same age and sex, is as different
from these high-risk patients as is an elderly patient from
a young person.

After the initial clinical selection of the basal group,
all of the samples were re-examined solely in terms of
the quantitative measurements to be sure that they
formed a reasonably homogeneous group from a quanti-
tative as well as a clinical point of view. The means and
standard deviations of this purified basal group were
used as the normalizing factors for the entire population.
Data-inferred groupings of patient samples were selected
by means of a categorizing procedure referred to, in gen-
eral, as cluster analysis.
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Figure 3 Physiologic patterns in the multivariable means of the four cardiogenic and septic groups: A, B, C, anq D. The numerais on
the concentric circles are the numbers of standard deviations from the mean of the reference group R. (After Fig. 6 [5].)

The present methodology of “‘cluster analysis” (i.e.,
the procedures for arriving at data-inferred categories)
covers a broad area of loosely related techniques, objec-
tives, and concepts. One cannot point to a ‘‘blueprint”
or master plan from which one goes from data to a set of
categories. Rather, algorithms and criteria for grouping
data must be concatenated with other techniques of ex-
ploratory data analysis, and the results evaluated and
interpreted within the context of the subject matter un-
der study. The statistical criteria used in the present
context are described in [12]. The data analytic
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methods used to derive the results described in the dis-
cussion that follows are documented in [13].

These clustering procedures led to the definition of four
pathophysiologic groups, and a fifth group composed
primarily of basal patients (labeled R state). Three of
the pathophysiologic groups contained the entire spec-
trum of clinical severity in sepsis [4]. These groups are
labeled in alphabetic order, A, B, and C. The septic states
show patterns in the means of the eleven variables that
represent prototype patients with increasing physiologic
imbalance and worsening prognosis. For patients who 233
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Table 1 Mean values of physiologic variables and number of standard deviations (in parenthesis) of the normalized values from the
corresponding mean of the R group. A level of +1.90 standard deviations is used as the minimum level for consideration as a physio-

logically significant difference between means. (After Table 1 of [5].)

Patient state

Mean values of physiological variables*

and number of CI MBP AVDIF HR ET CVP VPH VPO2 VPCO2 ™ ™D
patients in (1/min/m2?)  (mmHg) (Vol. %) (beat/min) (sec) (mmHg) (pH) (mmHg) (mmHg) (sec) (sec)
(’ach state /777 - - T
Normalizing factor
0.127 0.0986 0.159 0.0730 0.0565 0.486 0.0762 10.38 9.34 0.179 0.126
R 2.54 88 3.7 78 0.30 27 7.43 39 39 43 4.8
185 (0.0) (0.0) 0.0) (0.0) (0.0) 0.0) (0.0) 0.0) 0.0) (0.0) (0.0
A 391 73 4.2 115 0.21 2.8 7.42 35 39 2.6 3.0
252 (1.48) (—0.80) (0.36) (2.33) (—2.77) (0.05) (—0.12) (—=0.36) (0.01) (=1.23) (—1.58)
B 3.58 81 1.7 114 0.21 4.9 7.35 60 44 3.0 3.6
118 (1.18) (—0.36) (—2.03) (2.29) {(—2.52) (0.53) (—1.00) (1.98) (0.57) (—0.88) (—1.01)
C 2.45 51 4.5 115 0.19 5.5 7.10 40 70 3.7 4.4
37 (—0.11)  (~2.36) (0.56) (2.32) (—3.52) 0.63)  (~427) 0.13)  (331)  (—0.36) (—0.33)
D 1.32 72 7.3 99 0.20 6.5 7.39 26 40 10.5 7.0
103 (—2.21) (—0.87) (1.88) (1.42) (—2.89) (0.79) (—0.52) (—1.25) 0.12 (2.15) (1.28)

*Except for the variables VPH, VPQ2, and VPCO2, the mean values shown are the antilogarithms of the mean of the log values, and the normalizing factors represent *1 standard

deviation from the log value of the corresponding mean of R.

enter the C state, death usually occurs within 12 hours
unless they are reverted to an R, A, or B state.

The fourth group (D state) is found to be primarily
composed of multivariable samples from patients with
acute myocardial infarction [5,11]. A few sample sets in
the D group came from patients without MI’s who had
severe hypovolemic shock. A small number of data sets
came from septic patients studied after open-chest car-
diac massage, or during cardiac failure. There were also
a few samples in the D group from aged pre-operative
patients who had neither acute MI nor shock. These pa-
tients all had a compensated low flow state because of
severe chronic coronary artery disease with extensive
myocardial fibrosis. In several cases there was a docu-
mented chronic left ventricular aneurism. As in the most
decompensated septic shock state (C), a large number of
the samples found in the cardiogenic group D came from
patients who succumbed from their acute disease process
within 24 hours of the data collection period. Of the 31
patients whose last recorded study was in the D group,
22 died. These data indicate the severity of prognostic
information about the abnormal physiologic pattern re-
flected by the D-state multivariable set [5,10,11].

A summary of the physiologic pattern exhibited in
each of these states as compared with the reference
group (R) is shown in Fig. 3. This figure shows the de-
parture of each variable from that of the reference group
in standard deviations of the means, and reflects the
quantitative distortion pattern of a prototype patient for
each abnormal group (A, B, C, D). Table 1 shows the

234 numerical values from which these patterns were plotted.
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Interaction of state classifications and model
parameters

Two major aspects of this study were done in parallel.
The results of the cluster analysis and modeling tended
to reinforce and lend credibility to each other. This
phenomenon is described in the sequel. The vital role of
the computer in performing the study is discussed in
Ref. 14.

The initial results with clustering were based on a set
of nine variables that excluded LTM and LTD inas-
much as the parallel work on functional physiologic
modeling of indicator dilution had not yet been com-
pleted. This cluster analysis yielded the five groupings
we have referred to as R, A, B, C, and D. The behavior
of the nine variables used to define the clusters was
quite similar to that of the eleven-variable clustering giv-
en in Table 1.

A parallel effort in the development of a functional
physiological model for indicator dilution has partially
been discussed in an earlier section of this paper. A phys-
iologic interpretation of some of these parameters has
also been given and is indicated in the lower part of Fig.
2. Reference has been made to the fact that the mixing
time TM is correlated with ventricular contractile func-
tion. This fact has been documented in other works in
which it was shown in an individual subject that there is
a strong correlation between TM and the durational cor-
relate of ventricular contractile activity [5,10,11].

Applied to the clinical cases under study (Fig. 4), the
mixing time also appears related to the adequacy of
myocardial function in myocardial infarction. Over the
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Figure 4 Cardiac output as a function of mixing time (TM)
showing separation of MI patients from pre-operative control
patients with respect to TM (line shown at TM = 7.5 seconds).
Pre-operative patients with TM greater than 14.6 sec had
chronic left-ventricular aneurysm. The dashed vertical lines
separate ranges of ejection fraction (EF), which is the ratio of
stroke volume to mixing volume. (After Fig. 3 [5].)

same range of flow, patients with acute myocardial in-
farcts (C and M) had marked prolongation of TM
(greater than 7.5 sec) and reduced ejection fraction (EF)
compared to control pre-operative patients (N), or pa-
tients with hypovolemic shock (H) uncomplicated by
cardiac failure. (EF is the ratio of stroke volume to mix-
ing volume.) Conversely, the patients with high flow
septic states (S and I) had a lower TM and increased
EF; the exceptions in the septic group being patients
with clinical high output failure, or those septic shock
patients who were studied after a cardiac arrest.

The relationship between TM and TD is a guide to
the effectiveness of mechanical support therapy in the
patient with an acute infarct. Figure 5 shows the trajec-
tories of 8 of the 9 patients who underwent intra-aortic
balloon counterpulsation (IAB) using the Bregman-
Goetz dual-chambered catheter assist device [15]. The
three patients who were resuscitated from acute MI
shock by this technique had both the TM and TD re-
duced below the critical level of 7.5 seconds. The six
nonsurviving patients had transient improvement, but
were not able to achieve a sustained reduction in TM
and TD. Of 28 MI patients studied to date, no patient in
whom TM and TD values both remained above the 7.5
second level has survived the acute episode in spite of
medical inotropic therapy or mechanical support (IAB).
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Figure 6 Dispersive time TD as a function of mixing time
TM, showing the relation between these parameters of the dye
curve model and the original nine-variable physiologic states,
R, A, B, C, and D. The TM-TD plane is divided into quad-
rants by lines drawn at the critical 7.5-sec times on the axes.
(After Fig. 5 [5].)

The results at this point seem to indicate that the
group identified as D contains the majority of those pa-
tients who had suffered from myocardial infarction and
who have poor cardiac function. There was some evi-
dence that the parameters in the modeling, TM and TD,
contained direct information regarding this contractile
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Figure 7 Multivariable patterns plotted from data taken at three times in the clinical courses of surviving and nonsurviving MI pa-

tients treated with IAB. The patterns describing the condition of patient PT who died, represent the first, ninth, and fifteenth studies of

his condition. The patterns referring to patient SR, who survived, represent the second, seventh, and ninth studies. The shaded areas
236 show the means of the prototype physiological state D. (After Fig. 9 [5].)
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function. Hence, a very important consideration was to
determine the correlation between this group D and the
model parameters TM and TD. The result is perhaps
best shown by reference to Figure 6. This figure shows
TD versus TM with the individual samples labeled ac-
cording to the cluster analysis states (R, A, B,C, D). It
should be readily apparent in that figure that most of the
D patients are in the upper right quadrant, which corre-
sponds to poor ventricular contractility, as previously
indicated.

Interpretation and clinical applications

The nature and direction of the deviations from the con-
trol condition (the R state) in the septic and cardiogenic
shock patients support the contention that different
mechanisms are involved [4,5,12]. The pattern of the
means of the physiologic variables in severe sepsis and
their usual progression with increasing severity from the
compensated state (A), to the unbalanced state (B),
into the decompensated septic shock state (C) suggest
that the major factor is a peripheral lesion producing a
major disparity between effective cellular perfusion and
overall tissue blood flow. These data suggest that myo-
cardial depression in sepsis, though an important and
serious complication, is not a primary feature of the dis-
ease process. This assertion is supported by the proto-
type patterns shown in the A, B, and C circle diagrams
(Fig. 3). From B to C there are progressive increases in
venous acidosis (i.e., decreasing VPH), hypercarbia
(VPCQ2), and in oxygen extraction (AVDIF), and de-
creases in MBP that are disproportionate when compared
to the lack of significant change in cardiac index (CI) or
myocardial contractile function (TM). In contrast, as
noted above, the severity of cardiogenic shock (D state)
appears directly related to the degree of myocardial con-
tractile depression (TM). The D circle diagram shows
that the significant decrease in cardiac index (CI) and the
increase in AVDIF appear roughly proportional to the
prolongation in TM. The reduction of cardiac flow in M1
shock seems to occur in a process where the important
peripheral perfusion/flow disparity is not a major aspect,
since widening in the AVDIF is approximately propor-
tional to a reduction in flow. Note that neither the mean
blood pressure drop nor the increase in venous acid pro-
duction are significant discriminators of the group pat-
tern, although they may be important features of a par-
ticular patient’s illness.

It is clear that a given patient’s response to his pri-
mary disease process evolves over time and that this
evaluation takes place in a physiologic continuum. Prob-
ably no real patient is exactly like the prototype patient
whose values represent the multivariable pattern of
means needed to define the physiologic state. The proto-
type states provide a grid over the physiologic contin-
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uum so that the physician can interpret what is happen-
ing to his patient and make clinical decisions. Viewed in
this light, the value of these physiologic parameters in
clinical decision-making in myocardial infarction shock
is shown in Fig. 7. This figure abstracts nodal points in
the detailed time course of two patients with medically
refractory cardiogenic shock who required intra-aortic
balloon counterpulsation [5,15]. One survived after [AB
and one died in spite of a period of support. However,
the logical implications of the study of the time course
of the changing physiologic patterns offer a guideline for
more rational therapy based on the patient’s physiologic
state.

Both patients were studied initially at a time when
their acute MI had produced a profound decrease in
cardiac output that had not been reversed by inotropic
or volume load therapy. Because of the poor clinical pic-
ture and the quantitatively abnormal physiologic pattern,
mechanical support using the Bregman-Goetz dual-
chamber intra-aortic assist device [15] was begun.

Although both patients remained in the D state during
the two days of study, it is clear that in both patients
there was physiologic improvement with IAB inasmuch
as the reduction of TM and TD suggested better coro-
nary circulation. In addition, a rise in VPH and a fall in
VPCO2 and AVDIF, suggested an improvement in pe-
ripheral perfusion that was somewhat greater than might
be expected from the small increase in the cardiac index.
The ejection time was reduced during IAB, due proba-
bly to the systolic unloading. The response in patient SR
after IAB was completed was a continued movement
away from the prototype D pattern back to the R state
represented by the reference circle. In the case of patient
PT, on the other hand, the initial improvement during
IAB was followed by progressive worsening of the total
pattern —cardiac and peripheral (movement toward the
D state prototype). The therapy applied to SR was able
to reduce TM to less than 7.5 seconds and he survived.
This was not the case with PT, who died.

Our studies suggest that patients with myocardial in-
farction have a different pattern of physiologic abnor-
malities than other shock patients, and that the func-
tional severity of the primary cardiac lesion and the re-
sultant peripheral response can be quantitatively defined
in a frame of reference that relates the abnormal physio-
logic pattern to an expected norm. More important, by
evaluating both the specific aspects of the abnormal pat-
tern and the total picture defined by the pattern, a ration-
al scheme of physiologically based clinical decision-
making can be specified [5,16].

Three physiologic variables dominate in distinguish-
ing the cardiogenic group (D) from groups having
patterns of septic shock (A, B, C) and from the control
group (R). These are the cardiac index (Cl), the arte-
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riovenous O, gradient (AVDIF) and the myocardial
contractile correlate (TM). The venous pH (VPH) also
provides a major distinguishing variable separating the
cardiogenic group (D) from the decompensated septic
patients (C state). The ejection time (ET) is useful in
differentiating the D-state patients from the control
group, but not from other shock states. The dispersion
component (TD) aids in differentiating D from the sep-
tic shock states. These observations follow from Fig. 3.

Additional studies were performed in an attempt to
validate and understand the results obtained in the early
studies. Figure 8 is a plot of ejection time versus TM.
As can be seen, TM provides a good discrimination
between groups A and D and ejection time has some
effect in separating the R group from those with patho-
physiologic defects. Physiologically, this suggests that
the R group has a less dynamic myocardial function than
the A-group patients, but is more dynamic than that of
the D-state cardiogenic patients. This is explained by the
force-velocity relationship of the myocardium. At a giv-
en myocardial contractile level with a lower after-load
{i.e., peripheral vascular resistance), the velocity of
shortening will be higher and the ejection time shorter.

Figure 9 is a plot of oxygen consumption versus car-
diac output. Regions encompassing most of the A, B, D,
and R groups are drawn in this figure. Oxygen consump-
tion is the product of the cardiac output and the arterio-
venous oxygen content difference (AVDIF). The break-
up indicated is certainly consistent with the patterns as
indicated in Table 1 and suggests a different pattern of
peripheral oxygen consumption. The details of this
cardiorespiratory interaction are described in [16].

Figure 10 shows a power (physiologic work) function
versus TM and in this particular plot groups A, C, and
D are outlined. Physiologically, this plot seems to sug-
gest that a more dynamic contractile state (A group) is
associated with a greater capacity for cardiac power
than is the poor contractile state present in the D group.
In contrast, C-state patients have poor power capacity,
not because of uniformly decreased cardiac function, but
because of severe peripheral abnormalities resulting in
an abnormal pressure-flow relationship that causes a low
blood pressure.

Our present feeling is that the basic set of eleven vari-
ables contains information about heart and peripheral
activity, but is perhaps not as meaningful as we would
desire in providing information about the respiratory
function. As an initial study of respiratory regulation,
pH and its relation to metabolic CO, production, arterial
bicarbonate ion concentration is plotted as a function of
arterial pH in Figure 11. It is physiologically interesting
to note that the C-state patients previously shown to
have abnormal work function because of low blood pres-
sure are also the group with the greatest acidemia, which
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the plot shows to have both metabolic and respiratory
components [16]. To quantify the cardiorespiratory
interactions and to determine the clinical observability
of these interactions, a detailed simulation of basic cardi-
ogenic, respiratory, and metabolic functions was devel-
oped [17,18]. These simulation studies provide essen-
tial data for refinement of the eleven-variable set with
respect to respiratory function.

Concluding observations

In conclusion, we review the progression of ideas re-
lated to the derivation of the results and make a few
general observations. Our first analysis was based on an
initial set of nine variables chosen because they give in-
formation about peripheral function felt to be important
in the development of the shock state. Also, at that point
in our studies [4,12,14] the myocardial patients were
purposely excluded. Hence, our analysis was strictly
limited to those patients with sepsis and septic shock,
viewed in a framework derived from those patients who
were basal. This approach was chosen to permit us to
deal with a single pathologic entity. The C group ap-
peared as a main effect in the data analysis at that partic-
ular point. The recognition of the prognostic implication
of the C state resulted in earlier and more aggressive
therapy in the antecedent B state, and as a result, fewer
C-state patients were seen in the new cases as the study
progressed. The very pathological patients who went
into the C group were mainly those whose physiological
records had been obtained over a four to five year peri-
od. Thus we feel the results we found were as much due
to the careful step-by-step selection of the patient popu-
lation as to the statistical methods of analysis. If one
were to perform a similar analysis on the set of samples
currently in the data bank, the effect of the relationship
of the small number of C samples might be masked by
the presence of large numbers of myocardial patients
(non-septic).

We view the multivariable means derived from the
various groups as a way of summarizing the data, and as
a technique of imposing a grid or scale on the eleven-
dimensional continuum. One can view the label —the
derivation of the state—as being a very brief summary
of the physiologic status of the patient. However, inas-
much as no patient lies precisely at the prototype mean
of his particular group, it is necessary to understand mo-
tion in the eleven-dimensional physiologic space, and this
is one of the questions that is now under investigation.

Another point worthy of mention is that without a
physiologic grid on the continuum one is unable to ask a
variety of very important questions. For example, with-
out the definition of a B state, a C state and an A state
out of the clinical condition of sepsis, it is impossible to
ask whether different responses to therapeutic programs
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are the resuit of different underlying patterns of compen-
sation in a complex chain process. There is some phys-
iologic evidence to support this contention and with the
kind of framework outlined above, this is a reasonable
type of question to attempt to answer.

An important consequence of this study has been the
realization that, in attempting to work in a biomedical
environment and to derive results that will be medically
and therapeutically beneficial, it is important to have
complete interaction between physicians, computer sci-
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entists, statisticians and applied mathematicians. A sub-
stantial involvement by all in the details of the data
collection and an understanding of the ramifications of
the problem is mandatory for the achievement of suc-
cessful results. The resultant “bootstrapping” method of
lifting one’s understanding from point to point is not that
easily recognized as a virtue by those who are used to
thinking in more quantitative veins. If one is attempting
to analyze the effects of a drug like penicillin, which
revolutionized the treatment of pneumococal pneumon-
ia, then one has single variable effect with a very posi-
tive result that is not at all difficult to support statistical-
ly. However, in the very difficult area of clinical manage-
ment of the critically ill patient, one is dealing with
the effect of multiple intercurrent diseases and a com-
plex interacting physiologic response pattern. Gains in
survival are made by small percentages. One seeks to
obtain detailed information concerning the nature and
pattern of response that can lead to a more rational and
physiologically relevant approach to clinical care.
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