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Abstract: This paper compares the performances—when applied to stationary EEG signals —of two methods of modeling stochastic
time-series; viz, a maximum-likelihood search method for a mixed autoregressive and moving-average time-series, and the well-known
method of least-squares identification of a prefiltered autoregressive series. Computing effort per step is derived for different-order
search strategies, expressed in the number of a set of basic operations and aiso in equivalent number of likelihood function evaluations.
Power spectra and total computing effort are evaluated and compared for four representative EEG samples. It appears that the least-
squares method is generally superior because iteration is not needed, and in spite of the fact that higher orders are needed instead.

1. Introduction

The spontaneous electrical activity of the brain is nor-
mally measured by means of electrodes placed on the
patient’s scalp. The recordings of such measurements
resemble random signals, occasionally containing a dom-
inating frequency, called rhythm, and/or pulse-like activ-
ity, called spikes. These recordings, the electroencepha-
lograms or EEG signals, are generally believed to hold
information about the brain and are used by the physi-
cian as a means for diagnosis.

This paper originates in a joint study of EEG signals,
involving scientists from the Karolinska Hospital, the
Royal Institute of Technology and the IBM Nordic Lab-
oratory in Sweden. The aim of the study is to find meth-
ods to supplement the diagnostician’s visual inspection of
EEG recordings with mathematical analysis, and in gen-
eral to provide means for accessing the information in
the EEG [23].

A fully automatic diagnosis would consist of two
phases:

« Analysis of an EEG sample to obtain the particular
characteristics of the EEG that distinguish it from
other EEG’s.

» Medical classification of the sample by means of its
characteristics. One class would be that of “uncertain
cases.”

The problems associated with the second phase are
not treated in this paper. The first phase involves three
problems:

« To find a mathematical description of EEG’s; i.e., a
parametric class .# of models that is wide enough to

cover essential properties of a substantial class of
physical EEG signals.

« To find numerical identification methods; i.e., to asso-
ciate a particular element in this predefined class with
a given EEG sample by assigning values to the param-
eters. Thus, the parameter values characterize the
EEG and carry the information extracted from the
EEG.

« To find a test criterion for the case in which a given
EEG sample cannot be described by a model in the
class /.

At least the first two problems have been treated ex-
tensively in the literature [8,16,18]. Essentially two
kinds of description have been tried:

1. Stationary stochastic processes. The information ob-
tained comprises various time-invariant statistical
characteristics of the EEG signal, such as power
spectrum or amplitude distribution or other charac-
teristics derived from these. Methods using correla-
tion analysis [13], frequency analysis [10], reversed
correlation analysis [14], and the fitting of time-series
models [12,21,25] belong to this category.

2. Wave patterns. This yields essentially the frequency
of occurrence and the form of particular, characteristic
patterns [11,17].

The essential prerequisite for applying the first alter-
native is that characteristics be constant in time. Long
samples (of the order of tens of seconds) are used for
analysis. In the second alternative any wave form is al-
lowed; however, to render the analysis practical the
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wave forms must belong to only few and restricted class-
es. This means that attention is focused on transient
properties and short samples are used. For these reasons
EEG’s with slowly changing characteristics are often
treated as piece-wise stationary and the theory investi-
gates the effects of limited sample lengths [24]. In addi-
tion, at least two methods have been developed that do
not assume (piece-wise) stationarity and operate on
samples that are not short; viz, those using “complex
demodulation” [18] and parameter-tracking by a Kal-
man estimator [7].

Thus, the various descriptions imply different ways to
process an EEG signal for analysis and also yield dif-
ferent kinds of information about the EEG. Therefore,
it is generally difficult to compare different methods with
respect to performance, and such comparisons are few.
Mainly, a difficulty is that a common basis must be found,
relating elements in different classes of models. A natural
common basis for stationary EEG’s, used in Ref. 15, is
the power spectrum.

However, the estimated power spectra arrived at by
any method are necessarily estimates of smoothed ver-
sions of an imaginary, ‘“true” spectrum, and the princi-
ples for smoothing differ. In frequency analysis methods
smoothing is defined by means of frequency or lag “win-
dows” [4]; in a model-fitting method the postulated mod-
el structure defines the smoothing implicitly, and no win-
dow is needed. Also, analysis methods usually contain
design parameters to be set by the user, such as filters,
windows and model orders, and their values may have a
significant effect on the performance. A fair comparison
would require that one first optimize these parameters.
A second, difficult to satisfy, requirement for a fair com-
parison is that test cases must not favor any of the
methods to be compared.

This paper attempts to compare two methods that use
time-series models: a maximum likelihood identification
method of a mixed autoregressive and moving-average
time-series, proposed by Astrém and Bohlin [1], and
similar to that applied by Zetterberg [21], and the well-
known method of least-squares identification of an auto-
regressive series, applied to EEG analysis by Gersch
[12] and by Fenwick, et al. [25]. These two methods are
sufficiently related to make a comparison feasible and yet,
sufficiently different to make it interesting.

The models arrived at by the two methods have dif-
ferent forms and therefore cannot be compared directly.
However, form need not be physically relevant. The fol-
lowing, physically relevant characteristics can be evalu-
ated for both methods and are used for the comparison:

* Power spectrum of the model.
¢ Model quality, as measured by the residual variance,
or equivalently by the rms value of the error incurred
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when each model is used to predict the EEG signal one
sampling interval ahead.

« Computing effort, measured as the number of repeti-
tions of a common set of algebraic operations (accu-
mulation of lagged products) approached for long
samples. This makes the measure independent of the
particular computer and the particular programming
used.

Essential design parameters, affecting all three charac-
teristics, are the model orders, which are defined dif-
ferently for the two methods. However, it appears that
in both cases orders do not affect spectra appreciably, if
they are high enough. This makes a comparison of mod-
els feasible.

Also, for a given EEG sample and each method it is
possible to establish a highest order such that the model
quality does not improve significantly for still higher
orders. This suggests two ways to compare computing
effort: For a number of test cases either 1) use the sig-
nificant orders for both methods or, 2) use the signifi-
cant order for one of the methods (the maximum likeli-
hood method, say) and set the order of the other method
such that model qualities coincide. Evaluate and com-
pare computing efforts.

Thus, a fair comparison between maximum-likelihood
and generalized least-squares methods, when applied to
EEG signals, is made possible by the following fortunate
circumstances:

1. The models have comparable power spectra.

2. Design parameters can be set by objective means,
thus fixing both the degree of smoothing and the
amount of computing for each method.

3. The set of arithmetic operations dominating the com-
puting for long samples is common to both methods.

In practice a number of things reduce the discriminat-
ing power of a comparison:

» Results of order tests that use physical data are gener-
ally somewhat ambiguous. This is a consequence, of
course, of the fact that a physical signal cannot be
trusted to have a well-defined order.

» The generalized least-squares method has other design
parameters besides the order; that is, it uses a prefil-
ter. The latter affects the order substantially. An at-
tempt to compute the optimal prefilter leads to the so-
called modified generalized least-squares method [9],
which is not evaluated in this paper. Fortunately, it
appears that the prefilter does not affect the model
quality appreciably (if the order is high enough), and
that in practice it is sufficient to choose a prefilter
heuristically and use it for all samples.

* The result depends on the particular test case. Aver-
aging generally requires many test cases.
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For the comparison carried out in this paper only four
EEG samples are used for test cases. However, the dis-
criminating power appears to be sufficient since the re-
sults are reasonably clear in all cases. Spectra agree
well, and the generalized least-squares method needs
substantially less computing than the particular maxi-
mum-likelihood algorithm used, because iteration is not
needed, and in spite of the fact that higher orders are
needed instead.

2. Theory

Zetterberg [21,22] proposed the following class of mod-
els for a description of stationary parts of an EEG signal
v(t), with zero mean and sampled with the interval 4:

y(t) +ay(t —h) +---+ ay(t— nh)
=Ne(t) +ce(t—h) + -+ c,e(t—mh)]. (1)

Here {e(z)} is a sequence of uncorrelated, normal ran-
dom variables with zero means and unit variances.
a,- -, a, c," - c,, are parameters, m and n are integers
defining the order of the model, and X is a scaling factor.

It is shown in Ref. 21 that the form (1) results from
superimposing signal components of three kinds, gener-
ated by zero-, first-, and second-order difference equa-
tions driven by uncorrelated sequences:

1. White noise.

2. Random signals of low-pass type, characterized by
power and noise bandwidth.

3. Random signals of band-pass type, characterized by
power, frequency, bandwidth, and skewness.

The motivation for adopting the form (1) is the fact that
its spectrum can be decomposed into such components,
each having a description that is easy to interpret physi-
cally and identify as one of the conventional «, 8, & or 8
rhythms.

In Ref. 19 Wennberg and Zetterberg demonstrated
experimentally, using records from healthy subjects, that
models of the fifth order (m =r=75) would normally
describe adequately such samples that were manually
selected as free of artifacts. The identification principle
used was that of maximum likelihood [1]. Generally,
the likelihood function is a function of the unknown pa-
rameters in a model. It may be interpreted as measuring
the likelihood that any given model could have produced
the actually observed signal. The particular model corre-
sponding to the maximum of that function is therefore of
interest and is known as the maximum-likelihood model.

Zetterberg used a new algorithm for finding the maxi-
mum of the likelihood function [21]. This algorithm
differs essentially from the one proposed in Ref. 1 in two
respects: 1) the likelihood is expressed in terms of sam-
ple autocorrelations instead of the sample values, and 2)

a different optimization algorithm is used for finding the
parameter estimates.

The use of sample autocorrelations in place of the
data sample is believed to be advantageous in cases
where a hardware correlator is available, and, possibly,
even when the analysis is done exclusively by a digital
computer, since the original data sample has to be pro-
cessed only once for an approximate evaluation of the
likelihood of alternative models. However, the efficient
optimization scheme of Refs. 1 and 5 cannot be used,
since derivatives are not readily available. Thus, the al-
gorithm based on sample autocorrelations can be expect-
ed to offer fewer computations per iteration step, but
also to need more steps to find the estimate. The method
reported in this paper uses a modification of the New-
ton-Raphson algorithm described in Ref. S; it is not
based on sample autocorrelations.

Setting ¢, =---= ¢, =0 in (1) yields the autoregres-
sive series applied to EEG signals in [12] and [25]. To
compensate for the loss of degrees of freedom in the
model, the order n has to be increased, but the point is
that estimating the remaining coefficients a,,- -, a,, A is
done by a least-squares algorithm, which does not need
iteration. A slight modification is that of using constant
but nonzero c; values; i.e., the ¢, values are the same for
all samples. This leads to the so-called generalized least-
squares algorithm, needing only slightly more computing
for a given order n. The point is that a good choice of ¢
coefficients may reduce the necessary order.

e 2.1 Power spectra
Let # be the class of models represented by (1), where
both coefficient arrays a and ¢ as well as m and n, are
used as characteristics. Accepting the assumption that
the class .# is adequate for modeling stationary EEG
signals does not immediately make it clear that a smaller
class ' can also be used, where the value of ¢ is com-
mon to all samples and a, alone, is used to characterize
an individual sample. However, a weakly stationary
random signal is uniquely characterized by its spectrum.
Therefore, identifying the signal by a model of the class
4 means approximating its spectrum by the spectral
function associated with (1):

, |C(exp 2mwifh)|?

A(exp 2mifh)| ° (2)

where
A@=1+az+ " +az",
Cl@)=1+cz+ "+, . 3)

Since (2) is a symmetric function it is always possible to
express the spectrum as a ratio of polynomials in cos
(2w fh). It follows that (2) can approximate any continu-
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ous nonnegative spectrum in the range fA€ (0, 0.5).
However, the same condition holds for a single poly-
nomial, and, therefore, also for a model in .#' (which
means approximating the signal spectrum by the ratio of
a fixed polynomial |C’|* and a variable one |4'|*) as long
as both the spectrum and |C’|” are continuous and posi-
tive. Since the C’ polynomial in .’ is fixed, it may not
coincide with that in .#. The A’ polynomial in .#’ is gen-
erally of higher order than that in .#; the extra factors
have the functions of both 1) approximating the factors
in |C|™* that are not approximated adequately by factors
in |C’|% and 2) compensating for the factors in |C'|*
that do not fit any of the factors in |C|>.

It follows that the choice of C’ should not affect the
degree of fit of the model; however, a well-designed C’
polynomial may reduce the order of the A’ polynomial to
n. On the other hand, a bad choice may increase the
order by m at most.

e 2.2 Computing effort

To derive the amount of computing needed to fit a model
of the class .# or ./’ to data it is necessary to investigate
the algorithms in some detail. Both result from an appli-
cation of the maximum-likelihood principle. This princi-
ple assigns a model, within a postulated parametric
class, to a given data sample by selecting the parameter
vector § that minimizes the loss function [1]

V) =13 o), 4)

where the “residuals” €(#]9) satisfy the model
y(t) =F(z|0)e(d6), t=1,---N. (5)

Here, F(z7'|6) is a postulated, analytic function of the
backwards-shift operator z~' and the parameters. It de-
fines the class of models.

For both classes . and .4’
FZ'lo)=C@ A, (6)
but
6={a,,"-~ a,c, - c,} in.#, and

0={a, - a,}insa'"

In .# the minimum is reached by a second-order
search method. In .#’ (the generalized least-squares
method) V(6) is a quadratic function and a ‘‘search”
converges in one step. However, in both cases the com-
putations that dominate for large sample lengths N con-
sist of evaluating first- and second-order partial deriva-
tives of V(6). Other computations (inverting the sec-
ond-order derivative matrix, evaluating the spectrum,
etc.) do not grow with N and will not be included in the
measure of computing effort.
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The partial derivatives are obtained from the relations

(1]

m+n

WO =3 —ae

i Ba;3, <)y, (e =)

—i dc; Y e()e (t—j) (7)

t

m+n 2
s 2V 580,

5V (8) =
2 86,86,

ij=1

n n

= E > dada; 2 vt =Dyt —J)

i=1 j=1
n
2y

i=1j

WZE

dadc 2 [~y (t —D)e.(t —))

1

—e()y (t—=i—j)]

+ ESC

i=1 j=1

E le (¢t —i)e (t — )

+2e(t)e (1—i—))],  (8)
where

C(z™ )y, (1) =y@),

Cz e ()=elt) =A@y, (t),

C(z™") y (1) =y, (1), and

C(z ") e, (1) =¢, (). 9)

Terms containing 3c; vanish in ..

For large N the total computing effort needed to per-
form an r-order search is generally J = N M, where M is
the number of iterations and N, is the computing effort
needed to evaluate loss and loss derivatives up to rth
order; r = 0 if only the loss function has to be evaluated,
r =1 for gradient methods, and r = 2 for second-order
methods. A useful, incomplete second-order method is
based on omitting the y,, and ¢, terms in (8) [5]. De-
note the corresponding computing effort by N,*. The
number of steps M is generally a stochastic variable,
which depends on the data and on the search strategy,
while the computing effort per step N, is a function of

r

the order and the sample length only.

2.2.1 Computing effort per step

An inspection of Egs. (4), (7), (8), and (9) reveals that
evaluating loss and loss derivatives involves only two
kinds of computation; viz,

1. Evaluating residuals € and the auxiliary sequences y,,
Veer € €,.- The latter are obtained as solutions x, of a
common linear difference equation C (z™ )x,.(1) = x(¢)
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with x(t) = y(1), y.(t), €(t), €.(t), while e(t) =
Ay, (0.

2. Evaluating a number of cross-correlations between y,
€, and the auxiliary sequences.

Also, the operation in both tasks 1 and 2 comprises
forming sums of products, where the factors are ar-
ranged sequentially in two arrays in the computer mem-
ory. The computing effort per step in the search can
therefore be measured in terms of the number of repeti-
tions of one basic operation that comprises a fixed se-
quence of elementary operations: address modification,
loading, multiplication, accumulation, and storing. This
number is independent of machine, programming lan-
guage, fixed- or floating-point arithmetic, etc. Moreover,
the number is independent of the hill-climbing strategy. It
is therefore a suitable measure of computing effort per
step in the search.

Counting operations in the formulas (7)—(9) yields,
for n > 0 and n = m:

In#, N,=m+n+1)N,
N,=0Bm+2n+ 1)N,
N,*= (Sm+ 4n)N,
N,= (10m+ 51— 2)N; (10)

In#', Ny=(m+3n+1)N. (11)

Notice that these formulas establish a relation be-
tween the computing needed to evaluate derivatives and
that of loss only. This suggests that one may choose
a second measure of computing effort, J/(m +n + 1)N,
which may be called the ‘“‘equivalent number of function
evaluations.”

The alternative measure makes it feasible to compare
experimentally the performances of different-order
search strategies for the minimum of the particular loss
function V (9), independently of which computer is used,
and independently of the way in which loss and deriva-
tives (if any) are evaluated.

A point in favor of the higher-order search strategies
is the efficient way in which derivatives are evaluated;
one gets the m + n first-order derivatives with only
Bm+2n+ 1)/(m+ n+ 1) times the effort of evaluat-
ing loss only, and the (m+n+ 1)(m+ n)/2 second-
order derivatives with only (10m + Sn—2)/(m +n+ 1)
times that effort. For example, with m=n =15 a zero-
order search strategy is superior to the second-order
method only if it needs less than 6.6 times as many
steps in the search. Using the incomplete second-deriv-
ative matrix during part of the search reduces the limit
further, down to 4.1 times. Notice, however, that these
are asymptotic figures, valid for long samples. A fixed
term should be added to N, that depends only on the

strategy and not on N, and this term probably favors the
less sophisticated strategies.

2.2.2 The number of steps

Two things besides the search strategy affect substan-
tially the total number of iterations M for a given sample:
the stopping rule and round-off errors. For a strategy
yielding quadratic convergence —such as Newton-
Raphson’s —the remaining error after stopping is small,
when and only when, the latest loss reduction is small.
However, this is not necessarily true for the hill-climb-
ing scheme used in this paper. A number of modifica-
tions are employed in situations where the Newton-
Raphson algorithm can otherwise be expected to fail due
to unfavorable local properties of the loss function. The
modifications generally ensure convergence, but occa-
sionally ruin the quadratic convergence rate.

Also, for a flat minimum, round-off errors may disturb
the ideal performance of the search and, in particular,
ruin the function of any stopping rule based on loss re-
duction, since this reduction is normally much smaller
than the loss itself. If short word lengths (16 bits) are
used, as is the case in this paper, the effect of round-off
errors on the number of steps is noticeable.

However, for the sake of comparison it would be un-
satisfactory to have a number M that would depend es-
sentially on programming and on the level of round-off
errors. Therefore, in the tests no stopping rule has been
used, but the search has been allowed to go on until
round-off errors preclude further loss reduction. This
allows a definition of M as the smallest number of steps
k after which no significant improvement in loss is
achieved during the remainder of the search; i.e.,

q(65.6") =N[V(6") — V(6")1/V(6™) (12)
= constant=1,

where 67 is the Jjth iterate.

This definition is based on the following considera-
tion:

Let AV(6',8) = V(8') — V(8) be the reduction in loss,
when going from an arbitrary point ¢’ to the minimum 6.
In particular, if 8’ is equal to the true parameter point 6,
then for large N,

q(8,,0) = NAV (6,,0)/V (§) ,

and is xz-distributed with m + n degrees of freedom,;
hence, it has the mean m + n [20]. Since 6 does not
deviate significantly from 8,, a relative loss reduction
q(f)i,oj) much smaller than m + n is never significant.

It follows that the definition (12) is reasonable as long
as the constant is smaller than m + n. The particular
value one is, of course, arbitrary and gives a slightly
conservative definition of M; one could have stopped
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even earlier without getting a significantly inferior esti-
mate. A second requirement is that the effect of round-
off errors be much smaller than m + n. In the applica-
tions the effect has been in the range from 0.1 to 1.

Notice, however, that (12) cannot be used for a stop-
ping rule. The problem of an efficient stopping rule in the
presence of substantial round-off errors has not been sat-
isfactorily solved. Because of this it is recommended
that floating-point or double-precision arithmetic be
used. This will save much trouble.

In .#' the number of steps is M,’. Ideally, M,’ is equal
to one, since V' (#) is quadratic in .#'. However, in prac-
tice it may be advantageous to iterate also in this case
for the following reason: The second-derivative matrix
to be inverted may become nearly singular. It is there-
fore advantageous always to add a small diagonal matrix
before inverting [6]. However, this causes a small sys-
tematic error in the estimate, which must be suppressed
by iteration. Also, effects of round-off errors are gener-
ally reduced by iteration. Normally, it is sufficient for
the value of M,’ to be in the range from 1 to 3.

e 2.3 Model quality
Degree of fit to the data is measured by the residual var-
iance

“ N A
A =1—%,~V(0)—Nze(t|0). (13)

As long as n << N, the residuals € may be interpreted as
the part of the signal that cannot be predicted one step
ahead and therefore cannot be explained in terms of the
signal’s past history [1]. A total correlation coefficient
would be given by the formula p = [1 - XZ]%. However,
the use of correlation coefficients often gives high values
even for quite substantial residuals (because of the root
extraction), and may therefore be misleading as a mea-
sure of fit.

Increasing the order n generally results in a more de-
tailed model spectrum and a better fit. Even if there is a
time-invariant “true” spectrum |C,/A4,|* of finite order n
behind the sample, some details in the model spectrum
become “fictitious’ for orders above n, and emerge due to
chance alone. If a true spectrum does not exist, or if its
structure is different from that of the model, e.g., C" #
C,, then even for infinitely long samples and large orders
the model spectrum will change with the order. In the
present application there is probably no “‘true” order, and
possibly not even a “true” spectrum that can be estimat-
ed. All one can reasonably assume is that for low orders,
changes are mainly systematic and independent of sam-
ple length, while for high orders, changes are mainly
random and due to a finite sample length.

This does not necessarily mean that larger orders will
theoretically produce larger estimation errors, but large
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orders have the practical disadvantages that 1) comput-
ing effort increases and 2) the model spectrum will ex-
hibit a number of spurious details, which may easily be
taken for real ones. In a medical application one may
easily observe spectral phenomena that seem to indicate
physiological effects, when indeed there are none. For
this reason it may be better to accept the alternative dis-
advantage, that of excessive smoothing of the spectrum.

A well-known principle for determining a sufficient
order n is the following [3]:

Select 7 as the lowest order such that none of the loss
reductions obtained for n > # contradicts the hypothesis
that a true spectrum exists and is of the form |C/A|* and
of order A.

Apart from the theoretical objections raised above,
this has the disadvantage that the result may depend on
the extension of the test, in particular to how high an
order one cares to pursue it. For any order increase re-
jected as not significant, there may always be a higher
order, where loss reduction will be significant. Still, the
approach is customary for testing order.

A standard hypothesis test is based on relative loss
reduction [2]: Let 6" be the point of minimum of V,
where v parameters are used in the search. For models
in A, v=m + n, while in .#', v = n. Then for large N,

4,,=NV() = V(#)1/v(6") (14)

is x*-distributed with u — v degrees of freedom, provided
v and u are both at least sufficiently large to describe the
data sample adequately. Conversely, if ¢q,, is signif-
icantly larger than u — v, this contradicts the hypothesis
that v parameters are sufficient. Thus the normalized
loss reduction g =N AV/V =N ANY/N is useful for judg-
ing the significance of both premature stopping and of an
order increase.

3. Application
Test data have been provided by Wennberg [19] in the
form of tape-recorded EEG signals. Four signals were
sampled with a frequency of 62.5 Hz, and for each sig-
nal a segment of N = 1250 data points was selected and
analyzed using an IBM 1130 computer. Four test sam-
ples are shown in Figs. 1(a)-1(d). Samples #1, #2,
and #4 have been selected from the material in Ref. 19
and represent healthy subjects. Sample #3 is from un-
published material and represents an abnormal subject.

A large number of models in .# and .#' were fitted to
the four samples, using different order parameters. Gen-
erally, m = n for models in .#, and m = 9 for models in
A'. In # multiple minima of the loss function were
found, yielding further models. These ambiguities are
discussed in greater detail in Ref. 6.

In .4’ the C’ polynomial is fixed. It is well known that
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Figure 1 Computer-generated 1250-point plots of tape-recorded EEG signals sampled at a rate of 62.5 Hz. (a) Sample #1; (b)
Sample #2; (c) Sample #3; (d) Sample #4. Sample #3 is from an abnormal subject; the others are from normal subjects.

determining C' is equivalent to choosing a prefilter of
the form C''(z™"). Heuristically, the purpose of prefil-
tering is normally to reduce high-frequency noise or,
more generally, to suppress the parts of the sample spec-
trum where no signal power is expected. For EEG sig-
nals this is the case for frequencies higher than about 15
Hz, with the exception of a range centered on 20 Hz,
where so-called beta activity, if any, is located. There-
fore a filter C'~' with the (somewhat arbitrary) trans-
mission characteristic shown in Fig. 2 has been applied.
One might suspect that this filter would cause frequen-
cy components in the model spectrum to appear where
one wants to find them a priori (viz, from 0 to 15 Hz
and around 20 Hz), irrespective of the frequency distri-
bution of the signal. However, prefiltering is compensat-
ed for by the factor |C’|* appearing in the model spec-
trum (2). The choice of C’ influences only the weights

implicitly attached to the various frequencies by the
model fitting procedure. It has been confirmed by exper-
iments that the particular choice in Fig. 2 does not affect
the final result, only the order needed to achieve the re-
sult [6]. However, this does not hold for all possible
choices of C'. In practice one has to see to it that |C'|™*
has a substantial value —more than 10 percent, say, of
its maximum —for all frequencies where the EEG has
nonnegligible power. Otherwise the result will depend
on C'. See also the discussion in Subsection 2.1.

For reference, models in .# are labelled #MLi.n (for
the maximum-likelihood method), and those in .4’ are
labelled #GLi.n (for the generalized least-squares
method), where i indicates the sample and » the order.
An extra digit may be added (see the following Subsec-
tion 3.2). Results of a comparison of methods are pre-
sented in the following subsection.
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e 3.1 Agreement of spectra
From the set of fitted models, those to be compared
were selected as follows:

In .#: Choices of orders were based mainly on the re-
sults of order tests as outlined in Subsection 2.3.
Multiple minima caused some problems, since it
was not possible to discriminate among them by
means of the values of A only. It happened that
the lowest minimum did not always correspond to
the physically most likely spectrum. Fortunately,
the spectra corresponding to the various local
minima differed substantially, making it possible
to pick the ones showing the greatest likeness to
the corresponding (less differing) models in .#'.

In .#': Also in this case, choices had to be based on
some engineering judgements. Considering the
possible bases for a choice of order discussed in
Subsection 2.3 (test, equal degree of fit, and like-
ness of spectra), the choice arrived at coincides
with one based on equal degree of fit, with the
single exception that for Sample #1 the order n
was raised by one.

Power spectra of the selected models are plotted in
Fig. 3. Spectra agree reasonably well; major characteris-
tics have similar frequencies, powers and bandwidths.
Agreement is less good for low frequencies, but it is,
reasonable to accept the conclusion that the latter differ-
ences are random and due to the finite sample length,
since low frequencies are generally difficuit to estimate
accurately. On the other hand, the very small beta-fre-
quency at 20 Hz in Sample #1 is significant in spite of
the fact that its power is only about 1 percent of the total
signal power.

e 3.2 Comparison of computing effort

There is a great number of possible algorithms for fitting
models in .#. The one evaluated below and compared
with the generalized least-squares algorithm for models
in .#' is a modified Newton-Raphson hill-climbing algo-
rithm. It has two search phases, besides an initialization
phase. The scheme is described in more detail in Ref. 6;
what is interesting in this context is that the two phases
employ the incomplete and the complete second-deriva-
tive matrix respectively. Hence, the total computing
effort is, from (10) with m = n:

J=J"+9n NM*+ (15n—2) N M,, (15)

where J° corresponds to the initialization phase. Two
different initialization phases were tried, on occasion
leading to different local minima.

- [(Sn +1)N for ““standard” initialization

(7n +2)N for “‘special” initialization .
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Figure 2 Transmission characteristic of filter C' ™.

“Special” initialization is indicated by an extra digit
added to the label #MLi.n.l. Again details are given in
Ref. [6]. Generally, “special” initialization shortens the
search phases. However, it turns out also to have the
adverse effect of increasing round-off errors substantially,
and it is even possible that the rapid convergence is
partly due to the fact that the level of round-off errors is
reached early. This level is about the same as the con-
stant in (12) and one magnitude higher than the level
resulting from “standard” initialization, but still well
below the value m + n where errors begin to be statisti-
cally significant (see 2.2.2). However, the margin is
uncomfortably small.

The numbers of steps, M,* and M,, taken in the two
search phases are given in Table 1. The search may ter-
minate in either phase; in both cases the event of “‘termi-
nation” has been determined by the inequality (12).

For models in .#’ the following formula is used (m =
9):

J=M, (3n+ 10)N (16)
with M," = 2.

Table 1 gives the results of an evaluation of comput-
ing effort in terms of the number of basic operations per
sample point J/N and also in terms of the equivalent
number of function evaluations J. The table includes all
the models in # that were fitted to the data, except
those corresponding to false minima and those resulting
from particular, favorable starting values for the itera-
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Frequency, Hz
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Figure 3 Power spectra. (a) Model ML1.5; (b) Model GL1.13; (c) Model ML2.7.1; (d) Model GL2.17; (e) Model ML3.5; (f)
Model GL3.10; (g) Model ML4.5; (h) Model GL4.11. The model spectra to be compared are vertically adjacent.

Table 1 Comparison of computing effort.

16

360
960
1030

Jee Model No. A JIN
66.4 GL1.12 0.1505 92
20.9 GL1.13 0.1573 98
20.4 GL2.11 0.4044 86
20.2 GL2.17 0.3988 122
69.4 GL3.10 0.0971 80
11.8 GL3.11 0.0967 86
18.9 GL3.11 0.0967 86
87.3 GL4.11 0.2988 86
68.7 GL4.18 0.2977 148
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Figure 3 (Continued.)
£
tion. Thus, four models in .# have unnecessarily high . Also, this portion of the computing effort does not
orders and one has an insufficient order. The corre- grow with the sample length.
< sponding models in .#' have been selected so as to have * As might be expected, the computing effort for the
a comparable measure of fit, A% hill-climbing scheme varies greatly from case to case.
Comments on Table 1: However, contrary to what might be expected, the
e The generalized least-squares method clearly needs computing e.ﬁ'ort, when. measured in equivalent num-
less computing effort than the maximum likelihood Per of func.tlon evaluations, Jy, shows no ten'der.my to
oL increase with the model order. (Orders are indicated
method to evaluate loss and loss derivatives. Values L. )
v of the computing measures, J/N and J, for the gener- by the second digits in the model fabels. )
alized least-squares models are approximately 0.1 to The alternative way of fitting models in ./, used in
0.5 of the values for the comparable maximum-likeli- Ref. 21, takes an entirely different approach: several
hood models. The computing effort needed to invert autocorrelations are first computed from the data. The
the second-order derivative matrix is not included. loss function is then evaluated as a function of these
However, this matrix is not much larger for models in autocorrelations, and the model is found by a zero-order
b A'; on the average 14, compared to 11 for models in search method. 203
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In this case the part of the computing effort that grows
with sample length is that of evaluating the autocorrela-
tions. It requires a computing effort J/N equal to the
number of autocorrelations needed to evaluate the loss
function. Ref. 21 reports the computation of 100 auto-
correlations, which yields a clearly smaller value of JIN
than for the ML method used in this paper, and approxi-
mately equal to that of the GL method. However, this
does not include the hill-climbing part. The latter, even if
it does not grow with the sample length, still constitutes a
substantial, possibly dominating part of the computing ef-
fort for the sample sizes used in practice. Unfortunately
the computer times cannot be compared directly, since
different computers have been used. However, one still
arrives at the conclusion that, compared with the alterna-
tive ML algorithm in Ref. 21, the GL method is faster.

Conclusions

For the purpose of comparing two methods of modeling
stationary EEG signals, maximum likelihood (ML) and
generalized least-squares (GL.) methods have been ap-
plied to four selected samples of EEG signals. The re-
sults indicate that models can be obtained using the GL
method that are comparable to those obtained by the
more general ML method at the cost of only a slight in-
crease in number of parameters, i.e., 10 to 17 parame-
ters for GL models compared to 10 to 14 for ML mod-
els.

Computing effort per sample point has been evaluated
for both methods in terms of the number of a common
set of basic operations. This number is 2 to 10 times
higher for the ML method. In addition, the ML method
has a number of practical disadvantages when applied to
EEG signals:

o Multiple minima may exist. A standard initialization
phase does not always yield the right minimum. Also,
it is not a simple task to select the right minimum from
among a set of local minima.

* Round-off errors (with 16-bit words) appear to cause
more trouble with the ML than with the GL method.

» Intermediate, unstable models may be obtained in the
search, requiring a substantial amount of additional
computations.

Generally, the GL method appears to be superior to the
ML method used in this paper for spectral analysis of
stationary EEG signals.

However, it must be stressed that, strictly, the com-
parison of computing effort is valid only for the particu-
lar search strategy used in this paper. Although the strat-
egy is believed to be good, there might exist another, far
better one. Also, the comparison is confined to the four
EEG samples investigated. However, it is believed that,
numerically, the samples are representative of stationary

EEG signals and, furthermore, it seems likely that the
conclusion reached here holds in general for random
signals that have a small number of spectrum peaks.

The conclusion that the GL method is superior is not
necessarily valid when there are many peaks, as in line
spectra, since the orders of the models then become much
higher. Neither need it hold for identification of input-
output systems, since the presence of inputs increases
the order of a least-squares model more than it does that
of its counterpart. A comparison would therefore be less
favorable to the least-squares method.
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