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Comparison of Two Methods of Modeling  Stationary 
EEG Signals 

Abstract: This  paper  compares the performances-when applied to stationary EEG signals-of two  methods of modeling stochastic 
time-series;  viz,  a  maximum-likelihood search  method  for a mixed autoregressive  and moving-average  time-series, and  the well-known 
method of least-squares identification of a  prefiltered autoregressive  series. Computing effort per step is  derived  for different-order 
search  strategies,  expressed in the  number of a set of basic operations  and  aiso in equivalent number of likelihood  function  evaluations. 
Power  spectra  and  total computing effort are evaluated and  compared  for  four  representative EEG samples. It  appears  that  the least- 
squares  method is generally superior  because iteration is not  needed,  and in spite of the  fact  that higher orders  are needed instead. 

1. Introduction 
The  spontaneous electrical  activity of the brain is nor- 
mally measured by means of electrodes placed on  the 
patient’s scalp.  The recordings of such  measurements 
resemble  random signals,  occasionally  containing a dom- 
inating frequency, called rhythm, and/or pulse-like activ- 
ity, called spikes. These recordings, the  electroencepha- 
lograms or  EEG signals, are generally  believed to hold 
information about  the brain and  are  used by the physi- 
cian  as a means  for diagnosis. 

This  paper originates in a joint  study of EEG signals, 
involving scientists  from  the  Karolinska  Hospital,  the 
Royal Institute of Technology  and  the  IBM  Nordic  Lab- 
oratory in Sweden.  The aim of the study is to find meth- 
ods to supplement  the diagnostician’s visual inspection of 
EEG recordings with mathematical  analysis,  and in gen- 
eral to  provide  means  for accessing the information in 
the  EEG  [23]. 

A fully automatic diagnosis would consist of two 
phases: 

Analysis of an EEG sample to  obtain  the particular 
characteristics of the  EEG  that distinguish it from 
other  EEG’s. 
Medical  classification of the sample by means of its 
characteristics.  One  class would be  that of “uncertain 
cases.” 

The problems associated with the  second  phase  are 
not treated in  this paper.  The first phase involves three 
problems: 

To  find a  mathematical description of EEG’s; i.e., a 
194 parametric  class A of models that is wide  enough to 
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cover essential properties of a substantial  class of 
physical EEG signals. 
To find numerical  identification methods; i.e., to  asso- 
ciate a particular element  in  this  predefined class with 
a  given EEG sample by assigning values  to  the param- 
eters.  Thus,  the  parameter  values  characterize  the 
EEG and  carry  the information extracted  from  the 
EEG. 
To  find a test  criterion  for  the  case in which  a given 
EEG sample cannot be described by a  model in the 
class A. 

At  least  the first two  problems  have been treated  ex- 
tensively  in the  literature [8,16,18]. Essentially two 
kinds of description  have  been tried: 

1. Stationary  stochastic  processes.  The information  ob- 
tained comprises various  time-invariant  statistical 
characteristics of the  EEG signal, such  as  power 
spectrum  or  amplitude distribution or  other  charac- 
teristics  derived  from these. Methods using correla- 
tion  analysis [ 131, frequency analysis [IO], reversed 
correlation  analysis [ 141, and  the fitting of time-series 
models [ 12,21,25] belong to this  category. 

2. Wave  patterns.  This yields  essentially the frequency 
of occurrence  and  the form of particular, characteristic 
patterns [11,17]. 

The essential prerequisite  for applying the first alter- 
native is that  characteristics  be  constant in time.  Long 
samples (of the  order of tens of seconds)  are  used  for 
analysis.  In  the  second  alternative  any  wave  form is al- 
lowed;  however,  to  render  the analysis practical  the 
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wave  forms must  belong to only few  and  restricted class- 
es.  This means that  attention is focused  on  transient 
properties  and  short  samples  are  used. For these  reasons 
EEG’s with slowly changing characteristics  are often 
treated  as piece-wise stationary  and  the  theory investi- 
gates  the effects of limited sample  lengths [24]. In addi- 
tion, at  least  two  methods  have been  developed that  do 
not  assume  (piece-wise)  stationarity  and  operate  on 
samples that  are  not  short; viz, those using “complex 
demodulation” [ 181 and parameter-tracking  by a Kal- 
man estimator [7]. 

Thus,  the various descriptions imply different ways  to 
process  an  EEG signal for analysis and  also yield dif- 
ferent kinds of information about  the  EEG.  Therefore, 
it is generally difficult to compare different methods with 
respect  to  performance, and such  comparisons  are few. 
Mainly,  a difficulty is that a common  basis must  be found, 
relating elements in different classes of models. A natural 
common basis  for  stationary  EEG’s, used in Ref. 15, is 
the  power  spectrum. 

However,  the estimated  power spectra arrived at by 
any method are necessarily estimates of smoothed  ver- 
sions of an imaginary, “true”  spectrum,  and  the princi- 
ples for smoothing differ. In  frequency  analysis  methods 
smoothing is defined by means of frequency or lag “win- 
dows” [4]; in a model-fitting method the postulated  mod- 
el structure defines the smoothing implicitly, and  no win- 
dow is needed.  Also, analysis methods usually contain 
design parameters to be  set by the  user,  such  as filters, 
windows and model orders, and their values may have a 
significant effect on  the  performance. A fair comparison 
would require  that  one first  optimize these  parameters. 
A second, difficult to satisfy, requirement  for a fair com- 
parison is that  test  cases must not  favor  any of the 
methods to be  compared. 

This  paper  attempts  to  compare  two  methods  that  use 
time-series  models: a maximum likelihood identification 
method of a mixed autoregressive  and moving-average 
time-series,  proposed  by Astrom  and Bohlin [l], and 
similar to  that applied by Zetterberg [21], and  the well- 
known  method of least-squares identification of an  auto- 
regressive  series,  applied to  EEG analysis  by Gersch 
[ 121 and by Fenwick,  et  al. [25]. These  two  methods  are 
sufficiently related to  make a comparison feasible and  yet, 
sufficiently different to  make it interesting. 

The models  arrived at by the  two  methods  have dif- 
ferent  forms  and  therefore  cannot  be  compared directly. 
However,  form need not  be physically relevant.  The fol- 
lowing, physically relevant  characteristics  can  be evalu- 
ated  for  both  methods  and  are used for  the  comparison: 

Power  spectrum of the model. 
Model quality, as  measured by the residual variance, 
or equivalently by the rms  value of the  error incurred 

when  each model is used to predict the  EEG signal one 
sampling interval ahead. 
Computing  effort,  measured as  the  number of repeti- 
tions of a common  set of algebraic operations  (accu- 
mulation of lagged products)  approached  for long 
samples. This  makes  the  measure  independent of the 
particular  computer  and  the  particular programming 
used. 

Essential design parameters, affecting all three  charac- 
teristics,  are  the model orders, which are defined dif- 
ferently  for  the  two methods. However,  it  appears  that 
in both  cases  orders  do  not affect spectra  appreciably, if 
they are high enough. This  makes a comparison of mod- 
els feasible. 

Also, for a given EEG sample and  each method it is 
possible to  establish a highest order  such  that  the model 
quality does  not  improve significantly for still higher 
orders.  This suggests two  ways  to  compare computing 
effort: For a number of test  cases  either 1 )  use  the sig- 
nificant orders  for  both  methods  or, 2 )  use  the signifi- 
cant  order  for  one of the  methods  (the maximum likeli- 
hood method,  say)  and  set  the  order of the  other method 
such  that model qualities  coincide. Evaluate  and  com- 
pare computing  efforts. 

Thus, a fair  comparison  between maximum-likelihood 
and generalized least-squares  methods,  when applied to 
EEG signals, is  made possible  by the following fortunate 
circumstances: 

1 .  The models have  comparable  power  spectra. 
2. Design parameters  can  be  set by objective  means, 

thus fixing both  the  degree of smoothing and  the 
amount of computing for  each method. 

3. The  set of arithmetic  operations dominating the com- 
puting for long samples is common  to  both  methods. 

In  practice a number of things reduce  the discriminat- 
ing power of a Comparison: 

Results of order  tests  that  use physical data  are gener- 
ally somewhat ambiguous. This is a consequence, of 
course, of the  fact  that a physical signal cannot be 
trusted  to  have a well-defined order. 
The generalized least-squares  method  has  other design 
parameters besides the  order;  that  is, it uses a prefil- 
ter. The  latter affects the  order substantially. An  at- 
tempt  to  compute  the optimal prefilter leads  to  the so- 
called modified generalized least-squares  method [9], 
which is not evaluated in this paper.  Fortunately, it 
appears  that  the prefilter does not affect the model 
quality  appreciably (if the  order is high enough),  and 
that in practice  it is sufficient to  choose a prefilter 
heuristically and  use  it  for all samples. 
The  result  depends  on  the  particular  test  case.  Aver- 
aging generally requires many test  cases. 
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For  the comparison  carried out in this paper only four 
EEG samples are used for  test  cases.  However,  the dis- 
criminating power  appears  to  be sufficient since the re- 
sults are reasonably  clear in all cases.  Spectra agree 
well, and the generalized  least-squares  method  needs 
substantially  less computing than the particular maxi- 
mum-likelihood algorithm used,  because iteration is not 
needed,  and in spite of the  fact  that higher orders  are 
needed  instead. 

2. Theory 
Zetterberg  [21,22] proposed the following class of mod- 
els for a  description of stationary parts of an  EEG signal 
y ( r )  , with zero mean and sampled with the interval h: 

y ( r )  + a , y ( t  - h )  +. . . + a,y(r - nh) 

= h [ e ( t )  + c , e ( t - h )  + . . ~ + c , e ( r - m h ) ] .  (1) 

Here { e  ( t ) }  is a sequence of uncorrelated, normal ran- 
dom  variables with zero means  and  unit  variances. 
a,, . . ., a,, c , , .  . ., c,, are  parameters, m and n are integers 
defining the  order of the model, and A is a scaling factor. 

It is  shown in Ref. 21 that  the form ( 1) results  from 
superimposing signal components of three kinds,  gener- 
ated by zero-, first-, and second-order difference equa- 
tions  driven by uncorrelated sequences: 

1. White  noise. 
2. Random signals of low-pass type,  characterized by 

3. Random signals of band-pass  type, characterized by 
power  and  noise  bandwidth. 

power, frequency, bandwidth,  and  skewness. 

The motivation for adopting the form ( 1 ) is the  fact  that 
its spectrum  can  be decomposed into  such components, 
each having a description that is easy to  interpret physi- 
cally and identify as  one of the conventional CY, p, 6 or 0 
rhythms. 

In Ref.  19  Wennberg  and Zetterberg  demonstrated 
experimentally, using records  from healthy  subjects, that 
models of the fifth order ( m  = n = 5 )  would normally 
describe adequately such samples that were manually 
selected as free of artifacts. The identification principle 
used was that of maximum likelihood [ 11. Generally, 
the likelihood function is a  function of the unknown pa- 
rameters in a model. It may be interpreted as measuring 
the likelihood that  any given model could have produced 
the actually  observed signal. The particular model corre- 
sponding to  the maximum of that function  is therefore of 
interest  and is known as  the maximum-likelihood model. 

Zetterberg used a new algorithm for finding the maxi- 
mum of the likelihood function  [2 11. This algorithm 
differs essentially  from the  one proposed in Ref.  1 in two 
respects: 1 )  the likelihood is expressed in terms of sam- 
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a different optimization algorithm is  used for finding the 
parameter  estimates. 

The  use of sample  autocorrelations in place of the 
data sample is believed to be advantageous in cases 
where a hardware correlator is available,  and, possibly, 
even when the analysis is done exclusively by a digital 
computer, since the original data sample  has to  be pro- 
cessed only once  for  an approximate  evaluation of the 
likelihood of alternative models. However,  the efficient 
optimization scheme of Refs. 1 and 5 cannot  be used, 
since  derivatives are  not readily available. Thus,  the al- 
gorithm  based  on  sample  autocorrelations can  be expect- 
ed to offer fewer computations per iteration step, but 
also to need  more steps  to find the estimate. The method 
reported in this paper  uses a modification of the  New- 
ton-Raphson algorithm described in Ref. 5 ;  it  is not 
based  on  sample  autocorrelations. 

Setting c1 =. . . = c ,  = 0 in ( 1 ) yields the autoregres- 
sive  series applied to  EEG signals in [ 121 and  [25].  To 
compensate for the loss of degrees of freedom in the 
model, the  order n has to be increased,  but the point is 
that estimating the remaining coefficients a,, . . ., a,, A is 
done by a  least-squares  algorithm,  which does  not need 
iteration. A slight modification is that of using constant 
but nonzero ci values; i.e., the ci values are the  same  for 
all samples. This leads to  the so-called generalized  least- 
squares algorithm, needing only slightly more computing 
for a given order n. The point  is that a good choice of c 
coefficients may reduce  the  necessary  order. 

2.1 Power spectra 
Let A be  the  class of models represented by ( 1 ), where 
both coefficient arrays a and c as well as m and n, are 
used as  characteristics. Accepting the assumption that 
the class 4 is adequate  for modeling stationary EEG 
signals does  not immediately make  it  clear that a smaller 
class A' can also be  used, where the value of c is com- 
mon to all samples  and a,  alone, is used to  characterize 
an individual sample. However, a weakly stationary 
random signal is uniquely characterized by its  spectrum. 
Therefore, identifying the signal by a model of the class 
4 means  approximating  its spectrum by the spectral 
function  associated with ( 1 ) : 

where 

A ( z )  = 1 + a,z +. ' . + anzn ,  

C ( z )  = 1 + c,z +...+ C,Zrn. (3 1 
Since ( 2 )  is a symmetric function  it  is  always  possible  to 
express  the spectrum as a ratio of polynomials in cos 
(2~rfh) .   I t  follows that  (2)  can approximate any continu- 
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ous nonnegative spectrum in the  range fh€ (0, 0.5). 
However,  the  same condition  holds for a single poly- 
nomial, and,  therefore,  also  for a model  in A' (which 
means approximating the signal spectrum by the  ratio of 
a fixed polynomial 1 C' 1' and a variable one IA ' 1') as long 
as  both  the  spectrum  and IC')' are  continuous  and posi- 
tive. Since  the C' polynomial  in A' is fixed, it may not 
coincide  with that in A. The A' polynomial in A' is gen- 
erally of higher order  than  that in 4; the  extra  factors 
have  the functions of both 1) approximating the  factors 
in ICI" that  are  not  approximated  adequately by factors 
in IC' I-', and 2 )  compensating  for  the  factors in IC' 1' 
that  do  not fit any of the  factors in IC('. 

It follows that  the  choice of C' should not affect the 
degree of  fit of the model; however, a well-designed C' 
polynomial may reduce  the  order of the A' polynomial to 
n. On  the  other  hand, a  bad choice may increase  the 
order by m at most. 

2.2 Computing effort 
To derive  the  amount of computing  needed to fit a model 
of the  class A or A' to data  it is necessary  to investigate 
the algorithms  in some detail.  Both result  from  an appli- 
cation of the maximum-likelihood principle. This princi- 
ple  assigns a model, within a postulated parametric 
class,  to a given data sample  by  selecting the  parameter 
vector 6 that minimizes the loss function [ 1 1  

V ( 8 )  = €"tp) , 1 
(4) 

t =  1 

where  the "residuals" E (tl8) satisfy the model 

y ( t )  = F(Z-l le)E(tp) ,  t = 1,. .. , N .  ( 5 )  

Here, F(z"18) is a postulated,  analytic function of the 
backwards-shift operator z" and  the  parameters. I t  de- 
fines the  class of models. 

For  both  classes A and 4' 

F(z"18) = C(Z")/A ( z - l ) ,  (6 )  

but 

8 = { u , ; ~ ~ , a ~ , c , ; ~ ~ , c m } i n A , a n d  

8 = {u , ,  . . ., un} in A'. 

In 4 the minimum is  reached by a second-order 
search method. In 4' (the generalized least-squares 
method) V ( 8 )  is a quadratic function and a "search" 
converges in one  step.  However, in both  cases  the com- 
putations  that  dominate  for large sample lengths N con- 
sist of evaluating first- and  second-order partial  deriva- 
tives of V ( 8 ) .  Other  computations (inverting the sec- 
ond-order  derivative matrix,  evaluating the  spectrum, 
etc.)  do  not grow  with N and will not be  included in the 
measure of computing effort. 
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The partial derivatives  are obtained from  the relations 

n 
= 6 u i x  E(t)y,(t - i )  

i=l I 

m 

- 6Cj x E(t)E,(t " j )  9 

j = 1  1 

n n  

where 

Terms containing 6cj vanish in A'. 
For large N the total  computing effort needed to per- 

form  an  r-order  search is generally J = N , M ,  where M is 
the  number of iterations  and N, is the computing effort 
needed  to  evaluate loss and loss derivatives up to rth 
order; r = 0 if only the loss function has  to  be  evaluated, 
r = 1 for  gradient  methods,  and r = 2 for  second-order 
methods. A  useful,  incomplete second-order method is 
based  on omitting the y,, and E,, terms in (8) [5]. De- 
note  the  corresponding computing effort by N,*. The 
number of steps M is generally  a stochastic variable, 
which depends  on  the  data  and  on  the  search  strategy, 
while the computing effort per  step N ,  is a function of 
the  order  and  the sample length only. 

2.2.1 Computing effort per step 
An inspection of Eqs. (4), (7 ) ,  (8),  and (9) reveals  that 
evaluating loss  and loss derivatives involves  only two 
kinds of computation; viz, 

1. Evaluating  residuals E and  the auxiliary sequences y,, 
y,,, E,, E~,. The  latter  are obtained as solutions x, of a 
common linear  difference  equation C(z")x , ( t )  = x ( t )  197 
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with x ( t )  = y ( t ) ,  y , ( t ) ,  ~ ( t ) ,  ~ , ( t ) ,  while E ( t )  = strategy  and  not  on N ,  and this term probably favors  the 
A(Z”)Y,(t). less  sophisticated  strategies. 

2. Evaluating  a number of cross-correlations  between y ,  
E ,  and the auxiliary sequences. 2.2.2 The  number of steps 

Also, the  operation in both tasks 1 and 2 comprises 
forming sums of products,  where  the  factors  are  ar- 
ranged  sequentially in two  arrays in the  computer mem- 
ory.  The computing effort per step in the  search  can 
therefore  be  measured in terms of the  number of repeti- 
tions of one basic operation  that  comprises a fixed se- 
quence of elementary operations:  address modification, 
loading, multiplication, accumulation,  and storing. This 
number is independent of machine, programming lan- 
guage, fixed- or floating-point arithmetic,  etc.  Moreover, 
the number is independent of the hill-climbing strategy. It 
is therefore a suitable measure of computing effort per 
step in the  search. 

Counting operations in the formulas ( 7 )  - (9)  yields, 
for n > 0 and n 2 m:  

In A ,  N,, = ( m  + IZ + I ) N ,  

N ,  = ( 3 m  + 2n + l ) N ,  

N,* = ( 5 m  + 4n)  N , 

N , =   ( 1 0 m + 5 n - 2 ) N ;  (10) 

In A‘, N,’ = ( m  + 3n + 1 ) N .  ( 1 1 )  

Notice  that  these  formulas establish a relation be- 
tween  the computing  needed to  evaluate  derivatives  and 
that of loss only. This suggests that  one may choose 
a second  measure of computing  effort, J / ( m  + n + 1 )  N ,  
which may be called the “equivalent number of function 
evaluations.” 

The  alternative  measure  makes  it feasible to  compare 
experimentally the  performances of different-order 
search strategies for  the minimum of the particular loss 
function V ( e ) ,  independently of which computer is used, 
and independently of the way in which loss and  deriva- 
tives (if any)  are  evaluated. 

A point in favor of the higher-order search  strategies 
is the efficient way in which derivatives  are  evaluated; 
one  gets  the m + n first-order derivatives with  only 
(3m + 2n + 1 ) / (  m + n + 1 ) times the effort of evaluat- 
ing loss only,  and  the ( m  + n + I ) ( m  + n ) / 2  second- 
order  derivatives with only ( IOm + 5n - 2 ) / ( m  + n + 1 )  
times that effort. For example, with m = n = 5 a  zero- 
order  search strategy is superior to  the  second-order 
method  only if it needs  less than 6.6 times as many 
steps in the  search. Using the incomplete  second-deriv- 
ative matrix  during  part of the  search  reduces  the limit 
further,  down  to 4.1 times. Notice, however, that  these 
are  asymptotic figures, valid for long samples. A fixed 

198 term should  be added  to N,. that  depends only on the 

Two things besides  the  search strategy  affect substan- 
tially the  total  number of iterations M for a  given  sample: 
the stopping rule  and round-off errors. For a strategy 
yielding quadratic  convergence - such  as  Newton- 
Raphson’s -the remaining error  after stopping is small, 
when and only  when, the  latest loss reduction is small. 
However, this is  not necessarily true  for  the hill-climb- 
ing scheme  used in  this paper. A number of modifica- 
tions are  employed in  situations where  the  Newton- 
Raphson algorithm can  otherwise  be  expected  to fail due 
to unfavorable  local properties of the loss function.  The 
modifications generally ensure  convergence,  but occa- 
sionally  ruin the  quadratic  convergence  rate. 

Also,  for a flat minimum, round-off errors may disturb 
the ideal performance of the  search  and, in particular, 
ruin the function of any stopping rule  based  on loss re- 
duction,  since this  reduction is normally much smaller 
than  the loss itself. If short  word lengths (16 bits)  are 
used, as is the  case in this paper,  the effect of round-off 
errors  on  the  number of steps is noticeable. 

However,  for  the  sake of comparison it would be un- 
satisfactory  to  have a number M that would depend  es- 
sentially on programming and  on  the level of round-off 
errors.  Therefore, in the  tests  no stopping  rule has been 
used,  but  the  search  has been  allowed to  go  on until 
round-off errors preclude further loss reduction.  This 
allows a definition of M as  the smallest number of steps 
k after which no significant improvement in loss is 
achieved during the  remainder of the  search; i.e., 

q ( O k , O p )  = NIV(Ok)  - V(Om)] /V(6”)   (12)  

5 constant = 1 , 

where 6’ is the  jth  iterate. 

tion: 

Let AV(e’,6) = V ( 0 ’ )  - V ( 6 )  be the reduction in loss, 
when going from an  arbitrary point 6‘ to  the minimum e. 
In particular, if 8’ is equal  to  the  true  parameter point e,,, 
then  for large N ,  

This definition is based on  the following considera- 

q(e,,,e^) = N A V ( O , , , ~ ^ ) / V ( ~ ^ ) ,  

and is x2-distributed  with m + n degrees of freedom; 
hence, it has  the mean m + n [20]. Since 6 does not 
deviate significantly from eo, a  relative loss reduction 
q(Oi,Oj) much smaller than m + n is never significant. 

It follows that  the definition ( 12)  is reasonable  as long 
as  the  constant is smaller than m + n. The particular 
value one  is, of course,  arbitrary  and gives  a slightly 
conservative definition of M ;  one could have  stopped 
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even earlier  without getting a significantly inferior  esti- 
mate. A second requirement is that  the effect of round- 
off errors  be much smaller  than rn + n. In  the applica- 
tions the effect has been in the range from 0.1 to 1. 

Notice,  however,  that ( 12)  cannot  be used for a stop- 
ping rule. The problem of an efficient stopping  rule in the 
presence of substantial round-off errors  has  not been sat- 
isfactorily  solved.  Because of this it is recommended 
that floating-point or double-precision arithmetic be 
used.  This will save much trouble. 

In A’ the  number of steps is M 2 ’ .  Ideally, M,’ is equal 
to  one,  since V ( 0 )  is quadratic in A’. However, in prac- 
tice it may be advantageous  to  iterate  also in this case 
for  the following reason:  The  second-derivative matrix 
to  be inverted may become nearly  singular. It is there- 
fore  advantageous  always  to  add a small diagonal matrix 
before  inverting [6]. However, this causes a small sys- 
tematic error in the  estimate, which must  be  suppressed 
by iteration. Also, effects of round-off errors  are gener- 
ally reduced by iteration. Normally, it is sufficient for 
the value of M,’  to be in the  range from I to 3. 

2.3 Model y u d i t y  
Degree of fit to  the  data is measured  by the residual  var- 
iance 

i’ = 2 V ( 0 )  = E ’ ( t l 6 )  . N (13)  
A I AJ 

f = l  

As long as n << N ,  the  residuals E may be interpreted  as 
the  part of the signal that  cannot be predicted one  step 
ahead  and  therefore  cannot be  explained in terms of the 
signal’s past history [ 11. A total  correlation coefficient 
would be given by the formula p = [ l  - i’];. However, 
the  use of correlation coefficients often  gives high values 
even  for  quite substantial  residuals (because of the  root 
extraction), and may therefore be misleading as a  mea- 
sure of fit. 

Increasing  the  order n generally results in a  more  de- 
tailed model spectrum  and a better fit. Even if there is a 
time-invariant “true”  spectrum IC,/A,12 of finite order n 
behind the sample, some details in the model spectrum 
become “fictitious” for  orders  above n, and emerge due  to 
chance  alone. I f  a true  spectrum  does not exist,  or if its 
structure is different  from that of the model, e.g., C‘ # 
C,, then  even  for infinitely long samples and large orders 
the model spectrum will change with the  order.  In  the 
present application there is probably no  “true”  order, and 
possibly not even a “true”  spectrum  that  can  be estimat- 
ed. All one can reasonably assume is that  for low orders, 
changes  are mainly systematic and independent of sam- 
ple length, while for high orders,  changes  are mainly 
random  and  due  to a finite sample  length. 

This  does not necessarily  mean that larger orders will 
theoretically produce larger  estimation errors,  but large 

orders  have  the practical disadvantages  that 1 )  comput- 
ing effort increases  and 2 )  the model spectrum will ex- 
hibit a  number of spurious details,  which may easily  be 
taken  for  real  ones.  In a medical  application one may 
easily observe  spectral  phenomena  that  seem  to indicate 
physiological effects, when indeed there  are none. For 
this reason it may be  better  to  accept  the  alternative dis- 
advantage,  that of excessive smoothing of the  spectrum. 

A well-known  principle for determining a sufficient 
order n is the following [3]: 

Select ri as  the  lowest  order  such  that  none of the loss 
reductions obtained for n > h contradicts  the  hypothesis 
that a true  spectrum  exists  and is of the  form lC/AI2 and 
of order ri. 

Apart  from  the  theoretical objections  raised above, 
this has  the  disadvantage  that  the result may depend  on 
the  extension of the  test, in particular to how high an 
order  one  cares  to  pursue  it.  For any order  increase re- 
jected  as  not significant, there may always  be a  higher 
order,  where loss reduction will be significant. Still, the 
approach is customary  for testing order. 

A standard  hypothesis  test is based on relative loss 
reduction [ 2 ] :  Let 4” be the point of minimum of V ,  
where v parameters  are used in the  search.  For models 
in A, v = rn + n, while in A’, v = n. Then  for large N ,  

q,,= N [ V ( B ” )  - V ( e ” ) ] / V ( 6 ” )  (14) 

is X‘-distributed with p - v degrees of freedom, provided 
v and p are  both at least sufficiently large to describe  the 
data sample adequately.  Conversely, if q,, is signif- 
icantly  larger  than p - v, this contradicts  the  hypothesis 
that v parameters  are sufficient. Thus  the normalized 
loss reduction q = N AV/V = N A i 2 / i z  is useful forjudg- 
ing the significance of both  premature stopping and of an 
order  increase. 

3. Application 
Test  data  have been  provided  by  Wennberg [ 191 in the 
form of tape-recorded EEG signals. Four signals were 
sampled  with  a frequency of 62.5 Hz,  and  for  each sig- 
nal a segment of N = 1250 data points was  selected  and 
analyzed using an  IBM  1130  computer.  Four  test sam- 
ples are  shown in Figs. l ( a ) -  l (d ) .  Samples #1, #2, 
and  #4  have  been  selected  from  the material in Ref.  19 
and  represent healthy subjects. Sample #3 is from un- 
published  material and  represents an abnormal  subject. 

A large number of models in A and A’ were fitted to 
the  four  samples, using different order  parameters.  Gen- 
erally, rn = n for models in A, and rn = 9 for models in 
A’. In A multiple minima of the loss function were 
found, yielding further models. These ambiguities are 
discussed in greater detail in Ref. 6 .  

In A’ the C’ polynomial is fixed. I t  is well known  that 199 
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Figure 1 Computer-generated 1250-point  plots of tape-recorded EEG signals  sampled at a rate of 62.5 Hz. (a) Sample #1; (b )  
Sample #2; (c)  Sample # 3 ;  (d)  Sample #4. Sample #3 is from an  abnormal  subject;  the  others  are  from normal subjects. 

determining C' is equivalent to choosing a prefilter of 
the form Cr- ' (z - ' ) .  Heuristically, the purpose of prefil- 
tering is normally to  reduce high-frequency noise or, 
more  generally, to  suppress  the parts of the sample  spec- 
trum where  no signal power is expected.  For  EEG sig- 
nals this is the  case for  frequencies higher than  about 15 
Hz, with the exception of a  range centered on 20 Hz, 
where so-called beta activity, if any, is  located. There- 
fore a filter Cr-' with the (somewhat arbitrary)  trans- 
mission characteristic  shown in Fig.  2  has  been  applied. 

One might suspect that  this  filter would cause  frequen- 
cy components in the model spectrum  to  appear where 
one  wants to find them a priori (viz, from 0 to 15 Hz 
and  around 20 Hz) ,  irrespective of the frequency  distri- 
bution of the signal. However, prefiltering is compensat- 
ed for by the  factor jC'12 appearing in the model spec- 
trum ( 2 ) .  The choice of C' influences only the weights 

implicitly attached  to  the various  frequencies by the 
model fitting procedure. It has  been confirmed by exper- 
iments that  the particular  choice in Fig. 2 does  not affect 
the final result, only the  order needed to achieve the re- 
sult [6]. However, this does  not hold for all possible 
choices of C'. In  practice one  has to  see  to it that IC'I-' 
has a substantial value-more  than 10 percent,  say, of 
its  maximum-for all frequencies  where the  EEG  has 
nonnegligible power.  Otherwise the result will depend 
on C'. See also the discussion in Subsection 2.1. 

For reference,  models in A! are labelled #MLi.n (for 
the maximum-likelihood method), and those in A!' are 
labelled #GLi.n (for the  generalized  least-squares 
method), where i indicates the sample  and n the  order. 
An  extra digit may be added (see  the following Subsec- 
tion 3.2). Results of a comparison of methods are pre- 
sented in the following subsection. 
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3.1 Agreement of spectra 
From  the  set of fitted models, those  to be compared 
were  selected  as follows: 

In 4: Choices of orders  were  based mainly on  the  re- 
sults of order  tests  as outlined in Subsection 2.3. 
Multiple minima caused  some problems, since it 
was not  possible to  discriminate among  them by 
means of the values of only. It  happened  that 
the  lowest minimum did not  always correspond  to 
the physically  most likely spectrum.  Fortunately, 
the  spectra  corresponding  to  the  various local 
minima differed substantially, making it possible 
to pick the  ones showing the  greatest likeness to 
the corresponding (less differing)  models in 4’. 

In A’: Also in this  case,  choices  had  to  be  based  on 
some engineering judgements. Considering the 
possible bases  for a choice of order  discussed in 
Subsection 2.3 (test,  equal  degree of fit, and like- 
ness of spectra),  the choice arrived at coincides 
with one  based  on  equal  degree of fit, with the 
single exception  that  for  Sample # 1  the  order n 
was raised by one. 

Power  spectra of the  selected models are plotted in 
Fig. 3 .  Spectra  agree reasonably  well;  major characteris- 
tics  have similar frequencies,  powers  and bandwidths. 
Agreement is less good  for low frequencies,  but it is, 
reasonable  to  accept  the conclusion that  the  latter differ- 
ences  are  random  and  due to the finite sample length, 
since low frequencies  are generally difficult to  estimate 
accurately.  On  the  other  hand,  the very small beta-fre- 
quency  at 20 H z  in Sample # 1  is significant in spite of 
the  fact  that  its  power is only about 1 percent of the  total 
signal power. 

3.2 Comparison of computing  effort 
There is a great  number of possible  algorithms for fitting 
models in A. The  one  evaluated below and  compared 
with the generalized least-squares algorithm for models 
in A’ is a modified Newton-Raphson hill-climbing algo- 
rithm. It  has  two  search  phases,  besides  an initialization 
phase.  The  scheme is described in more detail in Ref. 6; 
what is interesting  in  this context  is  that  the  two  phases 
employ the incomplete and  the  complete second-deriva- 
tive  matrix respectively. Hence,  the  total computing 
effort is, from ( 1 0 )  with m = n: 

J = J 0 + 9 n N M , * + ( 1 5 n - 2 ) N M , ,  (15 )  

where J o  corresponds  to  the initialization phase.  Two 
different  initialization phases  were tried, on occasion 
leading to different  local minima. 

,, ( 3 n  + 1 ) N  for  “standard” initialization 
J = [ (7n  + 2 ) N  for “special” initialization . 
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O.O( 
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0.83727 

0.59902 

0.00422 
0.01844 
0.01167 

-0.00005 } 

-0.71836 

-0.34699 

Frequency, Hz 

Figure 2 Transmission characteristic of filter C’-’.  

“Special”  initialization is indicated  by an  extra digit 
added to the label #MLi.n.l. Again details  are given in 
Ref. [6]. Generally, “special”  initialization shortens  the 
search  phases.  However,  it  turns  out  also  to  have  the 
adverse effect of increasing round-off errors substantially, 
and it is even possible that  the rapid convergence is 
partly due  to  the  fact  that  the level of round-off errors  is 
reached early. This level is about  the  same  as  the con- 
stant in ( 1 2 )  and  one magnitude  higher than  the level 
resulting from  “standard” initialization, but still well 
below the value m + n where  errors begin to be  statisti- 
cally significant (see 2.2 .2) .  However,  the margin is 
uncomfortably  small. 

The  numbers of steps, M,* and M , ,  taken in the  two 
search  phases  are given in Table 1 .  The  search may ter- 
minate  in either  phase; in both  cases  the  event of “termi- 
nation” has  been  determined by the inequality ( 1 2 ) .  

For models in 4’ the following formula is used ( m  = 
9 ) :  

J = M,‘  (3n + 10)N (16) 

with M,’ = 2.  

Table 1 gives the  results of an evaluation of comput- 
ing effort in terms of the  number of basic  operations  per 
sample  point J / N  and  also in terms of the  equivalent 
number of function  evaluations .Ife. The  table includes all 
the models  in A that  were fitted to  the  data,  except 
those  corresponding  to false minima and  those resulting 
from particular, favorable starting  values for  the itera- 
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Figure 3 Power spectra. (a) Model ML1.5; (b) Model GL1.13;  (c) Model ML2.7.1; (d)  Model GL2.17;  (e) Model ML3.5; (f) 
Model GL3.10;  (8) Model ML4.5; ( h )  Model GL4.I 1 .  The model spectra  to be compared are vertically adjacent. 

Table 1 Comparison of computing effort. 

Model  No.  M ,  * M2 iz JIN J f e  Model  No .  i' J lN J k  

ML1.5 3  8 0.1 587 735 66.4 GLI.1 

ML1.7 3 1 0.1577 314 20.9 GL1.I 

ML2.5 3 I 0.4045 224 20.4 GL2.1 

ML2.7.1 4  0 0.3990 303 20.2 GL2.1 

ML3.5 2  9 0.0972 763 69.4 GL3.1 

2  0.1505 92 4.2 

3  0.1573 98 4.3 

1 0.4044 86 4.1 

7 0.3988 122 4.5 

0  0.097 1 80  4.0 

ML3.7.1 2 0 0.0970 177 11.8 GL3.11  0.0967 86 4.1 

ML3.9.1 2 1 0.0967 360 18.9 GL3.11 0.0967  86 4.1 

ML4.5 8  8  0.2994  960  87.3 GL4.11 0.2988 86  4.1 

ML4.7 16 0 0.2978 1030 68.7 GL4.18 0.2977 148 5.3 
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Frequency, Hz 

Figure 3 (Continued.) 

tion. Thus,  four models in 4 have unnecessarily high 
orders  and  one  has  an insufficient order.  The  corre- 
sponding  models in 4' have  been  selected so as  to  have 
a comparable  measure of fit, i'. 

Comments  on  Table 1 : 

The generalized least-squares method  clearly needs 
less computing effort than the maximum likelihood 
method to  evaluate loss and loss derivatives. Values 
of the computing measures, JIN and Jfe, for  the gener- 
alized least-squares models are approximately 0.1 to 
0.5 of the values for  the  comparable maximum-likeli- 
hood models. The computing effort needed  to  invert 
the  second-order  derivative matrix is not included. 
However, this  matrix is not  much  larger for models in 
4'; on  the  average 14, compared to 11 for models in 
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k. Also, this  portion of the computing  effort does  not 
grow with the  sample length. 
As might be expected,  the computing effort for  the 
hill-climbing scheme varies  greatly from  case to case. 
However,  contrary  to  what might be expected,  the 
computing effort, when  measured in equivalent num- 
ber of function  evaluations, Jfe, shows  no tendency to 
increase with the model order.  (Orders  are indicated 
by the  second digits in the model labels.) 

The  alternative way of fitting models in 4, used in 
Ref. 21, takes  an entirely  different approach:  several 
autocorrelations  are first computed from the  data.  The 
loss function is then  evaluated  as a function of these 
autocorrelations,  and  the model is found by a zero-order 
search  method. 
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In this case  the part of the computing effort that grows 
with  sample  length is that of evaluating the autocorrela- 
tions. It requires  a  computing effort JIN equal to the 
number of autocorrelations  needed to  evaluate  the loss 
function.  Ref. 21 reports  the computation of 100 auto- 
correlations,  which  yields a clearly  smaller  value of J / N  
than for  the  ML method used in this paper,  and  approxi- 
mately equal to  that of the G L  method. However, this 
does  not include the hill-climbing part.  The  latter,  even if 
it does not  grow with the sample  length, still constitutes a 
substantial, possibly dominating  part of the computing ef- 
fort  for  the sample  sizes used in practice.  Unfortunately 
the computer times cannot be compared directly, since 
different computers  have been  used. However,  one still 
arrives at the  conclusion that, compared with the alterna- 
tive ML algorithm in Ref. 21,  the GL method is faster. 

Conclusions 
For the  purpose of comparing two  methods of modeling 
stationary EEG signals, maximum likelihood (ML) and 
generalized  least-squares (GL) methods have been ap- 
plied to  four selected  samples of EEG signals. The re- 
sults  indicate that models can be obtained  using the G L  
method that  are comparable to  those obtained by the 
more  general ML method at  the  cost of only  a slight in- 
crease in number of parameters, Le., 10 to 17 parame- 
ters for G L  models  compared to 10 to 14 for ML mod- 
els. 

Computing effort per  sample point has been  evaluated 
for both methods in terms of the  number of a common 
set of basic  operations. This number  is 2  to 10 times 
higher for  the  ML method. In addition, the  ML method 
has a number of practical  disadvantages  when  applied to 
EEG signals: 

Multiple minima may exist.  A standard initialization 
phase  does not  always yield the right minimum. Also, 
it is  not a simple task to  select  the right minimum from 
among a set of local minima. 
Round-off errors (with 16-bit words)  appear  to  cause 
more  trouble with the ML than with the GL method. 
Intermediate,  unstable  models may be obtained in the 
search, requiring a  substantial  amount of additional 
computations. 

Generally,  the GL method appears  to  be  superior  to  the 
ML method  used in this paper  for spectral  analysis of 
stationary EEG signals. 

However, it  must be  stressed  that, strictly,  the  com- 
parison of computing effort is valid only for the particu- 
lar search strategy used in this paper.  Although the strat- 
egy is believed to be good, there might exist another,  far 
better  one.  Also,  the comparison  is confined to the  four 
EEG samples  investigated. However, it is believed that, 

204 numerically, the  samples are  representative of stationary 

EEG signals and, furthermore, it seems likely that the 
conclusion  reached here holds in general for random 
signals that  have a small number of spectrum peaks. 

The conclusion that  the GL method is superior is not 
necessarily valid when there  are many peaks, as in line 
spectra, since the  orders of the  models  then  become much 
higher. Neither need  it hold for identification of input- 
output systems,  since the  presence of inputs  increases 
the  order of a least-squares model more  than  it does  that 
of its counterpart. A comparison would therefore  be less 
favorable to the  least-squares method. 
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