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Automatic  Equalizers  having  Minimum 
Adjustment  Time 

Abstract: Two new types of automatic equalizers for  telephone lines are  discussed.  The modular  configurations shown  are designed for 
minimum adjustment time and  are  ready  to  receive  data  as soon as  the  response of the unequalized line has been  measured. Two forms 
of such  equalizers are  compared with respect to upper  bounds on the residual  distortion. 

Introduction 
The efficient use of a multipoint telephone line  by  a group 
of digital modems requires  that  the initial adjustment 
times of the modems be small,  relative to  the message 
lengths. When  the modems  employ line equalizers, the ad- 
justment times of the equalizers become an important 
consideration. 

Most  automatic time-domain  equalizers use a single 
transversal filter as  the equalizing device,  and  the  tap 
gains are  adjusted so as  to minimize the peak distor- 
tion [ 11 or,  alternatively,  the  mean-square  error [2,3] at 
the equalizer output.  In  either  case,  it is possible to com- 
pute  the desired tap gains from  the sampled  pulse  re- 
sponse of the line to be  equalized. When  fast, auxiliary 
computational  equipment is available, the  tap gains  can 
be rapidly computed.  The  fast  computers  are  not usually 
available for this purpose,  and  the  need  for low cost 
equalizers has  made  it  necessary  to  compute  the  tap 
gains with minimal auxiliary  hardware. 

This  desire  for economy has led to designs that per- 
form a sequence of feedback  corrections of the  tap gains, 
thereby causing  them to converge  to  the  correct values. 
While some of these designs  converge the gain values 
more rapidly [4,5] than  others,  none of them is ready  to 
receive data  as  soon  as  the  pulse  response of the line has 
beeen measured. 

By employing an equalizing device  that is modular, but 
more complex  than  a single transversal filter, we can 
achieve  the minimum adjustment time. I t  is  assumed  that 
the  receiver  has  means  for acquiring the  carrier  frequency 
and  the sample timing signal (i.e., clock)  from  the  trans- 
mitter.  Beyond  this,  only a short  sequence of training 
pulses is needed  to  measure  the  response of the line. 
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its output,  thus minimizing the  data  that must  be stored 
for control of the  tap gains. 

The new  equalizers are suboptimal. They  achieve 
neither  the minimal peak  distortion nor  the minimal mean- 
square  error attainable with a given number of filter taps. 
They also share a  weakness of the zero-forcing type of 
equalizer; when the line distortion exceeds  unity, it is 
not  always reduced by the equalizers. Their  advantages 
lie in speed of adjustment and simplicity of control. 

The increased  complexity of the  structures of the new 
equalizing  devices is partly  ameliorated  by use of the 
modular  forms  that will be presented  here. A variety of 
modular forms is available; but  the discussion  below will 
be limited to  two of them,  since  the  others  offer no signif- 
icant advantages  over these. 

Notation 
The equalizers will employ  time-domain filters which 
may be either  the sampled-data analog type  or  the digital 
type. Considerations of cost  and precision will probably 
weigh in favor of digital implementation. 

Networks of digital filters may be  realized in many 
different ways including, of course, software-controlled 
arithmetic  processors.  We shall not be concerned with 
the details of implementation at this level. In  order  to 
present this  material  simply, we shall discuss  the filters 
in terms of the functionally  equivalent  tapped  delay lines, 
the  output of each filter being derived by summing the 
weighted taps [6]. 

Let z = exp [ST] be the  standard z-transform  variable, 
s the complex frequency variable, and T the sampling 
interval. Then, z is the unit advance  operator and mul- 
tiplication  by z-l represents a  unit  delay. 
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Simplified schematics will be used  for  the filters, as il- 
lustrated in Fig. l .  The  nonrecursive filter in Fig. l (a) 
contains a tapped  delay line (or a shift register) with N 
units of delay. The weighted and  summed  taps give the 
filter response, F = C;=,ffi, where  the ith tap  has weight 
f ,  and  occurs  after i  units of delay.  Thus,  for any  input 
signal whose z-transform is I ,  we get a filter output FZ 
and a  delayed output z - ~ I ,  in the z domain. 

The  recursive filter shown in Fig. 1 (b)  can be imple- 
mented  when f, = 0. Its  response,  taken  at  the input to 
the delay  line, is ( 1  - F)" .  This is stable  whenever 
1 - F has no  zeros  on  or  outside  the unit  circle in the 
z-plane. As a  practical matter,  the  zeros should  be 
bounded away  from  the unit  circle  by  some reasonable 
margin. A sufficient condition for stability is I f , /  < 1 .  
While this condition is stronger  than  necessary, it is ex- 
pected  to hold in the application at  hand. 

The unequalized response of the transmission  medium 
will be written in the  forms 

N 

H =  2 h , z - i = l - P - T = l - F .  ( 1 )  
j=" 

In  Eq. ( 1 ) and  hereafter  we  assume  that  the coefficient of 
the main pulse has  been normalized to unity, that is, 
h, = 1. All other coefficients represent undesirable in- 
terference  caused by dispersive transmission. Further- 
more, 

- P =  C hiZ" 
-1  

(2) 
i=" 

represents precursor interference  that  arrives  before  the 
desired  pulse while 

- T = hiZ" 
N .  

(3  1 
i = l  

represents  the  tail of the  interference, following the  de- 
sired  pulse. The negative signs are  chosen  for  conve- 
nience in the  subsequent discussion. The total  interfering 
signal is - F .  

If the  equalizer  output is A = x:=-, aiz? and a,  rep- 

y-y +%,=. 
F I  A = ( 1  -F)- ' I  

( a )  ( b )  

Figure 1 (a) Representation of a time-domain  nonrecursive 
filter with N units of delay  and  impulse  response F .  (b) Repre- 
sentation of a recursive filter with N units of delay  and  impulse 
response ( I  - ~ 1 - l .  

resents  the desired  pulse, we define the residual distortion 
to  be 

S[Al = IIA - z-KIJ = ICl(, ~ I 1  + I l I J  + i: l m j  . (4) 
- I  

,=-x i" I 

This is the  greatest possible error amplitude in a  random 
stream of positive  and  negative  pulses. Therefore,  the 
norm used in Eq. (4) is a reasonable choice. 

Since  the  equalizer input is assumed to  be normalized, 
the initial distortion is 

- 1  N 

Distortion  reduces noise margins in the  detection of 
digital data. Sufficiently large distortion  can cause  errors 
even in the  absence of noise. 

Equalizer approximations 
If the z-domain response of the  equalizer is represented 
by G ,  it would be ideal if H G  = I ,  or G = l / H .  How- 
ever,  some  excess delay will be necessary, and the in- 
version of H will be  only approximated. 

We begin with the algebraic  identity, 

I / H = ( l - F F ) " = I  + F + F 2 + . . . + F F n +  

(1 - F ) - ' F " + l .  ( 5  1 
If the last term is sufficiently small, then we can approxi- 
mate G by G n  = 1 + F + FZ +. . . + F". 

This is not  a  realizable  form because F contains pre- 
cursor terms. However, z-"F is a causal and realizable 
filter response.  Therefore,  setting 

D z - ' ~  , ( 6 )  

we  have  the realizable approximation, 

G,=D"(l  + F + F 2 + . . . + F n )  

= D " + D " - ' ( D F j  + . . . +  ( D F ) " .  ( 7 )  

The residual interference is then H C , ,  - D" = - D"F"+' 
and  the residual distortion is 

S [ H G , ]  = (ID"F""II = llF"+'II 5 (liF/I)"" 

= ( 6 [ H ] ) n + 1 ,  (8 )  

since D is a pure delay. The inequality becomes equality 
when all coefficients in F are nonnegative. Thus ( 6 [ H ] ) " + '  
is the least upper bound for  the residual distortion. 

From  the inequality (8), we see  that S [ H G , ]  -+ 0 as n 
becomes large whenever S [ H ]  < 1. We shall assume  that 
this sufficient condition  holds, in order  to avoid more 
complex  considerations. 

A different  equalizer  approximation will now be  de- 
rived from the  identity, 177 
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1/H = (1 - T - P)-' = (1 - T ) - ' (  1 - Q)-' 

= ( ~ - T ) - ' [ ~ + Q + Q ' + . . . + Q " +  
(1 - Q )-'Qn+'I, ( 9 )  

where 

Q = P ( l  - + ) - I .  (10) 

The  quantity Q is not  realizable, but DQ = D P (  1 - T)- '  
is realizable. Therefore, we have  the realizable  approxi- 
mation 

G , = D n ( l - T ) - ' ( l + Q + Q z + . ~ ~ + Q n )  

= ( 1  - T)"[D" + D""(DQ) +. * .  + ( D Q ) " ] .  ( 1  1) 

The residual interference is 

HG - ~n = - D , Q ~ + ~  = - ~ n p " + ' (  1 - ~)-,--l . 

The residual distortion is 

8[HGn]=(I(P/(1 - T ) ) " + ' I I s  [xl(l - Y ) I ~ + ' ,  (13) 

where x = l l p l l ,  y = IlTll. (14) 

n (12) 

The inequality becomes equality when all coefficients of 
P and T are nonnegative. Therefore [x/( 1 - y) lnt '  is  the 
least  upper bound (1.u.b.) for the residual distortion. 

To  compare  the I.u.b.'s for residual  distortion  resulting 
from 6, and G,, let us assume  that  the sufficient condition 
for  convergence  holds,  and  that 

8 [ H ] = x + y = l - " ,  O < E <  1. (15)  

Then  the residual  distortion I.u.b.'s are, respectively, 

The  ratio of the  two is 

This  shows  that 6, is smaller whenever y > 0, which is 
always the  case in practice.  When y > x, which is usually 
true, then 

For  example, if x + y = 0.8 and y 1 x, then 6 , 5  8/27 = 
0.296. 

Realizations 
The polynomials G, and G, have  modular realizations 
that  correspond  to  factored  forms  and  to a  simple  recur- 

178 sive  computation. We shall illustrate the latter. 
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Figure 2 The Kth module of the  equalizer, G n .  Each  module 
has two inputs  and two outputs. 

- DKH 

I 

I 7- 
Figure 3 The Kth module of the  equalizer G,. The filter  in  the 
lower signal path  has  the  response D P (  1 - T)".  

Consider polynomials of the form U ,  = A n  + A""B + 
. . . + ABn" + B". It is obvious  that U ,  = BU,-,  + A n .  

Therefore we can  compute U ,  by means of n steps, 
each of which  involves multiplication by B and addition 
of a power of A .  The initial value is U ,  = 1. 

Both G, and G, may be realized in this form, although 
G, requires one final multiplication by (1 - T )  - I .  

A  module for  the realization of G, is shown in Fig. 2 .  
Each module has  two  inputs,  the first of which provides  a 
delayed signal and  the second of which  provides a partial- 
ly equalized signal. Each module also has two  outputs 
and  the modules are  connected in tandem. 

A  module for  the realization of G, is shown in Fig. 3. 
Again,  each  module has  two  inputs and  two outputs.  The 
filter in this  module has  the  response, DP(1 - T ) - ' .  Its 
recursive  and  nonrecursive  portions  share a common de- 
lay line. The  number of delay sections  must  be  the  greater 
of M (for D P )  and N (for T ) .  In  most  cases, N will be 
greater than or equal to M .  

G, is realized  by the  tandem  connection of n modules 
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m Module 

These equalizers do  not,  however,  achieve  the mini- 
mum possible  distortion for a given  number of filter taps. 
Furthermore,  they  do not assure reduction of the  distor- 
tion  unless the initial distortion is less  than unity. They 
may be of interest when speed of adjustment  and simplic- 
ity of control  are  paramount  as, for example, in the  case 
of medium-speed  modems on multipoint  lines or on 
separate polled lines. 

Figure 4 A tandem  connection of  modules  to  form  the  equal- 
izer G,. Each of the  three  modules  is  similar  to  the  one  shown in 
Fig. 3. The  delayed signal, D 3 H ,  is  not  required  for  automatic 
equalization. 

of the  type  shown in Fig. 3 ,  preceded or followed  by the 
filter, ( 1  - T ) - ’ .  The  latter  arrangement is illustrated for 
G, in  Fig. 4. 

Conclusion 
We  have illustrated two of many possible  modular  equal- 
izer configurations  having the following properties: 

1. They  are ready to receive data  when  the unequalized 
response of the line has been  measured. 

2. Only the sampled values of the line response need to 
be  stored for the  purpose of controlling the  tap 
weights. 
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