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Axioms and Theorems for a Theory of Arrays

Abstract: Array theory combines APL with set theory, transfinite arithmetic, and operationally transformed functions to produce an
axiomatic theory in which the theorems hold for all arrays having any finite number of axes of arbitrary countable ordinal lengths. The
items of an array are again arrays. The treatment of ordinal numbers and letters is similar to Quine’s treatment of individuals in set
theory. The theory is developed first as a theory of lists.

This paper relates the theory to the eight axioms of Zermelo-Fraenkel set theory, describes the structure of arrays, interprets empty
arrays in terms of vector spaces, presents a system of axioms for certain properties of operations related to the ApPL function of reshap-
ing, deduces a few hundred theorems and corollaries, develops an algebra for determining the behavior of operations applied to empty
arrays, begins the axiomatic development of a replacement operator, and provides an informal account of unions, Cartesian products,
Cartesian arrays, and outer, positional, separation, and reduction transforms.

Preamble: The intention of the work reported here is to develop a theory of arrays, in terms of standard set theory, that will provide
rigorous definitions for programming operations and thereby a logical foundation for the construction of programming languages. The
present contribution is a first approach to establishing a comprehensive theory of arrays, and it is anticipated that future papers will
extend and refine the concepts presented.

The objects used in programming are represented in a mathematical system of ordered collections as arrays of arrays. Simple axioms
define certain primitive operations on the arrays. Most data operations in programming can then be represented by operations built
upon the axioms. One of the starting points for the development of the theory is APL. Programs written in APL are used to generate
corollaries of the axioms and to check the consistency of the system.

Although the paper was written for the specialist in mathematical logic, it should be of interest to the computer scientist and particu-
larly to one who specializes in programming languages. Its chief contribution is an axiomatic theory for data structures, which includes

explicit rules for transforming any operation into a new operation that applies to all items in any array. H.B. M.
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If the items of an array are again arrays, then it be-
comes more difficult to determine the effect of an opera-
tion. The nesting of arrays introduces the relation of
membership. It is well known that with the exception of
certain constructions in the theory of categories [5], the
whole of mathematics can be based on a first-order the-
ory in which membership is the only primitive predicate.
In view of the contradictions that have occurred in the
development of set theory, Quine [6] has remarked that
“Intuition here is bankrupt”. To avoid error, set theo-
rists have had to use the axiomatic method.

The work reported here combines some of the opera-
tions of APL with set theory to produce a mathematical
theory of arrays. Array theory may be spoken of as the
mathematics of arrays just as set theory is the mathe-
matics of sets or classes. The theory is developed ax-
iomatically to avoid error and to deduce the behavior of
all operations by formal calculation. The axiomatization
of certain properties has been motivated by its potential
applicability to the problems of programming rather than
by a need to economize primitive operations. Although
every effort has been made to remove contradictions,
the question of consistency relative to an axiomatization
of set theory has not been studied.

Lists of axioms, theorems, and proofs, such as those
in Appendices 1 and II, serve a number of purposes.
The proofs can be checked for error. A contradiction, if
one occurs, can be traced back to the faulty axiom. The
consequences of a change in the axioms can be quickly
determined. One axiomatization can be compared with
or converted to another. The axioms and theorems lay
the groundwork for a metatheoretic study of the system.

The present paper, which is Part I of a longer work on
arrays, develops the analogy with set theory and focuses
on an axiomatization of operations related to the APL
function of reshaping. Sections 3, 4, and 14 to 18, on
extensionality, elementary arrays, separation, powers,
unions, choice, and infinity, follow in name and order the
original seven axioms of Zermelo’s set theory. The
eighth, the Skolem-Fraenkel axiom schema of replace-
ment, is inserted at Section 10. The ninth, the von Neu-
mann-Zermelo axiom of foundation, is discussed in“Sec-
tion 9. Part IT* includes an analysis of the depth and uni-
formity of arrays and focuses on the axioms and theorems
for unions, Cartesian products, intersections, and arith-
metical and logical sums and products.

It was evident from a study of ApL that useful opera-
tions would result if arbitrary monadic and dyadic opera-
tions could be applied to the items of an arbitrary array
in the same way that the scalar functions of APL are ap-
plied to simple arrays. The analogy was difficult to fol-

*To be published at a later date.

low because simple arrays and scalar functions have
special properties not possessed by arbitrary arrays and
functions.

For example, the negative - 4 3 6 of the list 4 3 6
of numbers equals the list (-4) (-3) (-6) of the cor-
responding negative numbers. The first negation applies
to the vectors in a vector space. The second negation
applies to the scalars in a field. APL identifies the two
operations. The same process of identification can be
applied to a few other operations, which in APL are
called monadic scalar functions.

Given an arbitrary monadic operation A, how does
one produce another operation that applies A to the
items of an array rather than to the array itself? The
answer is suggested by Heaviside’s (1892) operational
calculus [7,8]. Let A be transformed to the monadic
operation :A by an operator, called the replacement
operator [9a,9b]. Each item of an array can be replaced
by its image under a monadic operation. :A applied to
the triple P @ R holding the arrays P, &, and R equals
the triple (A P) (A @) (A R) holding the arrays A P,
A Q, and A R.

An empty component vector corresponds to the zero
vector in a vector space of dimension zero. The negative
of a zero vector equals the zero vector. Hence the nega-
tion of an empty list of numbers must equal the same
empty list. Does the application of the replacement
transform of an arbitrary monadic operation to an empty
list of arbitrary arrays leave the empty list unchanged? It
is easy to construct an operation A that maps numbers
into complicated arrays. If 4 is an empty array, what is
:A A? These questions lead to Axiom 33.

If a theory is to encompass the replacement operator,
then a few equations should determine :A 4 for every
monadic operation A and every array 4. The author
assumed at first that : A 4 equals 4 for empty 4 and be-
gan an axiomatization in the hope of deducing a contra-
diction that would show what :A 4 should be (Section
10). The problem of degenerate reductions was also in
question (Section 19). No contradiction occurred.

The theory was then developed with the aid of an in-
teractive method for generating semigroups and proving
relevant theorems. The method operates interactively in
APL, generates the associative closure of a system of
equations, derives from the Skolem-Herbrand theorem
[10], and does not require the statement of algebraic
conjectures in the lower predicate calculus [11]. The
sought-for contradiction at the end of Section 10 was not
found until Cartesian products were axiomatized.

The interactive method applies because the class of all
monadic operations under composition is a full transfor-
mation semigroup [12] on the universe of arrays. If a
monadic operation A sends every array to the array B,
then A 4 = B for every 4. If A is any monadic opera-
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tion, then A 4 is anarray andsoA A A = A Afor every
A. Thus to every array B there corresponds a unique left
zero A in the full transformation semigroup.

Since arrays are ordered, it is possible to represent
dyadic operations as monadic operations defined on
pairs, which are arrays on one axis of length 2. Some of
the most important dyadic operations, such as the opera-
tions for unions, Cartesian products, intersections, arith-
metic sums and products, and logical sums and products,
have monadic counterparts that are defined for all ar-
rays. Dyadic operations can also be represented in the
full transformation semigroup.

In the course of developing a table of compositions for
more than 110 monadic operations, a few contradictions
were isolated, deduced mechanically from tabular en-
tries representing the axioms and theorems, and re-
moved by modifying the axioms. Some of the entries in
the table revealed unexpected identities that were subse-
quently deduced by hand.

An array can be visualized as a warehouse in which
every item can be found by address. For example, the
item at address &+ 7 3 0O can be found in isle Y, section
7, stack 3, tier 0. Each number in an address is called
an index and is visualized as lying on an index axis. The
number of axes is called the valence [13-15], which may
be any finite ordinal number.

Each index axis for an array has a length, which is the
number of indices on the axis. Lengths and indices may
be any countable ordinal numbers: 0, 1, 2, ..., @,
w+ 1, w+ 2, ....A restriction of indices to the finite
ordinal numbers is a needless limitation that obscures
the essential processes of counting and indexing. A file
consisting of a succession of finite, open-ended records
can be indexed as follows:
012 ... 1W W1 W2 ... 2W 2W1 2W2 ...

The limit ordinals 0, 1W, 2F, ..., which have no di-
rect predecessor, are interpreted as starting new records.

An array for which there are no addresses is said to
be empty. Since no ordinal index can be less than zero,
an array is empty if and only if it has at least one axis of
zero length. Empty arrays, like the empty class in set
theory and the imaginary numbers in complex arithme-
tic, permit simple equations and constructions to hold in
all cases.

To each address for an array there corresponds an
item. Different addresses may correspond to the same
item. An array is said to have or hold its items, which
occur in the array. An empty array holds no items be-
cause it has no addresses. A nonempty array holds one
item at each address. Identical copies of an item are
considered to occur at every address corresponding to
that item.
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Common experience with the location of objects by
address suggests that the items of an array should again
be arrays. For example, the retrieval of particular data in
a city may require a nested succession of addresses of
the following sort: (street avenue) (wing floor isle
room) (shelf drawer) (folder) (document). Addresses
are nested because items at different addresses may
have incompatible systems of addresses.

Arrays are assumed to be rectangular in the sense
that a finite sequence of ordinal numbers is a legitimate
address for an array if each index in the address is less
than the length of the corresponding axis. Rectangularity
makes the consequences of using an address predictable
and simplifies the arithmetic of converting one system of
addresses to another. The nesting of arrays within arrays
compensates for the restriction to rectangularity. For
example, a page of words in which the lines differ in
length can be represented as a list in which each item is
a list of words. An array on one axis is called a lisz [16].

The essential principles of array theory are those of
nesting, counting, and valence. Nesting is treated in the
set theory of Zermelo (1908), Skolem (1922), and von
Neumann (1929) [17]. Cantor’s (1879) transfinite arith-
metic shows how counting can be based on the purely
structural operations of concatenating lists, putting the
items of a list cyclically into longer lists, and deleting ini-
tial segments from a list [18,19]. These fundamental
operations occur as the primitive functions of catenating,
reshaping, and dropping in APL\360. Sections 2 through
19 combine the principles of nesting and counting in a
theory of lists.

Since the arrangement of items in rows, columns, and
layers tends to obscure the fundamental nature of nest-
ing and counting, valence is not treated in detail until
Sections 20 and 21. The basic ways of combining multi-
valent arrays stem from the tensor calculus of Ricci
(1888) [20-22]. APL generalizes component tensors to
rectangular arrays of scalars, enlarges the domain of sca-
lars to include characters, generalizes the contraction of
component tensors to the transposition and reduction of
arrays, and extends the addition, outer multiplication,
and inner multiplication of component tensors to the
item-by-item, outer, and inner combination of simple
arrays by arbitrary dyadic scalar functions.

Most programming languages and mathematical sys-
tems are many-sorted [23] in the sense that different
sorts of variables (often in distinctive fonts) range over
different universes of discourse, such as the domains of
integers, real numbers, classes, lists, trees, etc. The logic
of quantification applies most directly and advantageous-
ly to a standard theory [24] in which there is only one
sort of variable ranging over one universe. Set theory
standardizes to the universe of classes by representing
numbers as classes [25] and relations, such as func-
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tions, families, and lists, as classes of ordered pairs [26].
Ordered trees can be represented by the successive
nesting of lists within lists.

The computational inefficiency encountered in repre-
senting numbers and lists by classes has lead to various
attempts to use modified versions of set theory as a basis
for programming languages [27-29]. The programming
languages APL and LISP [30] take ordered collections as
the point of departure. LISP, which is based on the the-
ory of recursive functions, represents a finite list by the
repeated nesting of ordered pairs and “atomic symbols”
[30] within ordered pairs. Classes can then be repre-
sented as lists. In APL, a class in which the elements are
classes of scalars can be represented by a matrix in
which the rows or columns are interpreted as classes.
Deeper levels of nesting are represented by component
tensors having a greater number of index axes [1]. A
component vector in which the items are distinct is called
an ordered set in APL.

The theories of arrays and lists developed here stand-
ardize to the universe of arrays or lists. Both order and
repetition of the items in an array or list are ignored in
class-theoretic contexts, thereby representing classes
directly as arrays or lists. The theories differ from Lisp
in treating arrays or lists as primitive objects instead of
pairs alone. The theories differ from APL in nesting ar-
rays within arrays or lists within lists according to the
class-theoretic relation of membership. Computational
inefficiency is avoided by representing numbers and
characters as arrays or lists that contain themselves as
sole members [24,31,32].

The nth ordinal power of a class U/ is the class Uxn
containing all families that map the ordinal n into U,
where n is the class containing the n preceding ordinals.
Uxn represents the class of all lists of »n elements of U.
An n-ary operation [33] on the class U is a function that
maps Uxn into U. An n-adic operation is the intuitive
counterpart of an n-ary operation defined on the uni-
verse of arrays or lists.

In a theory of classes, functions are defined to be
classes of ordered pairs. The basic operations in the the-
ory are used to represent, as functions, n-ary operations
on classes. Similarly, in a theory of arrays or lists, func-
tions can be defined as arrays or lists of pairs. The basic
operations in the theory can be used to represent, as
functions, n-ary operations on arrays or lists.

2. Syntax*

Monadic and dyadic operations have short right scope. Dyadic
operations have long left scope. Grouping is also indicated by
parentheses, spaces in a strand, and dots.

The basic, dot-free syntax used here is the same as the

usual syntax of addition, subtraction, and negation in
arithmetic. The names of monadic and dyadic operations
are called prefixes and infixes, respectively. Prefixes and
infixes take the shortest possible well-formed string to
the right as right operand. Infixes take the longest possi-
ble well-formed string to the left as left operand. For
example,

-A+B-(F-G+H)--D-E
is fully parenthesized as
((((-A)+B)-((F-G)+H))~(-D))-E.

The syntax, like that of APL, has no precedence or
hierarchy. Within any given well-formed string, all infix-
es may be replaced by plus signs, and all prefixes may be
replaced by negative signs without in any way changing
the intended grouping or full parenthesization of the
string (except for the internal parenthesization of the
operation names themselves).

The syntax of suffixed dots is the same as Church’s
dot notation [34,35]. A dot suffixed to an infix or prefix
causes the operation name to take the longest possible
well-formed string to the right as right operand.

For example, the suffixed dots in Axiom 15 (in the
appendices)

HA<HC ~.

are replaced by left parentheses with the mating right
parentheses as far to the right as is consistent with the
nesting of paired parentheses already in place:

#A<#C ~ (~ApB=(~Ap(~CpB))).

~ApB=.~4p .~CpB

Dot-free syntax then determines the full parenthesiza-
tion:

(#A=HC)) + (((~A)pB)=((~A)p((~C)pB))) .

In the presence of suffixed dots, infixes take as left
operand the longest possible well-formed string to the
left up to the nearest unenclosed suffixed dot. For exam-
ple, the left operand of the dyadic minus sign in

A+ (A+. A+ . -B+(A+. A+4)+C-A)+4

is ~B+(A4+.4+A)+C. The suffixed dot in the operand is
enclosed in parentheses and so has no effect outside the
parentheses.

This paper introduces prefixed dots that reassert long
left scope over suffixed dots. The use of prefixed dots
permits a symmetrical presentation of certain logical,
Boolean, and arithmetical formulas. A dot prefixed to an
infix causes the infix to take as left operand the longest

*The notation, syntax, and terminology adopted for the purposes of this paper do
not conform to standard APL usage. Every grouping dot appearing at the end of a
sentence should be read as a period.
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possible well-formed string to the left including unen-
closed suffixed dots.

The first step in fully parenthesizing a string is to re-
place the prefixed dots, if any, by right parentheses with
the mating left parentheses as far to the left as is consis-
tent with the nesting of paired parentheses already in
place. For example, Theorem 2

A=B A. B=C .». A=C
becomes
(4=B A. B=C) ». A=C.

Parenthesization is then completed according to the syn-
tax of suffixed dots and dot-free syntax.

A strand is a string of characters composed of one or
more variables, numerals, quoted strings, terms enclosed
in parentheses, and constants separated by spaces.
A space adjacent to a parenthesis may be omitted.
Strands denote lists. For example, D ~3.14 'WORD'
(5+2) @ is a quintuple in which the items are the array
D, the negative number T3.14, a list of four letters, the
number 7; and the null € (which is an empty list).

The concatenating operation implicit in the formation
of a strand is done before any other operation. For ex-
ample, -A B C equals (-4) (-B) (-C) and A B+C D
equals (A+C) (B+D).

Juxtaposed identifiers, such as 'COS' and 'AX' in
'COS AX' or the letters 'A' and 'A' in 'A A', are
separated by spaces to mark where identifiers begin and
end. Spaces between identifiers and basic operation
symbols are needless but may be inserted to improve the
legibility of a term or formula.

3. Extensionality

Nonempty arrays are equal if they hold the same items at the
same addresses. For the purposes of the theory, equal arrays
are identical.

Except for Sections 20 and 21, this section and all fol-
lowing sections hold for list theory as well as array the-
ory. In list theory, the words “‘array’ and “‘shape” are
construed as “list” and ‘“‘count,” respectively. The ax-
ioms are stated for array theory but may be interpreted in
list theory.

Every object in the universe of a standard theory of
arrays (lists) is called an array (list). A monadic opera-
tion A maps the universe into itself by sending an array 4
to the array A A. A dyadic operation A sends an or-
dered pair of the arrays 4 and B to the array 4 A B.

Zermelo’s Axiom I of extensionality is based on the
principle that a *‘class is determined by its elements”
[36]. By definition alone, equality is left-compatible (see
Axiom 4 below) with the membership relation in the
sense that equal classes contain the same classes. Exten-
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sionality grants to equality the force of logical identity
by postulating that equal classes belong to the same
classes, thereby making equality right-compatible (see
Axiom 3) with the membership relation.

The same considerations guide the axiomatization of
array theory. According to the array-theoretic principle
of extensionality, a nonempty array is determined by its
items and addresses. The principle is extended to empty
arrays in Section 9. Nonempty arrays are taken to be
equal if they hold the same items at the same addresses,
Axioms 2, 3, and 4 give equality the force of logical
identity by making equality compatible with all opera-
tions. Compatibility with the primitive operations would
suffice. Axiom 1, together with Theorems 1 and 2, then
establish that equality is a congruence on the universe of
arrays. Substitutivity of equality then follows by induc-
tion on the number of primitive operation symbols in a
formula.

Axiom I. An array equals itself.
A=A.

Axiom 2. Any monadic operation applied to equal arrays
returns equal values. Equality is compatible with every
monadic operation A, (Read '+' as “implies.”)

A=B~>. AMA=AB.

Axioms 3 and 4. Equality is right-compatible and left-com-
patible with every dyadic operation A.

.BAC
. CAB.

B+ AAC
B+ CAA

A
A

4. Elementary arrays

Pairs, singles, and the null exist. In list theory, shape becomes
count. The count of an array is a mote, which is a single that
holds itself.

Zermelo’s Axiom Il of elementary classes [36] as-
sumes the existence of empty classes, unit classes, and
unordered pairs. The array-theoretic postulate of ele-
mentary arrays assumes the existence of empty lists,
singles, and pairs. There exists the null @, which is one
of infinitely many empty lists in the universe of arrays.
Definition 2 (in the appendices) takes the null as primi-
tive. For the present, let the singling operation be primi-
tive. Singling sends an array 4 to the single oA that holds
A as sole item. The primitive pairing operation sends
arrays A and B, given in the order stated, to the list
AsB, called the pair of A with B, that holds 4 as first
item and B as second item.

The count #4 of an array 4 is an ordinal number rep-
resenting the axis length (order type) of the list got by
listing the items of 4 in main order. Main order is in-
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duced by listing the addresses to the items in lexico-
graphic order. For example, an odometer cycles lexico-
graphically through a domain of addresses. Each wheel
of the odometer is interpreted as cycling through the in-
dices on an index axis. The length of an axis corre-
sponds to the ordinal number of indices on a wheel.
Since a list has one axis, the items of a list occur in main
order by virture of being in a list.

The count of a list gives complete information on how
the items of the list are addressed. Similarly, the shape
~A4 of an array 4, which is essentially a list of the axis
lengths of the zero or more index axes for 4, gives
complete information on how the items of 4 are ad-
dressed (Section 20). When arrays are restricted to lists,
shape is restricted to count.

In the particular case of APL, the size of a list or com-
ponent vector V is a list holding the count of ¥ as sole
item. The shape of a list in array theory is its count. For
example, if the count of a list is 7 in a theory of lists or
arrays, then 7 itself, rather than the one-item list holding
7, is the shape of the same list in the theory of arrays.
The shape of an array other than a list is the same as the
APL size of the array.

The operation of counting is primitive in list theory
just as the operation for taking the shape of an array is
primitive in array theory. The changing of shape to
count is the essential step for converting the array-theo-
retic results listed in the appendices to list-theoretic re-
sults: The conversion is done as follows:

Omit Definition 1, Axiom 5, and Theorems 5, 10,11, 12, and
75, together with their corollaries. The corollary x9=1 of
Axiom 5 may be postulated as an isolated result. Omit all
variations of the form #~4=0, such as ~,~04=0. In all
definitions, axioms, theorems, corollaries, and proofs, re-
place equations of the form ~A=@ by #4=1 and terms of the
form €p4 by 1pA. Replace all tildes by sharps. Omit Defini-
tion 5 and all commas.

If counting is an array-theoretic operation and ordinal
numbers are to be immediately accessible for computa-
tion, then #4 must be construed as a relatively simple
array. As suggested by Quine’s representation of an in-
dividual as a unit class that contains itself [24], let a
mote be an array that holds itself as sole item. A pure
theory of arrays has no motes, just as a pure theory of
classes has no unit classes containing themselves.

Ordinal numbers might be represented in a pure the-
ory of arrays by von Neumann’s (1923) construction.
For reasons of practicality, however, ordinal numbers
are appended to the theory as motes. Complex numbers,
which include the reals and finite ordinals, and charac-
ters, which include the letters and operation symbols,
are also appended to the theory as motes.

If an array 4 is a mote, then both 4 and the single o4
of 4 hold 4 as sole item. If 4 and o4 are also made to

have the same number of axes, as would certainly be the
case in a theory of lists where all arrays have one axis,
then 4 and °A4 must hold the same item at the same ad-
dress. By the principle of extensionality, 4 and o4 are
equal. An array is a mote if and only if it equals its sin-
gle.

Axiom 6. The count of an array is a mote.

HA = of4.

An ordinal number, which exists as an array because
it is the count of an array, is a single that contains itself
as sole item. The count of a pair is 2, of a single, 1, of
an empty list, 0.

Definitions 2 and 3. Zero is the count of the null. One is
the count of zero.

0 for #0
1 for #o.

If arrays A and B are equal, identical, or the same,
then 'A=B' denotes the ordinal number 1, which is in-
terpreted as truth, and '4A#B' denotes the ordinal num-
ber 0, which is interpreted as falsity. Zero and one are
truth-values as well as numbers. If 4 differs from B,
then A#B is 1 and A=B is 0. The primitive operation of
equality has the same meaning and notation in array
theory that it has in a first-order theory with equality
[35].

5. Recounting

Lists, initial segments, and solitaries are defined in terms of re-
counting, which is the list-theoretic counterpart of reshaping.
Counts are ordered.

The primitive array-theoretic operation of reshaping,
which is based on the dyadic p function in APL\360,
becomes the list-theoretic operation of recounting when
restricted to the formation of lists. If 4 is an arbitrary
array, then #4 is an arbitrary ordinal number or count.
The recounting of an array B to the count of A produces
a list #4pB on an axis of length #4 in which the items
are taken cyclically in main order from B. For example, if
B is the pair P § of arrays P and &, then 5pB equals
P QP QP and 3poB equals the triple (P @) (P @)
(P Q).

#4p4 is the list that holds the items of 4 in main order.
If A is not a list, then it is meaningful to define the list ,A
of A to be #4pA. Listing corresponds to raveling in
APL\360.

Definition 5. The listing of an array equals the recounting
of the array to its count.

LA for  #A4pA.
An array 4 is a list if and only if A=,A. In a theory of
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lists, A=, A for every 4 because every object 4 in the
universe is a list. The listing operation is superfluous in a
theory of lists.

The listing operation permits Axiom 21 to be restated
for list theory in a way that is also correct for array the-
ory. When so stated, Axiom 21 becomes #4pA=,4 and
takes the place of Definition 5. The comma is ignored in
list theory but observed in array theory.

Axiom 21. The reshaping of an array to its own shape pro-
duces the array itself.

~ApA = A.

Since the items of #4pB are taken cyclically in main
order from B, the items may as well be taken cyclically
from the list of B. Thus #40B=.#4p ,B, which is a cor-
ollary of Theorem 28. The count of an array 4 is taken
to be the axis length of the list of 4, which is the import
of Axiom 17. Counting and reshaping treat arrays as
lists, as do many of the basic operations in array theory.

Axiom 17. The count of an array equals the count of its list.
#.4 = #A.

Axiom 10. The count of an array equals the shape of its
list.

~,A = #A.

The primitive operation of ordering is defined first for
motes and then extended to arbitrary arrays by the as-
sumption that ordering is a mote operation (Section 11).
If A and B are both ordinal numbers or both real num-
bers, then ordering is defined in the sense that A<B is
either true or false. If 4 and B are motes and A<B is nei-
ther true nor false, then ordering is undefined in the
sense that A<B is the cipher [0, which is a mote other
than a number or character.

#A<#B equals 0 or 1 according as#4 does or does not
follow #B in the succession of ordinal numbers. If 4 and
B are real numbers, then A<B equals 0 or 1 according as
A is or is not greater than B. A<B equals =.B<A4 by
definition. (Read '=" as “not.”)

If #4<#B, then only the first #4 items in main order
are taken from B to make the list #4pB, which is called
an initial segment of B. For example, 2pP § R equals
the pair P @ and 1pP @ R equals the solitary , oP hold-
ing P as sole item. A solitary is a list that holds one item.

In a theory of lists, every single is a solitary. In a the-
ory of arrays, according to Theorem 10, no single is a
solitary. Theorems asserting the nonequality of various
arrays, other than arrays involving characters or the
cipher, follow from Axiom 11. Without this axiom, all
arrays constructed from numbers alone might be the
same.

Axiom 11. Zero differs from one.

0=1.
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6. Reshaping

If certain premisses hold, then it does not matter on a further
reshaping whether items are taken cyclically from an array or
the array reshaped. Vacating is zero reshaping.

Axioms 15, 16, and 19 amount to one postulate, called
the reshaping or recounting postulate. When phrased in
terms of recounting, this postulate asserts that
#4pB =. #4p .#CpB whenever A has no more items
than C, or B is empty, or the count of B both divides the
count of € and is no greater than the count of C. For
example, if 4 has U4 items, C has 5 items, and B is the tri-
ple P @ R, then 5pB equals P @ £ P @ and both 4pB
and 4p(5pB) equal P @ R P.

If #CpB is a list formed by cycling through all of the
items of B an exact ordinal number of times, which is
vacuously the case if B is empty, then it does not matter
on a further recounting whether the items are taken cycli-
cally from B or from #CpB. For example, if C has 6
items and B is the pair P @, then 5pP @ and 5pP & P @
P @ are the same.

Except for the shape of the final result, whether it be
an array of shape ~4 or a list of count #4, the recount-
ing postulate is essentially the same as the reshaping
postulate. If the premisses hold, then it does not matter
on a further recounting or reshaping whether the items
are taken cyclically from B or from ~CpB.

Axioms 15, 16, and 19. The reshaping postulate. If the
count of 4 is no greater than the count of C, or if B is emp-
ty, or if the count of B both divides the count of C and is no
greater than the count of C, then the reshaping of B to the
shape of 4 equals the reshaping of B first to the shape of
and then to the shape of 4.

HA<H#C . ~4pB =. ~Adp.~CoB
#B=0 +. ~4pB =. ~Ap.~CpB
H#B<#C A. #B|#C=0 .». ~ApB =. ~Ap .~CpB

Axioms 12, 13, 14, 18, and 20 postulate the few ele-
mentary facts about the ordering and divisibility of the
ordinal numbers needed to satisfy the premisses of Ax-
ioms 15 and 19. The sequence of axioms is determined
by the principle that no axiom is introduced until it is
needed to deduce further results.

Axioms 12, 13, and 14. Zero is no greater than any count,
A count is no greater than itself. The count of a nonempty
array is no less than one.

0 < #4A
#4 < #4
HAz20 ». 1<#4.

For every nonzero ordinal #4, called the divisor, and
every ordinal #B, called the dividend, there exist unique
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ordinals #4x#B and #4 | #B, called the quotient and re-
mainder [19], respectively, for which #Ax#Bx#4 +
(#4|#B) = #B and #A|#B<#4. If the remainder is
zero, then the divisor divides the dividend.

The #4 quotient of #B is the greatest ordinal number
of lists of length #4 that can be dropped or deleted as
successive initial segments from a list ,B of length #B.
The#A4 remainder of #B is the length of the final segment
of ,B remaining after the first #Ax#Bx#4 items have
been dropped. For the present, the remainder operation
is taken as primitive.

Axioms 18 and 20. A count divides itself. One divides any
count.

HALH#A = 0
11#4 = 0.

The recounting of an array 4 to the count of an empty
array produces a list 0pA4 of count 0, called the empry
list of 4, in which the items are taken cyclically from 4,
or equivalently, from the list of 4.

Definition 6. The vacating or empty listing of an array
equals-the zero recount of the array.

\ for OpA.

According to Theorems 15 and 16, an array 4 is emp-
ty if and only if ,A=\A. In particular, an array 4 is an
empty list if and only if 4=\4. By a second corollary to
Theorem 28, if an array B is empty, then #4pB and
#4p ,B and #4p\B are equal. Vacating is a useful opera-
tion in the study of empty arrays because many opera-
tions, such as counting and recounting, treat arrays as
lists and therefore empty arrays as empty lists.

The recounting of an empty array B to the count of A
produces a list #4pB on an axis of length #4 in which the
items are taken cyclically from B, or equivalently, from
the empty list of B. #4pB and # .#4pB are undefined in
APL\360 when B is empty and 4 is not. Rather than pro-
vide for this one exception by adding restrictive premiss-
es to many theorems, thereby missing some of the ad-
vantages of a standard theory, Axiom 9 postulates in list
theory that# (#4pB)=#4 for all A and B.

Axiom 9. The reshaping of an array B to the shape of an
array 4 produces an array having the shape of A.

~(~4pB) = ~4.

Axiom 9 requires 3pB to have 3 items even if B is
empty. The items of 3pB are taken cyclically from \B.
What items come out of the empty list of an array?

The answer provided in the next section was originally
found by interpreting earlier versions of the axioms [9b]
and observing in APL\360 that a solitary zero or a soli-
tary blank results from the zero expansion of the empty
numerical list or the empty character list, respectively.
The same answer can be inferred directly from the prop-
erties of a vector space.

7. Patterns

The vector sum of a vacated list of vectors is the zero vector,
which in certain cases may be taken as the pattern of the list of
vectors.

An array built up from numbers alone or characters
alone is said to be homogeneous. Each more or less
deeply nested number or character in an array can be
reached by a path, which is a list of successive address-
es. A path amounts to an address in depth. Roughly
speaking, an array is said to be uniform if it is rectangu-
lar in depth.

The mathematics of patterns evolved from the search
for a simple construction based on simple axioms that
would typify the items of an array having some regulari-
ty of structure. Patterns typify the items of uniform,
homogeneous arrays in the same way that the zero and
the blank typify arrays of numbers and characters in
APL. Essentially the same construction can be deduced
from an interpretation of empty lists of vectors in a vec-
tor space.

The class containing the zero vector alone is a vector
space, called a zero space or zero subspace. In a 3-di-
mensional vector space, planes, lines, and points through
the origin are subspaces having dimensions 2, 1, and 0,
respectively. The unique zero subspace has dimension 0
and must be spanned by the empty class. The zero vec-
tor in the zero space is a linear combination of the vec-
tors in the empty class. Consequently, the vector sum of
no vectors must be the zero vector [37].

For example, if addition and multiplication of pairs of
real numbers are defined so that the pairs combine like
complex numbers, then the class of all such pairs is a
field. Each pair of real numbers is then called a scalar.
The zero scalar is the pair 0 0. If P equals (2 ~3)
("14) (05) and @ equals (12) (372) (770),
then P and @ are vectors in the vector space of triples of
scalars.

If A = P @, then 4 is a list of vectors. The sum +4 of
the list 4 is best interpreted as a vector sum of vectors.
+4 is calculated as follows:

(273 (C18)(05)+(12) (@ 2) (70
(273+12) (14 +372)((05+ 70)
((2+1) (73+2)) ((T143) (4+72)) ((0+~7) (5+0)).

Thus +4 is the vector (3 ~1) (2 2) ("7 5). This
example illustrates the positional operator (Section 11)
and shows why dyadic addition is taken to be a mote
operation.

As shown earlier, the vector sum of no vectors is the
zero vector. Hence the sum +\A4 of the empty list \4 of
the list 4 in the example above must be the zero vector
(0 0) (0 0) (0 0). If B is a list of vectors in the
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vector space of all quadruples of real numbers, then +\B
equals 0 0 O 0. Nearly all of the theorems about a
vector space still hold if the field is relaxed to a division
ring of scalars, such as the division ring of quaternions
[16]. If Cis alist of vectors in the module of all pairs of
scalars over the division ring of quaternions, then +\(
equals (0 0 0 0) (0 0 0 0).

All empty classes are equal in set theory. If M is an
empty class of triples of pairs of real numbers and N is
an empty class of quadruples of real numbers, then ¥
and I are the same. The vector sum of ¥/ differs from the
vector sum of N because the summing operations are
defined for different vector spaces.

In a theory of arrays, there is only one summing oper-
ation. If the sum +\4 differs from the sum +\B, then the
burden of the difference is borne by \4 and \B. Even
though \A4 has no items, there is residual information
associated with \A4, called the patrern [9] of A (or of
\4), which indicates that \ 4 is the result of vacating an
array A holding triples of pairs of real numbers. If the
pattern of 4 is taken to be the zero vector corresponding
to the vectors in 4, then the sum +\4 of the empty list
of 4 may be taken directly as the pattern of 4, provided
that characters and the cipher are not used in the con-
struction of 4 (Section 11).

The pattern of 4is (0 0) (0 0) (0 0) and the pat-
tern of Bis 0 0 0 0. The pattern of a nonempty array
is the same as the pattern of its empty list. In answer to
the question asked at the end of the preceding section,
each item coming out of an empty array, got by recount-
ing the array to a nonempty list, is taken to be the pat-
tern of the array. For example, if 4 has the pattern
above, then 2p\4 is the pair ((0 0) (0 0) (0 0))
((o 0) (0 0) (00)).

8. Extracting

The extract of an array is either the pattern or the first item of
the array. Picking is defined in terms of extracting and drop-
ping.

The extract 24 of a nonempty array A is the first item
(in main order) in A. The primitive operation of extract-
ing takes the first item, rather than the last, because cer-
tain infinite arrays have no last item.

Axiom 7. The extract of a singled array is the array itself.
D04 = 4.

If 4 is a mote, then A=>4 by Theorem 4. Any finite
number of extractings or singlings of a mote returns the
mote as value. This observation suggests that a mote
may be interpreted as an infinite nesting coo...B of
singles within singles.

According to Theorem 37, 1pA=,024. The recount-
ing of an array 4 to a list of length 1 is the solitary
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holding the extract or first item of 4. (The comma is
ignored or omitted in list theory.) Theorem 37 is the list-
theoretic counterpart of Axiom 8.

Axiom 8. The null reshape of an array is the singled extract
of the array.

GpAd = o4,

If 4 is empty, then, as suggested by the properties of a
vector space, the item got by recounting 4 is the pattern
of A. Thus 1p4, for 4 empty, is the solitary holding the
pattern of A. If Theorem 37 is to hold for all arrays, as
would be desirable in a standard theory, then 1p4 must
also be the solitary holding ®4. By the principle of ex-
tensionality (cf. Theorems 3 and 32), the extract of an
empty array must be the pattern of the array.

Since extracting takes the first item of an array in
main order, 24=>,4 by Theorem 31. If 4 is empty, then
,A=\A and so 24=2\A4 by Theorem 33. As defined ear-
lier, the residual information associated with \4 is called
the pattern of 4. Since \\4=\A4 by Theorem 18, the pat-
tern of 4 is the same as the pattern of \4, which is the
extract of \4 because \4 is empty. Thus D\4 is the pat-
tern of A for every A.

According to Theorem 46, \#A=§. The null is the
empty list of any ordinal number. Theorem 46 is the
list-theoretic counterpart to Axiom 22. \9=0 because
\\WA=\#4 by Theorem 18.

Axiom 22. Vacating a shape produces the null.
\~4 = 9.

The field of real numbers over itself is a vector space.
Each real number, and therefore each finite ordinal, may
be interpreted as a vector. In particular, 0 is the zero
vector. If an array A is finite in the sense that its count is
finite, then \#4 is the empty list of vectors. +\#4=0 and
+9=0 because the vector sum of no vectors is the zero
vector. The sum of the empty list of an array (without
characters or the cipher) is taken as the pattern of the

array. Hence 0 must be the pattern o\ of the null.
5§=2\9 because 9=\9.

Axiom 23. The extract of the null is zero.

9 = 0.

The sum of an array is defined to be the sum of all the
items in the array in main order. Thus +4=+,4 for all 4.
The sum +o4 of a single equals the sum +,04 of the
corresponding solitary. In the context of a vector space,
the sum of a single or solitary vector is the vector itself.
For example, +o (2 4) (6 1) equals (2 4) (6 1).
This observation suggests that the sum of the empty list
of an array be taken as the sum of the singled pattern of
the array, i.e., +\4 = +o2\A.

If 4 is empty, then +4A=+0>4. The sum of an empty
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array is converted to the sum of a nonempty array (Sec-
tion 11).

Operations for fetching items by address are defined
in terms of operations for moving and then extracting
the desired items. The definition of picking in terms of
extracting and dropping illustrates the fundamental na-
ture of the picking operation. Axioms for dropping are
deferred to Part II [to be published].

The primitive operation of dropping is essentially the
same as the APL function of dropping. The #4 drop of
the list of B is the list #4¥,B, called a final segment of
B, that holds all but the first #4 items of B listed in main
order. When combined with dropping, the operation of
extracting can be used to pick any particularr item from
an array. The #4 pick of the list of B is the item#4>,B
at index #4 in the list of B. #4>,B is the first item in the
final segment of B beginning at #4. Thus

#42,B = o.H#AV,B.

For example, 2 > P @ B § = R. These list-theoretic
equations follow from the array-theoretic definition of
~A4>oB as 2.~AVB.

The preceding equation certainly holds if #4<#B. If
the equation holds for all 4 and B and if #4+,B is defined
to be the empty list of B whenever #B<#4, then

#B<#A . #4>,B = o\B.

If the index #4 lies outside the range of indices for the
list of B, then #4 picks the pattern of B. Since #\B<0
for all B, 0o\B=2\B. Thus 02,4 equals both >,4 and
oA for every 4.

9. Plans

Patterns and plans are calculated in terms of each other, extend
extensionality to empty arrays, identify data types, and, when
equal, provide the basis for an axiom of foundation.

In the recounting of an array 4, it does not matter
whether the items are taken cyclically from 4 or from
the list of A. In particular, 0OpA=.0p,4, which proves
that \A=\,4 (Theorem 29). According to the recount-
ing postulate, 0pA=.0p.1pA. Hence \4=\, o4 by the
list-theoretic version of Axiom 8. The foregoing proves
Theorem 26, \A = \ o4, which is a simple yet funda-
mental result that has an important corollary:

S\4 = o\ e24.

Theorem 26 means that the vacating of an array 4 can
be done by vacating the single or solitary holding the
first item or extract of 4. According to the corollary, the
pattern of an array equals the pattern of its singled ex-
tract.

If arrays 4 and B have the same pattern, then 2\ A=2\3
and so \o2\A4=\eo\B. Hence \4=\B by Theorem 26
and the idempotency of vacating (Theorem 18). Arrays
have the same pattern if and only if (=) they have the
same empty list (Theorem 27):

o\A4A=>\B =. \4=\B.

According to Theorem 42, if arrays 4 and B have the
same shape and the same listing, then ~4pA=.~BpB and
so A=B by Axiom 21. Empty arrays have the same list-
ing if and only if they have the same pattern. Thus Theo-
rem 42 proves the principle of extensionality for empty
arrays.

Extensionality. Empty arrays are equal if they have the
same pattern and shape. Nonempty arrays are equal if they
hold the same items at the same addresses.

Let 4 be the list P §, where Pequals (2 ~3) ("1 4)
(0 5) and @ equals a similar vector as in the example of
Section 7. The pattern of the single of an array is called
the plan of the array. According to the corollary of
Theorem 26, the pattern of A equals D\°o>4, which is
the plan of P. Thus the plan of P equals (0 0) (0 0)
(0 0), which is the zero vector in the vector space
containing P and @.

The pattern of P is the zero vector O O in the vector
space of pairs of real numbers. Thus the plan D\oP of P
equals the list #Ppo>\P holding three repetitions of the
pattern of P. By the corollary of Theorem 26 again, the
pattern of P equals 2\ °2P, which is the plan of the first
item of P. The pattern of the first item =P of P is the
zero vector O in the vector space of real numbers over
itself. The pattern of P, which equals the plan of 2P, is
the list #2Ppo>\2P holding two repetitions of the pat-
tern of ©2. For the list P in this example,

S\ oP =. #Ppo .#oPpod\oP.

The preceding example suggests that if o\o A=.
#4poo\A is taken as an axiom in list theory, or equiv-
alently, if 2\oA=.~Apoo\4 is taken as an axiom in
array theory, then the pattern of an array B can be com-
puted as the plan of the extract of B. The plan of DB is
an array having the same shape as oB, in which each
item is the pattern of ©DB. The pattern of DB is then
computed as the plan of 225, etc.

The equation D\ 04=.~4p°>\4 can be reduced to a
simpler form. For all arrays 4 and B, ~4po>\B equals
~4p .1p\B, which equals ~4p\B by the recounting pos-
tulate because \B is empty (Theorem 24). Thus the plan
of 4 may be taken as ~4p\4.

Axiom 24. The plan of an array 4 is an array of the same

shape as 4 in which each item, being taken from the empty
list of 4, is the pattern of 4. S\od =, ~Ap\A.

Theorems 50 and 52 show that the alternate calcula-
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tion of patterns and plans leads to the following two
theorems, which can be extended indefinitely:

o\B =. ~DBpo ,~o2Bpe.,

~oo0Bpo ,~2DD3Bp 02\ 050008

o\o( =. ~(Cpo.~>(po.
~o2(po ,~>502(p oo\ 02202(.

The second theorem follows from the first by substitut-
ing oC for B. According to Theorem 53, an empty array
equals its plan.

The pattern of B is an array of shape ~>B in which
each item is an array of shape ~o5>B, etc., until
o5>...25B is a mote. Then D\oo>...50B equals D\
D...22B, which is the pattern of the mote. According
to the corollary D\ #4=0 of Theorem 48, every ordinal
number has 0 as pattern. If provision is made to distin-
guish the floating-point zero from the integer zero, then
the floating-point numbers having floating-point zero as
pattern can be distinguished from the integers having
integer zero as pattern. Patterns can be used to identify
data types.

Axioms 26 and 27. The pattern of the cipher is the cipher.
The cipher differs from zero.

o\g = @

Q= 0.

Axioms 29, 30, and 31. The pattern of the blank is the
blank. The blank differs from zero and the cipher.

S\' " = 1!
'l¢0
R 8

Theorems 74, 79, and 85 assert that if the plan of an
array 4 equals zero, the cipher, or the blank, then 4 is a
mote and the pattern of 4 is zero, the cipher, or the
blank, respectively. The introduction of motes is con-
trolled so that only numbers have zero as pattern and
only characters have the blank as pattern. Axiom 28
assumes that the cipher is the only mote having the ciph-
er as pattern. Thus an arbitrary array 4 is a number, the
cipher, or a character according as the plan of 4 is zero,
the cipher, or the blank.

Axiom 28. Only the cipher has a plan equal to the cipher.
S\o4=pl +. A=[d.

Definitions 7, 8, and 9. The void is the empty list of the
cipher. The nil is the empty list of the blank. A pair of adja-
cent quotes also denotes the nil.

o for \M
&  for \'" !
re for o,

If an array 4 holds itself as first item, then 4=>4 and
the pattern and plan of 4 are equal because D\A=>\
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o2A4. In particular, the pattern and plan of a mote are
equal. Since arrays have the same pattern if and only if
they have the same empty list, the pattern and plan of an
array 4 are equal if and only if \A=\0A4.

Zermelo’s (1930) axiom of Fundierung [6], founda-
tion [38], or regularity [39], which is based on von
Neumann’s (1929) axiom, prevents a class from con-
taining itself at any deeper level of nesting by postulating
that every nonempty class M contains a class having no
members in common with M. The full strength of this

.axiom is not wanted for array theory because motes are
assumed to exist. Axiom 25 assumes instead that no ar- .

ray other than a mote holds itself as first item or has a
pattern equal to its plan.

Axiom 25. If an array has the same empty list as its single,
then the array is a mote.

\A=\od +. A=c4.

10. Replacement

The replacement transform of a monadic operation applies the
operation to each item of an array. Cartesian products show
how replacement transforms apply to empty arrays.

Skolem (1922) and Fraenkel (1922) added to Zerme-
lo’s seven axioms the following axiom schema of re-
placement [40] or substitution [38]: If / is any class
and A is any singulary function sending classes to class-
es, then the range of all A x for x in ¥ is again a class.
When augmented by replacement, Zermelo’s system is
called Zermelo-Fraenkel set theory.

Replacement. For every array 4 and every monadic opera-
tion A, the result of replacing at each address in 4 an item
X by A X is again an array.

To each monadic operation A there corresponds by the
replacement operator, which is denoted by a colon, an-
other monadic operation : A that applies A to the items
of an array according to the principle of replacement.
1Aod=oA A and :A(43B)=.A A5A B for all 4 and B.
The operation : A is called replacement A or the replace-
ment transform of A. Operator names, such as the co-
lon, have the same dot-free syntax with respect to opera-
tion names that operation names have with respect to
array names.

Axiom 32. If A is a monadic operation and 4 and B are non-
empty arrays, then it does not matter whether replace-

ment A is applied before or after the reshaping of B to the
shape of 4.

K470 A. #B20 .». :A(~4pB)=.~Ap:A B.

For example, :A.3pP @ equals :A P @ P equals
(AP) (AQ) (AP) equals 3p(A P) (A @) equals
3p:A P Q.

The Cartesian product XA of a finite list 4 of lists is an
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array having #4 axes in which the first axis has the
length of the first list in A, the second axis has the
length of the second list in 4, etc. (Section 21). The
items of X4 are all possible lists of count#4 in which the
first item is taken from the first list in 4, the second item
is taken from the second list in 4, etc. In a theory of
lists, the Cartesian product of 4 may be taken as the list
of XA4.

For example, let Abe the triple (P @) (,°R) (S T).
The Cartesian product X4 is a 2 by 1 by 2 array of tri-
ples.

XA=(PRS) (PRT)(QRS) (QRT).

The Cartesian product of a solitary list is a list of soli-
taries. For example, X,oP @ R equals (,0P) (,°Q)
(,oR). In particular, the Cartesian product X,°\4 of
the solitary ,o\4 of an empty list \A should be an emp-
ty list \ o, oB in which each item is a solitary of the form
,°B. Given 4, what is B? If 4 = P § R, then the first
ttem of X,04 is the solitary , P holding the first item of
A. If A=\P @ R, so that A=\A4, then the extract of
X,0\4 is the solitary ,o>\4 holding the extract of \4.

Thus for every array 4,
X,o\4 = \o,00\4.

The list : (,0)P @ R equals (,0P) (,°q) (,°R).
Hence, by the preceding example, X,0oP @ B = :(,0)
P @ R for all arrays P, ¢, and R. In array theory, the
Cartesian product of a single or solitary array is an array
of singles or solitaries. The following two equations hold
intuitively for every nonempty array 4 and are postulat-
ed to hold for every A.

ioA = 04
X, 04 = 1 (,0)4.

quently, for every 4,
;(’o)\/]_ = \o’oD\A.

This last equation suggests Theorem 91, which asserts
for every monadic operation A and every array 4 that
:A\A = \oAD\4. When empty listing is generalized to
empty reshaping, Theorem 91 becomes Axiom 33.

In particular, X,°\A must equal :(,o)\A. Conse-

Axiom 33. If A is a monadic operation and 4 is an empty
array, then replacement A applied to the empty array re-
sulting from a reshaping of an array B to the shape of 4
produces an empty array of the shape of 4 in which each
item is A applied to the pattern of B.

#4=0 ». :A(~4pB)=.~4poAS\B.

Axiom 33 and its immediate result, Theorem 91, show
why Axiom 32 is restricted to nonempty arrays:

#4200 A. #B#0 .». :A(~4pB)=.~4p:A B.

If 4=0 and B=1 and the premiss #4#0 is omitted, then
~A=0 and#B#0 and so :A\1=\:A 1. But \:A 1 equals
\:Ao1, which equals \°cA 1. By Theorem 91, :A\1
equals \oA>\1, which equals \oA Q. If A is chosen so
that A 0 = 0 and A 1 = [, then \o0=\opl. This is a
contradiction because zero and the cipher have different
patterns.
" If 4=,0 and B=0 and the premiss #B#0 is omitted,
then #420 and ~A=1 and so :A,o>9=,02:AQ. But
1A,o29 equals ,°oA>9Q, which equals ,cA 0. Hence
A 0=2:A® by Theorem 32. According to Theorem 91,
5: A® equals o: A\ @ equals 2\ oA\ @ equals D\ oA 0. If
A is chosen so that A 0=1, then 1=>\o1 and so 1=0.
Even though Axioms 32 and 33 have restrictive prem-
isses, the two axioms work together to prove theorems
without premisses. For example, Theorems 98, 99, and
100 hold for every array A:

A A=, ~dp:h A
~:AA4d=~4
A4 = LA A

The operator of composition, which is denoted by jux-
taposition, combines two monadic operations to produce
a third. For example, the composition of patterning >\
with singling o produces the operation 2\ o of planning.
{2\ )o and =2(\ ¢ ) are the same operation because com-
position is associative. The class of all monadic opera-
tions is a semigroup under composition. The replace-
ment operator is an endomorphism of the semigroup.
For all monadic operations A and A and for every array
4,

(A A4 = AN A
If :(,o)\4, which equals X,o\4 and therefore

\o,o2\4, were to equal \4, then_a contradiction would
follow from the equation 2\ o, o2\4=>\A4. By corollar-
ies to Theorems 65 and 26, 2\, 0>\A=,05\4. But

according to Theorem 735, no array equals its solitary.

11. Positional

The positional transform of a dyadic operation applies the op-
eration to the positionally corresponding items of two arrays.
Mote operations are the same as their replacement or position-
al transforms.

To each dyadic operation A there corresponds by the
positional operator [9a], which is also denoted by a co-
lon, another dyadic operation : A called positional A or
the positional transform of A. For all arrays A and B,
each item in the array A: A B is the result of applying A
to the positionally corresponding items in 4 and B. The
positional operator is based on the treatment of dyadic
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scalar functions in APL. For example, for all arrays
P,@ R, S T and U,

PQRASTU=(PASY (@ATY (RAU)
PQRR:AS=(PASY(QAS) RAS)
P:ASTU=(PAS) (PAT) (PAU)
oP:AoS = o, PAS
PQgASTU=(PAS)(QAT)

P @ R:A\oS = \o.P Ad\o§

\oP:A\oS = \o.D\oP Ad\eoS.

Items at the same indices in lists of the same length
correspond positionally. A singular array has one item.
Two lists of different lengths are made to have the same
length by recounting a singular list to the length of the
other list or truncating the longer nonsingular list to the
length of the shorter nonsingular list. The items in a re-
counted or truncated list then correspond positionally to
the items at the same indices in the other list. This
method of establishing positional correspondence ex-
tends to arbitrary arrays.

If arrays 4 and B have the same shape, then an item of
A corresponds positionally to an item of B if and only if
the two items have the same address. A singular axis
has length 1. If two arrays have different numbers of
axes, then enough singular axes are appended to the ar-
ray having the lesser number of axes to make the arrays
have the same number of axes. The two arrays are then
made to have the same shape by (i) replicating each ar-
ray along its singular axes so as to match the lengths of
the corresponding axes in the other array, and (ii) trun-
cating to the lengths of the shorter axes each array hav-
ing longer nonsingular axes corresponding to shorter
nonsingular axes in the other array.

For example, if an array A has shape
413151780, then the 0-axis of A has length
4, the 1l-axis has length 1, etc. If an array B
has shape 42 61 0 0 1, then A:A B has shape
423100 78 0. The positional operator is de-
fined by an equation discussed in Section 21.

If several arrays are combined by various positional
transforms, then regardless of the order in which the
arrays are combined, or the order in which the trans-
forms act, or the number of times an array appears as an
argument of the transforms, the final value has as many
axes as the argument having the greatest number of
axes. An axis in the final value is singular if all corre-
sponding axes of the arrays are singular. A nonsingular
axis in the final value is as long as the corresponding
shortest, nonsingular axis among the arrays.

The positional transforms of commutative operations
are commutative, those of associative operations are
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associative, and those of operations distributive one
through another are distributive one through another.

If nothing is gained by distinguishing an operation
from its replacement or positional transform, as is the
case for most arithmetic and logical operations, then, as
suggested by APL, the operation becomes more useful if
it is identified with its transform. A monadic operation A
is said to be a mote operation if and only if A A=:A A
for every array 4. A dyadic operation A is mote if and
onlyif A A B=.A:A Bforall 4andB.

Mote operations applied to motes return motes as val-
ues. If A is a monadic mote operation and 4 is a mote,
then A A equals :Ao4 equals oA A. If A is a dyadic
mote operation and B is also a mote, then A A B equals
oA:AoB equals o(4 A B). The arrays A Aand 4 A B
are motes because they equal their singles.

Monadic negation and dyadic addition are defined to
be mote operations by postulating that -A=:-4 and
A+B=.4:+B for all A and B. A mote operation works
down through the levels of an array until it reaches the
most deeply nested motes. The operation goes no deeper
because it starts returning motes as values.

The addition of O to an array returns the same array
except for replacing every nonnumerical mote by a ciph-
er. For example, the pairs in the following four lines are
equal:

0+ ((23) (4 '4")) (5 (@ 'BC"))

(0 +(23) (4 "4")) (0 + 5 (6 'BC'))
((0+23) (0+u'4")) ((0+5) (0+B 'BC"))
((23) (4ED) (5 (B EED)).

A sum of two motes equals the cipher if at least one of
the motes is nonnumerical. Hence the sum of a list of
two or more arrays is devoid of characters. As suggested
by the preceding example, +o4 =. A+0 for every 4.
Thus +\4 equals +o2\4 equals 2\A4A+0. Similarly, for
every 4, %04 =. Ax1 and X\4 =. D\A4+1. Sums and
products of arrays are devoid of characters.

12. Logic

Mote operations for the algebra of propositions are defined in
terms of the primitive mote operations of logical denial and
summation.

Logical denial is a primitive operation that comple-
ments the truth-values 0 and 1 and sends every other
mote to the cipher. Denial is defined for all arrays by
postulating that it is a mote operation. ~4=: =4 for every
array 4. For example, = 01 (2 1 ) equals 1 0 ([
0 [@).

Since - is a mote operation, =\4 equals :-\4, which
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equals \ o =2\ A by Theorem 91. By a corollary to Theo-
rem 26, \eB=\o>\oB. Hence =\4 equals \ 02\ oD\ 4.
If the pattern of 4 is devoid of blanks, then 2\ o=2\4
equals 2\ o>\ A4, which equals 2\ 4 by another corollary
of Theorem 26. Thus if the pattern of A is devoid of
blanks, then -\4 equals \o¢>\4, which equals \A by
Theorem 26. Exactly the same result and proof holds for
arithmetic negation in place of logical denial. Both ~¢
and -€ equal 9.

An array is simple if all of its items are motes. Every
item of a Boolean array is a truth-value. The logical sum
v4 of a Boolean array 4 is 0 if and only if every item of
A is 0. vA=v,A. In particular, an empty Boolean array
has a logical sum of 0. A Boolean array in which there
exists a 1 has a logical sum of 1. Every other simple
array has the cipher as logical sum. Logical products are
defined by De Morgan’s law. Disjunction is defined as
the logical sum of a pair:

-\/-cA
\ .A;B.

A for
AvB for

The preceding definitions extend to nonsimple arrays
if disjunction is assumed to te a mote operation. For all
A and B, AvB=.4:vB. Conjunction A, implication -,
and coimplication = are defined in terms of denial and
disjunction by the usual propositional formulas [35].
Thus A+B=.-4vB for all arrays 4 and B. The logical
connectives '-', 'v', 'A' '»' and '=' are the
same as those used by Heyting [41] and Kuratowski
and Mostowski [19]. The propositional operations of
nor #, nand #, logical subtraction -, and exclusive or
# are defined by the denials of v, A, -, and =, respec-
tively.

By analogy with sums and products,

vod =. Av0 VA = vod\4
Acd =. AA1 A4 =. D\4v1l

for every array 4. In particular, v@=0 and A9=1.

The usual equations [42] for Boolean algebras
(v, A, monadic =), classical subtractive lattices
(v, A, dyadic =), Boolean rings (2, A), classical
implicative lattices (A, v, »), and dual Boolean rings
(=, v) holds for all arrays when converted to balanced
form. An equation is unbalanced if a variable has occus-
rences on one side of the equation but not the other. The
valid equation A+A4=.B-B of propositional algebra fails
for arrays because it is unbalanced. An equation is
balanced by entering variables tautologously on the
deficient sides. For example, B>BAA is logically equiv-
alent to 4 but involves the shape of B. Thus B+BAA~>4
=.A-.B+Bis balanced and holds for all 4 and B.

If A is the quadruple 1 0 ((1 1 0) 2) 3 and B is
the triple 0 (1 (0 4)) ((0 1) 5 (0 1)), then 4B

equals 0 (1 (1 @)) ((0 1) @). Further calculation
shows that both B+.4-+B and A~.B~+B equal the triple
1 (1 (18)) ((11)@). Thus B>.A+B equals the
obvious tautology 4A~+.B~+B. ‘

A formula is a term or well-formed string that denotes
a truth-value. If fand g are formulas, thenf = gandf = g
have the same interpretation. The proofs of Theorems 1
and 2 hinge on the equivalence of equality with coimpli-
cation when restricted to truth-values.

13. Sets

An array is called a set if the ordering and repetition of its items
are neglected. Membership and inclusion are defined in terms of
equality, replacement, and operational abstraction.

Universal and existential quantification over the items
of an array involve bound variables that can be treated in
array theory by operational or functional abstraction
[6,43]. In the notation of Church [34] AZ(ZxZ) is the
operation of squaring, AZ(Z) is the neutral or identity
operation, and AZ(€©) is a constant operation that re-
turns the null as value for every array as argument.
If the preceding monadic operations are applied to an
array A as argument, then AZ(ZxZ)4 equals AXA4,
AZ(Z)A equals 4, and AZ(9)A equals 9.

A term is a well-formed string that denotes an array.
A formula is a term that denotes a truth-value. If wis a
variable and ¢ is a term, then Aw(¢) is a prefix designat-
ing a monadic operation. If w is a variable and ¢ is a for-
mula, then Iw(¢) and Yw(s) are formulas. The strings
Aw, Iw, and VYw are called binding prefixes. In each
case, ¢ is the scope of the binding prefix.

A given occurrence of a variable w in a term is bound
if and only if it occurs either in a binding prefix or in the
scope of a binding prefix having an occurrence of w.
Otherwise the given occurrence of w is free. The free
(bound] variables of a term are the variables having at
least one free [bound] occurrence in the term.

If s and ¢ are terms and w is a variable, then Aw () (s)
is a term, which may be written as Aw(t)s or Aw(t).s
according to the syntax of monadic operations. If the
bound variables of ¢ are distinct both from w and from
the free variables of s, then the array denoted by Aw(¢)
(s) is denoted also by the term got by substituting (s ) for
every occurrence of win #[34].

If w is a variable, ¢ is a term, and A is a prefix having
no free occurrences of w, then A\w(A(#)) and Aaw ()
designate the same monadic operation. If ¢ is the vari-
able w, then A\w(A w) and A designate the same opera-
tion.

The occurrence of arrays as items in other arrays
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defines an operation € of membership that corresponds
to the membership relation in the theory of classes. A€B
if and only if 4 equals at least one of the items of B.

AeB for v:AZ(A=7)B

AéB for -~.4€B.
Thus A€B=v.0oA:=B. This last equation is not used to
define membership because the positional operator is not
primitive.

If B is the triple P A @, then :AZ(4=7)B equals

(MZ(A=Z)P) (MZ(A=Z)4) (NZ(4=2)q),

which equals (4=P) (4=4) (4=Q). Thus 4€B equals
v 01 0,whichis1. Hence 4 ¢ P 4 4.

If B is an empty array and A is the operation NZ(4=2),
then 4€B equals v:A B equals v,:A B equals v:A,B
equals v:A\B equals v\oAD\B equals v\oAZ(4=7)>\B
equals v\e .4=>\B equals v\ .4=>\B equals v§ equals
0. Hence #B=0 +. A¢B.

If AeB, then 4 belongs to B, B contains 4, and 4 is
said to be an element or member of B. The words “ele-
ment” and “member” connote a disregard of order and
repetition.

An array is interpreted as a class or set and is called a
set if the ordering and repetitions of the items in the ar-
ray are neglected in the interpretation. For example,
AeB if and only if the array A belongs to the set B.
Every set is an array. In discussions outside array the-
ory, unordered collections are called classes.

If every member of set 4 is a member of set B, then
AcB.

AcB for A NZ(ZeB)A.

Thus AcB=A.A:€°B. For example, P § Q < Q@ R P S.
By an argument almost identical to the proof that no
array belongs to an empty set, one can prove that an
empty set is a subset of every set:

#A4=0 +. AcB.

The inclusion relation < is transitive and reflexive on
the universe of arrays and supports the definition of a
concomitant equivalence relation v, called likeness:

A~B for AcB A. Bcd.

Two sets are alike if and only if each is included in the
other. Array theory or list theory reduces to a system of
sets under the equivalence relation of likeness. Many of
the equations in the theory of classes hold also in array
theory or list theory if '="' is replaced by '+'. Like-
ness of sets differs from equality of classes in that the
members of like sets must be identical rather than
merely alike.

The definitions of membership and inclusion indicate
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that the following equations hold for every A provided
that a formula is substituted for the ellipsis:

ViaZ(. o)A = 3Z2(ZeA A (...))
AAZ(. . )A = vZ(Zed + (...)).

If :A AcO 1, then A is a monadic predicate on A in
the sense that A returns a truth-value for every item of
A. If a formula, such as '0', '1', '4=7", or 'ZeB"', is
substituted for the ellipsis, then AZ(...) is a monadic
predicate on every array.

14. Separation

The separation transform of a monadic operation separates a
sublist from an array by sublisting the array according to its
value under the replacement transform of the operation.

Zermelo’s Axiom III of separation postulates that if a
propositional function A is definite for all elements of a
class M, then M possesses a subclass containing as ele-
ments precisely those elements x of M for which A x is
true [36]. If M is known to be a class, then so is the ag-
gregate {xeM [ ...} of all elements x in ¥ for which a
formula (in place of the ellipsis) holds.

In the theory of classes, the axiom schema of separa-
tion is a corollary of the axiom schema of replacement.
Those elements of a class M that are to be separated
from M or kept in a subclass of M are sent to themselves
by a function A. All other elements of M are sent by A to
a class ¥ not in M. The desired subclass is obtained by
deleting N from the range of A. If this construction is
used to separate a subset from an array 4, then there
are as many copies of V in :A A as there are unwanted
items in A. Separation follows less directly from re-
placement in array theory, because all occurrences of
in : A A have to be found and then deleted from : A A.

The process of selecting some of the elements of a
class but not others suggests that a list of truth-values be
used to indicate which items are to be taken from a list
of the same length. For example,

11010/01234=013.

This is the ApPL function for compressing component
vectors. A similar operation, which is described below,
can be defined for all arrays. The axiomatization is de-
ferred to Part I1.

The sublisting of an array B by an array 4 is the list
A/B in main order of those items in the list of B that
occur at indices addressing items equal to 1 in #BpA.
Sublisting is primitive. For all arrays 4 and B,

4/B = ,.A/B

A/B =. #BpA/ B
A/B tAZ(Z=1)A/B.
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For example, 0 1 2/B lists every third item of B be-
ginning with the second. If B is the octuple
PQRSTUVW, then 0 1 2/B equals @ T ¥W. For
all arrays 4 and B, the list 4/B is called a sublist of B.

The following two properties of sublisting are anal-
ogous to Axioms 32 and 33. For all arrays 4 and B and
for every monadic operation A,

1ed A. #B#0 .». :A(4/B)=.4/:A B
144 ». :A(A/B)=:A\B.

Thus if A or B are empty, then :A(4/B)=:A\B. For
every 4, 9/4A=\4 and 0/4=\4 and 1/4=,4.

If A is a monadic operation, then :A A/A lists the
items of A that A sends to 1. For example, :#4/4 lists
the singular items of A. -~:#A4/4, which equals :-:
#4/4 and : (=#)A/4, lists the empty items of 4. If A is
a monadic predicate on 4, then :A A/A is the list of all
arrays X in 4 for which A X is true. This array-theoretic
counterpart to the axiom of separation suggests the fol-
lowing definition of the list abstraction or separation
operator /.

/A A for A A/A.

The separation transform /A of a monadic operation A
is a monadic operation that deletes from the list ,4 of
an array A each item X for which A X#1. Thus /A A
corresponds to {Xed [ A X}. If a formula is substi-
tuted for the ellipsis, then for every 4, /AZ(. .. )A cor-
responds to {Zed 1 ...}

The preceding correspondence suggests that intersec-
tion and set difference be defined as in the theory of

classes:
AnB /NZ(ZeB)A

/NZ(Z&B)A.

for

A~B for

The intersection of an array 4 with a set B is the list
AnB in main order of the items in 4 that belong to B.
Forexample,P @ R @ n R § Qequals@ R .

Operational abstraction can be used to define opera-
tions that combine particular items in their arguments.
For example, the monadic operation AX ¥ Z(...) ap-
plied to an array 4 assigns values to the bound variables
X, Y, and Z by letting the triple X ¥ Z equal 3pA. The
value of AX ¥ Z(...)4 is determined by combining the
O-item X, the 1-item Y, and the 2-item Z of 3pA4 accord-
ing to a term substituted for the ellipsis. If 4 is an array
of triples, then /AX ¥ Z(XeYA.XcZ)A4 is the list of all
triples X ¥ Z in 4 for which X is both a member of ¥ and
a subset of Z.

Operational abstraction can also be used to define
dyadic operations and dyadic operations that combine
particular items in their arguments. For example,
AM.Y(...) is a dyadic operation and AV ¥.X Y

Z(...) is a dyadic operation in which ¥V and ¥ are
taken cyclically as the first two items of the left argument
and X, Y, and Z are taken cyclically as the first three
items of the right argument.

15. Powers

The power array of a finite array holds all of the finitely many
sublists of the array.

Zermelo’s Axiom IV of the power class assumes that
to every class M there corresponds another class, called
the power class of /, that contains precisely all the sub-
classes of M. Similarly, in array theory, to every finite
array A there corresponds another array *4, called the
power array of 4, that holds precisely all the sublists of
A. In list theory, the list of *4 is the power list of A.

*4  for TAZ(Z2/A)% H#Apo0 1.

The definition of *4 is perhaps best explained by an
example. If 4 has two items, then 2po0Q 1 equals (0 1)
(0 1) and x.#4po0 1 equals a 2 by 2 array holding
(00) (01) (1 0) (1 1) in main order. The opera-
tion A\Z(Z/A) causes its argument to sublist 4. Thus
*4 is a 2 by 2 array in which each item is a sublist of 4
got by using a Boolean list of length 2 to sublist 4.

2P @ = (\°P) (,°Q) (,°P) (P @).

All arrays have finitely many axes. Axis lengths, and
therefore indices, are restricted to countable (denumer-
able) ordinal numbers [38]. Thus every array is count-
able in the sense that its items can be put in a list indexed
by the finite ordinals Q, 1, 2, .... A finite array holds
finitely many items and has axes of finite lengths. Since
Cartesian products take only finite arrays as arguments,
power arrays hold only finitely many finite lists as items.
The continuum of all infinite Boolean sequences cannot
be constructed (Section 17).

16. Unions

The union of an array holds all the items of items of the array.
Dyadic unions and monadic intersections are defined in terms
of monadic unions.

Zermelo’s Axiom V of the union assumes that to
every class M there corresponds another class, called the
union of M, that contains precisely all the elements of
members of M. The items of the items of an array are
called components. The union UA of an array 4 is a list
holding precisely all the components of 4. U4 holds
the items in main order of the first item of 4 followed by
the items in main order of the second item of 4, etc. For
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example, the union of the quadruple (P @) (°R)
(\oS) (g PTYequalsP QR QP T,

The union U4 of 4 equals ,uAd and u,4 and u:,4.
Both ue4 and u:°4 equal ,A. Both U\4 and u:\4
equal \24. The count #U4 of a union equals the sum
+:#4 of the counts, :Aud=u::A A for every monadic
operation A. The generalized associative law holds for
unions, intersections, sums, products, etc., in the sense
that uU:u4d=uu4d and n:nd=nud and +:+4=+U4d and
x:xA4=xU4. The preceding equalities hold for every
array 4.

The union AuB of an array 4 with an array B is the list
holding the items of A in main order followed by the
items of B in main order. Dyadic union is defined as the
monadic union of a pair:

AuB for U.43B.

For example, P Q R U@ SequalsP@R @ S. IfBis
empty, then AuB=,A. Thus \Au\B=\A4. If B is nonemp-
ty and 4 is empty, then AuB=,5. The operation of unit-
ing treats its arguments as lists. AuB=. ,Au,B. As in the
monadic case, # (AuB)=. #A+#B.

The union of arrays may be interpreted as the union of
sets under the equivalence relation of likeness. If 4 and
B are nonempty and differ, then AuB and BUA are alike
but unequal.

The link A,B of an array A with an array B is the list
holding the items of 4 in main order followed by B itself:

A,B for AueB,

For example, P3¢ ,K,5S = P @ B 5. If ¥ is a monad-
ic operation, X is a mote, and Y and Z are arbitrary ar-
rays, then F(X,Y,Z) is the value returned by F from the
triple X,Y,Z taken as argument. If 4 is empty, then
A,B=,0B.

The intersection N4 of an array A is the sublist of
those items in 24AnuA that belong to every item of 4. If
4 is nonempty, then 2Anud=>A. Thus n(45B)=.4nB.
If 4 is empty, then both 24nuA and n4 equal \>4. The
class-theoretic definition of intersection guides the array-
theoretic definition.

nA4 for {ZevA | VB(Bed~.ZeB)}
n4 for /NZ(A:AB(ZeB)A).24nuA.
17. Choice

Since every array is well-ordered, the axiom of choice is implic-
it in the theory. Cartesian products are defined only for finite
arrays.

Zermelo’s Axiom V1 of choice postulates that if ¥ is a
disjointed (pairwise disjoint) class of nonempty classes,
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then the union of ¥ includes at least one subclass having
one and only one element in common with each element
of M. In the general principle of choice, which Zermelo
deduced from Axiom VI [36], the class ¥ need not be
disjointed. Zermelo (1904) used the principle of choice
to prove the well-ordering theorem, which asserts that
for any class there exists a well-ordered class having the
same members [44]. The well-ordering theorem, in turn,
implies the axiom of choice [45].

The axiom of choice is implicit in array theory be-
cause every array is well-ordered. Every nonempty sub-
list of an array holds a first item.

The axiom of choice is also equivalent to Russell’s
(1906) multiplicative principle: if / is a disjointed class
of nonempty classes, then the Cartesian product of ¥ is
nonempty. Unlike the Cartesian product in array theory,
the Cartesian product used in the multiplicative principle
is not ordered.

Let 1¥ be the count of the infinite list 0 1 2 ... of
the finite ordinals. If A is the list 1Wpo0 1, which
equals (0 1) (0 1) (0 1) ..., then the unordered,
class-theoretic Cartesian product of A contains every
infinite Boolean sequence. Cantor’s diagonal method
shows that this Cartesian product cannot be made into a
list of length 1%. In general, there appears to be no ap-
propriate way of ordering the elements of a Cartesian
product of an infinite array {45]. Thus in array theory,
Cartesian products are defined only for finite arrays.

If 4 is finite, then the count of the Cartesian product
of A equals the product of the counts of the items in 4.
BA<1W +. #xA=x:#4. If A equals 1Wpec0 1, then x4
is undefined and #x4 is certainly not 1%¥. However,
x:#4 equals X2 2 2 ..., which equals the limit 1¥ of
the sequence of ordinals 1, 2, 4, 8, ... [46]. The
restriction to finite 4 cannot be omitted.

18. Infinity

Given the existence of an infinite list, one can construct arrays
having finitely many axes of various transfinite countable ordi-
nal lengths.

Zermelo’s Axiom VII of infinity postulates the exis-
tence of a class ¥ that contains the empty class and the
unit class of every element in /. Similarly, in array the-
ory, there exists alist @ (o9) (c°€) ... in which the
null is the first item and each item is followed by its sin-
gle. The count of this list is 1%, which is the first trans-
finite ordinal number.

In APL, 14 equals 0 1 2 3 in 0-origin indexing. Let
1#4 be the list in ascending order of all ordinal numbers
less than #4. Thus 1#4 is the array-theoretic counter-
part of the class-theoretic definition of an ordinal num-
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ber. 11/ lists the finite ordinal numbers, which serve
also as the nonnegative integers.

The lists 0123 ... and 3 4 5 6 ... have the
same count 1% . The first list equals the union of 0 1 2
with the second list. Since the count of a union equals
the sum of the counts, 3+1¥=1/. The union of
3456 ... with (followed by) 0 1 2 has count
1W3, which equals 1¥+3 and differs from 1¥. Ordinal
addition is not commutative.

Array theory uses a nonstandard notation for the
transfinite ordinals to accommodate the conflicting de-
mands of different disciplines. The notation is based on a
lexicographic ordering for multiplication rather than the
usual antilexicographic ordering [19]. 2x1¥=2F. The
product #4x #B of the multiplier #4 with the multiplicand
#B equals the sum +.#4p#B of #4 repetitions of #B.
The theory follows Cantor’s [18] original convention in
placing the multiplier to the left of the multiplicand.
Modern notation follows Cantor’s later reversal of the
convention [45]. Ordinal multiplication is not commuta-
tive.

The exponentiation #4x#B of the ordinal #4 raised
to the ordinal power #B equals the product X .#Bp#4
of #B repetitions of #A4. The convention of lexico-
graphic ordering for multiplication requires that suc-
cessively applied exponents be multiplied in reverse
order.

HAxH#BxH#C =, #4%.FCxHB.

Table 1 shows how the list of the first 1¥*3 ordinals
can be visualized as the main list of an array having
three axes, each of length 1W. All ordinal numbers in
the left-hand column of the table are limit ordinals,
which have no direct predecessor.

The ordinal 2% may also be written as 'OW2K0"',
which indicates that 2/ is located in layer O, row 2,
and column O of the array. 1W¥ equals both 1W/*2 and
1WOWQ. The operations of counting, uniting, and reshap-
ing construct from the list 11¥ a class of countable,
transfinite ordinal numbers. For example, 1W/ equals
#u. oo 1 1W.

19. Reduction

The reduction transform of a dyadic operation is a monadic oper-
ation defined for finite, nonempty, nonsingular arrays. The fold
transform of a monadic operation is dyadic.

Reductions involving scalar functions in APL suggest
the definition of a reduction operator # that transforms
an arbitrary dyadic operation A into a monadic operation

#A called the reduction transform of A. A reduction
transform depends only on the list of its arguments:
#A A=+4#A,A for every 4. For every dyadic operation A
and all arrays 4, B, and C,

#0(B3C) =. BAC

3<HA A HA<IW >, £A A =. D4 A FA1V,A.

For example, if A = P § R, then 24=P and 1+¥,4=Q R.
Hence #A AequalsP A.Q A R.

Sums +A4, products x4, logical sums V4, logical
products A4, unions U4, and intersections n4 are de-
fined for all arrays. If A is one of the six preceding mo-
nadic-dyadic operations, then A(B5C)=.B A C for all B
and C. Further, if 4 is nonempty, nonsingular, and finite,
then A A=#A A. X4 is not the same as #x4, although
X(B5C)=.BxC. For example, XP @ E is an array of tri-
ples, whereas #XP @ R equals PX.gxF, which is an
array of pairs.

If an array A is infinite or holds less than two items,
then there appears to be no uniform way of determining
#A A for any given A. For example, if 4 is a finite Boo-
lean list, then #=4 equals 1 or 0 according as 4 holds an
even or odd number of zeros. Is the number of zeros in
an infinite list even or odd? How does one define #Ao4
uniformly for arbitrary A if +oA4=.A+0 and uoA4=,4?
What is #A\A4 in general if +\A=+o35\4 and U\4=\24?
These questions suggest that reduction transforms
should be left undefined for empty, singular, and infinite
arrays. For such arrays, monadic union differs from the
reduction transform of dyadic union.

The reduction operator transforms a dyadic operation

Table 1 The ordinals less than 1Wx1WX1}.

2 e 1 [/

0 1

0 1 2
l 1¥ 1W1 1K2 e
2K 201 2K 2 e

1y cen
1WW 1WW1 1WW2 . o
101w 1W1W1 1W1W?2
102K 1201 1W2¥?2 RPN
20K 2011 2WW 2 [N
201N 201171 2W1W?2
1W 2W2W 212KW1 2W2W2 N
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into a monadic operation. Monadic operations can also
be transformed into dyadic operations. The fold [47]
operator i transforms an arbitrary monadic operation A
into a dyadic operation BA that takes a finite ordinal
number as left argument and any array as right argu-
ment. (The fold operator in [47] results in a monadic
operation.) The left argument indicates the number of
times A is to be applied to the right argument. A fold
transform, like any other dyadic operation, is subject to
operators. For example,

0123 :Mood = 4 (04) (00d) (0o0od).

20. Arrays

Singles are O-valent arrays. Singles and nonsingular lists are
suits. Shapes and addresses are suits of lengths and indices.
The null is the shape and address for all singles.

In comparison with array theory, list theory has the
advantage of confining addresses to the simplest form.
Although an array on more than one axis can be repre-
sented by the nesting of lists within a list, the process of
fetching an item of the array, as represented in the list of
lists, is complicated by considerations of both counting
and nesting. If a uniform array is represented by a
uniform list, there is no information available in the list
to indicate the depth of nesting required for the repre-
sentation of the axes of the array.

Matrix algebra, tensor algebra, and APL illustrate the
convenience of locating the items of an array by ad-
dresses consisting of two or more indices. If the uni-
verse of arrays is to be closed under the tensor opera-
tions of outer multiplication, contraction, and inner mul-
tiplication, then the universe must contain arrays having
any finite number of axes.

Let V be an n-dimensional vector space over a field.
Disregarding considerations of contravariance and co-
variance, a tensor of valence g on V is a multilinear map-
ping of the Cartesian product of the list V V ... V of
length ¢ into a vector space [48]. If V has a base, then a
tensor of valence g on V can be represented by a compo-
nent tensor, which is an array on ¢ axes, each of length
n. The items in a component tensor are scalars belonging
to the field. The scalars may be pairs of real numbers
representing complex numbers.

The number of items in a component tensor is deter-
mined by raising the dimension of the underlying space
to the power of the valence. If this rule is to hold for all
valences and all dimensions, then every component ten-
sor of valence 0 must hold exactly one item. For exam-
ple, if the dimension is 3, then 0-, 1-, 2-, and 3-valent
component tensors have 1, 3, 9, and 27 items, respec-

MARCH 1973

tively. If the dimension is O, then 0-, 1-, 2-, and 3-valent
component tensors have 1, 0, 0, and 0 items. Compo-
nent tensors of nonzero valence over a space of zero
dimension are empty.

The inner product of two component tensors of va-
lence 1 is a component tensor of valence 0 holding just
one scalar. Since an inner product of component vectors
produces a scalar in both vector and matrix algebra, ten-
sor algebra usually identifies a 0-valent component ten-
sor with the scalar it holds.

A mote is an array that holds itself as sole item. Com-
plex numbers, which are scalars in a field, and real num-
bers, which are scalars in a subfield, are appended to
array theory as motes having O as pattern. The preced-
ing considerations from tensor algebra suggest that
motes should be O-valent arrays. Since motes are singles
that hold themselves, the operation of singling is now
defined to return O-valent arrays as values. All arrays on
no axes, such as ordinal numbers and characters, are
called singles.

All singles and all nonsingular lists are called suits. A
suit of no items is an empty list. A suit of one item is the
single of the item. A suit of two or more items is the list
of the two or more items. Every nonsingular suit is a
nonsingular list and vice versa. Singular suits are singles.
Singular lists are solitaries. A string is a suit of charac-
ters. Thus a string holding one character is the character
itself. .

The shape ~A of an array A is a finite suit holding the
lengths of the axes for 4. The 0O-item in a nonempty
shape is the length of the 0-axis, the 1-item is the length
of the 1-axis, etc. The shape of an array on one axis is a
suit holding™one length. Thus the shape of a list is the
axis length itself. The shape of an array on no axes is a
suit holding no lengths. Thus the shape of a single is the
null 9, which is the empty list or suit with pattern 0.

Axiom 5. The shape of zero is null.
~0 = @.

Definition 1. The count of an array is the product of its
shape.

#4 for x~A.

An address for an array is a finite suit of indices. An
address for an array on one axis is a suit holding one
index. Thus an address for a list is an index. An address
for an array on no axes is a suit holding no indices. The
null is the only empty suit of pattern 0. Thus the null is
the unique address for a single [9a]. Unlike ApL\360,
the item in a number or character has the null as ad-
dress. Since the address for a single is unique, a single
holds precisely one item, which is located at . The
axioms and theorems may now be interpreted in terms
of arrays.
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21. Cartesian products

Outer transforms and Cartesian arrays are defined in terms of
Cartesian products. Boxing, exponentiating, and positional
transforms are defined in terms of outer transforms.

The diagram in Fig. 1 represents a table or 2-valent
array 4 in which B is a list of length 7, C is a single, D is
a table of shape 9 5, and F is a solitary. Component T
of 4 is at address O 1 in D, which is at 1 0 in 4. Figure
2 represents the Cartesian product of 4.

The figures show various aspects of a diagrammatic
method for representing arrays [9a]. The tail, body,
point, and head of an arrow show, respectively, the axis
number, axis label, direction of increasing indices, and
length of an axis. Some of the layers, rows, or columns
normal to a long axis may be omitted. Only those cells
are filled that are needed to illustrate a point. Some of
the hyperplanes (rows, layers, etc.) may be indexed
explicitly.

The axes labeled 0, 1, 2, 3 in the four diagrams for
the items of 4 in Fig. 1 become the axes numbered
0, 1, 2, 3 in the diagram for x4 in Fig. 2. Axes I and
J in Fig. 1 become axes I and J in Fig. 2.

An array S is said to be a section of an array 4 if A
and S have the same shape and if the first item of S is an
item of the first item of 4, the second item of S is an
item of the second item of 4, and so on in main order
through all the items of A and S. The items of S are
components of 4.

The Cartesian product XA of a finite array 4 is an ar-
ray of size U:~4 holding every possible section of 4.
For example, if 4 is the pair B5C and 7oB is an item of B
at address I and J>C is an item of C at address o, then
IoB5.J2C is the section of 4 that occurs in XA at ad-
dress Tud. If A4 is infinite, then XA=fl.

If XA is nonempty, then DXA=:24. A finite array has
the same components as its Cartesian product in the
sense that UA and UXA are alike. ::AXA4A=X::A 4 for
every monadic operation A. The dyadic Cartesian prod-
uct AxB is defined to be the monadic Cartesian product
Xx(A3B) of a pair.

To each dyadic operation A there corresponds by the
outer operator, which is designated by a macron, another
dyadic operation “A called outer A or the outer trans-
form of A:

#4270 A. #B20 .». A A B = :4A.AXB
H#Ax#B=0 ». 4 A B =. ~Au~Bpo .24 A>B.

Quter transforms are the dyadic counterpart of re-
placement transforms.

oA A B = :\Z(A A Z)B
ATAeB = :10Z(Z A B)A.

A 1 2
0 B 0 C
_ Y a7
0
P Q R
I
D 2 E
l———»5
2 0 —3—>1
S T
1
1 Z
w
9

0 1

Figure 1 A 2 by 2 table 4 holding a septuple B, a single C, a
9 by 5 table D, and a solitary F.

Figure 2 The Cartesian product X4 of the array 4 in Fig. 1.

x A 2 5
! l—]—>2 1———]—»2
0 0
P R P R P R
3 1
S 4 T 4 yA
2
0
1 P R P R
y I
9
w Z A
2
Q R Q R
S Z T yA
7
Q R
w Z

Some of the properties of Cartesian products and out-
er transforms stem from the following identities:

X:04=04 X,A=: %4 X\A=e\24
Xod=104 \xA=\x:\4.

An analogue : UX:XA=XUA of the generalized associa-

$XA=,X1 A
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tive law holds for Cartesian products. A monadic opera-
tion A is general associative if A: A A=AUA for every 4.
If A is general associative, then so is :AX. : #AX is the
same operation as (: (#A))x. If Ais a finite, nonempty,
nonsingular array and A is a dyadic operation, then
£ A A=:4AxA. If A is associative, then both #A and
4 A are general associative for finite, nonempty, nonsin-
gular arrays.

Monadic union U extends the domain of definition of
the reduction transform #u of dyadic union from finite,
nonempty, nonsingular arrays to empty, singular, and
infinite arrays. :UX extends the domain of definition of
the reduction transform # U of outer union to empty and
singular arrays.

The Cartesian array 1~A of an array 4 equals X:1~4.
Each item of 1~A4 equals its address in 1~4. Every ad-
dress to an item in 4 occurs in 1~4. Thus 10=0 and
19=09. The shape of 1~4 equals ~4. 13 0 4 is the
empty array of shape 3 0 U4 with pattern0 0 0.

If B is an array of addresses to items in 4 in the sense
that Bc1~4, then B o4 is an array of shape ~B of
items selected from 4. Let B#4 and ALB] equal B 20 A.
For every array 4, both 1~A#A and A[1~A4] equal 4.
The dyadic operation # is called boxing. If Te1~A4, then
InAed. If Be1~A, then B#AcA.

The exponentiation of a class M to the power of a class
IV is the class of all functions mapping N into M. Let the
exponentiation A%B of an array A to the power of an ar-
ray B be an array holding all possible arrays got by re-
placing the items of B by items of 4:

A*B  for §(~Bpol~A)—#OA.
H#B<1W +. #(A*B)=.#Ax#B.

Positional transforms are defined in terms of a repli-
cating transpose operation §, which works in the same
way as the APL dyadic transpose except for diagonal
slices involving singular axes. The replicating transpose
causes singular axes to replicate to the length of the
shortest nonsingular axis. For example, if 4=.1 3p
'PQR"', then 0 084 equals ,'P' in apL but 'PQR' in
array theory.

In APL, if 4 and B are simple arrays of the same size,
then A+B equals ((1pp4d),1ppB)Q40.+B. This equa-
tion suggests the following definition in terms of the re-
plicating transpose. For every dyadic operation A and
for all arrays A and B regardless of conformability,

A:A B =, \#~A0#~BR.4 A B.

If A has 3 axes and B has 4, then 1 #~Au1 #~B equals
012012 3.
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22. Motes

Moting sends arrays to motes. Unmoting is inverse to moting.
Moting and unmoting have no effect on basic motes. Unmoting
an array is the same as unmoting its extract.

The mote o4 of an array 4 is, in intuitive terms, the
array °co...A4. The moting operation has the property
that the mote of an array is a mote:

oA=00/.

The unmote 24 of an array 4 is the array ...2224
got by 1W successive extractions of 4. The unmote of
an array equals the unmote of the extract of the array:

24=254.

The unmote of the mote of an array is the array itself.
204=4. An array A4 is said to be a basic mote if and only
if A=0A. If 4 is a basic mote, then 24=4. Any finite
number of motings or unmotings of a basic mote returns
the basic mote as value. The foregoing suggests that a
basic mote may be interpreted as a transfinite nesting
1AWl deep of singles within singles:

ooo,,, ©00,,, 00O

The operations of moting and unmoting permit arbi-
trary arrays to be moted and then treated in essentially
the same way as basic motes. The mote of any array
other than a basic mote can be used to augment the store
of basic motes. If basic motes are the only motes needed
in the theory, then the operations of moting and unmot-
ing are superfluous, and there is no need to distinguish
between motes and basic motes. Singling makes an arbi-
trary array behave enough like a mote to satisfy most
applications.

When moting is included in the theory, the pattern of
the mote of an array equals the mote of the plan:

D\24 = oo\ 4.

Both singling and moting commute with planning:
S\ood = oo\o4

S\ood = 29\oA.

23. Proofs

The proofs from hypotheses in Appendix 11 use the deduction
theorem, reductio ad absurdum, the law of the excluded middle,
and the inferential rules of modus ponens and substitution.

Appendix I lists the axioms, definitions, and theorems
in an order that is prescribed by a desire to deduce as
much as possible from each assumption before introduc-
ing a new assumption. Corollaries are listed below each
axiom, definition, and theorem. Appendix II lists the
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proofs of the theorems. The rules of inference are modus
ponens and substitution.

The premisses of a proof occur above the proof mark
'+'. Conclusions occur after and below the proof
mark. By the deduction theorem [35], the conjunction
of all the premisses implies any conjunction of some or all
of the conclusions; in particular, the last conclusion
alone. The proof mark is omitted in proofs having no
premisses.

Two proofs are required for the proof of a coimplica-
tion: one for each direction of implication. The proofs
usually depend on different selections of axioms and so
occur at different points in the sequence of theorems.
For example, only the direct proof occurs below Theo-
rem 4. The converse proof occurs at Theorem 70. Theo-
rems 4 and 70 are different implications but the same
coimplication.

The reasons justifying the appending of conclusions to
a proof are shown in a right-hand column of theorems.
The format is believed to be new in that the justifying
theorems are displayed in full. The required substitu-
tions are usually easy to determine because the proofs
are short.

A definition, such as Definition 1,

#4 for X~/

is a metalinguistic rule that allows any occurrence of the
definiens (on the right) to be replaced by an occurrence
of the definiendum (on the left). For example, the theo-
rem x~A=#4 follows by Definition 1 from X~A=x~A4,
which is a substitution instance of Axiom 1.

The deduction of a contradiction from a premiss, as in
Theorem 10, proves the denial of the premiss. Accord-
ing to the law of the excluded middle, a conclusion is a
theorem if it can be deduced from a premiss as well as
the denial of the premiss. For example, Theorem 98 is
implied by #A4#0 alone and by #4=0 alone. Hence
#A#0 v. #4=0 implies the theorem. The theorem then
follows from no premisses.

Definition 4, which is not used in Appendix II, is
stated in Appendix I only to show how singling is de-
fined in terms of primitive operations. The properties of
the definition are not needed until Part II of the axioms
and theorems. The definition is analogous to that of a
unit class as an unordered pair.

Definition 4. A singled array equals the null reshape of the
array paired with itself.

04 for 9p . 454
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Appendix 1:

Al

A2

A3

At

D1

D2

D3

AS

Dy

A6

A7

A=A A8
AzB -+, A A=A B
A A=A B -, A#B A9
A=B >, A A C=,B A C
A A C=,B ANC ,». A2B
5
A=B ., C A A=.C A B
C AN A=z.C A B .». A#%B
A=B =, B=4
B#A =. A=#B
A=B A, B=C .». A=C
A=B A, A=C .-». B=z(C
#4 FOR x~A4 6
x~A=#A
0 FOR #¢
#0=0
xX~g=0
1 FOR #0
#0=1
xe~0=1
##0=z1
~0=¢ D5
x&=1
#~080
x~~0_—_0
~A=6 =, #~A=0 7
o4 FOR 6p.AsA
@p(As5A)=04
#Azox/
0=00 Al0
1=01

X~ zox~/4

DoAd=A

List of axioms, definitions, theorems and corollaries

@pA=004
Gpod=0A

~(~ApB)=~4
#(~ApB)=#A
~(e&pA)=¢8

~oA=6€
~4A=€
~1=¢
~x~A =€
~ofd=~0
A=eB -,
AzedA =. ~Az®
#~04=0
X~~od=Q

#0ld=1
##A=1
#1=1
~A=#A =,
~Az=o~A =,
#(&pd)=1
x~o /A =1
x~1=1
#x~4=1
xe~p =1
Xrox e~ =1

#~A=1
#~A=1

,A FOR
#ApAd=,4A
#~Ap~A=,~4

#ApA

1pod=,04
1p0=,0
ipl=,1
1p#Ad= %4
1px~A=,x~4

:>

s O TR T |

1.

T S T R .
[T = =

L
o
e
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8 ~(#ApB)=#A4A
~(0pAd)=0
~(1pA)=1

Al1l 021
#0420
#0=20
#1=20
#6021

9 oAz
#Az2Q
0#@
129

10 o=z, 04

11 JA%0 A
o,Aroo0 A

oo, ,Azoo0 4

12 JA#oo0 A
o,A#oco0o0 A

D6 \A4 FOR 0p4
0pAd=\4

13 ~\A4=0

#~\A4A=1

A=\A4A =. ~4=0
14 ~\ApB=\B
15 #A=0 =. ,A=\4A
i6 JA=\A =. #A=0
Al2 0<#4
A13 #A<#A

Aly #4200 >, 1s#4
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A15

17

18

19

Ale

20

Al17

21

22

23

24

25

26

27

Al8

#A<#C », ~ApB=.~Ap.~CpB
~ApB=,~Ap .~ApB
1pA=.1p.1p4

#A=0 >, ~ApB=,~4dp.~CpB

#A=0 +». ~ApB=,~4p\B
\\4=\4

#A20 >, >(~ApB)=>B
#B=0 -+, ~ApB=.~Ap.~CpB
#B=0 »+. >(~ApB)=oB

# ,A=84
~ApB=,~Ap .#ApB
GpA=.6p.1p4

x#A=%A
xogdzox/
XX~A=x~4
x~ A=~ A
x0=0
x1=1

#\A4=0
~Ap\B=,~Ap.~Cp\B
>(~4p\B)=>\B

s \A=\A

~Ap\B=,~Ape°>\B
#Ap\B=.#4dp°>\B

\(~4pB)=\B

\A=\o>4
~Ap\B=.~Ap\o>B
5\A=o\o24

o\es\4=5\4

A=o\A >, A=>o\o4

>\ eo\eAd=o\0o4
\o2\eoAd=\A4

\eo\A=\4

\oed=\oed\04
o\eoA=d\e4 =, \A=\o4

5\4A=>\B =. \A=\B

#A |#A=0
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A19 #B<#C A, #B|#C=0 .-, y? ~A=~B A, ,A=,B .=. A=B
~ApB=.~Ap.~CpB ~Az#A =, A=,A
28 ~ApB=.~4p,B L3 ~4=0 =, A=\A
~,Ap,A=,4A
#ApB=.#4p,B qy ~4=1 =. A=,034
#B=0 ». ~ApB=,~Ap\B ~4=1 >, A=,4
#B=0 », ~ApB=,~Apo>\B
45 ~A=¢ =, A=034
29 \,4=\4
A22 \~4=¢
30 s sA4=,4 ~&=0
\o=6
31 2A=2,4 ,0=6
o,04=4 ~~0 ()
DA =>5,024 \~0=¢
,~0=¢
32 s0d=,08B =, A=B ~~o A =0
\~od=6¢
33 #4=0 >, 24=0\A ,~oA=6¢
34 #ApB=,#4p .~ApB 46 \#4A=¢
1pA=.1p.0pA \e#A=6
\0=¢
35 ,(~ApB)=.#ApB \1=¢
s (~ApB)=.~,ApB \#4=~0
,(#ApB)=.#ApB \~,A=¢
\x~A=6
36 #A=#BA,~ApB=A .=. ,A=,B
47 ~QpA=\4
37 1pAd=,024
1pA=, .0p4 A23 5€=0
1p(A354)=,0°4 o\ &=0
#0pA=,024
48 o\~4=0
38 #A=1 =, ,A=,024 5\0=0
S\#A=0
39 #A=0 »>. o(~ApB)=>\B S\oe#A=0
o2\1=0
40 #(#ApB)=#4 5\~,4=0
#(0pA)=0 S\ x~A=0
#(1p4d)=1 o\o~ ,A=0
s\ex~A=0
A20 11#4=0
49 ~Ap@=,~Ap0
41 #C=20 »,~ApoB=,~Ap.~CpeB @pe=0
#C#20 >, #ApoB=,#Ap.#CpoF 1p6=,0
#B=1 A, #C#0 .-, 1p~0=,0
~ApB=.~Ap .~CpB 1p\0=,0

A21 ~ApA=A
~Ap A=A
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A24  o\od=.~Ap\A
5\od=.~Ap°>\4
~o5\oAd=~4
#o\oA=#4
o\o,A=.#Ap\4
D\o,A:.#Apoz\A

50 o\eAd=,~Apo>\o24
3\oA=z,~Apo.~dAped\ed34
o\oAd=,~4po.

~5Apo,~>34ped\e>554

51 \Ad=\o.,~34po>\e>D4
\A=\e.~ddpe.
~>523Apen\o>3524

52 5\A=.~24po>\ed24
o\d=.~34poe.
~30Apod\e>2304

53 #4=0 ». A=>\o4

54 s\Az=.~24p\24
~>5\A4A=~24
#2\A=#>4

55 \>\4=\24
5\o24=0\>o\4
\2\eA4A=\4
5\2\ed=5\4
o2\ oo5\4=0\2\°4
\>54=\>o\24
\o>24=\>\>\4
\>o54=\>o\4

56 5\ o\A=\A4
>\ o0=¢
>\ o\A=\>\?o4

57 55\e4=5\4
>\ en4d=o5\c4
5\oA=d\e24 -,
s\en4d=o\ed24

58 >o5\A=>\24
oo\A=>\>\4
5oo\A=o\>nA

ooo\4=5\2\>\4

59 5\A=.~24po>>\4A
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60

61

62

63

qn

65

66

67

68

69

A25

70

~5\nAd=~224
~505\A=~224
~o>\o\A=~>24
#2\2A=%#>24
#o50\A=#>>24
#2\o\Ad=#>24

s\ood=0Dd\o/4

S>\ooed4 =022\ 0/

A=o\A ». od=>\ood4
A=oAd =, D>\ohd=o0>5\04
S\A=02\4
5\od=0>>\04

~Ap\B=,~Ap>\°B
~Ap>\eB=,~Ap\°>B
~Apo\eB=,~Apo>\B
#Ap\B=,#Ap>\ 2B
#Apo\eB=,#Ap\o>F
#Apo>\oB= ,#Apo>d\B

~Ap>\B=,~Ap\D2B
#Ap>\B=,4Ap\>B
~Ap>\B=.~Ap\>\B
~ADD\B=.~AQOD\D\B

>\e(~ApB)=.~Ap\B
o\e(~ApB)=.~Ap\°>B
o>\e(~ApB)=.~Ap>\oB
o\e(~ApB)=,~Ape>\B
o\o(#ApB)=,#Ap\B

o\e ,A=,2\04
5\o,04=,02\04
D\O,oDAz,oDD\oA
A=,A =, >\od=,0\04
s\ed=,0\04 =, 4=,4

o2\ed=e3d\ocd =, 4=

°
U
kN

5\oeAd=,030\04 =, A=,e2A

5\o~A=, ~~Ap0
5\o,~A=.8~Ap0
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71

72

73

7y

75

A26

76

A27

77

78

79

A28

D7

80

81
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A=5\A +. A=o4

5\A=5\o04d =, A=04

S5\ed=zo>d\0d =, A=oA

d2\eAd=0 =, A=cA A, D\A=0

Az, 04
S\ E=Fl

[d=ofl
>\ ofd=fd
fl=opl
~pl=@
#0l=1
#~pl=0
EEL]

=20

fl=1

82

A29

83

A30

A31

8h

85

D8

D9

86

87

°A#0
#A#0
0#0
120
=0

1 1-ot 1t
o\o!
votzot 1

t=t 1t

~t 1
#' '=1
#~1 1=Q
1 lze,
LR 0]

& FOR
\! '=6
\é&=6
,0z=6
~d =0
#~0=1
#0=0
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88 oAz® 101 tA A=.~Ap:A,A

#Az20
0=d 102 #A=0 >, :A\A=\:A 4
126
P=d 103 #4=0 +», D:A A=2\oADA
? ':o
) 104  :A€=\oA O
A32 #A20 A, #B=z0 .-, 106=6@
tA(~ApB)=.~Ap:A B :0Q=¢
1~@=\eo @
89 #4220 A, #Bz0 .-, :\@=\o6&
tA(#ApB)=.4#dp: A B >:\8=6
90 #A20 >, :1Aodhd=0D:A A 105 :A0=\o Al
:00=0
A33 #A4=0 -, :120=0
:A(~ApB)=.~ApoA>\B ~0z\og
#4=0 -+, :\0=\°0
tA(#A4pB)=,4#ApoAD\B >:\0=0
91 :A\A=\oAD\A 106 :Ad=\oA' !
cod=04
92 :o\A=\>24 =1uEL)
t~d=\o@
93 :A\A=\:AM\A t\d=\od
S5:\6=0
gy #A=0 >,
tA(~ApB)=.~Ap:A\B 107 t#\A=0
#A=0 +, 1A A=.~Ap:A\A 1 #0=6
#4=0 -, +#\0=\0
tA(~Ap\B)=.~Ap: A\B t#\~A=\~4
s \#A=\#4
95 #A=0 », :>2(~ApB)=.~Ap>B 1 #0=6€
t4#0=6
96 #A=0 >, :0A=,~4p>4
#4=0 », :24=,~Ap\24 108 #4=0 +», :#(~ApB)=.~Ap0
#4A=0 +, :2A=,~Ap>\4 #A=0 >, :1#A=,~4Ap0
#A=0 »., >:1#4=0
97 #A4=0 >, A A=,~ApopA>d4
98 tA A=.~Ap:A A

99

100 tA,A=,:0 A
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Appendix 2: List of theorems with proofs

1 A=B =, B=4 1
A=B
+ A=A=.B=4 A3 A=B >, A A C=.B A C
A=A A1l A=A
B=A
2 A=B A, B=C .». A=C
A=B
B=C
+ A=C=.,B=C A3 A=B =+, A A C=.B A C
A=C
3 °oAd=oB =, A=B A2
oA=op
+ 204=00j HYP
A=B A7 Dol =/
4 A=04 =, A=24 70
A=oA4
+ DA=o04 HYP
= A7 S0AdA=4
5 ~olA=¢
~oAd=~0D0/ A7 Dol =4
=~ ,0poA A8 ®pA=024
=9 A9 ~(~ApB)=~4
6 #o04=1
X~o/Az=X€ 5 ~oA=Q
= A5 ~0=¢
7 1pod=,04
soA=,#0dpod D5 #ApA=,4
=,1po4 6 #od=1
8 ~(#ApB)=%4
~(~,ApB)=~,4 AS ~(~ApRBR)=~4A
~(#dpA)=%A Al0 ~ Az#4
9 o2&
#0420 A11 0=1
24 € D2 #0=0
cAz¢Q A2 A=B -, A A=A B
10 oAd#,0/4
o4 =,04
+ O=#~04 5 ~o/A=¢
s~ 04 HYP
= Al0 ~,A=#4
164 21 Al1l 0=1
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11 JA7o A
JA=0,4
7+ O=#~o A 5 ~o/=¢
=#~,A HYP
= A10 ~,A=#%
21 Al1l 0=1
12 ydA®00 A
,A:oo,A
+ O=#~oo A 5 ~o/ =
z#~, 4 HYP
= Alo0 ~, A=
21 Al1l 0=1
13 ~\A=0
#0=~,46p4 8 ~(#ApB
0=~.0p4 D2 #0=0
=~\4 D6 0pA=\A
14 ~\AdpB=\B
~\ApB=.0pB 13 ~\A=0
=\B D6 0pAd=\
15 #4=0 =. ,A=\A 16
#A=0
+ Az, #ApA D5 #ApA
=, 0pA HYP
=\4 D6 Opd=
16 WJA=NA =, #4=0 15
y7A=\4
+ #A=~,4 Al0 ~,A=%4A
=~\4 HYP
=0 13 ~\4A=0
17 #A=0 ». ~ApB=.~Ap\B
#A=0
+ #A5#\C A12
~ApB=,~Ap.~\CpB A1l5
=.~Ap\B 14
18 \\4=\4
#\B<#\B Al3
~\BpA=,~\Bp.~\Bpd A15
\A=\\4 14
19 #4A#20 >, >(~ApB)=>B
#A=20
> 1<#4 Alu
#0<#4 D3
@pB=.,6p.~ApB AlS
oDBzoe>,~AphB A8
>B=>5,~ApB 3

MARCH 1973

A
&
#A
Y=#%A4
A
=,4
\A
0<#4
#A<#C », ~ApB=.,~Adp.~CpB
~\4pB=\B
#A<# A
#A<#C >, ~ApB=,~Ap.~CpB
~\ApB=\B
SEE 39
#4220 -+, 1<#A4
#0=1
#As#(C -+, ~ApB=,~Ap .~CpB
@phd=024
od=0oB =, A=B
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20 #B=0 -+, >(~ApB)=>B

#B=0
+ GpB=,0p.~ApB Al6 #B=0 », ~ApB=,~Ap.~CpB
°o5B=0>,~ApB A8 @pA=034
o2B=5,~ApEB 3 °oA=0B =, A=B
21 x# A =% A
x#d=x~_ A A10 ~, A=#4
=# ,4 D1 x~Az%A
=%/ A17 #,A=%A
22 #\A=0
#\A=x~\A4 D1 x~Az#d
=x0 13 ~\4=0
= 21 x#Az=% A
23 » \A=\4
,\A=.#\4p\4 DS #ApAd=,4
=,00\4 22 #\4=0
=\\4 D6 0pA=\4
=\4 i8 \\4=\4
24 ~Ap\B=z=.,~Apeo>\B
#\B=0 22 #\A=0.
~Ap\B=.~4Ap .9p\B Al6 #B=0 », ~ApB=.~Ap.~CpB
=,~Apo>\B A8 @pA=0D4
25 \(~4ApB)=\B
#\C=0 22 #\A=0
#\Cs#4 Al12 0<s#A4
~\CpB=.,~\Cp.~ApB Als #A<«C >, ~ApB=.~4p.~CpB
\B=\.~ApB 14 ~\ApB=\B
26 \A=\e24
\o2A=\.0p4 A8 @pA=024
=\4 25 \(~ApB)=\B
27 5\A=>\B =. \A=\B A2
5\A=>5\B _
+ \od\4A=\oe>\B HYP
\\A=\\B 26 \A=\o24
\A=\B 18 \\4=\4
28 ~ApB=,~4p,B
#B<#B A13 #A<#4
<#,B A17 # ,A=4%4
#B|#B=0 Als #Al#4=0
#B|#,B=0 A17 #,A=#4
~ApB=.~Ap.~,BpB A19 #B<#C A, #B|#C=0 .-,
~ApB=.~4p.~CpB
=.~Ap.#BpB Al0 ~, A=#4
=.~4p ,B D5 #Apd=,A
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29 \,4=\4

~\Bp ,A=.~\Bpd 28
\,A4=\4 14
30 » sA=,A
#,Ap ,A=.#4p,4A Al7
=.#4ApA 28
s sA=,4A D5
31 2A=>5,4
OpA=.0p,A 28
oA =02 ,4 A8
2A=>,4A 3
32 s °A=,08 =, A=B
,0A=,0B
+ D,0A=0,08B HYP
>0/4=>0B 31
A=B A7
33 #4=0 », 24=z>\4
#A=0
+ 2A=>,A 31
=o\4 15
3y #ApB=,4Ap.~4ApB
#A<#A
#,A5#4
~,ApB=,~,Ap.~ApB
#ApB=.#Ap .~ApB
35 ,(~ApB)=,%#ApB
s (~ApB)=.,#(~ApB)p.~ApB
=, #Ap.~ApB
=, #ApB
36 #A=#B A, ~ApE=A
#A=%PB
A=.~ApB
+ JA=.#ApBE 35
=.#BpB HYP
=,B D5
37 1pA=,024
1pA=.%#0p4 D3
=,.8p4 35
=,02/ A8
38 #A=1 =, ,A=,024
#A=1
> ,A=.#4pA D5
=.1pA HYP
=,024 37
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~ApB=.~4p,B
~\ApB=\B

#, A=A
~ApB=.~Ap,B
#Apd=,A

~ApB=,~4p,B
OpA=o24
oA=oB =, A=B

A2
2A=>,4
S04 =4
24=2,4
#4A=0 =, ,A=\A
A13 #A<#A
Al17 #,A=4%4
Al5 #A<#(C », ~ApB=,~Ap.~CpB
Al0 ~, A=A
D5 #Apd=,4
A9 ~(~ApB)=~4A
34 #ApB=.#4p,~ApB
=. ,A=,B A21
s (~ApB)=,%#A4p3B
#ApAd=,4A
#0=1
,(~ApB)=,#4pB
@phd=004
Al10
#4pA=,4A
1pA=,024
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39 #A4=0 >, 2(~ApB)=>\B SEE 19
#A=0
+ 2(~ApB)=>,.~4pB 31 2A=0,4
=o,#ApB 35 s (~4pB)=,#ApB
=>,0pB HYP
=>\B D6 OpA=\4
40 #(#ApB)=#4
#(~,ApB)=#,4A A3 ~(~ApB)=~4A
#(#ApB)=#,4 A10 ~, A=%4
=% 4 Al7 #,A=%A
41 #C#0) -, ~ApoB=,~Ap.~CpoB
#C=#0
+ #0B=1 6 #0A=1
<#C Aly #A20 +», 1<#4
#0B|#C=0 A20 1|#4=0
~ApoB=,~Ap.~CpoB Alg #B<#C A, #B|#C=0 .-,
~ApB=.,~Ap.~CpB
42 ~A=~B A, ,A=,B .=. A=B A2
~A=~p
,A=:B
+ ~Ap ,A=.~Bp,B HYP
~ApA=.~BpB ~ApB=,~4p,B
A=B A21 ~ApA=A
43 ~A=0 =, A=\A 13
~A=0
+ A=.~ApdA A21 ~ApA=A
=.0p4 HYP
=\4 D6 0pA=\A
yl ~A=1 =, A=,e24 Al10
~A=1
+ A=.~ApA A21 ~Ap A=A
=.1pA HYP
=,004 37 1pA=,024
45 ~A=¢ =, A=o>4 5
~A =€
+ A=.~ApA A21 ~ApA=A
=, 0pd HYP
=024 A8 GpA=9024
46 \#A=¢
\#Ad=\~,4 Al10 ~, Az=#A
= A22 \~A=¢&
47 ~8pA=\4
~8pA=.~\~BpA A22 \~4=6¢
=\4 14 ~\ApB=\BR
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ug o\~4=0

2\~A=06¢ A22 \~A=¢
=0 A23 28=0
Lg ~Ap@=.~4p0
~Ap&=,~Ap\~B A22 \~4=¢
=,~Apo>\~B 24 ~Ap\B=.~Ape>\B
=.~Apo°0 L8 >\~A=0
=, ~Ap0 A6 #Azou/
50 o\oA=,~Apo>d\ed4
2\ oed=,~Ap\A A24 o\oA=,~Ap\A
=,~Ape>d\A 24 ~Ap\B=,~Ape°>\B
=,~Apoed\ed4 26 \Ad=\o2A4
51 \A=\e ,~d>4poe>\odd4
\A=\\4 18 \\4=\4
=\ o>\ o024 26 \A=\o24
:\o.~3ApoD\o:3A 50 o\oAd=,~4po>\oeDA
52 5\A=,~24pe>d\eo04
5\A=>o\e24 26 \A=\e24
=,~d4pos\end/ 50 o\oAd=.~Aped\oD4
53 #A=0 >, A=>\o4
#A4=0
+ A=,.~4pA A21 ~ApA=A
=, ~Ap\A 17 #A=0 >, ~ApB=,.~Ap\E
=\ o4 A24 >\oA=,~Ap\A
54 o\A=,~24p\>24 SEE 60
o\A=o\e>34 26 \A=\e24
=,~24p\24 A24 o\odA=,~4Ap\A
55 \2\4=\>4
\2\A=\.~24p\24 S4 2\A=,~24p\>4
=\\24 25 \(~4pB)=\B
=\ 54 18 \\4=\4
56 o\o\A=\A
o\ e\A=.~\Ap\\A4 A2y o\ed=.~Ap\A
=\\\4 14 ~\ApB=\B
=\4 18 \\A4=\4
57 >n5\ oA =0\4
#\A=0 22 #\A=0
oo\od=0,~Ap\4A 424 d2\ed=.~Ap\A
=2\4 20 #B=0 >, >(~ApB)=oB
58 5o\A=5\54
55\A=o>5\e¢24 26 \A=\e24
=0\ >4 57 oo\o4=o\4
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59 2\4=,~24pe°>>\A

2\Ad=.~24p\>4A 54 d\A=.~24Ap\>4
=,~34pe>\>4 24 ~Ap\B=,~Apo°o>\B
=,~24Ape>>\4 58 >5\A=>\>4
60 ~2>\2A=~>24 SEE 54
~>5\ o4 =~2\ 0254 26 \A=\e24
=~oD4 A2y S\ed=,~4Ap\A
61 o\ood=01\04
S\oeod=,~0Ap\ oA A24 o\ed=,~Ap\A
=.0p\ oA 5 ~o/A=¢
zod\ o4 A8 QpA=ed4
62 ~Ap\B=,~Ap>\°B
#\B=0 22 #\A=0
~Ap\B=,~4dp.~Bp\B Al8 #B=0 », ~ApB=.~4p.~CpB
=, ~Ap>\eB A24 o\od=,~Ap\A
63 ~Ap>\B=,~Ap\>B
~Ap>\B=,~4p>\e>B 26 \Ad=\o>4
=,.~Ap\>B 62 ~Ap\B=.~Ap>\°B
6L o\e(~ApB)=.~Ap\B
o\ o(~ApB)=.~(~ApB)p\(~ApB) A24 s\ed=,~Ap\4
=, ~Ap\(~4pB) AS ~(~ApB)=~A
=,~Ap\B 25 \(~4ApB)=\B
65 MNe,4d=,o\04
o\o,A=.~,Ap\,4A A2Y4 S>\ed=,~Ap\4
=,~,Ap\A 29 \,A=\4
=, ~,Ap>\e4 62 ~Ap\B=.~Ap>\oB
=, #Ap>\cA Al10 ~, A=#A
=.#2\0dp>\o4 A2y S\ogd=,~Ap\A
=,o\e04 Ds #ApA=,A
66 2\ed=,o\ed =, A=,4 65
D\OA.-.’D\OA
2+ ~d\of=~,D\04 HYP
=~5\o,4 65 o\o,A=,>\e4
~A=~_A A2u4 o\ed=,~Ap\A
OA=’$A 30 ,,A=,A
A=,A u2 ~4=~B A, ,A=,B .=. A=B
67 5\od=oo>5\e4 =, A=0DA 651
2\od=0D0\o04
+ ~A=~>\o/4 A2u o\eAd=,~4Ap\4
=~o00>\ o4 HYP
=Q 5 ~old=@
A=o02A4A L5 ~A=Q =, A=oD4
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+ ~A=~>\o4 A24 o\ed=,~Ap\A
=~,03>\ 04 HYP
= A10 ~,Az#4
A=, 034 by ~A=1 =. A=,°24
69 o\o~A=,~~4p0
S\o~A=,~~Ap\~4 A2Y4 s\eAd=,~4p\4
=.~~Ap® A22 \~4=6¢
=,~~Ap0 49 ~Ap&=,~Ap0
70 A=2A =, A=°4 4
A=24
+ \oed=\o24 HYP
=\4 26 \A=\e24
A=o4 A25 \A=\ed », A=o4
71 A=3\A +. A=04
A=o\4
+ o2\A=>\>\4 58 2o\A=o\24
2A=4 HYP
A=o4A 70 A=24 =, A=°4
72 S\A=p\ed =. A=°4 A2
o\4A=>\°4
+ \A=\°A4 27 5\A=o\B =. \A=\B
A=0A A25 \A=\ed », A=04
73 5\od=0d\04d =, A=o4 61
5\ed=02\o4
+ o5\A=>5>\¢e4 57 5o\ oA =0\4
=002\ o4 HYP
=o\ o4 A7 Dol =A
A=oA 72 o\A=0\oAd =, A=¢4
74 5\eAd=0 =, A=04d A, 2\A=0 A2
2\0A4=0
+ 0=2\0 48 2\~A4A=0
2\ oeAd=0\>\o4 HYP
=2\ 4 55 \2\4=\>4
A=o4 72 o5\A=>o\od =, A=o4
75 Az, 04
A=,0A
+ ~A=1 A10 ~ A=%/
A=,004 Ly ~4=1 =, A=,004
,0A4=,024 2 A=B A, B=C .». A=C
A=>2A 32 soA=,°oB =, A=B
=04 70 A=04 =. A=)
od=,04 2 A=B A, B=C .=»., A=C
#,04 10 oAz, 04
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5\B=8 426 S\B=H
l=of 71 A=o\A ». A=oA
77 =1
o>\ kl=fl A28 >\g=k
20 A27 k=0
zo\1 L8 2\~A=0
[@=1 A2 A=B +. A A=A B
78 ~Ap 0zl
~Ap 0=l
+ 2\ (~4p0)=>\0 25 \(~ApB)=\B
=0 48 2\~4=0
=o\fbl HYP
=fl A26 o\[l=f
20 427 =0
79 S\oAd=z=ld =. A=ehd A. 2\4A=Pk A2
o\ oA=[g
+ [=>o\p A26 >\ k=k]
5\ oAd=5\>d\e4 HYP
=>\4 55 \>2\A=\24
A=o/ 72 2\A=2\od =, A=c4
80 39:@
20=2\p D7 \g=0
= A26 >\ Rl=p]
81 3\09:9
o>\e\o=\Q 56 o\o\4A=\4
>\e0=0 D7 \Bl=0
82 °A4#0
#0420 Al1 0=1
240 D7 \kl=0
0420 A2 A=B =+, A A=A B
83 S I |
S\' r=t 0 A29 S\! 'zt 1
' T=ot ! 71 A=o\4 ». A=04
84 voteq
S\' =t t A29 S\! t=t 1t
20 A30 votzg
2o\ 1 L8 5\~4=0
vtz A2 A=B », A A=A B
85 d\oAd=' ' =, A=o04d A, 2\A=' ! A2
S\eod="' !
+ ! tzo\' ! A29 S\' t=1 1t
o\eA=2\>\ o4 HYP
=o\4 55 \>\4=\24
172 A=0o/4 72 2\A=>\o4d =, A=o4
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86 o=t

sh=o\"' ! D8 \' '=6
-t A29 S\' =" ¢
87 >\ od=d
2\ eo\&=\0 56 2\ e\A=\4
S\ od=0 D8 \' =6
88 oA#d
#0A%20 Al1 O0=1
2460 D8 \' '=¢6
oAzd A2 A=B »., A A=A B
89 #A20 A, #B»0 .-, :A(#ApB)=.#4p:A B
#A20
#B=20
> #,4A20 A17 # ,A=#/
tA(~,ApB)=,~,4p:A B A32 #420 A, #B=0 .-,
tA(~ApB)=,~Ap: A B
tA(#A4pB)=.#Ap: A B Al0 ~,A=%4A
90 #A#20 >, :180>dA=0D:A A
#A=20
+ #0=20 A1l 0=z1
tA(~0pA)=.~0p:40 A A32 #A#20 A, #B=20 .-,
:A(~4pB)=.~4p:A B
A (OpA)=.8p: A A AS ~0=¢
tAoedAd=00:A 4 A8 GpA=024
91 :A\A=\oAD\A
#€=0 D2 #0=0
:A(~0pA)=,~8poA>\4 A33 #A=0 -,
tA(~ApB)=.~ApoAD\B
tA\A=\oAD\4 47 ~@pA=\A
32 :2\4=\>24 SEE 96
:2\A=\e223\4 91 tA\A=\oAD\A
=\2>\4 26 \A=\o024
=\>4 55 \2\A=\>4
93 tANA=\:AN\A
\oA>\A=\\eAD\A 18 \\4=\4
tA\NA=\:A\A4 91 :A\A=\oAD>\A
gy #A=0 >, :A(~ApB)=,~Ap:A\B
#A=0
+ :A(~ApB)=.~ApoADd\B A33 #4=0 -,
tA(~4pB)=,~ApeAD\B
=.~4Ap\eA>\B 17 #A4=0 >, ~A4pB=,~Ap\B
=,~Ap:A\B 91 +A\NA=\oAD\A
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95 #A=0 +». :2(~ApB)=.~Ap>8
#4=0
+ 12(~ApB)Y=.,~4Ap:>\R ay #A=0 >,
tA(~ApB)=.~Ap: A\B
=,~Ap\>B 92 :2\A=\o4
=,~Ap>B 17 #A=0 >, ~ApB=,~Ap\B
396 #A=0 +>., :124=.~Ap>A SEE 92
#A=0
+ (2A=:0.~4p4 A21 ~ApA=A
=.,~4p>4A 95 #4=0 >, :2(~ApB)=.~Ap>B
37 #A=0 +», A A=,~ApoA>A
#4=0
+ A A=,~4p:A\A qu #A=0 >, :A(~4ApB)=,~4p:A\B
=, ~Ap\oAD>\A 21 tA\A=\eAD\A
=,~Adp\°AD4A 33 #A=0 >, 2A=d\A
=,~ApoAdA 17 #A=0 », ~ApB=,~Ap\B
98 tA A=.~Ap:A A
#A#0
+ 1A A=:A,~ApA A21 ~ApA=4
=,~Ap:h A A32 #A=20 A, #B=0 .-,
tA(~ApB)=,~Ap:A B
#A=0
> 8 A=.~:40 Ap:A A A21 ~ApA=4A
=, ~1A{(~ApA)p:A A A21 ~ApA=A
=, ~(~4dp:A\A)p:4 A gL #4=0 -,
tA(~ApB)=.~Ap: A\B
=.~Apsh 4 49 ~(~4ApB)=~A
99 ~1A A=~A
~:A A=~,~4dp:48 A 98 tA A=.~4p:A A
=~4 AS ~(~ApB)=~A
100 tAA=,:A A
#4A=0
> A, A=A .#ApA D5 #ApA=,4A
=, #4Ap:A A 89 #A20 A, #B=0 .-,
tA(#ApB)=.#Ap:A B
=.#:A Ap:4A 4 a9 ~:A A=~4
=,:A A DS #ApA=,A
#A=0
2 ,t0A=,.~Ap:A\4 gy #A=0 -,
:A(~ApB)=.~Ap: A\B
=, #Ap:A\A 35 s(~ApB)=,#ApB
=, 0p:A\A HYP
=\: A\A D6 OpA=\4
=1 A\A 93 :ANA=\:A\A
=:A,A 15 #A=0 =. ,A=\4
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101 1A A=.~Ap: A

tA A=.~4p:A A 98 tA A=.~4p:A A
=.~Ap,:A A 28 ~ApB=.~4p,B
=,~Ap:A,A 100 thA,A=,:40 A
102 #A=0 », :O0\A=\:A A
#4=0

> #:A A=0 99 ~:A A=~A
tA,A=,:A A 100 A,A=,:A A
tA\A=\:A A 15 #A=0 =, ,4=\4

103 #A=0 -+, D:A A=>\oADA

#A=0
> D:A A=>2,:A0 A 31 24A=0,4
=o:4h,A 100 tA,A=,:0 A
=2: AN\A 15 #A=0 =. ,A=\4A
=2\ eoA>d\A 91 tA\A=\oAD\A
=2\ oADA4 33 #A=0 >, 2A=>\A
104 tA9=\oA 0
tAG=: A\~A A22 \~A=¢@
=\oA>\~4 91 :A\A=\eAD\A
=\oA O 48 >\~A=0

105 :A0=\oAR

:A0=: A\O D17 \pl=0

:\oA:)\Q 91 :A\A=\oAD\A
=\ oAl 80 >0=f]

106 cAd=\op' !

tAG=: A\O D8 \' '=06

=\oAD\& 91 :A\A=\°AD\4
=\oA' ! 86 Sh=t 1

107 c#\A=6

t#\A=\o#2d\4 91 tA\NA=\oAD\A
=\#>\4 A6 #lzog A
=9 46 \#A=¢

108 #A=0 >, :#(~4pB)=.~Ap0

#4=0
+ #(~ApB)=.~Ap:#\B gy #A=0 -,
:A(~ApB)=.~Ap: A\B
=,~Ap® 107 t#\A=0
=,~4p0 L9 ~Ap@=.~4p0

175

MARCH 1973 THEORY OF ARRAYS




