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Axioms and Theorems for a  Theory of Arrays 

Abstract: Array theory  combines APL with set  theory, transfinite arithmetic,  and operationally  transformed  functions to  produce  an 
axiomatic theory in which the  theorems hold for all arrays having any finite number of axes of arbitrary countable ordinal  lengths. The 
items of an  array  are again arrays.  The  treatment of ordinal  numbers and  letters is similar to Quine’s treatment of individuals in set 
theory.  The  theory is developed first as a  theory  of  lists. 

This  paper relates  the  theory to the  eight axioms of Zermelo-Fraenkel  set  theory,  describes  the  structure of arrays,  interprets  empty 
arrays in terms of vector  spaces,  presents a system of axioms for  certain properties of operations related to  the APL function of reshap- 
ing, deduces a few hundred  theorems  and corollaries, develops  an algebra for determining the behavior of operations applied to  empty 
arrays, begins the  axiomatic  development of a replacement  operator,  and provides an informal account of unions, Cartesian products, 
Cartesian  arrays,  and  outer, positional, separation,  and reduction transforms. 

Preamble: The intention of the work reported  here is to develop a theory of arrays, in terms of standard  set  theory,  that will provide 
rigorous  definitions for programming operations  and thereby  a logical foundation for the  construction of programming  languages. The 
present  contribution is a first approach  to establishing  a comprehensive theory of arrays,  and it is anticipated that  future  papers will 
extend  and refine the  concepts  presented. 

The  objects used in programming are  represented in a  mathematical system of ordered collections a s  arrays of arrays. Simple axioms 
define certain primitive operations  on  the  arrays.  Most  data  operations in programming can then be  represented by operations built 
upon the axioms. One of the starting  points for  the  development of the theory is APL. Programs  written in APL are used to  generate 
corollaries of the  axioms  and to check  the  consistency of the  system. 

Although the  paper  was written for  the specialist in mathematical logic, it  should be of interest  to  the  computer  scientist  and particu- 
larly to  one  who specializes in programming  languages. Its chief contribution is an axiomatic theory  for  data  structures, which  includes 
explicit rules for transforming any operation into a new operation  that applies to all items in any  array. H. B. M. 
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1. Introduction 
Programs, like mathematical  proofs,  should  be verifiably 
correct.  Formal  methods of algebra and logic reduce  the 
likelihood of error by deducing  many results from a few, 
relatively  simple assumptions.  The  literature of mathe- 
matics controls  the  occurrence of error by recording 
assumptions  and  results  as axioms and  theorems, which 
can be checked,  revised,  and used in the proof of new 
results,  The  degree  to which  mathematics has been able 
to  reduce  error suggests that  the art of programming 
might profit by the  same  methods. 

In  the programming language APL\360 [ 1-41, programs 
are written  along  mathematical  lines. The language  rep- 
resents  data by simple urruys, which hold numbers and 
characters  as items.  Simple arrays  are manipulated by a 
few,  conceptually  fundamental operations. An intuitive 
understanding of the primitive operations of APL, togeth- 
er with the  use of several identities, enables  the  user of 
the language to predict the effect any  given operation 
will have on any given simple array. 
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If the  items of an  array  are again arrays, then it be- 
comes  more difficult to  determine  the effect of an opera- 
tion. The nesting of arrays  introduces  the relation of 
membership. It is well known that with the  exception of 
certain constructions in the  theory of categories  [5],  the 
whole of mathematics  can  be  based on a first-order the- 
ory in which  membership is the only  primitive  predicate. 
In view of the  contradictions  that  have  occurred in the 
development of set  theory,  Quine [ 6 ]  has  remarked  that 
“Intuition  here is bankrupt”. To avoid error,  set  theo- 
rists  have had to  use  the axiomatic method. 

The work reported  here combines  some of the  opera- 
tions of APL with set  theory to produce a mathematical 
theory of arrays.  Array  theory may be  spoken of as  the 
mathematics of arrays  just  as  set  theory is the mathe- 
matics of sets  or  classes.  The  theory is developed  ax- 
iomatically to avoid error and to  deduce  the  behavior of 
all operations by formal  calculation. The axiomatization 
of certain  properties  has  been motivated by its potential 
applicability to  the problems of programming rather  than 
by  a  need to  economize primitive operations. Although 
every effort has been  made to  remove  contradictions, 
the  question of consistency relative to  an axiomatization 
of set  theory  has  not  been studied. 

Lists of axioms, theorems,  and proofs, such  as  those 
in Appendices I and 11, serve a number of purposes. 
The proofs can  be  checked  for  error. A contradiction, if 
one  occurs, can  be traced back to  the faulty  axiom. The 
consequences of a change in the  axioms can  be  quickly 
determined.  One axiomatization can be compared with 
or  converted  to  another.  The axioms and  theorems lay 
the groundwork for a metatheoretic  study of the  system. 

The  present  paper, which is Part I of a longer work on 
arrays,  develops  the analogy with set  theory  and  focuses 
on  an axiomatization of operations related to the APL 
function of reshaping. Sections 3 ,  4, and 14 to 18, on 
extensionality,  elementary  arrays,  separation, powers, 
unions,  choice, and infinity, follow in name and  order  the 
original seven axioms of Zermelo’s set  theory.  The 
eighth, the  Skolem-Fraenkel axiom schema of replace- 
ment, is inserted at Section 10. The ninth, the  von  Neu- 
mann-Zermelo  axiom of foundation, is discussed  inSec- 
tion 9. Part 11* includes an analysis of the  depth and uni- 
formity of arrays  and  focuses  on  the  axioms  and  theorems 
for unions, Cartesian  products, intersections,  and arith- 
metical and logical sums  and  products. 

I t  was  evident from a study of APL that useful opera- 
tions would result if arbitrary monadic and  dyadic  opera- 
tions could be applied to  the items of an  arbitrary  array 
in the  same way that  the  scalar functions of APL are ap- 
plied to simple arrays.  The analogy  was difficult to fol- 
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*To be published at a later date. 

low  because  simple arrays  and  scalar  functions  have 
special properties not possessed by arbitrary  arrays  and 
functions. 

For example,  the negative - 4 3 6 of the list 4 3 6 
of numbers  equals  the list (-4) (-3) (-6) of the  cor- 
responding  negative  numbers. The first negation  applies 
to  the  vectors in a vector  space.  The  second negation 
applies to  the  scalars in a field. APL identifies the  two 
operations.  The  same  process of identification can be 
applied to a few other  operations, which in APL are 
called monadic scalar functions. 

Given  an  arbitrary monadic operation A, how does 
one  produce  another  operation  that applies A to  the 
items of an  array  rather than to  the  array itself? The 
answer is suggested by Heaviside’s (1892) operational 
calculus [7,8]. Let A be transformed  to  the monadic 
operation : A  by an  operator, called the replacement 
operator [9a,9b].  Each item of an  array can  be  replaced 
by  its image under a  monadic  operation. : A  applied to 
the triple P Q R holding the  arrays P, Q, and R equals 
the triple (A P) (A Q )  ( A  R )  holding the  arrays A P, 
A Q, and A R. 

An  empty  component  vector  corresponds  to  the  zero 
vector in a vector  space of dimension zero.  The negative 
of a zero  vector  equals  the  zero  vector.  Hence  the nega- 
tion of an  empty list of numbers must  equal the  same 
empty list. Does  the application of the  replacement 
transform of an  arbitrary monadic operation  to  an  empty 
list of arbitrary  arrays leave the  empty list unchanged?  It 
is easy  to  construct  an  operation A that  maps  numbers 
into complicated arrays. If A is an  empty  array,  what is 
: A A? These  questions lead to Axiom 33. 

If a theory is to  encompass  the  replacement  operator, 
then  a  few equations should determine : A  A for  every 
monadic operation A and  every  array A. The  author 
assumed at  first that : A  A equals A for  empty A and be- 
gan an axiomatization in the  hope of deducing a contra- 
diction that would show  what : A  A should be (Section 
10).  The problem of degenerate reductions was  also in 
question  (Section  19). No contradiction  occurred. 

The  theory  was  then developed with the aid of an in- 
teractive method for generating  semigroups and proving 
relevant  theorems.  The method operates interactively in 
APL, generates  the  associative  closure of a system of 
equations,  derives  from  the  Skolem-Herbrand  theorem 
[lo], and does not require  the  statement of algebraic 
conjectures in the  lower  predicate calculus [ 1 11. The 
sought-for contradiction  at  the  end of Section 10  was  not 
found until Cartesian  products  were axiomatized. 

The  interactive method  applies because  the  class of all 
monadic operations  under composition is a full transfor- 
mation  semigroup [ 121 on  the universe of arrays. If a 
monadic operation A sends  every  array  to  the  array B, 
then A A = B for  every A. If a is any  monadic opera- 
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tion,  then A is an  array  and so A 4 A = A A for  every 
A.  Thus  to  every  array B there  corresponds a unique left 
zero A in the full transformation  semigroup. 

Since arrays  are  ordered, it is possible to  represent 
dyadic  operations  as monadic operations defined on 
pairs,  which are  arrays  on  one  axis of length 2. Some of 
the most important  dyadic  operations,  such  as  the  opera- 
tions for unions, Cartesian  products,  intersections, arith- 
metic sums  and  products, and logical sums  and  products, 
have monadic counterparts that are defined for all ar- 
rays.  Dyadic  operations can also be represented in the 
full transformation  semigroup. 

In  the  course of developing  a  table of compositions for 
more than I10  monadic operations, a few contradictions 
were  isolated,  deduced mechanically  from tabular  en- 
tries  representing the  axioms and theorems, and re- 
moved by modifying the axioms. Some of the  entries in 
the table  revealed unexpected identities that  were  subse- 
quently deduced by hand. 

An array can  be  visualized as a warehouse in which 
every item can be  found by address.  For example, the 
item at  address 4 7 3 0 can  be  found in isle 4, section 
7, stack 3, tier 0. Each number in an  address is called 
an index and is visualized as lying on  an index  axis. The 
number of axes is called the vulence [ 13- 151, which may 
be any finite ordinal number. 

Each index  axis for  an  array  has a length, which is the 
number of indices on  the axis. Lengths and  indices may 
be any  countable ordinal  numbers: 0,  1, 2, . . ., w, 
w + 1, w + 2, . . . . A restriction of indices to  the finite 
ordinal numbers is a  needless  limitation that  obscures 
the  essential  processes of counting and indexing. A file 
consisting of a succession of finite, open-ended records 
can be indexed as follows: 

0 1 2 . . . 1w  1w1  1w2 . . . 2w  2w1  2w2 . . .. 
The limit ordinals 0,  lW, 2W, . . . , which have  no di- 
rect  predecessor,  are  interpreted  as starting new records. 

An  array  for which there  are  no  addresses is said to 
be empty.  Since no ordinal  index can  be less than  zero, 
an  array is empty if and only if it has  at  least  one  axis of 
zero length. Empty  arrays, like the  empty  class in set 
theory and  the imaginary numbers in complex  arithme- 
tic,  permit  simple equations and constructions  to hold in 
all cases. 

To  each  address  for  an  array  there  corresponds  an 
item.  Different addresses may correspond  to the same 
item. An array is said to  have or hold its items, which 
occur in the  array.  An  empty array  holds no items be- 
cause it has no addresses. A nonempty  array holds one 
item at  each  address.  Identical  copies of an item are 
considered to  occur  at  every  address  corresponding  to 
that item. 
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Common  experience with the location of objects by 
address suggests that  the  items of an  array should again 
be arrays. For example,  the retrieval of particular  data in 
a  city may require a nested succession of addresses of 
the following sort:  (street  avenue) (wing floor isle 
room) (shelf drawer)  (folder)  (document).  Addresses 
are nested because items at different addresses may 
have incompatible systems of addresses. 

Arrays  are  assumed  to  be rectangular in the  sense 
that a finite sequence of ordinal numbers is a legitimate 
address  for  an  array if each index in the  address is less 
than the length of the  corresponding axis.  Rectangularity 
makes the  consequences of using an  address predictable 
and simplifies the  arithmetic of converting one  system of 
addresses  to  another.  The nesting of arrays within arrays 
compensates  for  the restriction to rectangularity. For 
example, a page of words in which the lines differ in 
length  can be  represented  as a list in which each item is 
a list of words.  An  array  on  one axis is called a list [ 161. 

The essential  principles of array  theory  are  those of 
nesting,  counting, and valence. Nesting  is  treated in the 
set  theory of Zermelo  (1908), Skolem (1922), and  von 
Neumann ( 1929) [ 171. Cantor’s ( 1879) transfinite arith- 
metic  shows how counting can be  based on  the purely 
structural  operations of concatenating lists,  putting the 
items of a list cyclically into longer  lists, and deleting ini- 
tial segments from a list [ 18,191. These  fundamental 
operations  occur  as  the primitive functions of catenating, 
reshaping, and dropping in APL\360. Sections  2 through 
19 combine the principles of nesting and counting in a 
theory of lists. 

Since  the  arrangement of items in rows, columns,  and 
layers  tends  to  obscure  the fundamental nature of nest- 
ing and counting, valence is not  treated in detail until 
Sections 20 and 21.  The basic ways of combining multi- 
valent arrays  stem from the  tensor calculus of Ricci 
(1888)  [20-22]. APL generalizes component  tensors  to 
rectangular  arrays of scalars, enlarges the domain of sca- 
lars  to include characters, generalizes the  contraction of 
component  tensors  to  the transposition and reduction of 
arrays, and extends the  addition, outer multiplication, 
and inner multiplication of component  tensors  to  the 
item-by-item, outer, and  inner  combination of simple 
arrays by arbitrary  dyadic  scalar functions. 

Most programming  languages  and  mathematical sys- 
tems  are many-sorted [23] in the  sense  that different 
sorts of variables  (often in distinctive fonts) range over 
different universes of discourse,  such  as  the domains of 
integers, real numbers,  classes, lists, trees,  etc.  The logic 
of quantification  applies  most  directly  and advantageous- 
ly to a standard  theory [24] in which there  is only one 
sort of variable ranging over  one universe. Set  theory 
standardizes  to  the  universe of classes by representing 
numbers  as  classes  [25]  and relations, such  as  func- 137 
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tions,  families, and lists, as classes of ordered pairs [26]. 
Ordered  trees can  be represented by the  successive 
nesting of lists within lists. 

The computational inefficiency encountered in repre- 
senting numbers  and lists by classes  has lead to various 
attempts to use modified versions of set  theory  as a basis 
for programming  languages [27-291. The programming 
languages APL and LISP [30]  take ordered collections as 
the point of departure. LISP, which is based on  the the- 
ory of recursive functions, represents a finite list by the 
repeated nesting of ordered pairs and  “atomic  symbols” 
[30]  within ordered pairs. Classes  can  then be repre- 
sented  as lists. In APL, a class in which the  elements  are 
classes of scalars  can  be  represented by a  matrix in 
which the  rows  or columns are  interpreted  as  classes. 
Deeper levels of nesting are  represented  by  component 
tensors having a greater  number of index  axes [ 11. A 
component  vector in which the  items  are  distinct  is called 
an  ordered  set in APL. 

The  theories of arrays  and lists  developed here stand- 
ardize to  the universe of arrays  or lists. Both order  and 
repetition of the items in an  array  or list are ignored in 
class-theoretic contexts,  thereby representing classes 
directly as  arrays  or lists. The  theories differ from LISP 
in treating arrays  or lists as primitive objects instead of 
pairs  alone. The  theories differ from APL in nesting ar- 
rays within arrays  or lists within lists  according to  the 
class-theoretic relation of membership. Computational 
inefficiency is avoided by representing  numbers and 
characters  as  arrays  or lists that  contain  themselves  as 
sole  members [24,3  1 ,321.  

The  nth ordinal power of a class U is the class U*n 
containing  all families that map the ordinal n into U, 
where n is the  class containing the n  preceding  ordinals. 
V*n represents  the  class of all lists of n elements of U. 
An n-ary operation 1331 on  the  class U is a function that 
maps U+n into U. An n-adic operation is the intuitive 
counterpart of an n-ary operation defined on  the uni- 
verse of arrays or lists. 

In a theory of classes,  functions  are defined to  be 
classes of ordered pairs. The basic operations in the  the- 
ory are used to  represent,  as functions,  n-ary operations 
on  classes. Similarly, in a theory of arrays  or lists,  func- 
tions can be defined as  arrays  or lists of pairs.  The basic 
operations in the  theory can  be  used to  represent,  as 
functions, n-ary operations on arrays  or lists. 

2. Syntax* 

Monadic and dyadic operations have short right scope.  Dyadic 
operations  have  long left scope.  Grouping is also  indicated by 
parentheses, spaces in a strand, and dots. 

138 The basic, dot-free syntax used here is the  same  as  the 

usual  syntax of addition, subtraction,  and negation in 
arithmetic.  The  names of monadic and  dyadic  operations 
are called prejixes and injixes, respectively. Prefixes and 
infixes take the  shortest possible well-formed string to 
the right as right operand. Infixes take  the longest  possi- 
ble well-formed string to  the left as left operand.  For 
example, 

-A+B-(F-G+H)--D-E 
is fully parenthesized as 

((((-A>+B)-((P-G)+H))-(-D))-E. 
The  syntax, like that of APL, has  no  precedence  or 

hierarchy. Within any given well-formed  string, all infix- 
es may be  replaced by plus signs, and all prefixes may be 
replaced by negative signs without in any way changing 
the intended  grouping or full parenthesization of the 
string (except  for  the internal parenthesization of the 
operation  names  themselves). 

The  syntax of suffixed dots is the  same  as Church’s 
dot notation [34,35] .  A dot suffixed to an infix or prefix 
causes  the  operation  name to take  the longest  possible 
well-formed string to  the right as right operand. 

For example, the suffixed dots in Axiom 15 (in the 
appendices) 

#A<#C +. -Ap B= . ”Ap .-CpB 

are replaced by left parentheses with the mating right 
parentheses  as  far  to  the right as is consistent with the 
nesting of paired parentheses  already in place: 

#A%#C + (-ApB=(-Ap (-CpB) ) 1. 
Dot-free  syntax  then  determines  the full parenthesiza- 
tion: 

( (#A)r(#C) 1 + ( ((-A)@)=( ( & A ) P (  (-C)pB) 1 )  . 
In the  presence of suffixed dots, infixes take  as left 

operand  the longest  possible well-formed string to  the 
left  up to  the  nearest unenclosed suffixed dot.  For exam- 
ple, the left operand of the dyadic  minus sign in 

A+(A+.A+.-B+(A+.A+A)+C-A)+A 
is -B+(A+  .A+A)+C. The suffixed dot in the  operand  is 
enclosed in parentheses  and so has  no effect outside  the 
parentheses. 

This  paper  introduces prefixed dots  that  reassert long 
left scope  over suffixed dots.  The  use of prefixed dots 
permits  a  symmetrical presentation of certain logical, 
Boolean, and arithmetical  formulas. A dot prefixed to  an 
infix causes  the infix to  take  as left operand  the longest 

not conform to standard APL usage. Every grouping dot appearing  at the end of a 
*The notation, syntax, and terminology adopted for the purposes of this paper do 

sentence should be read as a period. 
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possible well-formed string to  the left including unen- 
closed suffixed dots. 

The first step in fully parenthesizing  a  string is to re- 
place the prefixed dots, if any, by right parentheses with 
the mating left parentheses  as  far  to  the left as is consis- 
tent with the nesting of paired parentheses already in 
place. For example,  Theorem 2 

A=B A .  B=C .+. A=C 
becomes 

(A=B A. B=C) +. A=C. 
Parenthesization is then completed  according to  the  syn- 
tax of suffixed dots  and  dot-free  syntax. 

A strand is a string of characters composed of one or 
more  variables, numerals,  quoted strings, terms enclosed 
in parentheses,  and  constants  separated by spaces. 
A space  adjacent  to a parenthesis may be omitted. 
Strands  denote lists. For example, D 3.14 ‘WORD’ 
(5+2 ) 6 is a quintuple in which the items are  the  array 
D, the negative number -3.14, a list of four  letters,  the 
number 7; and  the null 6 (which is an  empty  list). 

The  concatenating  operation implicit in the formation 
of a strand is done before  any other  operation. For ex- 
ample, -A  B C equals ( - A )   ( - B )  ( -C)  and A B+C D 
equals (A+C) (B+D). 

Juxtaposed identifiers, such  as ‘COS’ and ’AX‘  in 
’ COS AX’ or the  letters ‘ A ’  and ‘ A ’  in ‘ A  A ’ ,  are 
separated by spaces  to mark where identifiers begin and 
end.  Spaces between identifiers and basic operation 
symbols  are needless  but may be inserted  to  improve  the 
legibility of a term or formula. 

- 

3. Extensionality 

Nonempty  arrays  are equal if they hold the  same  items  at  the 
same  addresses. For the  purposes of the theory, equal arrays 
are identical. 

Except for Sections 20 and 2 1 ,  this  section and all fol- 
lowing sections hold for list theory  as well as  array  the- 
ory.  In list theory,  the  words  “array” and “shape”  are 
construed  as “list” and  “count,” respectively. The ax- 
ioms are  stated  for  array  theory  but may be interpreted in 
list theory. 

Every object in the universe of a standard  theory of 
arrays  (lists) is called an  array  (list). A monudic opera- 
tion A maps the  universe into itself by sending an  array A 
to  the  array A A. A dyadic  operation A sends  an or- 
dered pair of the  arrays A and B to  the  array A A B. 

Zermelo’s  Axiom I of extensionality is based  on  the 
principle that a “class is determined by its  elements” 
[36]. By definition alone, equality is left-compatible (see 
Axiom 4 below) with the membership  relation in the 
sense  that equal classes contain the  same  classes.  Exten- 
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sionality grants  to equality the  force of logical identity 
by postulating that equal classes belong to  the  same 
classes, thereby making equality  right-compatible (see 
Axiom 3 )  with the membership  relation. 

The  same  considerations guide the axiomatization of 
array  theory.  According  to  the  array-theoretic principle 
of extensionality, a  nonempty array is determined by its 
items  and addresses.  The principle is extended  to empty 
arrays in Section 9. Nonempty  arrays  are  taken  to be 
equul if they hold the  same  items  at  the  same  addresses. 
Axioms 2 ,  3, and 4 give  equality the force of logical 
identity by making equality  compatible  with all opera- 
tions.  Compatibility with the primitive operations would 
suffice. Axiom 1, together with Theorems 1 and 2, then 
establish  that equality is a congruence  on  the universe of 
arrays. Substitutivity of equality then follows  by  induc- 
tion on  the  number of primitive operation  symbols in a 
formula. 

Axiom I .  An array  equals itself. 

A =  A .  

Axiom 2. Any monadic operation applied to equal arrays 
returns equal  values.  Equality is compatible with every 
monadic operation A.  (Read ’+’ as  “implies.”) 

A = B + .  A A = A B .  

Axioms 3 and 4 .  Equality is right-compatible and left-com- 
patible with every  dyadic  operation A .  

A = B + .  A A C = . B A C  

A = B + .  C A A = .  C A B .  

4. Elementary arrays 

Pairs,  singles, and the null exist. In list theory,  shape  becomes 
count.  The count of an  array is a mote, which is a single that 
holds itself. 

Zermelo’s  Axiom I1 of elementary  classes [36] as- 
sumes  the  existence of empty  classes, unit classes,  and 
unordered pairs. The  array-theoretic postulate of ele- 
mentary  urruys assumes  the  existence of empty lists, 
singles,  and  pairs. There  exists  the null 6, which is one 
of infinitely many empty lists in the  universe of arrays. 
Definition 2 (in the  appendices)  takes  the null as primi- 
tive. For the  present, let the singling operation be primi- 
tive. Singling sends  an  array A to  the single oA that holds 
A as sole  item. The primitive pairing operation  sends 
arrays A and B, given  in the  order  stated, to the list 
AsB,  called the pair of A with B, that  holds A as first 
item  and B as  second item. 

The count#A of an array A is  an ordinal number rep- 
resenting the axis length (order  type) of the list  got by 
listing the items of A in main order. Main  order is in- 139 
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duced by listing the  addresses  to  the items in lexico- 
graphic order. For  example,  an  odometer  cycles lexico- 
graphically  through a domain of addresses.  Each wheel 
of the  odometer is interpreted  as cycling  through the in- 
dices on an index  axis. The length of an  axis  corre- 
sponds  to  the ordinal  number of indices on a wheel. 
Since a  list has  one  axis,  the  items of a list occur in main 
order  by  virture of being  in a list. 

The  count of a  list  gives complete information on how 
the items of the list are  addressed. Similarly, the shape 
W A  of an  array A, which is essentially a list of the axis 
lengths of the  zero  or  more  index  axes  for A, gives 
complete information on  how  the  items of A are ad- 
dressed  (Section 20). When arrays  are  restricted  to lists, 
shape is restricted  to  count. 

In  the  particular  case of APL, the size of a list or com- 
ponent  vector V is a list holding the  count of V as sole 
item. The  shape of a list in array  theory is its  count.  For 
example, if the  count of a list is 7 in a theory of lists or 
arrays,  then 7 itself, rather  than  the one-item  list holding 
7, is the  shape of the  same list in the  theory of arrays. 
The  shape of an  array  other  than a  list is the  same  as  the 
APL size of the  array. 

The  operation of counting is primitive  in  list theory 
just  as  the  operation  for taking the  shape of an  array  is 
primitive in array  theory.  The changing of shape  to 
count is the  essential  step for converting the  array-theo- 
retic  results listed  in the  appendices  to list-theoretic re- 
sults. The  conversion  is  done as follows: 

Omit Definition 1 ,  Axiom 5, and Theorems 5,10,11,12, and 
75, together with their corollaries. The corollary x8=1 of 
Axiom 5 may be postulated as an isolated result. Omit all 
variations of the form #*AZO, such  as n,-oA=O. In all 
definitions, axioms, theorems, corollaries, and proofs, re- 
place equations of the form -A=% by#A=l and terms of the 
form 8pA by IpA.  Replace all tildes by sharps. Omit Defini- 
tion 5 and all commas. 

If counting is an  array-theoretic  operation  and ordinal 
numbers  are to be immediately accessible  for  computa- 
tion,  then #A must be construed  as a relatively  simple 
array. As suggested  by  Quine’s representation of an in- 
dividual as a  unit class  that  contains itself [24], let a 
mote be an  array  that holds itself as sole  item.  A pure 
theory of arrays  has  no  motes,  just  as a pure  theory of 
classes  has  no unit classes containing  themselves. 

Ordinal numbers might be represented in a pure the- 
ory of arrays by von Neumann’s (1923) construction. 
For  reasons of practicality, however, ordinal numbers 
are  appended  to  the  theory  as  motes.  Complex  numbers, 
which include the reals and finite ordinals, and  charac- 
ters, which include the  letters  and  operation symbols, 
are  also  appended  to  the  theory  as  motes. 

If an  array A is a mote, then both A and  the single oA 
of A hold A as sole  item. If A and o A  are  also  made to 

have  the  same  number of axes,  as would certainly be the 
case in a theory of lists where all arrays  have  one axis, 
then A and oA must hold the  same item at  the  same  ad- 
dress. By the principle of extensionality, A and oA are 
equal.  An  array is a mote if and only if it equals  its sin- 
gle. 

Axiom 6.  The count of an array is a mote. 

#A = o#A. 

An ordinal number, which exists  as  an  array  because 
it is the  count of an  array, is a single that  contains itself 
as sole  item. The  count of a pair is 2, of a single, 1, of 
an  empty list, 0. 

Definitions 2 and 3 .  Zero is the count of the null. One is 
the count of zero. 

0 for #e 
1 for #o. 

If arrays A and B are equal, identical, or the  same, 
then ‘A=B‘ denotes  the ordinal number 1, which is in- 
terpreted  as  truth,  and ’ A t B  ’ denotes  the ordinal  num- 
ber 0, which is interpreted  as falsity. Zero  and  one  are 
truth-vulues as well as numbers. If A differs from B, 
then A#B is 1 and A=B is 0. The primitive operation of 
equality has  the  same meaning and  notation in array 
theory  that  it  has in a first-order theory with  equality 
[351. 

5. Recounting 

Lists, initial segments, and solitaries are defined  in terms of re- 
counting, which  is the list-theoretic counterpart of reshaping. 
Counts  are ordered. 

The primitive array-theoretic  operation of reshaping, 
which is  based  on  the dyadic p function in ~ P ~ \ 3 6 0 ,  
becomes  the list-theoretic operation of recounting when 
restricted to  the  formation of lists. If A is  an  arbitrary 
array,  then # A  is an  arbitrary ordinal number  or count. 
The recounting of an  array B to  the  count of A produces 
a list #ApB on  an axis of length # A  in which the items 
are  taken cyclically in main order  from B . For example, if 
B is the pair P Q of arrays P and Q, then 5pB equals 
P Q P Q P and 3poB equals the triple (P Q) (P Q) 

#ApA is the list that holds the  items of A in  main order. 
If A is not a list,  then it is meaningful to define the list ,A 
of A to  be #ApA. Listing corresponds  to raveling in 

(P Q > *  

APL\360. 

Dejnition 5. The listing of an array equals the recounting 
of the array to its count. 

,A for #ApA. 

An  array A is a list if and only if A=, A .  In a theory of 
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lists, A=,  A for  every A because  every object A in the 
universe is a  list. The listing operation is superfluous in a 
theory of lists. 

The listing operation permits Axiom 21 to be restated 
for  list  theory in a way that is also  correct  for  array the- 
ory.  When so stated,  Axiom 21 becomes #ApA=  ,A and 
takes  the  place of Definition 5. The  comma is ignored in 
list theory  but  observed in array  theory. 

Axiom 2 1 .  The reshaping of an  array to its own shape pro- 
duces the array itself. 

-ApA = A. 

Since  the  items of #ApB are  taken cyclically in main 
order  from B, the  items may as well be  taken cyclically 
from  the list of B.  Thus#ApB= .#Ap ,B, which is a cor- 
ollary of Theorem 28. The  count of an array A is taken 
to be  the  axis length of the list of A, which is the  import 
of Axiom 17. Counting and reshaping treat  arrays  as 
lists, as  do many of the  basic  operations in array  theory. 

Axiom 17. The count of an  array equals the count of its list. 

#,A = #A. 
Axiom 10. The count of an  array equals the shape of its 
list. 

-,A = #A. 

The primitive operation of ordering is defined first for 
motes and  then  extended  to  arbitrary  arrays by the  as- 
sumption that ordering is a  mote operation  (Section 1 1 ). 
If A and B are both  ordinal numbers  or both  real num- 
bers,  then ordering is defined in the  sense  that A I B  is 
either  true or false.  If A and B are  motes  and A I B  is nei- 
ther  true  nor false,  then  ordering is undefined in the 
sense  that A I B  is the  cipher El, which is a mote  other 
than a number or character. 

# A d B  equals 0 or 1 according as#A does or does  not 
follow #B in the  succession of ordinal  numbers. If A and 
B are real numbers,  then A I B  equals 0 or 1 according as 
A is or is not  greater  than B. A<B equals -. B I A  by 
definition. (Read I - ’  as  “not.”) 

If #AS#B, then  only the first # A  items in main order 
are  taken from B to make  the list #ApB, which is called 
an initial segment of B .  For example, 2pP Q R equals 
the  pair P Q and 1pP Q R equals  the solitary , O P  hold- 
ing P as  sole item.  A solitary is a list that holds one item. 

In a theory of lists,  every single is a  solitary. In a  the- 
ory of arrays, according to  Theorem 10, no single is a 
solitary. Theorems  asserting  the nonequality of various 
arrays,  other than arrays involving characters or the 
cipher, follow  from Axiom 1 1 .  Without  this  axiom, all 
arrays  constructed  from  numbers  alone might be  the 
same. 

Axiom 11.  Zero differs  from one. 

0 3 1. 
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6. Reshaping 

If certain premisses hold, then  it does not matter on a  further 
reshaping whether items are  taken cyclically from  an  array  or 
the array reshaped. Vacating is zero reshaping. 

Axioms 15, 16, and 19 amount to one  postulate, called 
the reshaping or recounting  postulate. When phrased in 
terms of recounting,  this postulate  asserts  that 
#ApB =. #Ap .#CpB whenever A has  no  more  items 
than C, or B is empty, or the  count of B both divides the 
count of C and  is  no  greater  than  the  count of C. For 
example, if A has 4 items, C has 5 items,  and B is the tri- 
ple P Q R, then 5pB equals P Q R P Q and  both 4pB 
and 4p( 5 p B )  equal P Q R P .  

If #CpB is a  list formed by cycling  through all of the 
items of B an  exact ordinal number of times, which is 
vacuously the  case if B is empty, then it  does  not  matter 
on a further recounting whether  the items are  taken cycli- 
cally from B or from #CpB. For  example, if C has 6 
items  and B is the  pair P Q, then 5pP Q and 5pP Q P Q 
P Q are  the  same. 

Except  for  the  shape of the final result,  whether  it  be 
an  array of shape -A or a list of count #A,  the  recount- 
ing postulate is essentially the  same  as  the  reshaping 
postulate. If the  premisses hold,  then it does  not  matter 
on a further recounting or reshaping whether  the  items 
are  taken cyclically from B or from 4 p B .  

Axioms 15 ,  16, and 19. The  reshaping  postulate. If the 
count of A is no greater than the count of c, or if B is emp- 
ty, or if the count of E both divides the count of C and is no 
greater  than the count of C, then the reshaping of B to the 
shape of A equals the reshaping of B first to  the shape of C 
and then to the shape of A. 
fA5fC +. -ApB =. -Ap .-CpB 

#B=O +. -APE =. NAP. -CpE 

#%#C A. #B I#C=O .+. -ApB =. “Ap .-CpB 

Axioms 12, 13, 14, 18, and 20 postulate  the few ele- 
mentary facts  about  the ordering and divisibility of the 
ordinal numbers  needed  to satisfy the  premisses of Ax- 
ioms I5 and 19. The  sequence of axioms is determined 
by the principle that  no axiom is introduced until it is 
needed to  deduce  further results. 

Axioms 12, 13, and 14. Zero is no greater than any count. 
A count is no greater  than itself. The count of a nonempty 
array is no less than one. 

0 5 #A 
#A 5 #A 
#At0 +. l<#A. 

For every  nonzero ordinal#A, called the divisor, and 
every ordinal #B, called the dividend, there  exist unique 141 
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ordinals #A$#B and #A I #B, called the quotient and re- 
mainder [ 191, respectively, for which #A$#Bx#A + 
(#A I#B) = #B and #A(#B<#A. If the  remainder is 
zero,  then  the divisor divides the dividend. 

The #A quotient  of#B is the  greatest ordinal number 
of lists of length #A that  can be dropped  or deleted as 
successive initial segments  from a list ,B of length #B . 
The#A remainder  of#B is the length of the final segment 
of ,B remaining after  the first #A$#Bx#A items  have 
been dropped.  For  the  present,  the remainder  operation 
is  taken  as primitive. 

Axioms 18 and 20. A count divides itself.  One divides any 
count. 

#AI#A = 0 

ll#A = 0. 

The recounting of an  array A to  the  count of an  empty 
array  produces a  list OpA of count 0, called the empty 
list of A, in which the  items  are  taken cyclically from A, 
or equivalently, from  the list of A.  

Dejnition 6. The vacating or empty listing of an  array 
equals the zero recount of the array. 

\A for OpA. 

According to Theorems 15 and 16, an  array A is emp- 
ty if and only if ,A=\A.  In particular, an  array A is an 
empty list if and only if A=\A.  By a second corollary to 
Theorem 28, if an  array B is empty, then #ApB and 
#Ap ,B  and#Ap\B  are equal. Vacating is a useful opera- 
tion in the  study of empty  arrays  because many opera- 
tions, such  as counting and recounting, treat  arrays  as 
lists  and  therefore  empty  arrays  as  empty lists. 

The  recounting of an  empty  array B to the  count of A 
produces a list #ApB on an axis of length #A in  which the 
items  are  taken cyclically from B, or equivalently, from 
the  empty list of B.  #ApB and #.#ApB are undefined in 
APL\360 when B is  empty  and A is not. Rather  than pro- 
vide for this one exception by adding restrictive premiss- 
es  to many theorems,  thereby missing some of the ad- 
vantages of a standard  theory,  Axiom 9 postulates in list 
theory  that#(#ApB)=#A  for all A and  B. 

Axiom 9 .  The reshaping of an  array B to the shape of an 
array A produces an  array  having the shape of A. 
-(&ApB) = -A. 
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Axiom 9 requires  3pB  to  have 3 items  even if B is 
empty.  The  items of 3pB  are  taken cyclically from \B. 
What items come  out of the  empty list of an  array? 

The  answer provided in the next  section  was originally 
found  by  interpreting earlier versions of the axioms [9b] 
and  observing in A P L \ 3 6 0  that a  solitary zero  or a soli- 
tary blank results from the  zero  expansion of the  empty 
numerical list or  the  empty  character list, respectively. 
The  same  answer  can be  inferred  directly  from the prop- 
erties of a vector  space. 

7.  Patterns 

The vector sum of a vacated list of vectors is the zero vector, 
which in certain cases may be taken as the  pattern of the list of 
vectors. 

An  array built up  from  numbers  alone  or  characters 
alone is said to be homogeneous. Each  more  or less 
deeply  nested number  or  character in an  array can  be 
reached by a path, which is a list of successive  address- 
es. A path  amounts  to  an  address in depth. Roughly 
speaking, an  array is said to be uniform if it is rectangu- 
lar in depth. 

The mathematics of patterns evolved from  the  search 
for a  simple construction  based on simple axioms  that 
would typify the items of an  array having some regulari- 
ty of structure.  Patterns typify the items of uniform, 
homogeneous  arrays in the  same way that  the  zero  and 
the blank typify arrays of numbers  and  characters in 
APL. Essentially the  same  construction  can  be  deduced 
from an interpretation of empty lists of vectors in a vec- 
tor  space. 

The class containing the  zero  vector  alone is a vector 
space, called a zero space or zero  subspace. In a 3-di- 
mensional vector  space, planes,  lines,  and  points  through 
the origin are  subspaces having dimensions 2 ,  I ,  and 0, 
respectively. The  unique  zero  subspace  has dimension 0 
and must  be spanned by the  empty  class.  The  zero vec- 
tor in the  zero  space is a  linear  combination of the vec- 
tors in the  empty class. Consequently,  the  vector sum of 
no vectors must be  the  zero  vector [37]. 

For  example, if addition and multiplication of pairs of 
real numbers  are defined so that  the pairs combine like 
complex numbers, then the  class of all such pairs is a 
field. Each pair of real numbers  is  then called a scalar. 
The  zero  scalar  is  the  pair 0 0. If P equals (2 -3 ) 
(-1 4) (0 5 )  and Q equals (1 2) (3 -2) ( -70 ) ,  
then P and Q are  vectors in the  vector  space of triples of 
scalars. 

If A = P Q, then A is a list of vectors.  The sum +A of 
the list A is best  interpreted  as a vector sum of vectors. 
+A is calculated as follows: 

(2 - 3 )  (-1 4) (0  5 )  + (1 2) (3 -2) (-7 0 )  

(2 -3 + 1 2) (-1 4 + 3 -2) ( 0  5 + -7 0)  

((2+1>(-3+2))((-1+3)(4+-2))((0+-7)(5+0)). 

Thus +A is the  vector (3 -1) (2 2 ) ( -7 5) .  This 
example illustrates the positional operator  (Section 1 1 ) 
and shows why dyadic  addition is taken  to  be a mote 
operation. 

As  shown earlier, the  vector  sum of no  vectors  is  the 
zero  vector.  Hence  the sum +\A of the  empty list \A of 
the list A in the  example  above must  be the  zero  vector 
(0  0 )  (0  0)  (0 0 ) .  If B is a list of vectors in the 
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vector  space of all quadruples of real numbers,  then +\B 
equals 0 0 0 0. Nearly all of the  theorems  about a 
vector  space still hold if the field is relaxed to a division 
ring of scalars,  such  as  the division ring of quaternions 
[ 161. If C is a list of vectors in the module of all pairs of 
scalars  over  the division ring of quaternions,  then +\C 
equals(0 O O 0)  ( 0  O O 0 ) .  

All empty  classes  are equal in set theory.  If M is  an 
empty  class of triples of pairs of real numbers  and N is 
an  empty  class of quadruples of real numbers, then M 
and N are  the  same.  The  vector sum of M differs from  the 
vector sum of Iv because  the summing operations  are 
defined for different vector  spaces. 

In a theory of arrays,  there is only one summing oper- 
ation. If the  sum +\A differs from the  sum +\B, then  the 
burden of the difference is borne by \A  and \B. Even 
though \A has  no  items,  there is residual  information 
associated with \A, called the  pattern [9] of A (or of 
\A), which indicates  that \ A  is the  result of vacating an 
array A holding triples of pairs of real numbers. If the 
pattern of A is taken  to be the  zero  vector  corresponding 
to the  vectors in  A, then  the  sum +\A of the empty list 
of A may be  taken directly as  the  pattern of A, provided 
that  characters and the cipher are not  used in the con- 
struction of A (Section 1 1 ). 

Thepattern  ofAis ( 0  0 )  ( 0  0 )  ( 0   0 )  and  thepat- 
tern of B is 0 0 0 0. The  pattern of a nonempty  array 
is the  same  as  the  pattern of its empty list. In  answer  to 
the  question asked at  the  end of the preceding section, 
each  item coming out of an empty  array,  got by recount- 
ing the  array  to a nonempty list, is taken  to be the pat- 
tern of the  array.  For example, if A has the  pattern 
above, then 2p\A is the pair ( ( 0  0 )  ( 0  0 )  (0  0 ) )  
( ( 0  0 )  ( 0  0)  ( 0  0 ) ) .  

8. Extracting 

The  extract of an  array  is  either  the  pattern or the  first  item of 
the  array.  Picking is defined in terms of extracting  and  drop- 
ping. 

The  extract 2 A  of a nonempty  array A is the first item 
(in main order) in A.  The primitive operation of extract- 
ing takes  the first item, rather than the last, because cer- 
tain infinite arrays  have  no last  item. 

Axiom 7. The  extract of a singled  array is the  array  itself. 

3 o A  = A.  

If A is a mote,  then A==A by Theorem 4. Any finite 
number of extractings  or singlings of a  mote returns  the 
mote as value. This  observation suggests that a  mote 
may be interpreted  as  an infinite nesting 0 0  0 .  . .B of 
singles within singles. 

According to  Theorem 37, lpA=,o>A.  The  recount- 
ing  of an  array A to a list of length 1 is the solitary 

holding the  extract  or first item of A. (The  comma is 
ignored or omitted in list theory.)  Theorem 37 is the list- 
theoretic  counterpart of Axiom 8. 

Axiom 8.  The null reshape of an  array is the singled  extract 
of the array. 

8 p A  = 03A. 

If A is empty,  then,  as suggested by the  properties of a 
vector  space,  the item got by recounting A is the  pattern 
of A. Thus  lpA,  for A empty, is the solitary holding the 
pattern of A.  If Theorem 37  is to hold for all arrays,  as 
would be  desirable in a standard  theory,  then 1 p A  must 
also be the solitary holding =VI. By the principle of ex- 
tensionality  (cf. Theorems 3 and 32) ,  the  extract of an 
empty  array must  be the  pattern of the  array. 

Since  extracting  takes  the first item of an  array in 
main order, 2 A = 2 ,  A by Theorem 3 1. If A is empty, then 
,A=\A and so 3A=x\A by Theorem 33. As defined ear- 
lier, the residual  information associated with \A is called 
the  pattern of A. Since \ \A=\A by Theorem 18, the pat- 
tern of A is the  same  as  the  pattern of  \A, which is the 
extract of \A because \A is empty.  Thus 2 \ A  is the  pat- 
tern of A for  every A.  

According  to  Theorem 46, WA=6.  The null is the 
empty list of any ordinal  number. Theorem 46 is the 
list-theoretic counterpart to Axiom 22. \S=6 because 
\\#A=\#A by Theorem 18. 

Axiom 22. Vacating  a  shape  produces  the  null. 

\-A = 8.  

The field of real numbers  over itself is a vector  space. 
Each real number,  and  therefore  each finite ordinal, may 
be  interpreted  as a vector.  In particular, 0 is the  zero 
vector.  If  an  array A isJinite in the  sense  that its count is 
finite, then \#A is the  empty list of vectors. +\#A=O and 
+6=0 because  the  vector  sum of no  vectors is the  zero 
vector.  The  sum of the  empty list of an  array  (without 
characters  or  the  cipher) is taken  as  the  pattern of the 
array.  Hence 0 must  be  the  pattern x\@ of the null. 
26=2\6 because S=\S. 

Axiom 23. The  extract of the null is zero. 

38 = 0. 

The sum of an  array is defined to be the sum of all the 
items in the  array in main order.  Thus +A=+, A for all A .  
The sum +.A of a single equals  the  sum +, o A  of the 
corresponding solitary. In  the  context of a vector  space, 
the sum of a single or solitary vector is the  vector itself. 
For example, +o (2 4) (6 1 )  equals (2  4) (6  1). 
This  observation suggests that  the sum of the  empty list 
of an  array be taken  as  the  sum of the singled pattern of 
the  array, i.e., +\A = +ox\A. 

If A is empty,  then +A=+o2A. The  sum of an  empty 143 
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array is converted  to  the  sum of a nonempty  array  (Sec- 
tion 11). 

Operations  for fetching  items by address  are defined 
in terms of operations  for moving and  then  extracting 
the  desired items. The definition of picking in terms of 
extracting  and dropping  illustrates the fundamental na- 
ture of the picking operation.  Axioms  for dropping are 
deferred  to  Part I1 [to  be  published]. 

The primitive operation of dropping is essentially the 
same  as  the APL function of dropping. The#A drop of 
the  list of B is  the  list #A+ B, called a final segment of 
B, that holds all but  the first #A items of B  listed in main 
order.  When combined with dropping, the  operation of 
extracting  can be  used to pick any particular  item from 
an  array.  The #A pick of the list of B is  the item#AD,B 
at index#A in the list of B. #A3,B is the first  item in the 
final segment of B beginning at #A. Thus 

# A ~ , B  = ~ . # A + , B .  

For example, 2 3 P Q R S = R.  These list-theoretic 
equations follow from  the  array-theoretic definition of 
-ADB as x.-A+B. 

The preceding equation certainly  holds if#A<#B. If 
the equation  holds for all A and B and if#A+,B is defined 
to be the  empty list of B  whenever#B<#A,  then 

#BI#A +. # b , B  = 2\B. 

If  the index #A lies outside  the range of indices for  the 
list of B, then #A picks the  pattern of B. Since #\BIo 
for all B, O3\B=2\B.  Thus 03, A equals  both 2, A and 
3 A  for  every A.  

9. Plans 

Patterns  and plans are calculated in  terms of each  other,  extend 
extensionality to  empty  arrays, identify data  types,  and, when 
equal, provide the basis for an  axiom of foundation. 

In  the recounting of an  array A, it does  not  matter 
whether  the items are  taken cyclically from A or  from 
the list of A. In particular, OpA=. Op ,A, which proves 
that \ A = \ , A  (Theorem  29).  According  to  the  recount- 
ing postulate, OpA=. Op . IpA.  Hence \ A = \ ,  o 3 A  by the 
list-theoretic version of Axiom 8. The foregoing proves 
Theorem 26, \A = \03A, which is a simple yet funda- 
mental result  that  has  an  important corollary: 

3 \ A  = D\ODA. 

Theorem 26 means  that  the vacating of an  array A can 
be done by  vacating the single or solitary holding the 
first  item or  extract of A.  According  to  the corollary, the 
pattern of an  array  equals  the  pattern of its singled ex- 
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If  arrays A and  B have  the  same  pattern, then 2\A=>\B 
and so \03\A=\o~\B.  Hence  \A=\B by Theorem  26 
and the  idempotency of vacating (Theorem 18). Arrays 
have  the  same  pattern if and only if ( z )  they have  the 
same  empty list (Theorem  27): 

x \ A = ~ \ B  2. \A=\B. 

According  to  Theorem  42, if arrays A and B have  the 
same  shape  and  the  same listing, then -&A=. -BpB and 
so A=B by Axiom 21. Empty  arrays  have  the  same list- 
ing if and only if they  have  the  same  pattern.  Thus  Theo- 
rem 42 proves  the principle of extensionality for  empty 
arrays. 

Extensioncrlity. Empty arrays  are equal if they have  the 
same  pattern  and shape. Nonempty  arrays  are equal if they 
hold the same  items at  the  same  addresses. 

Let A be the list P Q, where P equals ( 2  -3 ) (-1 4 )  
(0  5 )  and Q equals a similar vector as in the  example of 
Section 7. The  pattern of the single of an  array is called 
the plan of the  array.  According  to  the corollary of 
Theorem 26, the  pattern of A equals 3\ o ~ A ,  which is 
the plan of P. Thus  the plan of P equals (0 0 ) (0  0 ) 
(0 0 ), which is  the  zero  vector in the  vector  space 
containing P and Q. 

The  pattern of P is  the  zero  vector 0 0 in the  vector 
space of pairs of real numbers. Thus  the plan 2\0P ofP  
equals  the list # P p o 3 \ P  holding three repetitions of the 
pattern of P. By the corollary of Theorem 26  again, the 
pattern of P equals 3\02P, which is the plan of the first 
item of P. The  pattern of the first  item 3P of P is the 
zero  vector 0 in the  vector  space of real numbers  over 
itself. The  pattern of P, which equals  the plan of xP, is 
the list # 3 P p o ~ \ > P  holding two repetitions of the pat- 
tern of 2P. For  the list P in  this example, 

2 \ o P  =. # P p o  .#3Pp03\3P. 

The preceding  example  suggests that if 2\0 ,A=.  
# A p o 3 \ A  is taken  as  an axiom in list theory,  or equiv- 
alently, if 2\ .A=. -Ap o 3 \ A  is taken  as  an axiom in 
array  theory, then the  pattern of an array B  can  be  com- 
puted as  the plan of the  extract of B.  The plan of 3B is 
an  array having the  same  shape  as 3B, in which each 
item is  the  pattern of 3B.  The  pattern of 3B is then 
computed  as  the plan of =JIB, etc. 

The  equation 2\? A= . "Ap o 3 \ A  can  be  reduced  to a 
simpler form.  For all arrays A and B, -Apo2\B  equals 
"Ap . Ip\B, which equals -Ap\B by the recounting  pos- 
tulate  because \B is empty  (Theorem  24).  Thus  the plan 
of A may be taken  as -Ap\A. 

Axiom 24. The plan of an  array A is an  array of the same 
shape  as A in which each item, being taken from the  empty 
list of A, is the  pattern of A. I\ o A  = . -&\A. 

Theorems 50 and  52  show  that  the  alternate calcula- 
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tion of patterns  and plans leads  to  the following two 
theorems, which can  be  extended indefinitely: 

3\B =. - d ? p o  . - c ~ B p o .  
-333Bpo. -3333Bp03\033~33B 

3 \ o c  =. -cp~.-3cpo. 
-33cp 0 . -333cp 0 3\ 0 3333c. 

The  second  theorem follows from  the first by substitut- 
ing 0 C for B.  According  to  Theorem 53, an empty  array 
equals its  plan. 

The  pattern of B is an  array of shape -CJB in which 
each item is an  array of shape -33B, etc., until 
33. . . ~ Z J B  is a mote.  Then 3\033. . equals 3\ 

3. . .33B, which is the  pattern of the mote. According 
to  the corollary 3\#A=O of Theorem  48,  every ordinal 
number  has 0 as  pattern. If provision is made to distin- 
guish the floating-point zero  from  the integer zero,  then 
the floating-point numbers having floating-point zero  as 
pattern  can be  distinguished from  the integers having 
integer zero  as  pattern.  Patterns  can be  used to identify 
data  types. 

Axioms  26  and 27. The  pattern of the cipher is the cipher. 
The  cipher differs from  zero. 

3\B = 

B f 0. 
Axioms  29, 30, and 31. The  pattern of the blank is the 
blank. The blank differs from  zero  and  the  cipher. 
= \ I  I = 1 1 

" f O  

1 ' # B .  

Theorems 74, 79,  and 85 assert  that if the plan of an 
array A equals  zero,  the  cipher, or the blank, then A is a 
mote and  the  pattern of A is zero,  the  cipher, or the 
blank,  respectively. The introduction of motes  is con- 
trolled so that only numbers  have  zero  as  pattern  and 
only characters  have  the blank as  pattern. Axiom 28 
assumes  that  the  cipher  is  the only mote having the ciph- 
er  as  pattern.  Thus  an  arbitrary  array A is a number,  the 
cipher, or a character according as  the plan of A is zero, 
the  cipher, or the blank. 

Axiom 28. Only  the  cipher  has a plan  equal to the cipher. 

Dejinitions 7, 8 ,  and  9. The void is the  empty list of the 
cipher. The nil is the  empty list of the blank. A pair of adja- 
cent  quotes  also  denotes  the nil. 

9 for \B 
6 for \ I  

for 6. 

If an  array A holds itself as first item,  then A=3A and 
the  pattern and  plan of A are equal because ~\A=D\ 

03A.  In particular, the  pattern and  plan of a mote are 
equal. Since arrays  have  the  same  pattern if and only if 
they have  the  same  empty list, the  pattern  and plan of an 
array A are  equal if and  only if \A=\oA. 

Zermelo's (1930) axiom of Fundierung [6], founda- 
tion [38], or regularity [39], which is based on  von 
Neumann's  (1929) axiom, prevents a class  from con- 
taining itself at  any  deeper level of nesting  by  postulating 
that  every  nonempty  class M contains a class having no 
members in common with M. The full strength of this 
axiom is not wanted for  array  theory  because  motes  are 
assumed  to  exist.  Axiom 25 assumes instead that  no  ar- 
ray  other  than a  mote  holds itself as first item or has a 
pattern equal to its  plan. 

Axiom 25.  If an  array  has  the  same empty  list as its  single, 
then the array is a mote. 

\A=\oA+. A=oA. 

10. Replacement 

The replacement  transform of a  monadic  operation  applies  the 
operation to  each item of an  array.  Cartesian  products  show 
how replacement  transforms  apply to empty arrays. 

Skolem ( 1922) and Fraenkel  (1922)  added  to  Zerme- 
lo's seven axioms the following axiom schema of re- 
placement [40] or substitution  [38]: If M is any class 
and A is any singulary function  sending classes  to class- 
es,  then  the range of all A x for x in M is again a  class. 
When  augmented by replacement, Zermelo's system is 
called Zermelo-Fraenkel set  theory. 

Replacement. For every  array A and every monadic opera- 
tion A, the  result of replacing at  each  address in A an item 
X by A X is again an  array. 

To each monadic operation A there  corresponds by the 
replacement  operator, which is denoted by a colon,  an- 
other monadic operation : A that applies A to  the items 
of an array according to  the principle of replacement. 
: A o A = o A  A and  :A(A$)=.A AsA B for all A and B.  
The  operation : A is called replacement A or the replace- 
ment  transform of A. Operator names, such  as  the co- 
lon, have  the  same  dot-free  syntax with respect to opera- 
tion names  that  operation  names  have with respect  to 
array  names. 

Axiom 32. If A is a  monadic operation  and A and B are non- 

ment A is applied  before or after  the reshaping of B to  the 
empty arrays, then it does not matter  whether  replace- 

shape of A. 
#AZO A. # B O  .+. :A(-ApB)=."Ap:A B. 

For example, : A .  3pP Q equals : A P Q P equals 
(A P) ( A  Q) (A P) equals  3p(A P) ( A  Q) equals 
3p:A P Q. 

The Cartesian  product EA of a finite list A of lists is an 145 
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array having #A axes in which the first  axis has  the 
length of the first list in A, the  second axis has  the 
length of the  second list in A, etc.  (Section 21).  The 
items of EA are all possible  lists of count#A in which the 
first  item is taken  from  the first  list in A, the  second item 
is  taken  from  the  second list in A, etc.  In a theory of 
lists, the  Cartesian  product of A may be taken  as  the list 
of EA. 

For  example,  let  Abe  the triple (P Q )  ( ,OR) (S 2'). 
The  Cartesian  product EA is a 2 by 1 by 2 array of tri- 
ples. 

,ZA = (P R S> (P R T >  (Q R S> (Q R T ) .  

The  Cartesian  product of a solitary  list is a list of soli- 
taries. For example, 2, OP Q R equals ( , o P >  ( ¶ .&> 
( O R ) .  In particular, the  Cartesian  product 5 o\A of 
the solitary , 0 \A of an  empty  list \A should be  an  emp- 
ty list \ 0 O B  in which each item is a solitary of the  form 
OB. Given A, what is B? If A = P Q R, then the first 

item of 5 , .  A is  the solitary , oP holding the first  item of 
A. If A=\P Q R, so that A=\A, then the  extract of 
5, o\A is the solitary o3\A holding the  extract of \A. 
Thus  for  every  array A, 
- x o\A = \ o  O~\A. 

The  list : ( , o ) P  Q R equals (,oP) (,o&) ( , O R ) .  
Hence, by the preceding  example, 5 ,  o P  Q R = : ( , 0 ) 
P Q R for all arrays P, Q, and R. In  array  theory,  the 
Cartesian  product of a single or solitary array is an  array 
of singles or solitaries. The following two  equations hold 
intuitively for  every  nonempty  array A and  are  postulat- 
ed to hold for  every A. 

- XoA = :oA 

- x,oA = :(,.)A. 

In  particular, 5 ,  .\A must equal : ( )\A. Conse- 
quently,  for  every A, 
:(,.)\A = \0,03\A. 
This  last  equation  suggests  Theorem  91, which asserts 
for  every monadic operation A and every  array A that 
: A\A = \oA3\A. When empty listing is generalized to 
empty  reshaping, Theorem 91 becomes Axiom 33. 

Axiom 33. If A is a monadic operation and A is an empty 
array, then replacement A applied to the empty array re- 
sulting from a reshaping of an  array B to the shape of A 
produces an empty array of the shape of A in which  each 
item is A applied to the pattern of B. 

#AZO +. :d(--ApB)=.@Apod~\B. 

Axiom 33 and  its immediate result,  Theorem 91, show 
why  Axiom 32 is restricted  to nonempty arrays: 

146 #At0 A. #B#O .+. :A(mApB)=.-Ap:A B. 
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If A=6 and B=l and  the  premiss #At0 is omitted,  then 
-A=O and#BtO and so : A\l=\ : A 1. But \ :A 1 equals 
\:Aol, which equals \OB 1. By Theorem 91, :A\l 
equals \oA~\l, which equals \.A 0. If A is chosen so 
that A 0 = 0 and A 1 = a, then \ o O = \ o B .  This is a 
contradiction  because  zero  and  the  cipher  have different 
patterns. 

If A=,O and  B=6  and  the premiss #B*O is omitted, 
then #At0 and -A=l and so :A90~6=,o3:A6. But 
:A 036 equals , oA36, which equals ,.A 0. Hence 
A 0=2:A6 by Theorem 32. According to Theorem 91, 
2: A6 equals 3: A\6 equals 2\0A3\% equals 3\oA 0. If 
A is chosen so that A 0=1, then 1=2\01 and so 1 ~ 0 .  

Even  though  Axioms  32  and 33 have  restrictive prem- 
isses,  the two axioms work together  to  prove  theorems 
without premisses. For  example,  Theorems 98, 99,  and 
100 hold for every  array A: 
:A A =. -Ap:A A 
-:A A = -A 
:A,A = ¶:A A. 

The  operator of composition,  which is  denoted by jux- 
taposition, combines two monadic operations  to  produce 
a third. For example, the  composition of patterning I\ 
with singling 0 produces  the  operation I\. of planning. 
(I\ ) 0 and I( \ 0 ) are  the  same  operation  because com- 
position is associative. The  class of all monadic opera- 
tions is a  semigroup under composition. The replace- 
ment  operator is an endomorphism of the semigroup. 
For all monadic  operations A and 4 and  for  every  array 
A, 
: ( A  A)A = :A:A A. 

If : ( , 0 >\A, which equals 5 o\A and  therefore 
\ o  03\A, were  to  equal \A, then a contradiction would 
follow from the  equation =J\O O~\A=~\A. By corollar- 
ies to Theorems 65 and 26, =J\o~o=)\A=,o=J\A. But 
according  to  Theorem 75, no  array  equals  its solitary. 

11. Positional 

The positional transform of a dyadic operation applies the op- 
eration to the positionally corresponding items of two arrays. 
Mote operations are the same as their replacement or position- 
al transforms. 

To each  dyadic  operation A there  corresponds by the 
positional operator [9a], which is also denoted by  a co- 
lon,  another  dyadic  operation : A called positional A or 
the positional transform of A. For all arrays A and B, 
each item  in the  array A: A B is  the result of applying A 
to  the positionally  corresponding items in A and B .  The 
positional operator  is based on  the  treatment of dyadic 
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scalar  functions in APL. For  example,  for all arrays 
P, Q, R, S. T,  and U, 
P Q R : A S T U =   ( P A S )   ( Q A T )  ( R A U )  

P Q R:AoS = ( P  A S) ( Q  A S) ( R  A S )  

o P : A S T U =  ( P A S )  ( P A T )  ( P A U )  

0P:AoS = 0.P A S 

P Q : A S l ' U =   ( P A S )  ( Q A T )  

P Q R :  A\oS = \ o  .P b\Os 

\oP:A\oS = \o.x\oP AD\~S. 

Items  at  the  same indices in lists of the  same length 
correspond positionally. A singular array  has  one item. 
Two lists of different lengths are  made  to  have  the  same 
length by recounting  a  singular list to the length of the 
other list or truncating the longer  nonsingular  list to  the 
length of the  shorter nonsingular  list. The  items in a re- 
counted  or  truncated list  then correspond positionally to 
the  items  at  the  same indices in the  other list. This 
method of establishing  positional correspondence ex- 
tends  to  arbitrary  arrays. 

If arrays A and B have  the  same  shape,  then  an item of 
A corresponds positionally to an item of B if and only if 
the  two  items  have  the  same  address. A singular  axis 
has length 1. If two  arrays  have different numbers of 
axes,  then enough  singular axes  are  appended to the  ar- 
ray  having the  lesser  number of axes to make  the  arrays 
have  the  same  number of axes. The  two  arrays  are  then 
made to  have  the  same  shape by (i) replicating each ar- 
ray along its singular axes so as to match the lengths of 
the  corresponding  axes in the  other  array,  and  (ii)  trun- 
cating to the lengths of the  shorter  axes  each  array hav- 
ing longer  nonsingular axes  corresponding  to  shorter 
nonsingular axes in the  other  array. 

For example, if an  array A has  shape 
4 1 3 1 5 1 7 8 0, then the 0-axis of A has length 
4, the 1-axis has length 1, etc. If an  array B 
has  shape 4 2 6 1 0 0 1,  then A:A B has  shape 
4 2 3 1 0 0 7 8 0. The positional operator is de- 
fined by an equation  discussed in Section 2 l .  

If several  arrays  are combined by various  positional 
transforms, then  regardless of the  order in which the 
arrays  are combined, or  the  order in which the  trans- 
forms  act, or the  number of times an  array  appears  as  an 
argument of the  transforms,  the final value has  as many 
axes  as  the  argument having the  greatest  number of 
axes.  An axis in the final value is singular if all corre- 
sponding axes of the  arrays  are singular. A  nonsingular 
axis in the final value  is  as long as  the  corresponding 
shortest, nonsingular axis among the  arrays. 

The positional transforms of commutative  operations 
are  commutative,  those of associative  operations  are 

associative,  and  those of operations distributive one 
through another  are distributive one through another. 

If nothing is gained by  distinguishing an  operation 
from its  replacement  or positional  transform, as  is  the 
case  for most arithmetic and logical operations,  then,  as 
suggested  by APL, the  operation  becomes  more useful if 
it is identified with  its  transform. A monadic operation A 
is said to  be a mote  operation if and  only if A A=: A A 
for  every  array A. A dyadic  operation A is  mote if and 
onlyifA A B=.A:A BforallAandB. 

Mote  operations applied to  motes  return  motes  as val- 
ues. If A is a  monadic mote  operation and A is a mote, 
then A A equals : AoA equals O A  A. If A is a dyadic 
mote  operation  and B is also a mote, then A A B equals 
oA:AoB equals "(A A B ) .  The  arrays A A and A A B 
are motes because  they equal their singles. 

Monadic negation and  dyadic addition are defined to 
be  mote operations by postulating that -A=:  -A and 
A+B=. A: +B for all A and B. A mote  operation  works 
down through the levels of an  array until it reaches  the 
most deeply  nested motes. The  operation  goes  no  deeper 
because it starts returning motes  as values. 

The addition of 0 to  an  array  returns  the  same  array 
except  for replacing every nonnumerical  mote by a ciph- 
er. For  example,  the pairs in the following four lines are 
equal: 

0 + ( ( 2  3) (4  ' A ' ) )  ( 5  (!3 'BC')) 
(0  + (2  3) ( 4  'A')) (0  + 5 (!3 'BC ' ) )  

( (0  + 2 3) ( 0  + 4 ' A ' ) )  ( ( 0  + 5)  (0  + B 'BC ' ) )  

A sum of two motes equals  the cipher if at  least  one of 
the motes is nonnumerical. Hence  the sum of a list of 
two or more arrays is devoid of characters. As suggested 
by the preceding example, +oA =. A+O for  every A. 
Thus +\A equals  +ox\A  equals 3\A+O. Similarly, for 
every A, X O A  =. Ax1  and X \ A  =. x\A+l.  Sums  and 
products of arrays  are  devoid of characters. 

12. Logic 

Mote  operations for the algebra of propositions are  defined  in 
terms of the  primitive  mote  operations of logical  denial  and 
summation. 

Logical denial is a primitive operation  that comple- 
ments  the  truth-values 0 and 1 and sends  every  other 
mote  to  the cipher. Denial  is defined for all arrays by 
postulating  that it is a mote operation. -.A= : -A for every 
array A. For  example, 1 0 1 (2  1 !3) equals 1 0 (!3 

Since - is a mote operation, -\A equals : -\A, which 
0 El). 
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equals \ 0 -\A by Theorem 9 1 .  By a corollary to  Theo- 
rem 26, \oB=\o2\oB. Hence  -.\Aequals \ O ~ \ O - ~ \ A .  
If the  pattern of A is devoid of blanks,  then I\O -2\A 
equals 2\0~\.4, which equals 2\A by another corollary 
of Theorem 26. Thus if the  pattern of A is devoid of 
blanks,  then -\A equals \o3\A, which equals \A by 
Theorem 26. Exactly the  same result and proof  holds for 
arithmetic negation in place of logical denial.  Both -6 
and -6 equal 6. 

An  array is simple if all of its  items are motes. Every 
item of a Boolean  array is a truth-value. The logical sum 
vA of a Boolean array A is 0 if and only if every item of 
A is 0. vA=v, A. In particular, an  empty Boolean array 
has a logical sum of 0. A  Boolean array in which there 
exists a 1 has a logical sum of 1. Every  other simple 
array  has  the  cipher  as logical sum. Logical products  are 
defined by De  Morgan's law. Disjunction is defined as 
the logical sum of a pair: 

AA for -.PA 

AvB for v.A:B. 
The preceding definitions extend  to nonsimple arrays 

if disjunction is assumed  to  be a mote operation.  For all 
A and B,  AvB=. A :  vB. Conjunction A, implication +, 
and coimplication are defined in terms of denial and 
disjunction  by the usual  propositional  formulas [351. 
Thus A+B= .-AvB for all arrays A and B .  The logical 
connectives 'VI, ' A ' ,  I + ( ,  and  are  the 
same  as  those used by Heyting [41] and Kuratowski 
and  Mostowski [19]. The propositional operations of 
nor Y ,  nand *, logical subtraction -, and  exclusive or 

are defined by the denials of V, A, +, and E ,  respec- 
tively. 

By analogy  with sums  and  products, 

v o A  =. AVO v\A = v o 2 \ A  

AOA =. Ah1 h\A =. I\Avl 

for  every  array A. In particular, v6=0 and ~ 6 = 1 .  
The usual equations [42] for Boolean  algebras 

(v, A, monadic 3 ), classical subtractive  lattices 
(V, A, dyadic - 1, Boolean rings (E, A ) ,  classical 
implicative lattices (A, v, +), and  dual Boolean rings 
( E ,  V )  holds for all arrays  when  converted  to balanced 
form.  An  equation is unbalanced if a variable has  occur- 
rences  on  one  side of the  equation  but not the  other.  The 
valid equation A+A= . B+B of propositional  algebra  fails 
for  arrays  because  it  is unbalanced. An  equation  is 
balanced by  entering  variables  tautologously on  the 
deficient sides. For example, B-tBhA is logically equiv- 
alent  to A but  involves  the  shape of B .  Thus B+BhA+A 
= .A+ .B+B is balanced and holds for all Aand B. 

If A is  the  quadruple 1 0 ( (1 1 0 )  2 ) 3 and B is 
148 the triple 0 (1 (0  4)) ( (0  1) 5 (0  I)), then A+B 

equals 0 ( 1 (1 El) ) ( (0 1 ) El) . Further calculation 
shows  that  both B+.  A+B and A+. B+B equal  the triple 
1 (1 (1 El)) ((1 1) El). Thus B+.A+B equals  the 
obvious tautology A+. B+B. 

A formula  is a term or well-formed string that  denotes 
a truth-value.  Iffand g are formulas, then f = g andfE g 
have  the  same  interpretation.  The proofs of Theorems 1 
and 2 hinge on  the equivalence of equality  with coimpli- 
cation  when  restricted to truth-values. 

13. Sets 

An array  is  called a set if the  ordering and repetition of its items 
are  neglected.  Membership and inclusion are defined  in  terms of 
equality, replacement,  and  operational  abstraction. 

Universal  and existential  quantification over  the items 
of an  array involve  bound  variables that  can  be  treated in 
array  theory by operational  or  functional  abstraction 
[6,43]. In  the notation of Church [34] X Z ( Z x Z )  is the 
operation of squaring, XZ(Z) is the neutral or identity 
operation,  and XZ(6)  is a constant  operation  that re- 
turns  the null as  value  for  every  array  as argument. 
If the preceding monadic  operations are applied to an 
array A as argument,  then hZ( Z x Z ) A  equals AxA, 
X Z ( Z ) A  equals A, and  hZ(6)A  equals 6. 

A term is a well-formed string that  denotes  an  array. 
A formula is a  term that  denotes a  truth-value.  If w is a 
variable and t is a term, then A w ( t )  is a prefix designat- 
ing a monadic  operation. If w is a variable and t is a for- 
mula, then 3 w ( t )  and Vw( t )  are formulas. The strings 
Xw, 3w, and Vw are called binding  prefixes. In  each 
case, t is the scope of the binding prefix. 

A  given occurrence  of a variable w in a term  is bound 
if and only if it occurs  either in a binding prefix or in the 
scope of a binding prefix having an  occurrence of w. 
Otherwise  the given occurrence of w is free. The free 
[bound]  variables of a term are the variables  having at 
least  one  free  [bound]  occurrezce in the term. 

If s and t are  terms  and w is a variable,  then Xw ( t  ) (s ) 
is a term, which may be  written  as Xw ( t  )s or Xw ( t  1. s 
according  to  the  syntax of monadic  operations. If the 
bound variables of t are  distinct  both  from w and  from 
the  free variables of s, then  the  array  denoted  by Aw ( t )  
(s ) is denoted also by the  term  got by substituting ( s ) for 
every  occurrence of w in t [34]. 

If w is a variable, t is a term,  and A is a prefix having 
no  free  occurrences of w, then X d A  ( t  1 1 and AXw ( t  ) 
designate the  same  monadic  operation. If t is the vari- 
able w, then X W ( A  w >  and A designate  the  same  opera- 
tion. 

The  occurrence of arrays as items in other  arrays 
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defines an  operation E of membership that  corresponds 
to  the membership  relation in the  theory of classes.  AEB 
if and only if A equals  at  least  one of the items of B . 
AEB for v:hZ(A=Z)B 

A& for -. AEB. 

Thus A EB=v. oA: =B. This  last equation is not  used to 
define membership because  the positional operator is not 
primitive. 

If  B is  the triple P A Q, then : hZ(A=Z)B  equals 

(AZ(A=Z)P) (AZ(A=Z)A)  (AZ(A=Z)Q), 

which equals  (A=P) (A=A) (A=&).  Thus  AEB equals 
v 0 1 0, which is 1. Hence A E P A &. 

If B is an  empty  array and A is the operation hZ(A=Z 1, 
then AEB equals v : A B equals v ,  : A B  equals v: A,B 
equals v:A\B  equals  v\oA2\B equals v\ohZ(A=Z)3\B 
equals V \ O  . A=2\B equals V \  . A=2\B equals v 6  equals 
0. Hence#B=O +. AaB. 

If AEB. then A belongs to B, B contains A, and A is 
said to be an element or member of B.  The words  “ele- 
ment”  and “member”  connote a  disregard of order and 
repetition. 

An array is interpreted as a class  or  set  and is called a 
set if the ordering  and  repetitions of the items in the  ar- 
ray are neglected in the interpretation. For example, 
AEB if and  only if the  array A belongs to  the  set  B. 
Every  set is an  array. In discussions outside array the- 
ory, unordered  collections are called classes. 

If every  member of set A is a member of set B, then 
AcB . 
AcB for A:AZ(ZEB)A. 

Thus AcB=h.A: € O B .  For example, P Q  Q c Q R P S. 
By an argument  almost identical to  the proof that  no 
array belongs to  an  empty  set,  one can prove  that  an 
empty set is a subset of every  set: 

#A=O +. AcB. 
The inclusion relation c is transitive and reflexive on 

the universe of arrays and supports  the definition of a 
concomitant  equivalence  relation 7, called likeness: 

AYB for AcB A .  BcA. 

Two  sets  are dike if and only if each is included in the 
other.  Array  theory  or list theory  reduces  to a  system of 
sets  under  the equivalence  relation of likeness.  Many of 
the  equations in the  theory of classes hold also in array 
theory  or list theory if ‘ = I  is replaced by ‘ Y ’ .  Like- 
ness of sets differs from  equality of classes in that  the 
members of like sets must  be  identical rather than 
merely alike. 

The definitions of membership and inclusion indicate 

that  the following equations hold for  every A provided 
that a  formula is substituted  for  the ellipsis: 

v:hZ(.  . . )A = XZ(ZEA A (. . . ) )  

h:hZ(. . .)A = vZ(ZEA + (... 1).  

If : A  AcO 1 ,  then A is a monadic  predicate on A in 
the  sense  that A returns a truth-value  for  every item of 
A. If a  formula, such  as ‘ O f ,  ’ l ’ ,  ‘A=Z’, or  ‘ZEB’, is 
substituted for  the ellipsis, then hZ(. . . ) is a monadic 
predicate on every array. 

14. Separation 

The  separation  transform of a monadic  operation separates a 
sublist from an array by sublisting the array  according to its 
value  under  the  replacement  transform of the operation. 

Zermelo’s  Axiom 111 of separutiora postulates that if a 
propositional  function A is definite for all elements of a 
class M, then M possesses a  subclass  containing as ele- 
ments  precisely those  elements x of M for which A x is 
true [36]. IfM is known to  be a class, then so is the ag- 
gregate {XEM U . . . } of  all elements x in M for which a 
formula (in place of the ellipsis) holds. 

In  the  theory of classes,  the axiom schema of separa- 
tion is a  corollary of the axiom schema of replacement. 
Those  elements of a class M that  are  to be separated 
from M or kept in a subclass of M are  sent  to  themselves 
by a  function A .  All other  elements of M are  sent by A to 
a  class N not in M. The desired subclass  is obtained by 
deleting N from the range of A .  If this construction is 
used to  separate a subset from an array A, then there 
are as many copies of N in : A  A as  there  are unwanted 
items in A. Separation  follows  less  directly  from re- 
placement in array  theory,  because all occurrences of N 
in : A A have  to be  found  and  then  deleted  from : A A. 

The  process of selecting  some of the elements of a 
class but not others suggests that a list of truth-values be 
used to indicate which items are  to be taken  from a list 
of the same length. For example, 

1 1 0 1 0 / 0 1 2 3 4 = 0 1 3 .  

This is the APL function for compressing component 
vectors. A similar operation, which is described  below, 
can be defined for all arrays.  The axiomatization is de- 
ferred to  Part 11. 

The sublisting of an  array B by an array A is the list 
A/B in main order of those items in the list of B that 
occur  at indices  addressing  items  equal to 1 in #BpA. 
Sublisting is primitive. For all arrays A and B, 

A/B = ,.A/B 

A/B = . #BpA/ , B 

A/B =. :AZ(Z=l)A/B. 149 

MARCH 1973 THEORY OF ARRAYS 



For example, 0 1 2 / B  lists every third  item of B be- 
ginning with the second.  If B is the  octuple 
P Q R S T U V W, then 0 1 2 / B  equals Q T W. For 
all arrays A and B, the list A/B is called a sublist of B. 

The following two  properties of sublisting are anal- 
ogous to  Axioms  32  and 33. For all arrays A and B and 
for  every monadic operation A, 
 EA A. #BtO .+. :A(A/B)=.A/:A B 
1hA 3. :A(A/B)=:A\B. 
Thus if A or B are  empty,  then : A(A/B)=: A\B. For 
every A, 6/A=\A and O/A=\A and 1/A= ,A. 

If A is a  monadic operation, then :A A/A lists the 
items of A that A sends to 1. For example, :#A/A lists 
the singular items of A. - :#A/A, which equals : -: 
#A/A and : (-#)A/A, lists the  empty  items of A. If A is 
a  monadic predicate  on A, then :A A/A is the list of  all 
arrays X in A for which A X is true. This  array-theoretic 
counterpart  to  the axiom of separation suggests the fol- 
lowing definition of the list abstruction or separation 
operator / . 
/A A for : A  A/A. 

The  separation transform /A of a  monadic operation A 
is a monadic operation  that  deletes from the list $A of 
an  array A each item X for which A X*1. Thus /A A 
corresponds  to {XEA f l  A X}. If  a  formula is substi- 
tuted for  the ellipsis, then for  every A, / A Z ( .  . . )A cor- 
responds  to {ZEA 1 . . . }. 

The preceding correspondence suggests that  intersec- 
tion and  set difference be defined as in the  theory of 
classes: 

AnB for /AZ(ZEB)A 
A-B for /AZ(ZkB)A. 

The intersection of an  array A with  a set B is the list 
AnB in main order of the  items in A that belong to B. 
For example, P Q R Q n R S Q equals Q R Q. 

Operational abstraction can  be  used to define opera- 
tions that combine  particular  items in their arguments. 
For  example,  the monadic operation AX Y Z( . . . ) ap- 
plied to  an  array A assigns  values to  the bound  variables 
X, Y, and Z by letting the triple X Y Z equal 3pA. The 
value of AX Y Z( . . . )A is determined by  combining the 
0-item X, the 1-item Y, and  the 2-item Z of 3pA accord- 
ing to a  term substituted  for  the ellipsis. If A is an array 
of triples, then /AX Y Z(XEYA.XCZ)A is the list of all 
triples X Y Z in A for which X is both  a member of Y and 
a subset of Z. 

Operational  abstraction can  also be used to define 
dyadic  operations  and dyadic operations  that combine 
particular items in their arguments. For example, 

150 AX.Y(. . . ) is a dyadic  operation  and AV W.X Y 
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Z( . . . ) is a dyadic  operation in which V and W are 
taken cyclically as the first two items of the left  argument 
and X, Y, and Z are  taken cyclically as  the first three 
items of the right argument. 

15. Powers 

The  power  array of a finite array  holds all of the finitely many 
sublists of the  array. 

Zermelo’s  Axiom IV of the power  class assumes  that 
to  every class M there  corresponds  another  class, called 
the  power  class of M, that  contains precisely all the sub- 
classes of M. Similarly, in array  theory, to every finite 
array A there  corresponds  another  array *A, called the 
power array of A, that holds  precisely all the  sublists of 
A. In list theory,  the list of ZA is the power list of A. 

- *A for :AZ(Z/A)x.#ApoO 1. 
The definition of *A is perhaps  best explained by  an 

example. If A has  two  items, then 2p0 0 1 equals (0  1 ) 
(0 1) and z.#Ap 00 1 equals a 2 by 2 array holding 
(0   0 )  (0  1) (1 0) (1  1) in main order.  The  opera- 
tion A Z ( Z / A )  causes its argument  to sublist A. Thus 
*A is a 2 by 2 array in which each item is a sublist of A 
got by using a Boolean list of length 2 to sublist A. 
- 

,Zp Q (\op>  (,op) (p Q). 
All arrays  have finitely many axes. Axis  lengths, and 

therefore indices, are restricted to  countable (denumer- 
able)  ordinal numbers  [38].  Thus  every array is count- 
able in the  sense  that its  items can be put in a list indexed 
by the finite ordinals 0, 1, 2, . . . . A Jinite array holds 
finitely many items  and has  axes of finite lengths. Since 
Cartesian  products  take only finite arrays  as arguments, 
power  arrays hold only finitely many finite lists as items. 
The continuum of all infinite Boolean sequences  cannot 
be constructed (Section 17). 

16. Unions 

The union of an  array  holds all the  items of items of the  array. 
Dyadic  unions  and  monadic  intersections  are defined in terms 
of monadic  unions. 

Zermelo’s Axiom V of the union assumes  that  to 
every class M there  corresponds  another  class, called the 
union of M, that  contains precisely all the  elements of 
members of M. The items of the items of an  array  are 
called components. The union UA of an  array A is a list 
holding precisely all the  components of A. UA holds 
the items in main order of the first item of A followed by 
the items in main order of the second  item of A, etc.  For 
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example,  the union of the  quadruple (P Q )  ( O R )  
(\OS) (Q P T )  equals P Q R Q P l’. 

The union U A  of A equals , U A  and u ,A and u: ,A. 
Both uoA and U :   o A  equal ,A. Both u\A and u: \A 
equal \1A. The  count # u A  of a union equals  the sum 
+:#A of the  counts. : AuA= U: : A A for  every monadic 
operation A .  The generalized associative law holds for 
unions, intersections,  sums,  products, etc., in the  sense 
that u:uA=uuA and n:nA=nuA and +:+A=+uA and 
X :  xA=xuA. The preceding  equalities hold for  every 
array A. 

The union AUB of an array A with an array B is the list 
holding the  items of A in main order followed by the 
items of B in main order.  Dyadic union is defined as the 
monadic  union of a pair: 

AuB for u.A;;B. 

For  example, P Q R u Q S equals P Q R Q S. If B is 
empty, then AuB= ,A. Thus \Au\B=\A. If B is nonemp- 
ty and A is empty, then AuB=,B. The  operation of unit- 
ing treats its  arguments as lists. AuB=.  ,Au  ,B. As in the 
monadic case, # ( AuB)=.  #A+#B. 

The union of arrays may be  interpreted  as  the union of 
sets  under  the equivalence  relation of likeness. If A and 
B are nonempty and differ, then AuB and BuA are alike 
but unequal. 

The link A,B of an array A with an  array B is the list 
holding the items of A in main order followed by B itself: 

A,B for AuoB. 

For  example, P;Q,R,S = P Q R S. If F is a  monad- 
ic  operation, X is a  mote, and Y and 2 are  arbitrary  ar- 
rays, then F (X, Y , 2)  is the value returned by F from the 
triple X,Y, 2 taken  as argument.  If A is empty, then 
A,B= , O B .  

The intersection n A  of an array A is the sublist of 
those items in DAnuA that belong to  every item of A. If 
A is nonempty,  then DAn u A = ~ A .  Thus n ( AsB ) = . AnB. 
If A is empty, then  both 1AnuA and nA equal \xA. The 
class-theoretic definition of intersection  guides the  array- 
theoretic definition. 

nA for { Z E U A  11 VB(BEA+.ZEB)]  

nA for / h Z ( h : h B ( Z E B ) A ) . ~ A n u A .  

17. Choice 

Since every  array is well-ordered, the axiom of choice is implic- 
it in the  theory. Cartesian  products  are defined only for finite 
arrays. 

Zermelo’s  Axiom VI of choice postulates that if M is a 
disjointed (painvise disjoint)  class of nonempty classes, 

then the union of M includes at  least  one  subclass having 
one and only one element in common  with each element 
of M. In  the general  principle of choice, which Zermelo 
deduced  from  Axiom VI [36],  the class M need not  be 
disjointed. Zermelo  (1904) used the principle of choice 
to  prove  the well-ordering theorem, which asserts  that 
for any  class there  exists a  well-ordered  class having the 
same members [44].  The well-ordering theorem, in turn, 
implies the axiom of choice  [45]. 

The axiom of choice is implicit in array  theory be- 
cause  every  array is well-ordered. Every nonempty  sub- 
list of an  array holds a first item. 

The axiom of choice is also equivalent to Russell’s 
(1906) multiplicative principle: if M is a disjointed class 
of nonempty  classes,  then  the  Cartesian  product of M is 
nonempty. Unlike  the  Cartesian  product in array  theory, 
the  Cartesian  product used in the multiplicative  principle 
is not ordered. 

Let 1 W  be the  count of the infinite list 0 1 2 . . . of 
the finite ordinals.  If A is the list 1Wp.O 1, which 
equals (0 1 )  ( 0  1 )  (0 1 )  . . . , then the  unordered, 
class-theoretic  Cartesian product of A contains every 
infinite Boolean  sequence. Cantor’s diagonal method 
shows that this Cartesian product cannot be made into  a 
list of length 1 W .  In  general,  there  appears  to  be no ap- 
propriate way of ordering the  elements of a Cartesian 
product of an infinite array  [45].  Thus in array  theory, 
Cartesian  products  are defined only for finite arrays. 

If A is finite, then the  count of the  Cartesian  product 
of A equals  the  product of the  counts of the items in A. 
#A<W +. #zA=x :#A. If A equals 1Wp.O 1, then ?A 
is undefined and #EA is certainly not 1 W .  However, 
x :#A equals x2 2 2 . . . , which  equals the limit 1W of 
the  sequence of ordinals 1 ,  2, 4, 8, . . . [46].  The 
restriction to finite A cannot  be  omitted. 

18. Infinity 

Given  the  existence of an infinite list, one  can  construct  arrays 
having finitely many axes of various transfinite countable ordi- 
nal lengths. 

Zermelo’s  Axiom VI1 of infinity postulates  the exis- 
tence of a class M that  contains  the  empty class and  the 
unit class of every element in M. Similarly, in array the- 
ory,  there  exists a list @ (.@) ( 0  4 )  . . . in  which the 
null is the first  item and  each item is followed  by its sin- 
gle. The  count of this list is l W ,  which is the first trans- 
finite ordinal  number. 

In APL, I 4 equals 0 1 2 3 in 0-origin indexing. Let 
I#A be  the list in ascending order of all ordinal numbers 
less  than #A. Thus I#A is  the  array-theoretic  counter- 
part of the  class-theoretic definition of an ordinal  num- 151 
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ber. I 1 W  lists the finite ordinal  numbers, which serve 
also  as  the nonnegative  integers. 

The lists 0 1 2 3 ... and 3 4 5 6 ... have  the 
same  count 1 W .  The first list equals the union of 0 1 2 
with the  second list. Since  the  count of a union equals 
the  sum of the  counts, 3+1W=IW. The union of 
3 4 5 6 ... with  (followed by) 0 1 2 has  count 
1W3, which equals 1W+3 and differs from 1 W .  Ordinal 
addition is not commutative. 

Array  theory  uses a nonstandard  notation  for  the 
transfinite  ordinals to  accommodate  the conflicting de- 
mands of different  disciplines. The notation is based on a 
lexicographic  ordering for multiplication rather than the 
usual antilexicographic  ordering [ 191. 2XlW=2W. The 
product#Ax#B of the multiplier#A with the multiplicand 
#B equals  the  sum + .#Ap #B of #A repetitions of #B. 
The  theory follows Cantor's [ 181 original convention in 
placing the multiplier to  the left of the multiplicand. 
Modern notation follows Cantor's  later reversal of the 
convention [45]. Ordinal multiplication is not commuta- 
tive. 

The  exponentiation #A*#B of the ordinal #A raised 
to  the ordinal power #B equals  the  product X .#Bp#A 
of #B repetitions of  #A. The convention of lexico- 
graphic  ordering for multiplication requires  that suc- 
cessively  applied exponents be multiplied in reverse 
order. 

#A*#B*#C =. #A*. #Cx#B. 

Table 1 shows how the list of the first 1W*3 ordinals 
can be visualized as  the main list of an  array having 
three  axes,  each of length 1 W .  All ordinal numbers in 
the left-hand  column of the  table  are limit ordinals, 
which have  no  direct  predecessor. 

The ordinal 2W may also be  written as ' OW2WO ' , 
which indicates that 2W is located in layer 0, row 2 ,  
and column 0 of the  array. 1 W W  equals both 1W*2 and 
IWOWO. The  operations of counting, uniting, and reshap- 
ing construct  from  the  list 11W a class of countable, 
transfinite  ordinal numbers.  For example, 1 W W  equals 
# u .  1wpo I 1w. 

19. Reduction 

The reduction  transform of a dyadic operation is a monadic oper- 
ation defined for finite, nonempty, nonsingular arrays.  The fold 
transform of a monadic operation  is dyadic. 

Reductions involving scalar functions in APL suggest 
the definition of a reduction operator j that  transforms 
an  arbitrary dyadic operation A into a monadic operation 

j A  called the reduction transform of A .  A reduction 
transform  depends only on  the list of its  arguments: 
jA A= j A . ,  A for  every A. For every dyadic  operation A 
and all arrays A, B, and C, 

jA(B3C) =. B A C 

31#A A .  #A<lW .+. j A  A =. DA A j A . l + , A .  

For example, if A = P Q R,  then 2A=P and I+ ,A=& R. 
Hence j A  Aequals P A . Q  A R .  

Sums +A, products XA, logical sums vA, logical 
products &4, unions uA, and  intersections nA are  de- 
fined for all arrays. If A is  one of the six  preceding mo- 
nadic-dyadic operations,  then  A(B$)=.B A C for all B 
and C. Further, if A is nonempty, nonsingular, and finite, 
then A A= jA A. XA is not the  same  as  fzA, although 
- x(B:C>=. BEC. For example, EP Q R is an  array of tri- 
pies, whereas j z P  Q R equals PX.QER, which is an 
array of pairs. 

If an  array A is infinite or holds  less than  two  items, 
then  there  appears  to  be no uniform way of determining 
j A  A for  any given A .  For  example, if A is a finite Boo- 
lean  list, then j = A  equals 1 or 0 according  as A holds an 
even  or  odd  number of zeros, Is the  number of zeros in 
an infinite list even  or  odd?  How  does  one define j A o A  
uniformly for  arbitrary A if +o A=.  A+O and uo A= ,A? 
What is j A \ A  in general if +\A=+oD\A  and u\A=\DA? 
These  questions suggest that reduction transforms 
should be left undefined for  empty, singular, and infinite 
arrays.  For  such  arrays, monadic  union differs from  the 
reduction transform of dyadic union. 

The reduction operator  transforms a  dyadic operation 

Table 1 The ordinals  less  than 1WxlWxlW. 

2 - 1 Y 
0 1  

0 1 2 
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into a  monadic  operation. Monadic  operations  can  also 
be transformed into dyadic  operations. The fold [47] 
operator transforms an  arbitrary monadic operation A 
into a dyadic  operation EA that  takes a finite ordinal 
number as left argument  and any  array  as right argu- 
ment. (The fold operator in [47] results in a monadic 
operation.)  The left argument  indicates the  number of 
times A is to be  applied to  the right argument.  A fold 
transform, like any  other  dyadic  operation, is subject to 
operators.  For  example, 

0 1 2 3 : E o o A  = A (.A)  (..A) ( o o o A ) .  

20. Arrays 

Singles are 0-valent arrays. Singles and nonsingular  lists are 
suits.  Shapes  and  addresses  are suits of lengths  and  indices. 
The null is the shape  and  address  for all singles. 

In comparison with array  theory, list theory  has  the 
advantage of confining addresses  to  the simplest  form. 
Although an  array  on  more  than  one axis can  be repre- 
sented by the nesting of lists within a list, the  process of 
fetching an item of the  array,  as  represented in the list of 
lists, is complicated by considerations of both counting 
and  nesting. If a uniform array is represented by a 
uniform list, there is no information  available in the list 
to indicate the  depth of nesting  required for  the repre- 
sentation of the  axes of the  array. 

Matrix algebra, tensor algebra, and APL illustrate the 
convenience of locating  the  items of an  array by ad- 
dresses consisting of two  or  more indices. If the uni- 
verse of arrays is to be  closed under  the  tensor opera- 
tions of outer multiplication, contraction, and inner mul- 
tiplication,  then the universe  must contain  arrays having 
any finite number of axes. 

Let V be an n-dimensional vector  space  over a field. 
Disregarding  considerations of contravariance and  co- 
variance, a tensor of valence q on  Vis a multilinear map- 
ping of the  Cartesian product of the list V V . . . V of 
length q into a vector  space [48]. If V has a base,  then a 
tensor of valence q on V can be  represented by a compo- 
nent tensor, which is an  array  on q axes,  each of length 
n. The items in a component  tensor  are  scalars belonging 
to  the field. The  scalars may be  pairs of real numbers 
representing  complex  numbers. 

The number of items in a component  tensor is deter- 
mined by raising the dimension of the underlying space 
to  the power of the valence. If this  rule is to hold for all 
valences  and all dimensions,  then every  component  ten- 
sor of valence 0 must hold exactly  one item. For exam- 
ple, if the dimension is 3, then 0-, 1-, 2-, and 3-valent 
component  tensors  have 1, 3, 9, and 2 7  items, respec- 
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tively. If the dimension is 0, then 0-, 1-, 2-, and  3-valent 
component  tensors  have 1, 0,  0, and 0 items.  Compo- 
nent  tensors of nonzero  valence  over a space of zero 
dimension are  empty. 

The  inner  product of two  component  tensors of va- 
lence 1 is a component  tensor of valence 0 holding just 
one scalar. Since an inner  product of component  vectors 
produces a scalar in both vector and  matrix  algebra,  ten- 
sor algebra usually identifies a  0-valent component ten- 
sor with the  scalar it holds. 

A mote is an  array  that holds itself as  sole item. Com- 
plex numbers, which are  scalars in a field, and  real num- 
bers, which are  scalars in  a subfield, are  appended to 
array  theory  as  motes having 0 as pattern.  The preced- 
ing considerations from tensor algebra  suggest that 
motes  should  be  0-valent arrays.  Since  moteseare singles 
that hold themselves,  the  operation of singling is now 
defined to  return 0-valent arrays  as values. All arrays  on 
no  axes,  such as  ordinal numbers  and  characters,  are 
called singles. 

All singles and all nonsingular lists are called suits.  A 
suit of no items is an  empty list. A  suit of one item is the 
single of the item.  A suit of two  or  more items is the list 
of the  two  or  more items. Every nonsingular suit is a 
nonsingular list and vice versa. Singular suits  are singles. 
Singular  lists are solitaries.  A string is a suit of charac- 
ters.  Thus a  string holding one  character is the  character 
itself. 

The shupe -A of an array A is a finite suit holding the 
lengths of the  axes  for A. The 0-item in a nonempty 
shape is the length of the 0-axis, the 1-item is the length 
of the 1-axis, etc.  The  shape of an  array  on  one axis is a 
suit  holdingbne length. Thus  the  shape of a list is the 
axis  length itself. The  shape of an array on no axes is a 
suit holding no lengths. Thus  the  shape of a single is the 
null 6, which is the  empty list or suit  with pattern 0.  

Axiom 5 .  The  shape of zero is null. 

-0 = 6. 

Dejinition 1 .  The  count of an  array is the  product of its 
shape. 

# A  for x-A. 

An  uddress  for  an  array is a finite suit of indices. An 
address  for  an  array  on  one axis is a suit holding one 
index. Thus  an  address  for a list is an index. An  address 
for  an  array  on  no  axes is a suit holding no indices. The 
null is the only empty suit of pattern 0. Thus  the null is 
the unique address  for a single [9a].  Unlike A P L \ ~ ~ O ,  
the item in a number  or  character  has  the null as ad- 
dress.  Since  the  address  for a single is unique, a single 
holds  precisely one item,  which is located  at 6. The 
axioms and  theorems may now be  interpreted in terms 
of arrays. 153 
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21. Cartesian products 

Outer transforms and Cartesian arrays  are defined  in terms of 
Cartesian products. Boxing, exponentiating, and positional 
transforms are defined  in terms of outer transforms. 

The diagram in Fig. 1 represents a table or 2-valent 
array A in which B is a list of length 7, C is a single, D is 
a table of shape 9 5, and E is a solitary. Component T 
of A is at  address 0 1 in D, which is at 1 0 in A .  Figure 
2 represents  the  Cartesian  product of A. 

The figures show  various aspects of a diagrammatic 
method for representing arrays  [9a].  The tail, body, 
point,  and  head of an  arrow show,  respectively, the axis 
number,  axis  label,  direction of increasing indices, and 
length of an axis.  Some of the  layers,  rows,  or columns 
normal to a long axis may be omitted.  Only those cells 
are filled that  are needed to illustrate a point. Some of 
the hyperplanes (rows,  layers,  etc.) may be indexed 
explicitly. 

The axes labeled 0, 1, 2, 3 in the four diagrams for 
the items of A in Fig. 1 become the axes  numbered 
0, 1, 2, 3 in the diagram for EA in Fig. 2. Axes I and 
J in Fig. 1 become  axes I and J in Fig. 2. 

An array S is said to be a section of an  array A if A 
and S have the  same  shape and if the first item of S is an 
item of the first item of A,  the  second item of S is an 
item of the  second item of A, and so on in main order 
through all the items of A and S. The items of S are 
components of A. 

The Cartesian  product EA of a finite array A is  an  ar- 
ray of size u:-A holding every possible  section of A .  
For example, if A is the pair B$ and I D B  is an item of B 
at  address I and J1C is an item of C at  address J ,  then 
I ~ B T .  J2C is the  section of A that  occurs in XA at ad- 
dress I u J .  If A is infinite, then ZA=m. 

If EA is nonempty,  then  EA=: DA. A finite array  has 
the  same components as its Cartesian  product in the 
sense  that U A  and uEA are alike. : : AXA=X: : A   A  for 
every monadic operation A .  The dyadic  Cartesian  prod- 
uct AEB is defined to  be  the monadic Cartesian  product 

To  each dyadic  operation A there  corresponds by the 
outer operator, which is designated by a macron, another 
dyadic  operation A called outer A or  the outer trans- 
form of A: 

#A#O A. #B#O .+. A-A B = : fA .AXB 

#Ax#B=O +. A-A B =. -Au-Bpo. 3A A3B. 

- x (A7.B) of a pair. 

- 

Outer transforms are  the dyadic counterpart of re- 
placement  transforms. 

oA-A B = : X Z ( A   A   Z ) B  

154 A-AOB = : A Z ( Z  A B ) A ,  
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1 I - 2  

-1 0 

m 
1-5 2 

1 1  
9 

0 
I C 

E 

- 1  3 

1 

Figure 1 A 2 by 2 table A holding a septuple B, a single C, a 
9 by 5 table D, and a solitary E .  

Figure 2 The Cartesian product ZA of the array A in Fig. 1 .  

x A  2 - 5  

0 1 1  
3 

7 
1 

T 
9 

Fl 
1!2 

2 

r 1 I 2  

P R  

T Z  

w 

Some of the properties of Cartesian  products and  out- 
er transforms  stem  from the following identities: 

- X:  oA=oA  x,A=: ,EA - X\.A=o\2A 
- xoA=:  oA  ,EA=,x:  ,A \xA=\X:\A. 

An analogue : ~ z : Z A = l f u A  of the generalized associa- 
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tive law holds for  Cartesian  products. A  monadic opera- 22. Motes 
tion A is general associative if A:  A  A=AuA for  every A. 
If A is general  associative, then SO is : AE. : +AX is the Mating and unmoting have no effect on basic motes, Unmoting 

Moting sends  arrays  to motes.  Unmoting is inverse to moting. 

same  operation  as ( : ( f A  ) ) E .  If A is a finite, nonempty, an  array is the  same  as unmoting its  extract. 
nonsingular array and A is a dyadic  operation, then 
#-A A=: f A z A .  If A is associative,  then both f A  and 
f -A  are general associative  for finite, nonempty, nonsin- 
gular arrays. 

the reduction transform f u  of dyadic  union from' finite, 
nonempty, nonsingular arrays  to  empty, singular, and 
infinite arrays. : UZ extends  the domain of definition of 
the reduction transform f - u  of outer union to  empty  and 
singular arrays. ~A==IA.  

The Cartesian array I -A of an  array A equals 5 : I -A. 
Each item of I -A equals  its  address in I-A. Every ad- The  unmote of the  mote of an  array is the  array itself. 

dress  to  an item in A occurs in I-A. Thus t 0 = 6  and " 

2 oA=A. An array A is said to be  a basic  mote if and  only 

16=06. The  shape of I-A equals -A. 1 3  0 4 is the if A=oA. If A is a  basic mote, then A = A .  Any finite 

empty  array of shape 3 0 4 with pattern 0 0 0. number of motings or unmotings of a  basic  mote returns 

If B is an  array of addresses  to  items in A in the  sense the basic  mote as value. The foregoing suggests that a 

that B ~ I - A ,  then B-3.A is an  array of shape -B of basic mote may be interpreted  as a  transfinite  nesting 

items selected  from A .  Let B#A and ACBl equal B - ~ o A .  1WW deep of singles within singles: 

For  every  array A, both I -A#A and ACI-AI equal A.  o o o . . .  o o o . . .  o o o . . .  ... B .  
The  dyadic  operation # is called boxing. If I E I - A ,  then 
I ~ A E A .  If B ~ I - A ,  then B#AcA. 

The  exponentiation of a class M to  the  power of a class  The  operations of moting and unmoting  permit  arbi- 
N is the class of all functions mapping N into M. Let  the  trary  arrays  to be  moted  and  then treated in essentially 

ray B be an array holding all possible arrays got by re- other than  a  basic  mote can  be used to augment the  store 
placing the items of B by items of A: of basic  motes. If basic motes  are  the only  motes  needed 

in the  theory,  then  the  operations of moting and unmot- 

A ~ B  for E ( - B ~ O I - A ) - # O A  
ing are superfluous, and  there is no need to distinguish 
between  motes and  basic  motes. Singling makes  an arbi- 

# B d W  +. #(A&B)=.#A*#B. trary  array  behave enough like a  mote to satisfy  most 
applications. 

When moting is included in the  theory,  the  pattern of 

The mote o A  of an  array A is, in intuitive terms,  the 
array 0 0 0  . . .A. The moting operation  has  the  property 
that  the  mote of an  array is a mote: 

Monadic union u extends  the domain of definition of A = o o A .  

The unmote A of an  array A is the  array . . . I I IA  
got by 1W successive  extractions of A .  The  unmote of 
an  array equals the  unmote of the  extract of the  array: 

- 

exponentiation A*B of an  array A to the  power of an ar- the Same way as basic  motes. The mote of any array 

Positional transforms  are defined in terms of a repli- the mote of an array equals the mote of the plan: 
cating transpose  operation Q, which  works in the  same 
way as  the APL dyadic  transpose  except  for diagonal =\EA = 03\ 
slices involving singular axes.  The replicating transpose Both singling and mating with planning: 
causes singular axes  to replicate to  the length of the 
shortest nonsingular  axis. For example, if A=. 1 3 p  ='\' = 03\ 

'PQR', then 0 OQA equals ,'PI in APL but 'PQR' in I \ o o ~  = 0 3 \ o ~ .  

array theory. 
In APL, if A and B are simple arrays of the  same  size, 

then A+B equals ( ( z p p A )   , l p p B ) Q A o  .+B. This equa- 23. Proofs 
tion  suggests the following definition in terms of the re- 

for all arrays A and B regardless of conformability, and  the inferential  rules of modus  ponens and substitution. 

A: A B = . I#-AuI#-BQ. A-A B. 

The proofs from  hypotheses in Appendix 11 use the deduction 
plicating transpose. For every dyadic Operation A and theorem, reductio ad  absurdum, the law of the excluded middle, 

Appendix I lists the axioms, definitions, and  theorems 
in an  order  that is prescribed by a desire  to  deduce  as 
much as possible  from each assumption  before  introduc- 

If A has 3 axes  and B has 4, then I #-AUI #-B equals ing a new assumption. Corollaries are listed below each 
0 1 2 0 1 2 3 .  axiom,  definition,  and theorem.  Appendix I1 lists the 155 
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proofs of the  theorems.  The rules of inference are m o d u s  
ponens and substitution. 

The premisses of a proof occur  above  the proof  murk 
‘+’ . Conclusions occur  after and  below the proof 
mark. By the deduction theorem  [35],  the conjunction 
of all the premisses implies any conjunction of some or all 
of the  conclusions; in particular, the  last conclusion 
alone. The proof mark is omitted in proofs having no 
premisses. 

Two proofs are required for  the proof of a coimplica- 
tion: one  for  each direction of implication. The proofs 
usually depend  on different selections of axioms and so 
occur  at different points in the  sequence of theorems. 
For example, only the direct proof occurs below Theo- 
rem 4. The  converse proof occurs  at  Theorem  70.  Theo- 
rems 4 and  70  are different implications but the  same 
coimplication. 

The  reasons justifying the appending of conclusions to 
a proof are shown in a right-hand column of theorems. 
The  format is believed to be new in that  the justifying 
theorems  are displayed  in full. The required substitu- 
tions are usually easy to  determine  because  the proofs 
are  short. 

A definition, such  as Definition 1, 

#A for x-A 

is a metalinguistic rule that allows  any occurrence of the 
definiens (on  the  right)  to be  replaced by an  occurrence 
of the definiendum (on  the  left).  For example, the theo- 
rem x-A=#A follows by Definition 1 from x-A=X-A, 
which is a substitution instance of Axiom 1. 

The  deduction of a contradiction  from a premiss, as in 
Theorem 10, proves  the denial of the premiss. Accord- 
ing to  the law of the excluded middle, a conclusion is a 
theorem if it can be deduced from  a  premiss as well as 
the denial of the premiss. For example, Theorem  98 is 
implied by #Ago alone and by #A=O alone. Hence 
#At0 V .  #AZO implies the theorem. The  theorem  then 
follows  from no premisses. 

Definition 4, which is not  used in Appendix 11, is 
stated in Appendix I only to show how singling is de- 
fined in terms of primitive operations.  The properties of 
the definition are not needed until Part I1 of the axioms 
and  theorems.  The definition is analogous to that of a 
unit class as  an unordered pair. 

Definition 4.  A singled array  equals the null reshape of the 
array  paired  with  itself. 

o A  for Bp .A:A. 
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A 1  

A 2  

A 3  

A 4  

1 

2 

D l  

0 2  

0 3  

A 5  

D Y  

A 6  

A 7  

3 
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A =A 

A = B  +, A A = A  B 
A A s A  B +. A*B 

A = R  +. A A C = . B  A C 
A A C*.B A C .+. A r B  

A = R  +. C A A = . C  A B 
C A A s . C  A B .+. A s R  

A = B  2 .  B = A  
B;cA f. A;tB 

A = R  A .  B = C  .+. A = C  
A = B  A .  A r c  .+. B t C  

# A   F O R   x - A  
x -A = # A  

o FOR #e  
#e= o 
x - e = o  

1 FOR # O  
# 0 = 1  
x - o = 1  
##6=1  

-0 =e 
x % = l  
# N O  0 
x--()=() 
-A=@ 2 .  #-A=O 

O A  FOR ep .A?A 
@ p ( A s A ) = o A  

# A = o # A  
o = o o  

l = o l  
X -11 = o X -A 

3 o A  = A  

o A = o B  5. A = B  

A = o A  3 .  A = > A  
> o = o  
>l=l  
> # A   = # A  
>x-A=x- f l  

A 8  

A 9  

5 

6 

D5 

7 

A 1  0 
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8 

A 1  1 

9 

1 0  

11 

1 2  

D6 

13  

1 4  

1 5  

1 6  

A 1  2 

A 1  3 

A14 

A 1 5  

1 7  

1 8  

1 9  

A 1  6 

2 0  

A 1  7 

2 1  

2 2  

2 3  

2 4  

2 5  

2 6  

2 7  

A18 

# A < # C  +. -ApB=.+-Ap.-CpB 
-ApB=.-Ap.-ApB 
l p A = . l p . l p A  
# A = O  +. -ApB=.wAp.-CpB 

# A = O  +. -ApB=.-Ap\R 

\ \ A = \ A  

#B=O +. -ApB=.-Ap.-CpB 

, A = # A  
-ApB=. -Ap .#ApB 
e p A = . B p . l p A  

, \ A = \ A  
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A 1  9 

2 8  

2 9  

3 0  

3 1  

3 2  

33 

3 4  

35  

36 

3 7  

38  

3 9  

4 0  

A 2  0 

4 1  

A 2 1  

# B < # C  A .  # B I # C = O  .+. 4 2  
-ApB=.  - A p  .-CpB 

-ApB=.-Ap ,B  4 3  
- ,Ap , A = , A  
# A p B = . # A p , B   4 4  
#B=O +. -ApB=.-Ap\B 
#R=O +. - A p B = . - A p o 3 \ B  

4 5  

A 2 2  
\ , A = \ A  

9 , A =   , A  

, o A = , o B  z .  A = B  

#ApB=.#Ap . -ApB 
l p A = .   l p  . % P A  

46 

#A=#Bh.-ApB=A . E .  , A = , B  

l p A = ,  o 3 A  
l p A = ,  . % p A   A 2 3  

# O p A = ,  o 3 A  

# A = l  E. , A = , o > A  

4 7  

l p ( A ; A ) = , o A  

48 

-Ap A =A 
- A p  , A = A  

\ # ~ = e  
\ O # A  =e 
\ O = %  
\1=% 
\#A=-0 
\ - , A = @  
\x -A=@ 

-BpA=\A 

2%= 0 
3 \ 6 = 0  

N A p % = .  -Ap 0 
epe=o 
l p % = , O  
l p - o = , o  
l p \ O = , O  
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19 1 

szv 

69 

89 

L9 L'; 

9'; 

99 

s9 

t19 ss 

tls 

€s 
E9 

TS 

OS 

09 flzv 
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7 1  

72  

7 3  

7 4  

75  

A26 

76  

A27 

7 7  

78 

7 9  

A28 

0 7  

8 0  

81 

A = D \ A  -+. A = o A  8 2  

A t ,  o A  8 3  

>\8=8 

B t  0 

HZ1 

-Ap Of8 

A30 

A31 

8 4  

8 5  

0 FOR \B 
\8=0 
\o =O - 
,o=o, 
#-0=1 
#o=O 

-o=o - 
D9 

86  

8 7  

= \ l  t = t  t 

'to 

6 FOR \ '  
\Q =6 
,6=Q 
4 = 0  

# 6 = 0  

\ t  f = Q  
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8 8  

A 3 2  

89 

90 

A33 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

oA t 6  101 
#At6 
O t 6  102 
1 t 6  
B-c6 103 ’ ‘ t 6  

#At0 A .  #BtO .+. 104 

:A(-ApB)=.-Ap:A B 

#At0 A .  #BtO .+. 
:A(#ApB)=.#Ap:A B 

#ArO +. :Ao3A=o>:A A 105 

# A = O  +. 
#A=O +. :A(-ApR)=.-ApoA>\B 

:A(#ApB)=.#ApoA>\B 

:A\A=\~A~\A 106 

: >\A=\DA 

:A\A=\:A\A 

#A=O +. 
# A = O  +. :A A=.-Ap:A\A 
#A=O +. 

:A(-ApB)=.-Ap:A\B 107 

:A(”Ap\B)=.-Ap:A\R 

#A=o +. :D(-A~B)=.-A~xB 

: A  A=.-Ap:A A 

-:A A=-A 
#:A A=#A 
,:A A=.#Ap:A A 

:A,A=,:A A 
:A,A=.#Ap:A A 

:A  A=.-Ap:A,A 

eA=O +. :A\A=\:A A 

#A=O +. >:A  A=D\OADA 

:#\A=@ 
:#@=e 
: # \ o = \ o  
:#\-A=\-A 
:#\#A=\#A 
: # g = e  
:#&=e 

#A=O +. :#(-ApB)=.-ApO 
#A=O +. :#A=.-ApO 
# A = O  +. D : # A = O  
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Appendix 2: List of theorems with proofs 

164 

1 A = B  f. B = A  1 
A = R  

A = A   A 1  A =A 
R = A  

;t A = A = . B = A   A 3   A = B  +. A A C = . B  A C 

2 A = B  A .  B = C  .+. A = C  

A = B  +. A A C=.B A C 

# A p A = , A  
# O f 1  =1 

A 9  - ( - A p B ) = - A  
A 1  0 - , A = # A  

Otl 
#v=o 
A = B  +. A A = A  R 

5 - o A  
HYP 
A 1 0   - , A = # A  
A l l  O * l  
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11 , A * o , A  
, A = o   , A  
O = # - o , A  5 - 0 . 4 ~ 6  

= # - , A   H Y P  
=1 A 1  0 - , A = # A  
t l  A l l  os1 

1 2   , A % o o , A  
, A = o  0 ,A  

;t O = # - o o , A  5 - o A  =e 
= # - , A   H Y P  
=1  A 1 0  - , A = # A  
t l  A l l  0%1 

13 -\A=O 
# 6 = - . # 8 p A  8 - ( # A p B )   = # A  
O = - .  O p A   0 2  # 6 = 0  

=-\A D6 OpA=\A 

1 4  -\ApR=\B 
- \ApB=.OpB 13 - \ A = O  

=\B 0 6  OpA=\A 

15 # A = O  E. ,A=\A 16 
# A = O  

;t , A = . # A p A  0 5  # A p A = , A  =. O p A   H Y P  
=\A D6 OpA=\A 

16 ,A=\A 5 .  # A = O  15 
,A=\A 
# A = - , A   A 1 0   - , A = # A  

=-\A HY P 
= O  13 -\A=O 

17 #A=O +. -ApB=.-Ap\B 
# A = O  

-ApR=.-Ap.-\CpB A 1 5   # A s # C  +. - A p B = . - A p . - C p B  
i? #AS#\C  A 1  2 O<#A 

=.-Ap\R 14 -\ApB=\B 

1 8  \\A=\A 
#\BS#\B A 1 3   # A I # A  
-\BpA=.-\Bp  .-\BpA A 1 5   # A S # C  +. - A p B = . - A p . - C p B  
\A=\\A 14 -\ApB=\B 
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2 0   # B = O  +. > ( - A p B ) = 3 B  
# B = 0  

7t e p B = . e p . - ~ p ~   A 1 6  +B=O +. -ApB=.-Ap  .-CpR 
O D B = O D , - A ~ B   A 8   e p A = o D A  
>B=>.-ApB 3 o A = o R  E. A = B  

2 1   x # A = # A  
x # A = x - , A   A 1 0   - , A = # A  

=# ,A D l  X - A  = # A  
=#A A 1  7 # , A = # A  

2 2  #\A=O 
# \ A = x - \ A  D l  x -A=#A 

= x 0  1 3  -\A=O 
= O  2 1   x # A = # A  

2 3  , \A=\A 
, \A= .# \Ap \A D5  # A p A = , A  

=.Op\A 2 2  #\A=O 
=\\A D6  OpA=\A 
=\A 1 8  \\A=\A 

2 4  -Ap \B = .-Apo>\B 
#\B=O 2 2  # \ A = O .  
NAp\B=.NAp.Op\B A 1  6 # B = O  +. -ApB=. -Ap . -CpB 

=.-Apo>\B A 0   0 p A = o D A  

2 5   \ ( - A p B ) = \ R  

#\C<#A A 1 2  O S # A  
-\CpB=.-\Cp.-ApB A 1  5 # A < # C  +, -ApB=,-Ap  . -CpB 
\B=\ .-ApB 1 4  -\ApB=\R 

26 \A=\o>A 
\ ~ D A = \  . e p A   A 8   6 p A = o ~ A  

#\c=o 2 2  #\A=O 

=\A 2 5  \ ( - A p B ) = \ B  

2 8   - A p B = . - A p , B  
# B s # B   A 1 3  

<# , B   A 1 7  
# B I # B = O   A 1  8 
e B I # , B = O  A 1  7 
- A ~ B = . N A ~ . - , B ~ R  A 1 9  

= . - A p . # B p B   A 1  0 
= . - A p , B   0 5  
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A 2  

# A I # A  
8 , A = # A  
# A l # A = O  

, A = # A  
# B S # C  A .  # B I # C = O  .+. 

-ApB=. -Ap . -CpB 
- , A = # A  
# A p A = , A  
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2 9  \ , A = \ A  
-\Bp , A = . - \ B p A  2 8  - A p B = . - A p , R  
\ , A = \ A  1 4  - \ A p B = \ B  

3 4  # A p B  =. # A p  . -ApB 
# A r # A  A 1 3   # A S # A  
# ,A<#A A 1  7 # , A = # A  
- , A p B = . - , A p . - A p B  A 1 5   # A S # C  -+. - A p B = . - A p  . -CpR 
# A p B = . # A p . - A p B  A 1  0 - , A = # A  

38 # A = 1  5 .  , A = , o 3 A   A 1  0 
# A = l  

? , A = . # A p A  D 5  # A p A = , A  
= . l p A  H Y P  
=, o 2 A  3 7  l p A = ,   o 3 A  
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3 9  #A=O +. 3 ( - A p B ) = > \ B  S E E  1 9  
#A=O 

-t 2 ( - A p B ) = 3 , . - A p B   3 1   2 A = 3 , A  
= 3 . # A p R  3 5  , ( - A p B ) = . # A p B  
= 3 .  o p n  HYP 
=3\B D6 OpA=\A 

4 0  # ( # A p B ) = # A  
# ( - , A p B ) = # , A  A 9  -( - A p B )  =-A 
# ( # A p B ) = # , A   A 1 0   - , A = # A  

= # A   A 1  7 # , A = # A  

41  #C#O +. - A p o B = . - A p . - C p o B  
#CZO 

i # o B = l  6 # o A = l  
S # C  A 1 4   # A Z O  +. l < # A  

# o B I # C = O  A 2 0  1 ( # A = O  
- A ~ O B = . ~ A ~ . - C ~ O B  A 1  9 # R < # C  A .  # B I # C = O  .+. 

-ApB=. -Ap . -CpB 

42 -A=-B A . , A = , R  . z .  A = B   A 2  
-A =-B 
, A = , B  

- A p A = . - B p R   2 8   - A p B = . - A p , B  
A =B A 2 1  -Ap A = A  

+ - A p , A = . - B p , B  NY P 

4 3  -A=O z .  A=\A 
-A=O 

;t A = . - A p A   A 2 1  
= , O p A  HYP 
=\A D6 

4 5  -A=@ A = o 3 A  

i A = . - A p A   A 2 1  
= . @ P A   H Y P  

-A =e 

= o 3 A   A 8  

1 3  

- A p A = A  

OpA=\A 

A 1  0 

- A p A = A  

l p A = ,  o > A  

5 

-Ap A = A  

B P A = o ~ A  

4 6  \ # ~ = e  
\#A=\-,A A 1  0 - , A = # A  

=e A 2 2  \-A =e 
47 -6p A =\A 
-6pA=.-\-BpA A 2 2  \-A =e 

=\A 1 4  -\ApB=\B 
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SAVXlBV dO AN03HL 

69 1 

v\c=vo\cc LS vc\c= 
vco\=v\ 92 ~co\cc=~\cc 

~c\c=y\cc 8S 

v\=v\\ 8'1: V\= 
fl\=GdV\- tIT V\\\= 

v\dvN*=vo\c tlzv V\\dV\-'=V\o\c 
v\=v\o\c 9S 

VCO\CO~~~'=VO\C OS VCCo\~od~c~*o\= 
vco\=v\ 9z vco\co\= 

v\= v\ \ 8T v\ \= v\ 
vCCo\codvcN*o\=v\ TS 



A 2 4  >\oA=.-Ap\A 

2 5  \ ( - A p B ) = \ B  
A 9  -(-ApB)=-A 

6 5  
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7 6  B=oH 
,\E4=8 A 2 6  .\@=!+I 
@ = O B  7 1  A=3\A +. A = o A  

7 7  Btl 
>\@=E4 A 2 6  ~ \ B = m  

$ 0  A 2 7  8tO 
Z>\l 4 8  3 \-A = 0 

@#1 A 2   A = B  +. A A = A  B 

7 8  "Ap o*B 
"Ap 0 =B * ~ \ ( - A p o ) = = ~ \ o   2 5   \ ( - A p B ) = \ B  

= O  4 8  >\-A=O 
=a\@ IIY P 
=B A 2 6  >\El=@ 
$0  A 2 7  BtO 

8 2   o A f 2  
# o A # O  A l l   0 8 1  

o A t g   A 2   A = B  +. b A = A  B 
f#  g 0 7  \8=0_ 

T. MORE, JR. IBM J .  RES. DEVELOP. 



88 o A  t b  
# o A f O  All  O*l 

o A # 6   A 2  A = B  3 .  A A = A  B 
f #  (3 0 8  \ I  '=6 

89 # A Z O  A .  #B*O .+. : A ( # A p B ) = . # A p : A  B 
# A Z O  
# R t O  

: A ( - , A p B ) = . - , A p : A  B A 3 2  # A Z O  A .  # R # O  .+. 
: A ( # A p B ) = . # A p : A  n A 1  0 - ,A  = # A  

+ # , A f O  A17 9 , A = # A  

: A ( - A p R ) = . - A p : A  B 

# A Z O  

: A ( - O p A ) = . - O p : A  A A 3  2 # A t 0  A .  # R f O  .+. 
: A ( 6 p A ) = . 6 p : A  A A 5  -0 =e 

-t # O * O  A21  Os1 

: A ( - A p B ) = . - A p : A  B 

: A O D A = O > : A  fl  A 8  # p A = o 2 A  

9 1  : A \ A . = \ o A > \ A  
# 6 = 0  0 2  # 6 = 0  
: A ( - 6 p A ) = . - e p o A > \ A  A 3  3 # A = o  3 .  

: A \ A = \ o A 3 \ A  47 - # p A = \ A  
: A ( - A p B ) = . - A p o A 3 \ R  

9 2  :>\A=\3A SEE 9 6  
: . \ A = \  O . . \ A  91 : A \ A = \ o A > \ A  

=\3\A 2 6  \ A = \ o 3 A  
=\>A 5 5  \ 3 \ A = \ . A  

93 : A \ A = \ : A \ A  
\ o A > \ A = \ \ o A . \ A  18 \ \ A = \ A  
: A \ A = \ :  A \ A  91 : A \ A = \ o A 2 \ A  

94 # A s 0  +. : A ( u A p R ) = . - A p : A \ B  
# A = O  

2 : A ( - A p B ) = . - A p o A 3 \ B  A 3 3  # A = O  +. 
:A(-ApR)=.-ApoA3\B 

= . - A p \ o A > \ B  17 # A Z O  +. - A p R = . - A p \ B  
= . - A p : A \ R  9 1  : A \ A = \ o A z \ A  
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= .-Ap \>B 92 =. -Ap 3 B  17 

# A = 0  +, 
: A(-ApR  )= . -Ap:   A\B 

: > \ A = \ > A  
# A Z O  +. -ApB=. -Ap\B  

96 # A Z O  +. : 3A=. -Ap3A S E E  92 

-+ : 3 A = : 3 . - A p A  A21 -ApA=A 
# A = O  

=. -Ap >A 95 # A Z O  +. : > ( - A p B ) = . - A p > B  

97 # A Z O  +. : A  A = . - A p o A > A  
ai1 = o  

t : A  A = . - A p : A \ A  9 4  # A = O  +, : A ( - A p B ) = . - A p : A \ B  =. -Ap  \ O A ~ \ A  91 : A \ A = \ o A > \ A  
= .-Ap \ O A D A  33 # A = O  +. D A = ~ \ A  
=.-Ap O A D A  17 # A = O  +. -ApB=. -Ap\B  

9 8  : A  A = . - A p : A  A 
# A t 0  

-+ : A  A = :  A,-ApA 
=.-Ap:A A 

A 2 1  -Ap A =A 
A 3 2  # A t 0  A .  # B t O  .+. 

: A ( - A ~ R ) = . - A ~ : A  r! 

# A = O  
? : A  A = . - : A  A p : A  A A21 -Ap A = A  

=. - :A( -ApA)p :A A A21 -Ap A = A  =. -(-Ap : A \ A  )p  : A A 9 4  # A = O  +. 
=.-ApyA A A9 - ( -ApB)=-A 

: A ( - A p R ) = . - A p : A \ B  

99 - : A  A=-A 
- : A  A = - . - A p : A  A 9 8  : A  A = . - A p : A  A 

=-A A9 - ( - A p B )  =-A 

100 : A , A = , : A  A 
# A t 0  

-+ : A , A = : A . # A p A  11 5 # A p A = , A  
= . # A p : A  A 89 #AS0 A .  # B t O  .+. 
= . # : A  A p : A  A 99 - : A  A=-A 
= , : A  A 05 # A p A = , A  

: A ( # A p B ) = . # A p : A  B 

# A = O  
t , : A A = ,  .-Ap : A \ A  9 4  # A = O  +. 

: A ( - A p B ) = . - A p : A \ B  
= . # A p  : A \ A  35 ,(-ApR)=.#ApB 
= . O p : A \ A  HYP 
=\ :  A \ A  D6 OpA=\A 
= : A \ A  93 : A \ A = \ :  A \ A  
=: A , A  1 5  # A s 0  5 .  , A = \ A  
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1 0 1  : A  A = . - A p : A , A  
: A  A = . - A p : A  A 9 8  : A  A = . - A p : A  A 

= . - A p ,  : A  A 4 8  - A p R = . - A p  , B  
= . - A p :  A , A  100 : A , A = ,  : A  A 

1 0 2  # A = O  +. : A \ A = \ : A  A 
# A = O  

: A , A = , : A  A 1 0 0  : A , A = , : A  A 
: A \ A = \ :  A A 1 5  # A = O  2 .  , A = \ A  

-t # : A  A = O  9 9  - : A  A = - A  

1 0 3  # A = O  +. 2 : A  A = ~ \ o A ~ A  
# A = O  

-t 2 : A  A = D , : A  A 3 1  3 A = 3 , A  
= 3 : A , A  1 0 0  : A , A = , : A  A 
=D: A \ A  1 5  # A = O  E. ,A=\A 

= 3 \ o h ~ A  3 3  +A=O +. ~ A = I \ A  
= > \ o A 3 \ A  9 1  : A \ A = \ o A > \ A  

1 0 4  : A @ = \ o A  0 
: m = :  A \ - A  A 2 2  \-A =e 

= \ o A D \ - A  9 1  : A \ A = \ o A ~ \ A  
= \ o A  0 4 8  3\-A=O 

1 0 5  : A G = \ o A B  
: A G = :  A\g 0 7  \8=g 

= \ o A 3 \ 2  9 1  : A \ A = \ o A > \ A  
= \ . A B  8 0  32=@ 

1 0 7  :# \A=e 
: # \ A = \ o # > \ A  9 1  : A \ A = \ o A 3 \ A  

= \ # 3 \ A  A 6  # A = o # A  
=e 4 6  \ # ~ = e  

I 
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