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Theory of MNOS Memory Device Behavior

Abstract: This paper extends the direct-tunneling theory of MNOS memory device behavior to account for traps that are distributed
both spatially and energetically. It shows that the Pulver and Dorda model is a special case of the Ross and Wallmark model, which is

itself a restricted version of the more general theory proposed here.

A general equation for the total charge transfer is derived, for monoenergetic and for energetically uniform trap distributions, for high
fields as well as low fields. The theory predicts the time dependence of the total charge transfer to be initially linear, then roughly loga-
rithmic, and finally to reach saturation. There is no essential difference in the results whether the trap distribution is monoenergetic or
energetically uniform. The operational dependence on characteristic parameters is investigated and found to be greatest for changes in
the extent of spatial distribution of traps. The switching time varies inversely with trap density and tunnelling probability, and expo-

nentially with the oxide thickness.

1. Introduction
There has been considerable interest in the use of metal-
nitride-oxide-silicon (MNOS) devices as memory ele-
ments [1-10] and several theories have been advanced
in order to describe the behavior of such devices. Ac-
cording to the direct tunnelling theory of Ross and Wall-
mark [1], charge transfer between silicon, and traps lo-
cated in the silicon nitride and at the nitride-oxide inter-
face, occurs by direct quantum mechanical tunnelling
through the forbidden band of the oxide. Assuming a
spatially uniform monoenergetic trap distribution, Ross
and Wallmark predicted that the charge transfer varied
as the logarithm of pulse width. Experimental evidence
in support of those predictions has been presented by
Ross and Wallmark, Svensson and Lundstrom [4] and
Balk and Stephany [11]. Ross and Wallmark’s results
do not predict saturation nor are they valid for very
short pulsewidths, since In7 < O for+ < 1.

An alternative approach by Dorda and Pulver [3] is
also based on a direct tunnelling model. They assume an

energetically uniform distribution located at a fixed dis- .

tance from the oxide-nitride interface, and they predict
that the charge transport should vary as a constant mi-
nus the negative exponential of the pulse width. They too
have shown experimental evidence that appears to con-
firm their theory. Pulver and Dorda’s model predicts
physically satisfactory results but it is not particularly
realistic to assume that ali tunnelling occurs from a sin-
gle plane at some fixed distance from the silicon-silicon
dioxide interface.
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Ross and Wallmark, in their expression for the charge
transfer, let the nitride thickness / go to infinity since it
is two orders of magnitude greater than other character-
istic lengths appearing in their equation. As a conse-
quence, the long time dependence is lost and their re-
sults are unable to predict saturation [12]. The correct
short time behavior could have been recovered [12] had
they not restricted their result to times ¢ greater than
some characteristic value t,. For t > t, they correctly
neglected the exponential integral term appearing in
their result. However, they then defined a switching time
t' by an expression valid only for ¢ < ¢, leading to an
inconsistency in their definition which obscures its
meaning [13].

The model of Dorda and Pulver leads to an expres-
sion for charge transfer that is essentially the integrand
of Ross and Wallmark’s expression. This was shown
[13] to be so because of Dorda and Pulver’s assumption
that for effective purposes all the traps could be con-
sidered to lie at some fixed distance from the oxide-ni-
tride interface. For very short pulse widths both the cor-
rected Ross and Wallmark expression and Dorda and
Pulver’s results show the same initial linear time depen-
dence [13].

Lundstrom and Svensson [4], using a general model
for charge accumulation in a double insulator structure,
have again obtained a logarithmic time dependence.
Their result is a direct and necessary consequence of
their assumption that the current is exponentially depen-
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dent on the electric field. Moreover, experimentally one
can get reasonable fits to log I vs ¥V or 1/V or V'V over
many orders of magnitude in the current and over only
one order of magnitude in the voltage. Thus log I vs V
will fit many experimental results.

In the present paper the direct-tunnelling theory is
generalized and applied to a trap distribution that is
uniform, both spatially and energetically. Section 2 de-
velops the model and Section 3 formulates the charge
transport equation. This is solved in Section 4 for a
monoenergetic trap distribution (for comparative pur-
poses) and in Section 5 for an energetically uniform trap
distribution. Section 6 investigates the operational depen-
dence on characteristic parameters, Section 7 presents
some experimental results, and conclusions are given in
Section 8.

2. Model
The phenomenon of charge storage at the interface be-
tween two dielectrics enables layered-insulator FETs to
function as memory elements. Depending on the polarity
of the stored charge, the turn-on voltage of the device
acquires a high or a low value, providing the two states
needed for binary operation. For charge storage to occur
it is necessary that the divergence of the current across
the interface be nonzero. This requires the existence of
traps at and near the interface and also that the current
through one insulator be unequal to current through the
other, at least initially. The existence of traps has been
verified by Kendall [14] and others [15], although their
energetic and spatial distribution has not been resolved
unequivocally. The nonequality of insulator currents is
achieved by using a thin oxide of about 20 to 30 A and a
thicker nitride of from 200 to 500 A. Charge transfer
through oxides of 35 A or less occurs by direct quantum
mechanical tunnelling through the oxide conduction
band, whereas for thicker oxides charge transfer is ef-
fected by Fowler-Nordheim tunnelling [1,4]. Charge
transfer through the nitride can occur [16,17] by field
enhanced thermal excitation (Poole-Frenkel), by field
ionization of trapped electrons into the conduction band
of the nitride, and by the hopping of thermally activated
electrons between isolated traps. The first two of these
processes require electric fields of 10” V/em or greater
[16,17]. For typical operating voltages of 20 V, the
field across a 500-A nitride is 4 x 10° V/cm. Thus only
the trap hopping mechanism is likely to occur. However,
at least initially, tunnelling through the oxide is a much
faster process, permitting the nitride conduction to be
neglected [1-4]. Near saturation, when steady state
conditions are being reached, the nitride current will of
course assume a larger relative role.

The present model considers the case for which the
oxide current is dominant and due to direct tunnelling
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between the silicon and traps lying at or near the oxide-
nitride interface.

The charge transfer during an interval of time dt, be-
tween the silicon and traps with energies in an interval E,
E + dE lying in the nitride at a distance between x and x +
dx from the silicon-silicon dioxide interface, is

dQ (x,E.t) = q¢(x,E,t) dx dE dt , (1)

where g is the unit of charge and ¢ is the particle flux.
The particle flux is given by

d(xEl)=w(xEHN(xEL!), 2)

where w is the tunnelling probability of the particles; at
time ¢ there are ./ particles having energy E at location
x. The number of particles decreases according to the
usual decay law,

dAV (e, E0)ldt =—w(x,E,t) ¥/ (x,E,t). (3)

The tunnelling probability is a rather complicated quan-
tity that depends on the position of the particle, its ener-
gy (which is a function of its position and the gate
potential ), and the height of the potential barrier (which
depends on the thickness of the insulating layers, the
gate potential and the amount of charge at the oxide-
nitride interface). Since the amount of interfacial charge
changes with time, neglecting its effect is equivalent to
neglecting the time dependence of the tunnelling proba-
bility. It seems reasonable to use the tunnelling probabil-
ity appropriate to a rectangular barrier as a first
approximation*,i.e.,

o(x,Et) = w,exp (—x/\), (4)

where w,, which has the units of reciprocal time, and A,
which has the units of length, are adjustable parameters
related to the details of the potential barrier and the par-
ticle energy.

With these simplifications, Eq. (4) may be solved,
yielding

N (xEt) =N (x,EQ) exp [~ow(x)t]. (5)

The number of particles, .4/, at time zero is related to the
number of traps, N, by the relation

N (x,E0) =N (x,E)0, (6)

where ¢ is the probability (one or zero) that the trap
contains a particle. It is assumed for simplicity that 6 is
unity. Then

N (EQ) =N(OE) . (7)

The form of the trap distribution is not known but it
seems reasonable that the number of traps at any level E
and location x can be written as

*A significant limitation of this assumption is that for fields above a certain value

the charge transport equation no longer contains a field dependent term.
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N(x,E) = N,f(E)e (8)

where a(E) is unknown. Since the tunnelling probability
drops off very rapidly with distance, we shall approxi-
mate ¢ *®7 by unity for x < x,, where x, is an adjusta-
ble parameter [13], and by zero for x > x,. This is, of
course, the same as assuming a uniform spatial distribu-
tion for x < x, Since the extent of spatial distribution
of traps x,, is identified as the maximum distance from
which tunnelling can occur, and since x, is not much
greater than about 30 to 35 A, it is unlikely that any sig-
nificant error should result by replacing the actual spatial
distribution by a uniform distribution.

The physical significance of x, is this: If traps are lo-
cated with uniform density in the entire nitride layer, a
very small gate potential will bring the more distant
traps up to the silicon conduction band edge and charge
transfer will occur. However, no shift in flat band volt-
age is measureable when the gate potential is less than
5 V [12]. This suggests that beyond some distance x,,
from the semiconductor-insulator interface, either the
trap density or the charge transfer is negligible.

However, if saturation is caused by charge build-up, it
implies that sufficient charge has been stored in the traps
to negate the effect of the applied voltage. If the traps
are fairly close to each other, it is not possible for the
ones nearest the interface to be filled without at least
partially filling the ones fairly near to themselves. There-
fore, traps extending some distance away from the inter-
face will also be filled to some degree before the charge
build-up is sufficient to prevent further charge transfer.
It is physically reasonable to interpret x,, as this dis-
tance. In effect, traps beyond some distance x,, do not
play a substantial role in the charge transfer between sil-
icon and insulator.

[t seems reasonable to assume a random distribution
of the dislocations and other defects at the oxide-nitride
interface that lead to the existence of traps. Thus the
trap distribution f(E) may well be gaussian as suggested
in Fig. 1. However, the exact distribution is not known
unequivocally and is being investigated in this laboratory
and elsewhere [8,14].

Finally, from Eqgs. (2), (4), (5), (7) and (8):

N (E{) =N, f(E)e ™", (9)
and
d(GLE 1) = N f(E)w(x)e ™™, (10)

As shown in Fig. 2, where only a single trap level is indi-
cated for clarity, the trap level has to be raised to a level
|g | above the silicon conduction band edge for tun-
nelling to be possible. This minimum distance from the
silicon-silicon dioxide interface is x,.
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N(x, E)=Ngexp [~a(E)x] exp- [(E+Eg)/kT1¥ (1)
ds x<xy
~E,SE<0

N(x,E)=N0f(E) (2)
SE+E
f(E) = {1( *Eo) (3)

$(x E 0)=Nyf (E)o(x)exp [~ (] (4)

Figure 1 Trap distribution.
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Figure 2 Simplified energy band diagram for MNOS memory
devices.

By invoking the requirement of electric flux continuity
across the oxide-nitride interface, neglecting the charge
trapped at this interface, and summing all potential drops
across the structure, a simple geometrical calculation
shows that

x,=(1~0d+ (Ld+DIEllq V', (11)

where { = e/, €n and €, being the permittivities of the
nitride and oxide of thickness / and d respectively, and
|E| is the magnitude of the difference between the trap
level and the silicon conduction band edge. Note that we 127
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Figure 3 Charge transport equation and illustration.

have adopted the convention that energies above the
conduction band edge are considered positive and ener-
gies below it are taken to be negative.* And

Vgleg_¢ms_¢ss (12)

where ¢, is the metal-semiconductor work function
difference, ¥, is the silicon surface potential, and V, is
the signed gate potential. For electrons, g is negative,
making g V, positive for a negative gate voltage.

The minimum tunnelling distance x, cannot be less
than the separation d between the oxide-silicon interface
and the traps at the oxide-nitride interface, nor is it con-
sistent to let x, exceed xy, the maximum distance up to
which traps effectively exist. The first restriction pro-
vides a definition of high ficld and the second defines a
threshold gate voltage below which tunnelling cannot
occur. We therefore define the high-field gate voltage by

qVe' = (1 +I[LD)E, (13)
and the threshold gate voltage by

, d
where E, is the magnitude of the energy level of the
deepest trap, measured from the silicon conduction band
edge, available for electron tunnelling.

Thus
(- 0d+ (ed+ 1 -EL
qV,
x,(E,qV)/) = V! <V, =<V

d, Vi = Ve . (15)

*By considering energies below the silicon valence band edge to be positive and

energies above it to be negative, the present analysis can be equally well applied to
hole tunnelling with appropriate changes in the effective mass, etc.
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3. Charge transport equation
From Egs. (1) and (10},

dQ = gN, f(E) w(x)e *"dx dE dt . (16)

The trap levels can be divided into two groups: those
which lie up to a depth ¢ V,, below the silicon conduc-
tion band edge, and those which lie deeper. Upon appli-
cation of a gate potential sufficient to create a voltage
drop across the oxide of value V,,, the first group gets
raised so that all states at the oxide-nitride interface can
“communicate” with the silicon. For the second group,
the nearest states that are raised sufficiently to commu-
nicate with the silicon lie at distance x,(E). Thus the
total charge transport can be expressed by (see Fig. 3)

94’— f ox dE f(E) | " dx o(x) f dr e "

IO(E)

+f dEf(E)j dx o(x) f dr e
" (17)

It is more convenient to write this in an alternative form
as

0 T ¢ ,
- f dE f(E) f dx w(x) j i’ e
—Eg d 0

—qVox Zo (k) 13 ,
. f dE f(E) f dx & (x) f dr e @
—Eg d ]
(18)

The first term represents contributions from all trap lev-
els, and the second term subtracts contributions from
the lower trap levels located between the oxide-nitride in-
terface at d and the minimum tunnelling distance x,(E).

Equation (17) or (18) can be written more generally
as

Q(r)=qNof dEf(E)f dx[1 — ™. (19)

Ross and Wallmark’s assumption of a single trap level
E eV below the silicon conduction band edge is

f(E)=8(E +E,) (20)

which, when inserted in Eq. (19), gives the Ross and
Wallmark charge transport equation

Oxrw (1) =Q(1) 8(E+E)
=gN, f dx[1 —e ). (21)

With the further assumption that all tunnelling originates
from a single plane at x,, Pulver and Dorda’s charge
transport equation is obtained. Thus:

Qpp () = Qrw(1)8(x — xp)
=gN,[1—e™"]. (22)
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It is evident, as shown in more detail elsewhere [13]
that the charge transport expressions of Pulver and
Dorda, as those of Ross and Wallmark are contained in
the more general expression of Egs. (17), (18) or (19).

The temporal and spatial integrals of Eq. (18) are
readily evaluated, giving

5%: J'_E dEf(E)K, + E,(r) — E,(¢™17)}

—fﬂq " UEf(E){K, + E,(r) — E,(e %7},
.

(23)
where
7= w,l e, (24)
K, = (xm— d)I\, (25a)
and |
K,=K,(E) = (x,(E) — d}/\. (25b)
From Eqgs. (13), (14) and (15), it is evident that
0=K,(E)=K,. (26)

For gate voltages near the threshold, K, & K, and for
voltages near the high field value, K, & 0.

The function E, (7) is related to the exponential inte-
gral and may be approximated as [18]

5
“Inz+ % a, ",

0=r=1
=0
E (1) =4g(7), =1
0, ™1, (27)
where
a,=—0.577,
a=1,
a,=—0.25,
a, = 0.055,
a,=—0.009,
a; = 0.001,
and

e’ 423374025
glr)=— 7 ———

- (28)
T 7743337+ 1.68

decreases to zero very rapidly as 7 increases.

Equation (23) contains the complete time dependence
for any form of trap energy distribution. It is convenient
to write this expression again as

Q(7)lq NO}\= Ohien — Qearr » (29)

where the high-field contribution is
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Quo= [ dEFENK, +E@ -ET0)  GO)

and the low field correction is

Qe = | dE f(E){K, + E,(1) —E,(¢ ™)}, (1)
~Eg

An alternative way of writing Eqs. (30) and (31) is

Onian = [ dE £ (E){[ (xn — d)/\] + E, (1t

~E, (1)}, (30a)

and

7qV0.z‘
Qoo = f dE £(E){{[x,(E) — d1IN} + E, (1lt0)

kg
—E (t1)), (31b)

where

Utg=w, e ™, (32a)

Ut = w, e ™™, (32b)

and

Ut,=w, e 5. (32¢)

4. Monoenergetic trap distribution
For a single trap level lying E, eV below the silicon con-
duction band edge,

f(E)y=38(E +E,) (33)
and Eq. (23) becomes
Q(7) =K, +E,(r) —E,(¢"7)]

— [K,(—E, V) + E,(r) —E (e 21)].  (34)

For V., = V', the second set of terms vanishes giving

(

S(—e™)a, ™, 0=7=1
1

(1) _Jnr+g) +y—Y e "ra,1",
1

1=r=<¢f

. K
K, T>e,.

(35)

Figure 4 shows Eq. (34) for V,/ = V' .
For V,/ < V', the second set of terms in Eq. (34)
must be included. Thus

i [1—e™e oY) g 7" 0=7=1
1
Qeorr = ln7+g(7)+7—ie"'m2a T 1=r=¢
. n b - —
1
KZ (_EO’ Vg’) ’ T> eK2 . (36)
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Figure 4 Charge transport vs time.

Subtracting (36) from (35) gives, for V' < V'

(S (e e

1

K
Ha, v, 0<r=¢e>

_%l=< ~K,(—E, V,) +In7t+ gle™er) + v
gN, A
-> e ™ia ", s r= M

LKI - K2 (—E()’ Vg,) B

> e, (37)

Recalling the definitions of K, and V', we see that for
V! slightly less than V', K, & 0. With this value of the
gate potential, the minimum tunnelling distance is very
slightly greater than the oxide thickness, i.e., traps locat-
ed very near the oxide-nitride interface can communi-
cate with the silicon conduction band, and the charge
transport should be almost that corresponding to V'y.
Indeed, for V' = V', Eq. (39) reduces to Eq. (37).

From the definition of V', it is seen that for V'
slightly greater than V', K, & K,. The minimum tun-
nelling distance x, is then only slightly less than the max-
imum tunnelling distance x, and therefore not many
traps can contribute to charge transport. Hence Q will
be small. Equation (32) bears this out when K, & K is
inserted.

Examination of Eq. (37) shows that in the interval
0= 7= 1, Q is initially linear, then gradually decreases
from linearity. In the interval [e”z, 1], g(7) is initially
dominant but very rapidly decreases to zero. The loga-
rithmic term then dominates until for larger values of 7
the summation term exerts a stronger effect, pulling Q
towards a constant value which is reached for v > ¢"1.
The theory predicts that saturation sets in at 7= "1,
Since K, = (x, — d)/\, xn, governs onset of saturation.
We recall that x,, had been defined earlier as the maxi-
mum distance from the semiconductor-oxide interface to
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where the trap density is significant. Traps located be-
yond x,, are assumed not to contribute to charge trans-
fer. Experiments indicate that saturation ensues after
about 60 seconds [13]. Using the definition of 7, with
w, = ¢*/sec [3],and A = 1 [1], we find that

Xm= A0 (@yts) =34 A (38)

It is evidently not physically justifiable to let x,, = [ and
still less so to let x, —> . Since tunnelling probability
decreases exponentially with distance, it may seem that
it is unnecessary to cut off the trap distribution at x,.
But if we replace x,, by /, Eq. (35) or (37) shows that
saturation ensues only after r = ¢’ This is evidently an
unrealistic value, and becomes more so if / is replaced
by infinity. It is because Ross and Wallmark assumed
that [ could be replaced by infinity that their results
cound not predict a saturation time, nor could they pre-
dict the switching time in a self-consistent way [13].

5. Energetically uniform trap distribution
For traps distributed uniformly opposite the forbidden
band of silicon,

f(E)={(1), —E,<E=<0

other E . (39)
Then for V' = V',

Q(7)

0
aN, Asz dE[K, + E, (1) — E, (e i) ]
—&g

=E,K, +E (1) —E,(¢"i7)]. (40)

For low fields, it is necessary to evaluate

Qcorr: f_ ” dE[K2(E, Vg') + E‘1 (T) — [L‘1 (e‘K2T)] .

—Eg

(41)

A straightforward evaluation shows that

—(IVU A

V,))= | €%

f dE K,(E, V) = uqu K (—Eu V)
(42)

and

_qu
f dE E,(r) = gdiqu K,(—Ew V) E, (7). (43)

The third term in Eq. (41) turns out to be a form of Van
de Hulst’s integral [19],

2 ¢ El
E*) Ef dn —7()"). (44)

Specifically,

—qV
ox _ A oo, -
f dE E (e or) =—§d+ K V/[E,(e ¥ar)

~Eg

—-E*n]. (45)
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Inserting Eqs. (42), (43) and (45) into Eq. (41) gives
A |1 :
Qcorr= m q VH I:E K22 + E] (T) + Ell(T)
- Ef(e-"zf)] : (46)

Hence for V) < V',
g 4

B P R LCA T ]
QaNy A= K, =3 7 KB V)
A ’]E
@+l E, CE Vi) | E (D)
A
— —K
Eyle ”)} W+l E
— E12 (e—Kzf)] . (47)
It is clear that for Vg’=VgH’=£d€%[E K,=0,and Eq.

(47) reduces to Eq. (40). This is similar to the mono-
energetic case. ‘

Since it is difficult to interpret Eq. (47) readily, another
approximate form is obtainable by first using the series
representations for E, () and then performing the inte-
grations indicated in Eq. (41). Doing so yields the re-
sult, for V) < V',

-

5 ]_e—nKZ
2 [(1—["" —-C<1——nK )]anf",
n=1 2

0=7rt=1
1—-C)[g(r) +In1+v]
5 [ 1 — e_"K2 —nK1:| n
2 —_— ¢ a, T,
a=1 2
Q(T) B 1<r= €K2
N, NE,
ot 11— O)gr) +In7+7]
=3 e g, " -—%CK2 + Cgle ™),
n=1
e < 7= M
(1-C) glr) + K, — g(e™r) —1CK,
+ Cgle ™), r<e®,  (48)
where
_ A qv
T+l E; Y
and
B L td+1 E,
K, = Kz( E., V., )= i\ [1 1\ qu,]
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When the lowest trap level is raised to the silicon con-
duction band edge, i.e., for V) = V', K, = 0 and there
is no longer any voltage dependence, and Eq. (48) re-
duces to

0=r=1

31— e "™y a1,
1

&_ _ -nk, n
qNOAEg_JlnT+g(T)+7 Ye a,t,

1 <r=¢f

K > e, (49)

S &

This result is identical to the monoenergetic high field
case. ‘

These results suggest that for high fields no essential
difference is introduced by assuming either a monoéner-
getic distribution or an energetically uniform one. For
low fields the latter mode] predicts a slightly more com-
plicated dependence on the gate voltage than the mono-
energetic model.

The high field regime as defined in Section 2, Eq. (13)
is shown in the next section to occur for gate voltages
greater than 15 V. For a 500 A nitride this corresponds
to an electric field of 2.8 X 10° V/cm. At a typical 20 V
gate voltage, the electric field strength is 4 X 10° V/em,
at which level the very low conduction that occurs is
due to the hopping of thermally activated electrons from
one isolated trap to another [16,17]. Thus it is not ex-
pected, for short pulses, that conduction in the nitride
will play a significant role, compared to the oxide cur-
rent.

6. Operational dependence on characteristic
parameters

To investigate the operational dependence on character-
istic parameters such as insulator thicknesses [20,21]
we next consider the shift in flatband voltage

Vo) = Ulex) Q (1) (50)

From Eq. (13), with = 1.7, /= 500 A and d & 25 A,
it is found that V', & 15 V. This value is less than typi-
cal operating voltages of 20 V or more. Thus it is appro-
priate to consider only the high field expression for Q(z).
In that case, using the notations of Egs. (30a), (31a) and
(32), we have

Ve(t) = (lea) gN M [xm — d)IN] + E, (1/t)
—E (tltn)}, (51)

where x, has been replaced by d.

It is evident that V', increases with N, [ and xn,. The
dependence on the other parameters can be inferred
from the approximate relation
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V(6) =[(UgNoN)/ en] [(5y = d) +E, (/)= Ey (1/1,)]

0.78 -

v, (volts)

0.01 ! ! I
107° 107 107 1072 107! 1

1(sec)

Figure 5 Shift in flatband vs puise width for different applied
voltages (g= 1.6 X 107"° coul, N,= 6 X 10° em™, e, = 6/\.2 X
107 Flem, w,=10"sec, A=1 A, xn=35 A, 1,= ",

th= "),

wote_d/)‘, r<t, (52a)

NN
Vi) 2 0 () —dIN, f<t<1m  (52b)
(km— d) , tn < ¢, (52¢)

where terms containing e ™' have been neglected be-
cause they are very much smaller than e

Equation (52) shows that V, increases as the tunnel-
ling probability w, and the de Broglie wavelength A in-
crease. But V, decreases as the oxide thickness d in-
creases. This is so because, as the oxide gets thicker,
less charge is transferred and so the shift in flatband
voltage is consequently decreased.

To verify these inferences Eq. (51) was evaluated for
nominal and excursionary values of the parameters /, d,
oy, A and x,,. Typical results are shown in Fig. 5. It was
found that variations in A have the greatest effect, fol-
lowed by oxide thickness d and tunnelling probability w,.
Changes in xp,, and [ have very little effect, as expected.

Now, the de Broglie wavelength A as well as the tun-
nelling probability », depend quite sensitively on the
height and shape of the potential barrier. The latter is
affected in turn by the applied voltage, the trap levels
and the oxide thickness. It would thus appear that varia-
tions in oxide thickness may exert a dominant effect on
device operational characteristics. This has also been
suggested by Ross {20], Chou [21], and Goodman [22].

Consider next the dependence of the switching time ¢/
on trap density, tunnelling probability, etc. This may be
found by inverting Eq. (51). It is sufficient, however,
merely to invert Eq. (52a) giving

A. V. FERRIS-PRABHU

ene™
t'= <m) A\ (53)
where V.’ is some prescribed value for the shift in flat-
band voltage at which, by definition, switching occurs.
After rewriting Eq. (53) as

L eV e
! _< q )NO)\le’ (54)

it is evident that ¢ decreases as the trap density, de
Broglie wavelength, nitride thickness and tunnelling
probability increase, and as the oxide thickness decreas-
es. However, the dependences on d and \ are quite
strong.

At operational voltages all trap levels are raised well
above the silicon conduction band edge and the present
theory assumes that the tunnelling probability does not
change. This is, of course, a simplification. The pulse
amplitude dependence given by Ross and Wallmark [1]
is correct only for the case where the gate voltage is in-
sufficient to raise the trap level above the silicon conduc-
tion band edge. Since such voltages are much less than
operational voltages, the exponential dependence on
pulse amplitude is then of limited validity.

A typical value for ¢’ can be calculated from Eq. (53).
Assume N, = 10 em™ [1], A=1 A [2], and w, = 10"
sec”' [3]. Then with e, = 6.2 X 107 F-em™, ¢ = 1.6 X
107" coul, d=20 A and /=500 A, if 0.5 V is the value
of shift in flatband voltage, which can be readily de-
termined, we find that ' = 18 us. The exact value can-
not be calculated without obtaining exact values for
Ny, A and w,. It is clear that the switching time ¢’ has
meaning only in the context of the sensitivity of the ap-
paratus used to measure V,'. Recent measurements [23]
have shown that the charge transferred during applica-
tion of the gate potential, decays to about one-fifth of its
initial value within microseconds after the cessation of
the pulse. Hence it might be more correct from an oper-
ational point of view to define switching time as the min-
imum pulse, for a given applied potential, that will cause
the shift in flatband voltage to remain at some prescribed
value for several seconds after cessation of the pulse.

7. Experimental results

The previously derived equations can be used to calcu-
late the values of various characteristic parameters.
Recalling the definition of V', as the threshold or lowest
gate voltage for which a shift in flatband voltage is mea-
surable, the extent of spatial distribution of traps, from
Eq. (13), is given by

xm=(1=0) d+ (Ld+1) (EfqVa). (56)

Also, from Eqgs. (52a) and (52c¢), the trap density and
the tunnelling probability can be expressed as

IBM J. RES. DEVELOP.




N0= s, sacd [(en) g X (xm_xo)] (57)

and
_ aV,/ot
“07 Ulen) aN, h exp (=xy/A)

(58)

Equations (56) through (58) provide means of verifying
the characteristic parameters o, N,, and xn, directly
from experimental data. The parameters A and E, are
not amenable to extraction from the present formulation
and need to be obtained from other experiments.

We used 2 Q-cm p-silicon with a 20 A thick layer of
dry thermal oxide. A nitride layer 200 A thick was grown
at 900°C using a 1:10 silane-to-ammonia ratio. The gate
material was rf-heated aluminum.

All measurements were taken at 30°C, and each time
after a pulse was applied, the flatband was brought back
to the original condition. Measurements were carried out
on several devices and representative values are shown
in Fig. 6.

It was found that the lowest applied voltage for which
a shift in flatband voltage was measurable was 5 V. Us-
ing Eq. (7), xn, was calculated to be 32.8 A, which is in
substantive agreement with the well known fact that
tunnelling is negligible for distances greater than about
35 A.

At 25 V gate amplitude, for a succession of equal
pulses, the saturation value V,, of the flatband voltage is
6.2 V. With (=17, (s + ¢ms) =1V, g=16Xx 107"
coul, €,=62x10"" F/A, A=1 A [1] and E =
0.8 eV [1], Eq. (8) gives N, = 9.3 x 10* cm™®, which is
somewhat higher than the value of 6 X 107" cm™ given
by Ross and Wallmark.

From Fig. 6, Eq. (58) and the value of N, we find
that w, = 10" sec™" which is a bit lower than the value of
10™ sec™" calculated from the theoretical expression de-
rived by Dorda and Pulver.

The trap density raises questions as to whether there
might be overlap among the wave functions of the stored
charge. If this be the case, at least some interfacial areas
may exhibit metallic characteristics including lateral
conduction, as a consequence of which the simple model
of direct tunnelling may need to be modified. Further
work is needed to resolve these points.

8. Conclusions

A model for charge transfer in the direct tunnelling
mode has been developed with a trap distribution that is
uniform, both energetically and spatially. It is shown
that this model is a generalization of the models pro-
posed by Dorda and Pulver, and by Ross and Wallmark.
The charge transport equation is solved to show that the
time dependence is initially linear, then roughly logarith-
mic and eventually saturation sets in. The operational
dependence is found to be quite sensitive to small varia-

MARCH 1973

Vs (volts)

1 2 3 4
t (ms)

Figure 6 Flatband voltage vs time.

tions in tunnelling probability, de Broglie wavelength
and, particularly, oxide thickness. The switching time
varies inversely with trap density and tunnelling proba-
bility, exponentially with oxide thickness, and as the
exponential of the reciprocal de Broglie wavelength. For
high fields, as in typical operation, there is no field de-
pendence within the framework of this model. Experi-
mental evaluation of maximum tunnelling distance, trap
density and tunnelling probability gave results in sub-
stantive agreement with values in the literature.
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