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Theory of MNOS  Memory  Device  Behavior 

Abstract:  This  paper  extends  the  direct-tunneling  theory of MNOS memory  device  behavior to account for  traps  that  are  distributed 
both  spatially and energetically. It shows that the Pulver and Dorda model is a special  case of the Ross and Wallmark model, which is 
itself a restricted  version of the  more  general  theory  proposed here. 

A general  equation for the total  charge  transfer  is  derived,  for  monoenergetic and for energetically  uniform  trap  distributions,  for high 
fields as well as low fields. The theory predicts the time  dependence of the  total  charge  transfer  to be initially  linear,  then roughly loga- 
rithmic, and finally to reach  saturation.  There is no essential difference in the results  whether the trap distribution is monoenergetic  or 
energetically  uniform.  The  operational  dependence on characteristic  parameters  is  investigated and found to be greatest  for  changes in 
the extent of spatial  distribution of traps.  The switching  time  varies  inversely  with trap density and  tunnelling  probability, and expo- 
nentially  with the oxide  thickness. 

1. Introduction 
There  has been considerable  interest in the  use of metal- 
nitride-oxide-silicon (MNOS) devices  as  memory ele- 
ments [ 1-10]  and several  theories  have been advanced 
in order  to  describe  the behavior of such  devices.  Ac- 
cording to the  direct tunnelling theory of Ross and Wall- 
mark [ I] ,  charge  transfer  between silicon, and  traps lo- 
cated in the silicon nitride and  at  the nitride-oxide  inter- 
face,  occurs by direct  quantum mechanical  tunnelling 
through the forbidden  band of the oxide.  Assuming a 
spatially uniform monoenergetic trap distribution, Ross 
and Wallmark predicted that  the  charge  transfer varied 
as  the logarithm of pulse width. Experimental  evidence 
in support of those predictions  has been  presented by 
Ross and Wallmark, Svensson  and  Lundstrom  [4]  and 
Balk and Stephany [ 1 11. Ross and Wallmark’s results 
do  not predict saturation  nor  are  they valid for  very 
short pulsewidths, since In 7 < 0 for 7 < 1 .  

An  alternative  approach by Dorda  and  Pulver  [3] is 
also  based on a direct tunnelling model. They  assume  an 
energetically uniform distribution located  at a fixed dis- 
tance  from  the oxide-nitride  interface, and they predict 
that  the  charge  transport should  vary as a constant mi- 
nus  the negative  exponential of the  pulse width. They  too 
have  shown  experimental  evidence  that  appears  to con- 
firm their theory.  Pulver and  Dorda’s model  predicts 
physically satisfactory  results but it is not  particularly 
realistic to  assume  that all tunnelling occurs  from a sin- 
gle  plane at some fixed distance  from  the silicon-silicon 
dioxide interface. 

Ross and Wallmark, in their  expression  for  the  charge 
transfer,  let  the nitride thickness 1 go  to infinity since it 
is two  orders of magnitude greater  than  other  character- 
istic  lengths appearing in their equation. As a conse- 
quence,  the long time dependence is lost and their re- 
sults  are unable to predict saturation [ 121. The  correct 
short time behavior could have been recovered [ 121 had 
they not restricted  their  result  to times t greater  than 
some  characteristic  value to. For t > to they  correctly 
neglected the exponential  integral term appearing in 
their result. However,  they  then defined a  switching time 
t’ by an  expression valid only for t‘ < to leading to  an 
inconsistency in their definition which obscures its 
meaning [ 1 3 3. 

The model of Dorda  and  Pulver leads to  an  expres- 
sion for  charge  transfer  that is essentially the integrand 
of Ross  and Wallmark’s expression. This was shown 
[ 131 to  be so because of Dorda  and Pulver’s assumption 
that  for effective purposes all the  traps could be con- 
sidered to lie at some fixed distance from the oxide-ni- 
tride interface. For very short pulse  widths  both the  cor- 
rected Ross and Wallmark  expression  and Dorda  and 
Pulver’s results  show  the  same initial linear  time depen- 
dence [ 131. 

Lundstrom  and  Svensson  [4], using a  general  model 
for  charge accumulation in a double  insulator  structure, 
have again obtained a logarithmic  time dependence. 
Their result is a direct  and  necessary  consequence of 
their  assumption  that  the  current is exponentially depen- 125 
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2. Model 
The phenomenon of charge  storage  at  the interface  be- 
tween  two  dielectrics  enables layered-insulator FETs  to 
function as memory  elements. Depending  on  the polarity 
of the  stored  charge,  the turn-on  voltage of the  device 
acquires a high or a low value,  providing the  two  states 
needed  for binary operation.  For  charge  storage  to  occur 
it is necessary  that  the  divergence of the  current  across 
the interface be  nonzero.  This  requires  the  existence of 
traps  at  and  near  the interface and  also  that  the  current 
through one  insulator be  unequal to  current through the 
other,  at  least initially. The  existence of traps  has been 
verified by Kendall [ 141 and others [ 151,  although their 
energetic and spatial  distribution  has not been  resolved 
unequivocally. The nonequality of insulator  currents is 
achieved by using a thin oxide of about 20 to 30 A and a 
thicker nitride of from 200 to 500 A. Charge  transfer 
through oxides of 35 A or less occurs by direct quantum 
mechanical tunnelling through the  oxide  conduction 
band,  whereas  for  thicker  oxides charge transfer is ef- 
fected by Fowler-Nordheim tunnelling [ 1,4].  Charge 
transfer through the nitride  can occur [ 16,171 by  field 
enhanced thermal  excitation ( Poole-Frenkel), by  field 
ionization of trapped  electrons  into  the  conduction band 
of the nitride,  and by the hopping of thermally activated 
electrons  between isolated traps.  The first two of these 
processes  require  electric fields of lo7  V/cm  or  greater 
[ 16,171. For typical operating voltages of 20 V,  the 
field across a 500-A nitride is 4 X lo6  V/cm.  Thus only 
the  trap hopping  mechanism is likely to  occur.  However, 
at  least initially,  tunnelling through  the  oxide is a  much 
faster  process, permitting the nitride  conduction to  be 
neglected [ 1-41. Near  saturation,  when  steady  state 
conditions are being reached,  the nitride current will  of 
course  assume a  larger  relative role. 

The  present model considers  the  case  for which the 
oxide  current is dominant and due  to  direct tunnelling 

dent  on  the  electric field. Moreover, experimentally one 
can  get reasonable fits to log I vs V or I /V or v% over 
many orders of magnitude in the  current  and  over only 
one  order of magnitude in the voltage. Thus log I vs V 
will  fit many experimental results. 

In  the  present  paper  the direct-tunnelling theory is 
generalized and applied to a trap distribution that is 
uniform, both spatially and energetically. Section 2 de- 
velops the model and Section 3 formulates the  charge 
transport  equation.  This is solved in Section 4 for a 
monoenergetic trap distribution (for  comparative pur- 
poses) and in Section 5 for an energetically uniform trap 
distribution.  Section 6 investigates the operational  depen- 
dence  on  characteristic  parameters, Section  7 presents 
some experimental results,  and conclusions are given in 
Section 8. 
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between  the silicon and  traps lying at  or  near  the oxide- 
nitride interface. 

The  charge  transfer during an interval of time dt,  be- 
tween  the silicon and  traps with energies in an interval E ,  
E + dE lying in the nitride at a distance  between x and x + 
dx from the silicon-silicon dioxide  interface, is 

dQ ( x , E , t )  = q + ( x , E , t )  dx dE dt , (1) 

where q is the unit of charge  and + is the particle flux. 
The particle flux  is given by 

+ ( x , E , t )  = w ( x , E , t ) J l r ( x , E , t )  , ( 2  1 
where w is the tunnelling  probability of the  particles;  at 
time t there  are Jlr particles having energy E at location 
x. The number of particles decreases according to  the 
usual decay law, 

dJlr(x,E,t)/dt = -w(x ,E , t )  N ( x , E , t )  . (3 1 
The tunnelling  probability is a rather complicated quan- 
tity that  depends on the position of the particle,  its ener- 
gy (which is a function of its  position  and the  gate 
potential),  and  the height of the potential barrier  (which 
depends  on  the  thickness of the insulating layers,  the 
gate potential and  the  amount of charge  at  the oxide- 
nitride interface).  Since  the  amount of interfacial charge 
changes with time, neglecting its effect is equivalent to 
neglecting the time dependence of the tunnelling proba- 
bility. It  seems  reasonable  to  use  the tunnelling  probabil- 
ity appropriate  to a rectangular barrier  as a first 
approximation*, Le., 

w ( x , E , t )  = wo exp ( -x/h)  , (4 1 
where w,,, which has  the units of reciprocal  time, and h, 
which has  the units of length, are  adjustable  parameters 
related to  the details of the potential barrier  and  the par- 
ticle  energy. 

With these simplifications, Eq.  (4) may be solved, 
yielding 

N ( x , E , t )  = M(x,E ,O)  exp [ - w ( x ) t ]  . ( 5  1 
The  number of particles, N, at time zero is related to  the 
number of traps, N ,  by the relation 

N (x ,E,O) = N ( x , E )  8 , (6 

where 8 is the probability (one  or  zero)  that  the  trap 
contains a  particle. It is assumed  for simplicity that 8 is 
unity. Then 

The  form of the  trap distribution is not  known  but it 
seems  reasonable  that  the  number of traps  at  any level E 
and  location x can  be written as 

* A  significant limitation of this assumption is that for fields above a certain value 
the charge transport equation no longer contains a field dependent term. 

IBM J .  RES. DEVELOP. 



where (Y ( E )  is unknown.  Since  the tunnelling  probability 
drops off very  rapidly with distance, we shall approxi- 
mate e-a(E'r by unity for x < x, where x, is an adjusta- 
ble parameter [ 131, and by zero  for x > x,. This  is, of 
course,  the  same  as assuming  a uniform spatial  distribu- 
tion for x < x,. Since  the  extent of spatial  distribution 
of traps x, is identified as  the maximum distance  from 
which tunnelling can  occur,  and  since x, is not much 
greater than about 30 to 35 A, it is unlikely that  any sig- 
nificant error should result by  replacing the  actual spatial 
distribution by a uniform distribution. 

The physical significance of xm is this: If traps  are lo- 
cated with uniform density in the  entire nitride layer, a 
very small gate potential will bring the  more  distant 
traps up to  the silicon conduction band edge  and  charge 
transfer will occur. However,  no shift in flat band volt- 
age is measureable  when the  gate potential is less than 
5 V [ 121. This suggests that beyond some  distance x, 
from the semiconductor-insulator  interface, either  the 
trap  density or the  charge  transfer is negligible. 

However, if saturation is caused by charge build-up,, it 
implies that sufficient charge has been stored in the  traps 
to negate the effect of the applied  voltage. If the  traps 
are fairly close to  each  other, it is not  possible for  the 
ones  nearest  the interface to be filled without at least 
partially filling the  ones fairly near  to themselves. There- 
fore,  traps extending some  distance  away  from  the inter- 
face will also  be filled to some degree before the  charge 
build-up is sufficient to  prevent  further  charge transfer. 
It is physically reasonable  to  interpret x, as this dis- 
tance.  In effect, traps beyond some  distance x, do not 
play a substantial  role in the  charge  transfer  between sil- 
icon and insulator. 

It  seems  reasonable to assume a random distribution 
of the dislocations and  other  defects  at  the oxide-nitride 
interface  that lead to  the  existence of traps.  Thus  the 
trap  distributionf(E) may well be  gaussian as suggested 
in Fig. 1. However,  the  exact distribution is not  known 
unequivocally  and is being investigated in this laboratory 
and  elsewhere [8,14]. 

Finally, from  Eqs. ( 2 ) ,  (4), (5), (7 )  and (8): 

and 

As shown in Fig. 2 ,  where only a single trap level is indi- 
cated  for  clarity,  the  trap level has to be raised to a level 
)q  above  the silicon conduction  band edge  for tun- 
nelling to  be possible. This minimum distance  from  the 
silicon-silicon dioxide  interface is xg. 

N(x,E)=Noexp[-a(E)x]exp-[(E+Eo)/kT]2' (1) 

d S x S x ,  

- E g S E _ < O  

No 

Figure 1 Trap distribution. 

I 
S O  N M S O  N M  

By invoking the  requirement of electric flux continuity 
across  the oxide-nitride interface, neglecting the  charge 
trapped  at this  interface, and summing all potential drops 
across  the  structure, a simple  geometrical  calculation 
shows  that 

x. = ( 1  - O d  + (5d + I )  IEllq V g '  , ( 1 1 )  

where 5 = cn/eOx, E ,  and cox being the permittivities of the 
nitride  and oxide of thickness 1 and d respectively,  and 
( E (  is the magnitude of the difference between  the  trap 
level and the silicon conduction band edge. Note  that  we 127 
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5'0 3. Charge transport equation 

From  Eqs. ( 1  ) and ( lo) ,  

dQ = q N , f ( E )  w ( ~ ) e - " ' ~ ) ~ d x  dE dt . (16) 

The  trap levels can be  divided into  two  groups:  those 
which lie  up to a depth q Vox below the silicon conduc- 
tion  band edge,  and  those which lie deeper.  Upon appli- 
cation of a gate potential sufficient to create a  voltage 
drop  across  the  oxide of value Vox, the first group  gets 
raised so that all states  at  the oxide-nitride  interface can 
"communicate"  with the silicon. For  the  second  group, 
the  nearest  states  that  are raised sufficiently to commu- 

total charge  transport  can  be  expressed by (see Fig. 3 )  

/ 

dEjx:El d x C ( x , E , r )  

+ q  Iof dt 
dE j:m d x 6 ( x ,  E,  t )  

qvux 
s o  N M nicate with the silicon lie at  distance x , ( E ) .  Thus  the 

Figure 3 Charge  transport equation and illustration. 
d E f  ( E )  I*'" dx w(,y) [ dt' 

XO(E) 

have  adopted  the  convention  that energies above  the 
conduction  band  edge are considered  positive and  ener- 

+ [ dE f ( E )  dx w(.r) 
-9Vox d 

gies below it are takeri to be  negative.* And  It is more  convenient  to write  this in an  alternative  form 

V,' = V ,  - 4,s - & ,  (12) 

where +,s is the metal-semiconductor  work  function 
difference, I/I~ is the silicon surface potential,  and V ,  is 
the signed gate potential. For  electrons, q is negative, 
making q V ,  positive for a negative gate voltage. 

The minimum tunnelling distance x. cannot be less 
than  the  separation d between  the oxide-silicon  interface 
and the  traps  at  the oxide-nitride interface,  nor  is it con- 
sistent  to  let x. exceed x,, the maximum distance  up  to 
which traps effectively exist.  The first restriction  pro- 
vides a definition of high field and  the  second defines a 
threshold gate voltage  below  which  tunnelling cannot 
occur.  We therefore define the high-field gate voltage by 

q V g H '  2 ( 1  + / /<d)Eo (13) 

as 

The first term  represents  contributions  from all trap lev- 
els, and  the  second  term  subtracts  contributions from 
the  lower  trap levels located  between  the oxide-nitride in- 
terface  at d and  the minimum tunnelling distance x o ( E ) .  

Equation ( 17)  or ( 18) can  be  written  more  generally 
as 

Q ( t )  = q N ,  d E f ( E )  d x [ l  - e-"")f] . (19) 
E X 

and  the  threshold  gate voltage by 
Ross and Wallmark's assumption of a single trap level 

qV,l,' x, + :i - 1 ) d  (1 + 1/5d)E, 3 

(14) E,eV below the silicon conduction  band  edge is 

f ( E )  = 8 ( E  + E, )  (20 1 
where E ,  is the magnitude of the energy level of the 
deepest  trap,  measured  from  the silicon conduction  band which, when inserted in Eq. ( I 9 ) ,  gives the Ross and 
edge, available for electron tunnelling. Wallmark charge transport  equation 
Thus 

VSL' f V,' 5 VgH' With the  further  assumption  that all tunnelling  originates 
from a single plane at x,,  Pulver  and  Dorda's charge 

Vg'  Vm' . ( transport equation is obtained. Thus: 

*By considering energies helow the silicon valence hand edge to he positive and Q P D ( ~ )  = Q R W ( ~ ) ~ ( X  - X , )  
energies above it to he negative, the present analysis can he equally well applied to 
hole tunnelling with  appropriate changes in the effective mass, etc. = qNo[  1 - e-"'l)f 1 128 
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It is evident, as shown in more  detail elsewhere [ 131 
that  the  charge  transport  expressions of Pulver  and 
Dorda,  as  those of Ross and Wallmark are  contained in 
the  more general expression of Eqs.  (17),  (18) or (19). 

The temporal  and  spatial  integrals of Eq. (18) are 
readily evaluated, giving 

d E f ( E )  {K, + E ,  ( 7 )  - E ,  (e-%) } , 
(23 1 

where 

T =  wnt e , 

K, = (X, - 4 / A ,  (25a) 

and 

K, = K,(E) = ( x , ( E )  - d ) / A .  (25b) 

From  Eqs.  (13), ( 14)  and  (15), it is evident  that 

0 5 K , ( E )  5 K , .  (26 1 
For gate voltages near  the  threshold, K ,  M K,, and for 
voltages near  the high  field value, K, M 0. 

The function E , ( T )  is related to  the exponential  inte- 
gral and may be  approximated as [ 181 

-d/A (24) 

5 

- h 7 +  a , , ~ ~ ,  0 5  7 5  1 
n=n 

E1(7) = g ( 7 )  , 

l o 7  

7 1  1 

7>> 1 ,  (27) 

where 

a, = -0.577, 

a,= 1 ,  

U, = -0.25 , 

a3 = 0.055 , 

a, = -0.009 , 

u5 = 0.001 , 

and 

g ( 7 )  = 7 . e-' T' + 2.337 + 0.25 
(28) 

T 2  + 3.337 + 1.68 

decreases  to  zero very  rapidly as T increases. 
Equation  (23)  contains  the  complete time dependence 

for any  form of trap energy  distribution. It is convenient 
to write  this expression again as 

Q ( T ) / q  = Qhigh - Qcurr 9 (29 1 
where  the high-field contribution is 

where 

I/ td = w,, , 

l / t ,= w,) e 

and 

-x,/A 

l/t, = wo e -x 0 / A  . 

4. Monoenergetic  trap distribution 
For a single trap level lying E ,  eV below the silicon con- 
duction band edge, 

f ( E  1 = 6 ( E  + E,,) ( 3 3  1 
and Eq.  (23) becomes 

Q(T) = [K, + E , ( T )  - E,(e-K17)1 

- [K, (-E,, v ~ ' )  + E ,  ( 7 )  - E ,  (e-K27) 3 . (34) 

For V,' 1 V',,, the second set of terms vanishes giving 
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. - h I- 2t Present theory 

Ross and Wallmark theory 

10-2 10"  10 IO2 10 

Figure 4 Charge  transport vs time. 

Subtracting (36) from (35)  gives, for V,' < V'," 

=-I Q ( 7 )  - - K ~ ( - E ~ ,  vg') + In r + g(e-K2T) + y 

n K  
- x a, 7 , e 2 5 r 5 eK1 

K, - K2(-E0, Vg' )  , r > eK1. (37)  

Recalling the definitions of K ,  and VrgH, we  see  that  for 
V,! slightly less  than V g H ,  K ,  0. With this value of the 
gate potential, the minimum tunnelling distance is very 
slightly greater  than  the  oxide  thickness, i.e., traps locat- 
ed very near  the oxide-nitride interface  can communi- 
cate with the silicon conduction  band, and the  charge 
transport should  be almost  that  corresponding  to VrgH.  
Indeed,  for V,' = VlgH Eq. (39)  reduces  to  Eq. (37) .  

From  the definition of VrgL, it is  seen  that  for V,' 
slightly greater  than VgL, K ,  M K , .  The minimum tun- 
nelling distance x. is then only slightly less  than  the max- 
imum tunnelling distance x, and  therefore not many 
traps  can  contribute  to  charge  transport.  Hence Q will 
be small. Equation (32) bears this out when K ,   K ,  is 
inserted. 

Examination of Eq. (37)  shows  that in the interval 
0 5 r 5 1 ,  Q is initially linear, then gradually decreases 
from linearity. In  the interval [eKz, eK1], g ( r )  is initially 
dominant but very  rapidly decreases  to  zero.  The loga- 
rithmic term  then  dominates until for larger values of r 
the summation term  exerts a stronger effect, pulling Q 
towards a constant value  which is reached for T > e",. 
The  theory predicts that  saturation  sets in at T E eK1. 
Since K ,  = (x, - d ) / h ,  x, governs  onset of saturation. 
We recall that x, had been defined earlier as  the maxi- 

130 mum distance  from  the semiconductor-oxide  interface to 
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where  the  trap  density is significant. Traps  located be- 
yond x ,  are assumed  not to  contribute  to  charge  trans- 
fer. Experiments indicate that  saturation  ensues  after 
about 60 seconds [13]. Using the definition of r ,  with 
wo = eso/sec [3], and A = 1 [ 11, we find that 

x, = A In (motsat) = 34 A .  (38)  

It  is evidently  not  physically  justifiable to let x, = 1 and 
still less so to let x ,  -+ 00. Since tunnelling probability 
decreases exponentially with distance, it may seem  that 
it is unnecessary  to  cut off the  trap distribution at x,. 
But if we replace x ,  by 1, Eq. (35)  or (37)  shows  that 
saturation  ensues only after r 2 e"'. This is evidently an 
unrealistic value,  and  becomes  more so if 1 is replaced 
by infinity. I t  is because Ross and Wallmark assumed 
that 1 could be replaced  by infinity that  their  results 
cound not predict a saturation time, nor could they pre- 
dict  the switching  time in a  self-consistent way [ 131. 

5. Energetically uniform trap distribution 
For traps distributed uniformly opposite  the forbidden 
band of silicon, 

, other E .  

Then  for V,' E VgH, 

= E , [ K ,  + E ,  ( 7 )  - E ,  (e-"lr)] . 
For low  fields, it is necessary  to  evaluate 

e,,,, = /- dE[K,(E, V g ' )  + E ,  (7)  - E ,  (e-"zr)] . 
-9"ox 

E ,  

(41 1 
A straightforward  evaluation shows  that 

(42) 
and 

The third term in Eq. (41 ) turns  out  to be a form of Van 
de  Hulst's integral [ 191, 

(44 1 

Specifically, 
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Inserting Eqs. (42),  (43) and (45) into Eq. (41) gives 

(46) 

Hence  for V,' < VKH', 

Q ( T ) / q N , A =  K l - - - - K 2 z ( - E , ,  V,) 
1 9V,' [ 2 < d + l  E ,  1 

- El2(e%)]  . (47) 

It is ciear that  for V,' = VgH' = - E,, K ,  = 0 ,  and Eq. 

(47)  reduces  to Eq. (40).  This is similar to  the mono- 
energetic  case. 

Since  it is difficult to interpret Eq. (47) readily, another 
approximate form is obtainable by first using the series 
representations for E 1 ( 7 )  and then performing the inte- 
grations  indicated in Eq. (41 ). Doing so yields the re- 

<a+ 1 
5d 

sult,  for V,' < V,/gH', 

I 

i 

where 

I and 

5 

- x e"'"' a,  r" - - C K ,  + Cg(e-",T) , 1 
2 n= 1 

When the lowest trap level is raised to  the silicon con- 
duction band edge, i.e., for V,' 1 IfgH', K ,  = 0 and there 
is no longer any voltage dependence, and Eq. (48) re- 
duces  to 

This result is identical to  the monoenergetic high  field 
case. 

These results suggest that  for high fields no  essential 
difference is introduced by assuming  either  a  monoener- 
getic  distribution or an energetically uniform one. For 
low fields the  latter model predicts  a slightly more com- 
plicated dependence on the  gate voltage than the mono- 
energetic model. 

The high  field regime as defined in Section  2, Eq. ( 13 ) 
is shown in the next  section to  occur  for gate voltages 
greater than 15 V. For a 500 8, nitride  this corresponds 
to  an electric field  of 2.8 X lo6 V/cm.  At a  typical 20 V 
gate voltage, the electric field strength is 4 X lo6 V/cm, 
at which level the very low conduction that occurs is 
due  to  the hopping of thermally  activated  electrons  from 
one isolated trap  to  another [ 16,171. Thus it is not ex- 
pected,  for  short pulses, that conduction in the nitride 
will play a significant role,  compared to  the oxide  cur- 
rent. 

6. Operational  dependence on  characteristic 
parameters 
To investigate the operational dependence on character- 
istic  parameters such  as insulator  thicknesses [20,21] 
we  next  consider the shift in flatband voltage 

v , ( t )  = ( U 4  Q ( t )  . ( 5 0 )  

From Eq. (13),  with < =  1.7, I N N  500 8, and d m  25 A, 
it is found that V'," M 15 V. This value is less than typi- 
cal operating  voltages of 20 V or more. Thus it is appro- 
priate to consider only the high  field expression for Q ( t ) .  
In  that  case, using the  notations of Eqs. (30a), (3 la) and 
(321, we have 

v , ( t )  = (l/En)qN,,A{ [xm - d)/Al + E ,  ( t / t o )  

- E ,  ( t l t m )  1 3 (51 1 
where x .  has  been  replaced by  d. 

It is  evident that V ,  increases with N , ,  1 and x,,,. The 
dependence  on  the  other  parameters  can be inferred 
from the approximate relation 131 
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Figure 5 Shift in flatband vs pulse width for different applied 
voltages ( q  = 1.6 x 10"' cod, N ,  = 6 x 10'' ~ m - ~ ,  E ,  = 6.2 x 
10"' F/cm, w,= 1013/sec, A = 1 A, x m =  35 A, t o =  ed"/w,, 
t = exmlA h,). 

I (X, - dl , tIn < t ,  ( 5 2 ~ )  

where  terms containing have been  neglected be- 
cause they are  very  much smaller than e?". 

Equation  (52)  shows  that V ,  increases  as  the tunnel- 
ling probability oo and the  de Broglie wavelength A in- 
crease. But V,  decreases  as  the  oxide  thickness d in- 
creases.  This is so because,  as  the  oxide  gets  thicker, 
less charge is transferred  and so the shift in flatband 
voltage is consequently  decreased. 

To  verify these  inferences  Eq. (5 1 ) was evaluated  for 
nominal and  excursionary values of the  parameters 1, d ,  
o,,, A and x,. Typical  results  are  shown in Fig. 5 .  It  was 
found that variations in A have  the  greatest effect, fol- 
lowed by oxide  thickness d and tunnelling  probability oo. 
Changes in x, and I have very little effect, as  expected. 

Now,  the  de Broglie wavelength A as well as  the tun- 
nelling probability oo depend  quite sensitively on  the 
height and shape of the potential  barrier. The  latter is 
affected in turn by the applied  voltage, the  trap levels 
and  the  oxide thickness. It would thus  appear  that varia- 
tions in oxide  thickness may exert a dominant effect on 
device  operational  characteristics.  This  has  also been 
suggested  by Ross  [20],  Chou  [21],  and  Goodman  [22]. 

Consider  next  the  dependence of the switching  time t' 
on  trap  density, tunnelling  probability, etc.  This may be 
found by  inverting Eq. (51 ). It  is sufficient, however, 

132 merely to  invert  Eq.  (52a) giving 

where Vs' is some  prescribed value for  the shift in flat- 
band  voltage at which, by definition, switching occurs. 
After rewriting Eq.  (53 ) as 

it is evident that t' decreases  as  the  trap  density,  de 
Broglie wavelength,  nitride thickness  and tunnelling 
probability increase,  and as the  oxide  thickness  decreas- 
es.  However,  the  dependences  on d and A are  quite 
strong. 

At operational  voltages all trap levels are raised well 
above  the silicon conduction band edge  and  the  present 
theory  assumes  that  the tunnelling  probability does  not 
change. This  is, of course, a simplification. The pulse 
amplitude dependence given by Ross and  Wallmark [ 1 ] 
is correct only for  the  case  where  the  gate voltage is in- 
sufficient to raise the  trap level above  the silicon conduc- 
tion band edge. Since  such voltages are much less than 
operational  voltages, the exponential dependence on 
pulse  amplitude is then of limited validity. 

A typical  value for t' can be  calculated from  Eq.  (53 ) . 
A s s u m e N o = 1 0 2 0 c m " 3 [ 1 ] , A = 1 ~ [ 2 ] , a n d o o = 1 0 ' 3  
sec" [3].  Then with E, = 6.2 X F-cm", q = 1.6 x 
IO"" coul, d = 20 A and I = 500 A, if 0.5 V is the value 
of shift in flatband  voltage,  which can  be readily de- 
termined, we find that t' = 18 ps. The  exact  value can- 
not  be calculated  without  obtaining exact values for 
No, A and o,,. It is clear  that  the switching  time t' has 
meaning only in the  context of the sensitivity of the ap- 
paratus used to  measure V,'. Recent  measurements  [23] 
have  shown  that  the  charge  transferred during  applica- 
tion of the  gate potential, decays  to  about one-fifth of its 
initial value within microseconds  after  the  cessation of 
the pulse. Hence it might be more correct  from an oper- 
ational  point of view to define switching  time as the min- 
imum pulse,  for a given  applied  potential, that will cause 
the shift in flatband voltage to remain at  some  prescribed 
value for  several  seconds  after  cessation of the pulse. 

7. Experimental results 
The previously  derived equations  can be  used to calcu- 
late  the values of various characteristic  parameters. 
Recalling the definition of Vg,> as the threshold or lowest 
gate voltage for which a shift  in  flatband  voltage is mea- 
surable,  the  extent of spatial  distribution of traps, from 
Eq. ( 13 ), is given  by 

Also, from Eqs.  (52a) and (52c),  the  trap density and 
the tunnelling  probability  can  be expressed as 

A. V. FERRIS-PRABHU IBM J .  RES. DEVELOP. 



Equations (56) through (58)  provide  means of verifying 
the  characteristic  parameters wo, No,  and x,,,, directly 
from experimental  data.  The  parameters A and E,  are 
not amenable  to  extraction  from  the  present formulation 
and need to  be  obtained  from  other  experiments. 

We  used 2 Q-cm p-silicon with a 20 A thick layer of 
dry thermal  oxide. A nitride layer 200 A thick was  grown 
at 900°C using a 1:  10 silane-to-ammonia  ratio. The  gate 
material was rf-heated  aluminum. 

All measurements  were  taken  at 30°C, and  each time 
after a pulse was applied, the flatband  was  brought  back 
to  the original condition. Measurements  were  carried  out 
on  several  devices and representative  values  are  shown 
in Fig. 6. 

It  was found that  the lowest  applied  voltage for which 
a  shift  in  flatband  voltage was  measurable  was 5 V. Us- 
ing Eq. (7 ) ,  xm was calculated to be 32.8 A, which is in 
substantive  agreement with the well known fact  that 
tunnelling is negligible for  distances  greater than about 

At 25 V gate amplitude, for a succession of equal 
pulses, the  saturation  value V,,, of the flatband  voltage is 
6.2 V. With [= 1.7, (& + &,,) = 1 V, q= 1.6 X 10”’ 
cod ,  E ,  = 6.2 X FIA, A = 1 A [ l ]  and E ,  = 

0.8 eV [l] ,  Eq. (8) gives N o  = 9.3 X 10” ~ m - ~ ,  which is 
somewhat higher than  the value of 6 X 10”’ cm-3 given 
by Ross and Wallmark. 

From Fig. 6, Eq. (58)  and  the  value of N,,  we find 
that on = 10” sec” which is a bit  lower than the  value of 
1013 sec” calculated from  the  theoretical  expression de- 
rived  by Dorda and  Pulver. 

The  trap density raises  questions  as  to  whether  there 
might be  overlap among the  wave functions of the  stored 
charge. If this  be  the  case,  at  least  some interfacial areas 
may exhibit  metallic characteristics including  lateral 
conduction,  as a consequence of which the simple model 
of direct tunnelling  may  need to  be modified. Further 
work is needed  to  resolve  these points. 

35 A. 

8. Conclusions 
A model for  charge  transfer in the  direct tunnelling 
mode has been developed with a trap distribution that  is 
uniform,  both  energetically and spatially. I t  is shown 
that this model is a generalization of the models  pro- 
posed by Dorda  and  Pulver,  and by Ross and Wallmark. 
The  charge  transport  equation is solved  to  show  that  the 
time dependence  is initially linear, then roughly logarith- 
mic and eventually saturation  sets in. The  operational 
dependence is found  to  be  quite  sensitive to small varia- 

x 25v 
0 20v 

h A 15V 
0 1ov I 

,” l,, “ I I , ,  

1 2 3 4 5 6 I x 9 1 0  

I t  (ms)  

Figure 6 Flatband voltage vs time. 

tions in tunnelling  probability, de Broglie wavelength 
and, particularly, oxide thickness. The switching  time 
varies  inversely with trap density  and  tunnelling  proba- 
bility,  exponentially  with oxide  thickness, and as  the 
exponential of the reciprocal de Broglie wavelength. For 
high fields, as in typical operation,  there  is  no field de- 
pendence within the  framework of this model. Experi- 
mental  evaluation of maximum  tunnelling distance,  trap 
density and tunnelling probability gave  results in sub- 
stantive  agreement with values in the literature. 
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