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Quasimaximum  Likelihood  Estimators  for 
Two-parameter  Gamma  Distributions 

Abstract: The  Gamma probability  distribution is defined by the density  function [p"T(a) ] "  exp (-dB). This paper presents new  esti- 
mators for the  parameters a" and p. Required calculations are simple, primarily involving the  inner  product of certain  elementary  sta- 
tistics  and their logarithms. Both of the new estimators  are  shown  to  be unbiased. The variance  formulas for  each  and their covariance 
formula are  derived-counterparts of these  for  the method of moments (MM) and the method of maximum likelihood (ML)  not being 
known except in the  asymptotic form.  Curve-fitting results from  samples of size 50 are provided. They  support  the proposition that  the 
new  quasimaximum likelihood estimators (QML) are at least as effective as MM and ML estimators. Illustrative  estimation based on 
samples of size 5 also is presented  for  comparison;  the  results highlight relative  smaller  variances for  the M L  estimators.  The  same 
Monte  Carlo results signal a possibility that significant negative  bias occurs with both  the MM and M L  techniques if small samples 
are  used. 

Introduction 
Because many industrial  applications have been  found 
for  the  Gamma probability  distribution, parameter esti- 
mation for  that distribution  has become a matter of prac- 
tical importance  as well as a topic  for  extensive  theore- 
tical research.  The distribution (Pearson  Type I l l  with 
zero-valued  location parameter) is defined by the density 
function 

[~"r(a)I" exp ( x / P ) ,  x 2 0 ,  a > 0 ,  P > 0 ,  ( 1 )  

in which CY and p are, respectively, the  shape  and scale 
parameters. 

The  Gamma distribution has found  practical  applica- 
tion as a model in studies relating to life, fatigue, and re- 
liability characteristics of industrial products.  Gupta and 
Groll [ 11, for example, treated  the distribution in the 
context of acceptance sampling based  upon life tests. 
Some earlier  applications  were concerned with the in- 
vestigation of accident  causation;  Chambers and Yule [2] 
were among those who reported on it in this context. 

Much  research activity has been devoted  to  the de- 
velopment of theory  and computational  aids for estimat- 
ing a and /3. The  research has  dealt  with order  statistics 
as well as with complete,  censored,  and  truncated sam- 
ples. The following partial listing of contributions  to  the 
literature  spans almost half a century. 

Fisher [3] discussed the method of moments (MM) 
and emphasized certain objections that  arise from  sta- 
tistical inefficiency which plagues that method in its  ap- 

plication to  the  Gamma distribution. Gupta and Groll [ 1 ] 
cited likelihood equations that are  the basis for  the 
method of maximum likelihood (ML) .  Some aids in 
finding approximations to solutions of those  equations 
were developed  by Greenwood and Durand [4] and 
further discussed by Wilk, et al. [ 5 ] .  Asymptotic ML 
efficiency (i.e., efficiency expected  from large-sample ML 
estimation) was treated by Harter and Moore [6] in 
reporting their work on  censored-sample  theory. Esti- 
mation  techniques for  order  statistics  were developed by 
Wilk, et al. [SI. Cohen [7], Des  Raj [8] ,  and Chap- 
man [9] treated estimation  methods for  truncated sam- 
ples. Blischke, et al. [lo] and Blischke [ 1 I ]  reported 
theory  that  emphasizes  cases in which the  shape parame- 
ter  has values  not in excess of two.  Probability  plots for 
the  Gamma distribution,  and informal estimation tech- 
niques  based  upon such plots are  described by Wilk, 
etal. [12]. 

In  the  present  paper  developments in theory  are re- 
stricted  to  complete  random samples. Both MM and ML 
concepts  are applicable in that  context. Estimation of a" 
and /3 is considered, a" being denoted by 6 whenever 
typographical simplicity is desired. MM estimators have 
a  closed  form  and are simple to calculate. Monte  Carlo 
results, which are  presented in Section 2, lend credence 
to  the notions that  those  estimators  are biased and  have 
variances that  are larger than variances for  the  corre- 
sponding ML  estimators. 115 
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The  latter  estimators  result  from  the solution of tran- 
scendental  equations  and,  hence,  are not  calculated from 
closed-form expressions.  Computational  aids, which 
were  referred  to  above,  make application of the  ML 
techniques fairly  simple,  provided that  the  estimated 
values  lie within ranges that  are suitable to  the  relevant 
aid. Also, solution of the likelihood equations is quite 
amenable to approximations  by  electronic computer 
techniques.  Monte  Carlo  results, previously alluded to, 
create  strong suspicion that ML estimators  are  biased- 
indeed, nontrivially  biased, if the sample size is small 
enough. 

In this paper a new estimating technique is proposed 
for  use  when  complete  random sample data  are available 
from a Gamma population defined by the distribution  in 
Eq.  (1 ). Two  statistics,  denoted by 8 and p, are defined as 
estimates of a-' and /3, respectively. Random sample 
data  are specified by x , ,  x , ,  . . ., x, with the stipulations 
that 1 ) n > 2 ;   2 )  x i  # xj for some  value of i and j ,  and, 
3 )  x i  > 0 for i = I ,  . . ., n. Then  the  proposed  statistics 
for estimating 6 and /3 are, respectively, 
- n  6=-- 

n -  1 2 (z i  - n- ' )  In zi , 
n 

i = l  

and 

p = x s ,  ( 2  1 
where X is  the sample mean, zi = xi/n.t for all values of i ,  
and natural logarithms are indicated by the symbol In. 

Definitions ( 2 )  do not yield ML estimators. Instead, 
s and p stem from ML  equations  that  are  associated with 
a  generalization of the distribution ( 1  ). Specifically,  they 
arise from ML equations  for  the generalized  gamma (gg) 
distribution discussed by Stacy  and  Mihram [ 131. [Def- 
inition ( 1  ) is obtained  from the gg distribution by setting 
one of its parameters, p,  equal to unity  and reparameteriz- 
ing the  result.]  The  statistics 8 and B, consequently,  are 
called quasimaximum likelihood (QML)  estimators. 

Arithmetic  computations implied by ( 2 )  involve the 
use of logarithms,  but otherwise  are suitable for  desk- 
calculator techniques. It will be  shown that  each of the 
estimators 6 and 6 is unbiased (Sections 6 and 8). Vari- 
ances and the  covariance of the proposed estimators  are 
derived as functions of sample  size  and the  two  parame- 
ters a and /3 (Sections 7 and 8) .  It should be recalled  in 
passing that  comparable small-sample results  are not 
available for  either  the  MM  or  ML  estimators  associated 
with (1 ). Some  asymptotic distributional properties of 
the proposed estimators  are  also discussed (Section 9) .  

Use of the  Greenwood  and  Durand [4] ML aid is  easy 
after  the values for  some ancillary statistics  are  deter- 
mined. More specifically, natural  logarithms of the  sam- 
ple geometric and arithmetric  means  are  substituted  into 
a  simple  function that yields a necessary argument to  use 

116 with the  tabular aid. Interpolation within the  table virtual- 
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Table 1 Three samples from each of three Gamma populations. 

Gamma population no. 

1 2 3 
s=o.s, p=2.0 6=1.0, B=2.0 8 =2.0, p = 2 . 0  

Sample no. 

Item 1 2 3 4 5 6  7 8 9  
1 
2 
3 
Y 
5 
6 
7 
8 
1 

10 

11 

13 
1 2  

1 4  
1 5  
16 
17 

19 
18 

2 "  

21  
2 2  
2 3  
211 

2 5  
2 6  
27 
28 
2 9  
3 0  

31 

3 3  
3 2  

3 4  
3 5  
3 6  
3 7  

39 
3 0  

'10 

41 
L, 2 
Lid 
L /  4 
4 5  
Li6 li, 
4 9  
118 

5 0  
- 

3 . 7 0  4 . 3 2  2 . u 4  
1 . 4 0  1 . 2 2  2 . 6 7  

4 . 5 0  1 . 7 8  3 . 5 0  
2 . 9 ' 1  5 . 8 4  9 . 9 8  

2 . 7 5  0 . 4 9  1 1 . 1 0  

4 . 4 8  7 . 7 3  2 . 8 0  
2 . 8 1  8 . 8 0  5 . 1 0  

4 . 3 1  8 . 7 1  0 . 6 1  

q . U 5  6.13 3 . 8 5  
2 . 0 2  4 . 2 6  5 . 7 5  

2 . 5 9  9.60 2 . 8 4  

3 . 5 u  1 . 9 0  7 . 0 5  
11.76 1 . 0 1  6 . 3 0  
" 5 0  2 . 1 3  6.G4 
0 . 8 5  5 . 3 9  1 . 0 5  

1 .5 '1  2 . 6 0  2 . 4 2  
8 . 7 5  1 0 . 2 0  4 . 5 0  

6 . 3 3  2 .80  2 . 6 5  

2 . 6 4  6 . 6 7  5 . 5 3  

0 . 5 7  3 . 3 9  4 . 3 0  
2 . 4 0  4 . 4 2  2 . 6 9  

1 . 1 9  " I 6  5 . 2 0  
3 . 5 3  6.3V 5 . 0 2  
2 . 8 0  7 . 6 4  2 . 7 3  

3 . 8 2  8 . 7 2  7 . 5 0  

1.00 6 . 7 5  6 . 3 6  

2 . 7 8  0 . 4 7  0.59 
* .up  5 . 0 2  5 . 3 8  
0 . 9 1  1 . 7 7  8 . 4 8  
8 . 1 5  6 . 5 5  1 . 0 2  

7 . 9 5  20.111 4.53 
9 . 4 3  0 . 8 5  2 . 7 7  

5 . 2 7  4 . 5 6  1.78  
2 . 1 4  8 . 0 6  5 . 5 5  
2.115 5 . 6 2  4.4" 

0 . 9 5  1 1 . 5 6  3 . 0 6  
2 . 3 9  3 . 0 0  4 . 5 0  

3 . 2 u  5 . 1 2  0 . 7 6  
3 . 0 0  1 . 0 2  7 . 9 6  

1.08 2 . 5 1  9 . 3 9  

0.711 2 . 9 2  5.41 

1 . 9 2  2 . 7 6  5 . 9 0  

1.16 6 . 8 7  1.04 

9.00 u.17 3 . 0 5  
0.11 2 . s ~  3.110 

2 . 4 1  6 . 9 3  3 . 0 0  
5 . 0 8  2 .06  3 . 3 2  

3 . 0 1  3 . 0 2  2 . 1 6  

U.85 2.16  1 . 9 5  
7.111 2 . 0 5  8 . 5 0  

U.56 3 . 5 5  2 . 4 6  0.001 0 . 3 3 2  3 . 0 8 5  
1.39 2 . 0 9  1 . 2 3  0 . 0 7 3  0 . 9 1 6  1 . 1 2 9  
1 . 1 4  2 . 2 1  1 . 0 3  0 . 0 0 7  2 . 1 9 2  0 . 9 9 2  

3 . 9 1  1 . 3 1  0 . 0 9  1 . 9 8 9  0.301 0 . 2 1 4  
2.06  5.111 6 . 3 9  0 . 0 4 5  0 . 6 7 6  0 , 7 0 3  

4.39 0 . 1 5  1 . 9 5  0 . 3 7 3  0 . 6 7 1  0 . 8 9 9  

0 . 6 1  1.83 4.13 2 . 0 2 9  0 . 5 3 3  0 . u 2 1 ,  

0 . 9 2  1.30 3 . 7 ' 1  0 . 6 8 0  0 . 0 ~ 0  1.140 

3 . 3 7  2 . 0 1  6.84 0.109 0.Os6 0 . 1 1 0  
0 . 7 5  0 . 1 3  O.Od 0 . 9 2 2  1 . 5 1 8  1 .40 '1  

1 . 7 7  0 . 2 3  2.7U 0.008 0 . 2 1 2  1 . 3 5 0  

0 . 8 6  0 . 3 9  0.49 Li.653 0.611 1 . 3 8 4  
0 . 2 9  4 . 7 7  0 . 6 8  0.193 1 . 6 2 0  1.421 

3.61 0.85 1 . 6 3  0 . 8 2 6  1 . 5 2 3  0 . 0 9 1  
0 . 0 2  0 . 2 1  2 . 8 3  fl.ll38 5 . 4 5 2  0.113 

0.96 4.48 2 . 2 1  0 . 9 5 6  0 . 2 7 U  0 . 3 2 ' 1  

2 . ~ 7  0 . 7 ' 1   7 . 1 1  0 . 7 1 1  0 . 5 7 7  0 . 0 1 3  

5 . 2 3   3 . 1 4  2 . 6 ~  0 . 9 0 8  n . 6 4 2  3 . 6 5 0  

4 . 4 1  2 .94  1 . 5 0  o .oo ' i  0 .010 0 . 8 ~ 8  
0.45 0 .11  0 . 0 5  0 . 0 8 2  0 . 0 1 8  0 . 2 6 8  

0.10 1 . 7 4  1 . 3 3  3 . 6 3 7  0 . 0 ' 1 3  0 . 2 2 3  
2 . 4 4  0 . 1 5  1.11 3 . 1 0 2  0 . 1 5 6  0.'119 

0 . 2 4  0 . 0 2  0 . 0 0  1.094 3.346 0 . 0 2 0  

4 . 1 4  3 . 3 9  0 . 7 6  0 . 5 2 3  2 . 8 6 3  0 . 3 6 9  
1 . 4 0  0.08 0 . 1 8  O.IEL, 0 . 0 5 8  0 . 0 0 5  

0 . 2 5   0 . 4 0  1.119 0 . 0 0 6  0.39LI 1 . 9 8 0  

1 . 7 7  3 . 1 9  0 . 1 9  0 . 1 U G  0 . 1 0 5   0 . 0 7 8  

4 . 3 6   0 . 6 3  2 . 6 2  0.3119 1.190 0 . 9 7 5  
1 . 0 7  3 . 2 7  1.65 2 . 1 7 0  0 . 0 8 3  0.010 
0 . 2 0  1 . 7 3  0.59 0 . 2 3 9  0 . 4 8 5  0.033 
3 . 6 5  3 . 6 3  n . 6 6  0 . 2 4 0  5 . 7 6 9  0 . 1 3 2  
0 . 8 5  0 . 6 4  5 . 2 4  6 . 2 7 7  0 . 0 4 3  1 . 0 5 9  

0 . 3 7  2 . 3 5  4 . 7 2  0 . 1 2 6  0 , 0 7 7  0 . 1 7 9  
1 . 3 5  1 . 7 3  0 . 7 5  3 . 0 2 1  1 . 1 7 8  0 . 5 5 9  

2 . 1 5  1 . 5 5  6 . 0 7  3 . 2 9 1  n . n o 1  0 . 4 9 1  
1 . 3 4  7 . 4 0  O.UG 0 . 6 7 6  0 . 6 8 6  0 . 2 3 4  
9 . 3 6  0 . 0 5  1 . 4 7  0 . 5 1 9  3 . L i U 6  0 . 7 5 u  

Table 2 Summary of population parameter values and estima- 
tion results. 

Gamma population no. 

1 2 3 
s =os, p =2.0 $ = L O ,  p=z.o 6 =2.0, p =2.0 

ly completes ML estimation whenever  the  computed ar- 
gument lies within the  range of argument  values adopted 
for  the table. 
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I MM estimates 

0 Average 8 = 0.40 
Standard  error=0.036 

25 c ML estimates 

I 

QML estimater 

16 

"estimates 

2 5 1  if 
20 

I ML estimates 

The  MM and ML  statistics  for estimating 6 and /3 are 
denoted by the  respective pairs: 6, f i  and 8, b, with an ob- 
vious correspondence  to  the QML estimators.  Formulas 
for  the  MM  statistics  are d = s'/X2 and /j = X 6, in which s2 
is the  sample variance defined according to 

n 
s? = ( X i  - x)'/n 

i = l  

since  the method of moments is to be  strictly interpreted 
herein. 

2. Summary of empirical findings 
Some numerical examples  are  cited  later in the  discus- 
sion,  data from  nine random samples being itemized in 
Table 1. The samples were  chosen  from  three chi-squared 
populations  [special cases of ( 1) 3 .  The samples were 

generated by an  IBM  System/360, Model 40, computer 
that was  programmed in the light of the following well 
known  results: 

a )  Pairs of independent,  random  observations  from a 
rectangular (0 , l )  population are transformed to in- 
dependent,  random  standard normal deviates by 
means of formulas  due  to Box and Muller [ 141. 

b) The  sums of the  squares of r such  deviates may be  re- 
garded  as a single random  observation  from a chi- 
squared population  having r degrees of freedom  (a 
result previously used by  Wilk, et al. [ 121 for similar 
purposes). 

In  Table 2, popular parameter values are  shown along 
with  estimation results  from  each of three  methods:  the 
MM,  ML,  and  QML  methods.  The  reader will  find 6, 117 
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* MM estimates 
0 ML estimates 
v QML estimates Q @  
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8 8  * 0  

ve 
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Q* 0 
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0 

v *  
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0 
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0 
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0 
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0 . 0  0 . 1  0 . 2  0 . 3  0 . 0 . 5  0 .  E c . 7  0 . 8  0 . 9  1 . 0  

Population CDF values 

Figure 2 Estimated  cumulated distribution functions (CDF)  versus population CDF.   CDF values were  computed  from  Sample 1 
data in Table 1 by the  formula ( i  - $ ) / n  at population C D F  value for xi ;  these  values,  represented by the large  circles, are  compared 
with estimated  values obtained by  the MM, ML, and QML methods. 

p, 6, b, 6, b, & and 6 as linear  titles therein,  for  example. 
Similar  notation is adopted  to indicate the population 
means  and  variances displayed in lines  which are la- 
beled p, b, ji, b and m', w', &', c?', respectively. Cal- 
culations to obtain those particular entries  were in ac- 
cordance with textbook formulas.  (See, for  example,  Rao 
[151.) 

Final lines in Table 2 reflect "goodness of  fit." The 
Kolmogorov-Smirnov (K-S)  goodness of  fit statistic, 
showing the maximum  deviation (absolute  value) be- 
tween sample  and population  cumulative  distribution 
functions  (CDF's), is indicated  by IAl. Ordinates  for 

118 the  sample C D F  at xi, i = 1 , .  . ., n ,  were  taken  to  be i / n  

in the usual  way and  the population C D F  was determined 
by known values of the  parameters.  Using  the previous 
notational device,  the symbols 161, I A I ,  and Id/ have  the 
obvious meaning. Corresponding numerical  information 
provides a means  for informal comparison of different 
estimation techniques with respect  to "goodness of fit." 

Tables of selected  percentiles in the distribution for 
(AI are generally accessible  (see  Beyer [ 2  1 1  ). Such 
tables  provide  an  objective criterion for evaluating the 
goodness-of-fit,  which is reflected by / A I ,  ( A (  and 161. 

The nine  numerical examples lead to the informal  con- 
clusion that  the QML estimators yield a goodness-of-fit 
that  is  quite  comparable  to  that  produced by ML esti- 
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mators.  Used in conjunction  with the criterion implied 
in the preceding  paragraph, Table 2 gives evidence of a 
slight superiority  for  the  QML curve-fitting  results. Per- 
haps, with samples of this  size (50 ) ,  that finding is not 
spurious  since  both 6 and fi are  demonstrably unbiased. 

In  Section 9, formulas for computing efficiency are 
given  along  with  illustrative graphs.  They  show  that 
QML estimators  are  not efficient, a fact  that offsets to 
some  extent  the  advantages  that  accrue  because  those 
estimators  are unbiased. Some  further insight is supplied 
by Monte  Carlo  results displayed  in  Figs. 1 (a)  and  (b). 
Those figures concern a case, 6 = 0.5 and p = 2.0, chosen 
specifically because  it  is unfavorable from  the  standpoint 
of QML estimator efficiency. The figures summarize 
estimation results from 50 independent  random samples 
of size five. They  support  the  conjecture  that small- 
sample ML estimation of 6 and /3 leads to biased statis- 
tics. The  MM  estimators also appear  to  be biased. 

In general, the  results highlight possible  bias and small 
variance  for  the ML statistics in contrast to larger  vari- 
ance and  lack of bias for  QML  statistics.  The  author  has 
calculated,  for  the  data leading to Figs. 1 (a) and  (b), 
approximate 95 percent confidence intervals (assuming 
usual  conditions are  met  for applying the  Central Limit 
Theorem of statistics). Resulting intervals  from  both  the 
MM  and ML estimations.do not contain  the  respective 
parameter  values 6 = 0.5 and p = 2.0. Hence,  the ob- 

known  values appear  to  be significant for  the  MM  and 
ML techniques. 

I served  deviations of the  averages  from  the  respective 

1 U l  
I 

I 
1 3  I 

I 
I 1 

1 2 1  

11 I 
1 

1 0 1  

0 Sample no. 1 
* MM estimates 
0 ML estimates 
v QML estimates 

1 

I 
I 

9 1  
I B O  
I 

I 

5 1  

0 
I *  

. v  

. 1  

* r  

3. Probability  plots 
Figures and are based upon probability plotting tech- Figure 3 Estimated quantiles versus population quantiles, with 

niques that Wilk, et al. [12] have  discussed along  with 
relevant  computation  formulas  and error evaluation. 
Suppose,  for  the  sake of illustration, that a function 
Fi(6 ,P)  is defined by 

values taken from Sample 1 in Table 1 for comparison. 

Fi(S,p) = l i / i x ) d x ,  are estimated by xi ,  x i ( & p ) ,  xi(&b),andxi(8$).  Figure 3 
refers  to  the first sample in Table 1 and  shows  each of 
the  estimates plotted versus xi (S ,P) .  

where f ( x )  is given by ( 1 ) . Several  estimates of Fi (6,p) 
are considered  for probability  plotting, viz., ( i  - ))/n, 
F i ( b , p ) ,  F i ( $ , b )  and Fi(8 ,B) .  Figure 2 refers  to  the first 
(left-most)  sample in Table 1 and  shows  each of the 
above  estimates plotted versus Fi(6 ,P)  for i = 1;. ., n. 
Similar graphs for the remaining eight  samples  could 
have  been  generated, of course. 

Figure 3 shows corollary  information derived  from  the 
sample. Specifically, values of a function xi(S,p), defined 
by the  equation 

4. Application of generalized Gamma distribution 
The  function ( 1) may be  denoted unambiguously by 
f(x;P,a, 1 )  if 

and  the definitions of x,a,  and p are unchanged. Tempo- 
rarily, it is convenient  to  consider p # 0 and  to  work with 
(3)  rather  than ( 1) , with a promise to set p = 1 at a 
later time. The logarithm of the likelihood  function  cor- 
responding to (3) is denoted by Lp so that 119 
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Suppose  that  the  three first partial  derivatives of L, with 
respect  to  the  parameters  are  equated  to zero. This 
leads to 

n - - n a  In P + a In xi - ( ~ , / p ) ~  In(xi/P) = 0. 
P i = l   i = l  

These may be manipulated to yield the equivalent 

P =  (ips 1 9 
-1 l i p  ( 6 4  

(6b) 
n 

$ ( a )  -In a = n In y ip ,  -1 

i= l  

a = [i ( Z i p  - +) In Z i p ]  7 

-1 

i=l  

where 

x, = 2 xp/n, 
n 

i = l  

y .  = xp/xp, 
lP 

z ip = y , /n  = x:/ xj" 
j = 1  

and $ ( a )  is the digamma  function ( d l d a )  In T ( a ) .  
Now consider any special case in which the value of 

p is known. The equivalent of Eq. (6c) would never arise. 
Yet, Eq. (6c) suggests an estimate of a whenever the 
value of p is  known; and Eq. (6a) suggests  a  correspond- 
ing estimate of 0. Suppose  for  the moment that ti  = x! 
for all values of i and  that a symbol A is  introduced so 
that A = p". The ti  values may be regarded [ 131 as a  ran- 
dom sample from a gamma  population defined by ( 1 )  
with x  replaced by t and p replaced by A. Thus,.the  case 
in which p has a known  value other than unity converts 
readily to  the  case p = 1 provided a and A are  to  be esti- 
mated instead of a and p. 

5. Independence of X 1  and the zil 
Equation ( 3 )  has served its  intended  purpose and, with 
the exception of Section 10, the remaining discussion will 
be  restricted  to  the  case p = 1 .  This justifies  simpler  no- 
tation  than  was adopted in (7) ,  and  we define 

X = X,,yi = yil, and zi = zil. 

Convenience is served  also by defining 

and by permitting the symbol xi to play multiple roles, 
the specific role being determined  according to  the con- 
text of the discussion. The symbol xi will represent a 
sample  value, a random  variable, or an  argument in a 
density function as  the  case demands. Similarly, multiple 
roles will be assigned to  the symbol zi when no ambiguity 
results. 

After appealing to  the  above expedients, the  joint dis- 
tribution of x], . ' ., x,, is  found to  be 

from which it can  be shown that  the  set of zi values  is in- 
dependent of X. One merely transforms (9) by 

x i = n i z i ,   f o r i = l ; . . , n - l , a n d  

noting that  the Jacobian is (n'?). The indication is that, 
with the restriction zi 5 1, 

gives the  joint distribution of 2 and z , ,  z2; . ., z,-~. Hence 
,f and  the  set of zi variables are statistically  independent. 

6. Expectations of 0 and 8 
The first moment  for 6, defined by ( 8 ) ,  is obtained after 
noting that ( f o r i =  l;.., n -  1)  

where  the  operator E indicates the mathematical  expec- 
tation of the quantity that follows it, and the remaining 
notation has obvious meaning. 

This, along with (8) ,  indicates 

= n [is - E ( z .  ) ] - [ i E ( z ; ) ]  
s=1 s=o 
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where j has  any of the values 1 ,  2 ,  . ' ., n and Z, = 1 
- x::,' zi. Referring to Eq. ( 1  1 ), we have: 

The  results, ( 1  5 )  and ( 16) ,  together with the recursive 
relation [ 161 

+(a + 1 )  = +(a)  + ;, for a > 0 ,  

leads to 

1 
(17 )  

It  becomes  clear  that  an unbiased estimate of 6 is ob- 
tained  by defining 6 so that 

7. Variances of 8 and 6. 
Notions in the preceding  section may be extended  to ob- 
tain the  expected  value of 6'. Toward  that  end, let 

- -- T ( n a )  T ( a  + S )  [&'(a + s) - &'(na + s) 
T ( a )  T ( n a  + S )  

+ {&(a  + s) - +(na + s ) } ' ]  

and,  for i # j 
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" T ( n a )  r(a + s)T(a + t )  
- [-&' (na  + s + t )  

r2(a) r ( n a  + s + t )  

+ {&(a  + s) - &(na + s + t ) }  

X {&(a + t )  - $ h a  + s + t ) > l ,   ( 2 1 )  

where +' ( 7 )  is the trigamma  function [ 161 

the right-hand series being particularly  useful in Section 
8. Thus, 

with j # k in the final expectation. 

this equation  can  be simplified to give 
After  it  has been  recognized that h(0 ,  1 )  = h (  1, 0),  

Details of further simplification are  more easily verified 
if the  terms  are  reordered  and  written  as Eq. ( 2 4 ) :  
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The  recursive formula [ 161 

$‘(Y + 1 )  = $’ (Y )  - 5 1 

Y 

indicates  that  each line of (24) can  be written to display 
$’ (na)  explicitly. I t  is convenient to note  that  the ag- 
gregate of coefficients outside  the  squared  brackets is 
zero.  Thus,  the right-hand side of (24) clearly may be 
written so that  both $‘(na)  and {$ (a )  - $ ( n a ) } 2  are  ab- 
sent. With  similar  motivation, it is noted  that linear terms 
that involve { $ ( a )  - $ ( n a ) }  also vanish, i.e., 

1 1 I + . .  . 
a + l  na n a + 1  

-2- _” 

n - 1  1 
n [a na ” 1  = 0. 

The  above  development,  together with somewhat  more 
tedious algebra reduces (24) to 

This is combined  with (18) to give the  variance of 8 as 

var(8) = (26) 

The indication is that  the  variance of 6 is 

n(na + 1 )  na 

8. Mean and variance for i 3  
It will be  recalled from definitions (2) that 

j = X 6 ,  

and  from ( lo) ,  that X is independent of the zi’s. Thus 8 
and X are independent.  Accordingly, it is a  simple matter 

Figure 4 Efficiency of-QML estimators Yersus  sample size 
and 6. (a) Efficiency of 6; (b) efficiency of p. 
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to  obtain  the first and  second moment of p. Specifically, 

E @ )  = E ( i )   E ( $ )  = p 

E@’)  = E(?)   E@”) ,  (28 1 
and 

the final factor  on  the right-hand side of the  last  equation 
being obtainable directly  from Eqs. ( 
the  variance of p is 

It is an  easy  matter  to establish the 

1 9)and (25). Thus 

I. (29) 

ovariance of 6 and 
p. One merely observes  that  the  product of the  estimators 
is proportional to Xi? so that 

E ( 6  p) - 6 p = (xf E ( i )  E ( &  
n 

- np[a$’ (a)  + nl P - ” 

( n  - l ) ( n a  + 1 )  a 

=P[1+  ( n -  l ) ( n a +  1 )  1 ’ na$’(a + 1 )  

9. Some properties of the estimators 
The  variance of any unbiased estimator of S must be at 
least  as large as 

[na4 +’(a) I-’, (31) 

which results  from application of the  Cramer-Rao 
theorem [15]. Likewise, the  variance of any unbiased 
estimator  for p is at least  as large as 

p2/na. (32) 

Direct comparision of these minimum variances with 
(27) and (29) yields the efficiency of each  estimator 
and p. Respectively,  these efficiences are 

and 

(a  - l ) / {n[ l  + a + a2 +’(a + I ) ] } ,  (34) 

whose  forms result from applying the usual series ex- 
pression  for $’ ( a )  and effecting some minor simplifica- 
tions. Figure 4(a)  shows  the  expression (33) plotted as 
a function of n for  several values of a. Similar  information 
relative to (34) is shown in Fig. 4 (b) .  

It  is  noted  that  the  joint distribution of the zi’s is 
Dirichlet [17] with parameters  that  are  obvious  from 
Eq. (10). The zi’s, therefore,  are  dependent.  This  makes 
it convenient  to  appeal  to  the  Central Limit Theorem  for 
dependent variables [ 181 to indicate that  the  asymptotic 
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distribution of 8 is normal with mean 6 and variance  as 
shown by the right-hand  side of (27). Likewise, it be- 
comes obvious that f i  is asymptotically normal with mean 
/3 and variance as  given by the right-hand side of (29). 

The  variance of 6 is a  function of a ;  and the  variance 
of p is a  function of both a and p. This raises the  question 
of transformations  that yield statistics  whose  variances 
are nearly independent of nuisance parameters.  The 
Fisher z transformation [3] of the  product  moment cor- 
relation coefficient and transformations  found in Chap- 
ter 5 of Rao [ 151, for example,  indicate the notion. At 
this writing, no  such transformation has been  found for 
either 6 or  for f i ;  and  the problems  remain for  future re- 
search. 

10. Miscellany concerning Eqs. (6) 
It is instructive  to  consider  other  consequences of 
Eq. (6) ,  which stem from the  three-parameter generalized 
gamma  density  function (3).  The  equations admit at 
least two distinct  solutions  provided x i  f p for i = 1 ; . ., 
n. Then,  the likelihood function  based  upon (3)  has a 
smooth local maximum in each of the  two  parameter 
space  octants a, /3, p > 0 and a,  /3, - p  > 0. 

Rigorous proof of the preceding statements would be 
lengthy. Hence, only a heuristic  argument is presented. 
Assume 0 < x # p, and consider  the behavior of the 
function (3 ) within the indicated octants of the parame- 
ter  space.  It is a straight-forward matter  to  show  that  the 
function tends  to  zero when any parameter tends  to 
infinity or when the point (a,/3,p) approaches a boundary 
of either  octant from within. Furthermore,  the function is 
a  positive, continuous function of its  parameters.  This 
makes  it  clear  that  the function (3 ) , and  consequently  the 
likelihood function,  has a smooth maximum in each of 
the  octants defined by (a,/3,p > 0)  and (a,p,-p > 0). 

Numerical  solution of Eqs. (6)  is simple in concept. 
One rearranges (6b) so that its  right-hand member be- 
comes  zero, and  eliminates a from the result by sub- 
stitution  from (6c).  That yields an  equation with a single 
unknown, the  parameter p .  Let this be written h ( p )  = 0. 
Its  roots can be  found by iterative  computer technique. 
Each  root leads to a unique, simultaneous  solution of  all 
equations in (6).  At  the  present writing, however,  there 
is no way to know  when all solutions have been  found. 

This  rather unusual  situation is illustrated by applying 
the method to a random  sample size 20, taken by 
Menon [ 191 from  a  population in which p = 0.5, a = 1 .OO, 
and /3 = 2.72. Figures 5 and 6 show  the graph of h ( p )  for 
the Menon data  and indicate the  existence of at  least 
three solutions to  the  corresponding likelihood equations. 
Reading  from  left to right, these  are called root 1, root 2, 
and  root 3. Table  3, which accompanies  the figures, in- 
dicates solutions of Eqs. (6)  for  each  root  that  has been 
found, and  the corresponding  Kolmogorov-Smirnov type 
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Figure 5 The function h ( p )  from ML  equations (6).  

Figure 6 Detail of h ( p )  near origin. 
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Table 3 Summary of maximum likelihood estimation 
(Menon's [ 191 data for generalized  gamma distribution). 

~~~ -~~ 

P 0.500 -5.300 0.247 7.604 
a 1.000 0.029  3.986  0.029 

2.718 0.001 0.004  61.542 
0.270  0.910  0.159 0.385 

~~~ .~ -~ - 

;I 
P u 3 1  5.456 0.000 3.375 11.672 4.422 
0'[[13] 147.781 *. 112.935 283.210 154.398 

maximum deviations,  (max 161) as defined for  Table 2. 
Solution of Eqs.  (6)  has been  programmed for  an 
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algorithm  (Grove, [20] ) was  considered,  but  abandoned 
in  favor  of  an  interval  halving  convergence  technique 
described  in  Chapter 1 of [20]. Reference 16 provided 
ready access to formulas  for  computing +(a), as required 
in h ( p )  and  for  computing  the CDF corresponding  to (3  ). 
Calculations  for  the CDF values are similar  to  those 
discussed  by  Wilk, et al. [ 121. Bias  correction  to  the es- 
timate of /3 is  attempted  by  substituting  the  estimated a 
value  in  the  bias  correction  factor  from  formula ( 8 )  in 
Stacy  and  Mihram [ 131.  

Printout  from  the  program  provides a visual com- 
parison  of  the  sample  histogram  and the continuous 
curve (3 )  based  upon  specific  parameter  values, e.g. any 
solution  of (6) .  Similar  comparison  of  the  corresponding 
sample  and  continuous  cumulative  distributions  is also 
accommodated.  The  maximum  deviation  between  these 
two  cumulative  curves  is  included as a part  of  the  pro- 
gram  printout.  Sample  and  estimated  population  per- 
centiles are printed  upon  demand  to  the  computer. 
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