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Quasimaximum Likelihood Estimators for
Two-parameter Gamma Distributions

Abstract: The Gamma probability distribution is defined by the density function [T (a) 17" exp (—x/B). This paper presents new esti-
mators for the parameters o' and 8. Required calculations are simple, primarily involving the inner product of certain elementary sta-
tistics and their logarithms. Both of the new estimators are shown to be unbiased. The variance formulas for each and their covariance
formula are derived — counterparts of these for the method of moments (MM ) and the method of maximum likelihood (ML) not being
known except in the asymptotic form. Curve-fitting results from samples of size 50 are provided. They support the proposition that the
new quasimaximum likelihood estimators (QML) are at least as effective as MM and ML estimators. Illustrative estimation based on
samples of size 5 also is presented for comparison; the resuilts highlight relative smaller variances for the ML estimators. The same
Monte Carlo results signal a possibility that significant negative bias occurs with both the MM and ML techniques if small samples

are used.

Introduction

Because many industrial applications have been found
for the Gamma probability distribution, parameter esti-
mation for that distribution has become a matter of prac-
tical importance as well as a topic for extensive theore-
tical research. The distribution (Pearson Type 111 with
zero-valued location parameter) is defined by the density
function

(BT ()] " exp (+/B),

in which « and 8 are, respectively, the shape and scale
parameters.

The Gamma distribution has found practical applica-
tion as a model in studies relating to life, fatigue, and re-
liability characteristics of industrial products. Gupta and
Groll [1], for example, treated the distribution in the
context of acceptance sampling based upon life tests.
Some earlier applications were concerned with the in-
vestigation of accident causation; Chambers and Yule [2]
were among those who reported on it in this context.

Much research activity has been devoted to the de-
velopment of theory and computational aids for estimat-
ing « and B. The research has dealt with order statistics
as well as with complete, censored, and truncated sam-
ples. The following partial listing of contributions to the
literature spans almost half a century.

Fisher [3] discussed the method of moments (MM)
and emphasized certain objections that arise from sta-
tistical inefficiency which plagues that method in its ap-

x=0,a>0,8>0, (1)
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plication to the Gamma distribution. Gupta and Groll [1]
cited likelihood equations that are the basis for the
method of maximum likelihood (ML). Some aids in
finding approximations to solutions of those equations
were developed by Greenwood and Durand [4] and
further discussed by Wilk, et al. [5]. Asymptotic ML
efficiency (i.e., efficiency expected from large-sample ML
estimation) was treated by Harter and Moore [6] in
reporting their work on censored-sample theory. Esti-
mation techniques for order statistics were developed by
Wilk, et al. [5]. Cohen [7], Des Raj [8], and Chap-
man [9] treated estimation methods for truncated sam-
ples. Blischke, et al. [10] and Blischke [11] reported
theory that emphasizes cases in which the shape parame-
ter has values not in excess of two. Probability plots for
the Gamma distribution, and informal estimation tech-
niques based upon such plots are described by Wilk,
etal. [12].

In the present paper developments in theory are re-
stricted to complete random samples. Both MM and ML
concepts are applicable in that context. Estimation of o™
and 8 is considered, o' being denoted by & whenever
typographical simplicity is desired. MM estimators have
a closed form and are simple to calculate. Monte Carlo
results, which are presented in Section 2, lend credence
to the notions that those estimators are biased and have
variances that are larger than variances for the corre-
sponding ML estimators.
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The latter estimators result from the solution of tran-
scendental equations and, hence, are not calculated from
closed-form expressions. Computational aids, which
were referred to above, make application of the ML
techniques fairly simple, provided that the estimated
values lie within ranges that are suitable to the relevant
aid. Also, solution of the likelihood equations is quite
amenable to approximations by electronic computer
techniques. Monte Carlo results, previously alluded to,
create strong suspicion that ML estimators are biased —
indeed, nontrivially biased, if the sample size is small
enough.

In this paper a new estimating technique is proposed
for use when complete random sample data are available
from a Gamma population defined by the distribution in
Eq. (1). Two statistics, denoted by & and 3, are defined as
estimates of o' and B, respectively. Random sample
data are specified by x,, x,,- -, x, with the stipulations
that 1) n>2;2) x, # x; for some value of i and j, and,
3) x;>0fori=1,--- n. Then the proposed statistics
for estimating & and B are, respectively,

S:nﬁlg (z,—n ) Ingz,
and
p=x8&, - 2)

where ¥ is the sample mean, z, = x,/nx for all values of /,
and natural logarithms are indicated by the symbol In.
Definitions (2) do not yield ML estimators. Instead,
& and 8 stem from ML equations that are associated with
a generalization of the distribution (1). Specifically, they
arise from ML equations for the generalized gamma (gg)
distribution discussed by Stacy and Mihram [13]. [Def-
inition (1) is obtained from the gg distribution by setting
one of its parameters, p, equal to unity and reparameteriz-
ing the result.] The statistics § and E, consequently, are
called quasimaximum likelihood (QML) estimators.
Arithmetic computations implied by (2) involve the
use of logarithms, but otherwise are suitable for desk-
calculator techniques. It will be shown that each of the
estimators & and 8 is unbiased (Sections 6 and 8). Vari-
ances and the covariance of the proposed estimators are
derived as functions of sample size and the two parame-
ters « and B (Sections 7 and 8). It should be recalled in
passing that comparable small-sample results are not
available for either the MM or ML estimators associated
with (1). Some asymptotic distributional properties of
the proposed estimators are also discussed (Section 9).
Use of the Greenwood and Durand [4] ML aid is easy
after the values for some ancillary statistics are deter-
mined. More specifically, natural logarithms of the sam-
ple geometric and arithmetric means are substituted into
a simple function that yields a necessary argument to use
with the tabular aid. Interpolation within the table virtual-

Table 1 Three samples from each of three Gamma populations.

Gamma population no.
1 2 3

§=05, B=20 §=10, 8=20 §=20, 8=20
Sample no.

Irem 1 2 3 4 5 6 7 8 9
1 3.78 .32 2.un 4.15  2.85 2,63 0,321 0,337 2.306
2 1.48  1.22 2,87 0.71 11.60 1,89 1,276 6.806 5.299
3 2,94 5.84 9,98 1.73  0.12  0.85 0.773 0,047 7,101
Y 4,50 1,78  3.50 4,11 3,83  3.23 0.731 4.ul4 1,357
s 2.75  0.43 11.10 4,56 3.55 2,46 0.001 0,332 3,085
6 2.81  5.88  5.10Q 1,39 2,09 1,23 0.073 0,916 1,129
7 4,48 7.73 2,80 1.14  2.21 1,03 0.007 2,192 0.992
8 4,31 8.71  8.61 2,06 5.41 6,39 0.045 0.676 0,703
9 2,02 4.26 5,75 3,91 1.31  0.09 1.989 0.301 0,214
10 4.5 8,13 3.85 4,3%  0.15 1,95 0.373 0,571 0.999
11 2.59  9.50 2,84 0,61  1.33  4.13 2.029 0.533 0,u2y4
12 3.82  8.72  7.50 3.20  3.25 4,18 0.43% 0,006 1,934
13 3.5% 7,98 7.05 4.65  3.32  3.16 0.632 0.212 1,779
14 4.76  1.01 6,30 483 5,20 1,77 1,461 0,239 3,902
15 4.58 2,13 6.84 0.23  &.74 0,05 0.050 0,127 1,601
16 0.85 5,34 1,05 0,50 0.50  3.25 0,002 u.185 0,332
17 1.00 6.7  6.36 0,11 0.22  0.53 0,496 0.805 1,178
18 8.75 10.20 4,50 0.66  0.45 1.73 0.013 0,861 0,559
19 1.54 2,60 2,42 0.64 7,64 3,10 0.821 3.714 0,010
20 6.33  2.80 2,65 1.95  1.78  1.63 1,877 4.368 0,004
21 2.64  6.67  5.53 0.92  1.30 3.7 0.660 0,040 1.140
22 2.40 .42 2,69 6.75  0.13  0.08 0.922 1,518 1.404
23 0.57  3.39  4.30 3,37 2.05  6.84 0,109 0,046 0,110
2n 1.19  4.16  5.20 1,77 0.23  2.74 0.008 0.212 1,350
25 3.53  6.3% 5,02 2.47  0.74  7.11 0.711 0.577 0.013
26 2.80 7.6 2.73 0.29  4.77  0.68 0.183 1.620 1.421
27 2.78 Q.47 0,58 ©.85  ©0.39  D.u0 4,653 0,611 1,384
28 4,49 5,82 5,38 5,23 3.14 2,64 0,308 0,642 3.850
29 0.91 1,77  6.u48 0.82  0.21 2,63 0.438 5.4552 0,113
30 8.15 6,55 1.82 2,61 0.85 1.63 0.826 1,523 0.091
31 9.43  0.85 2,77 0.96  u.u6  2.21 0.956 0,274 0,328
32 7.95 20.1%  4.53 0.45  0.11  0.05 0,082 ©.018 0,268
33 5.22  4.56 1,78 4,452 2,94 1,58 0,009 0.010 0,848
34 2.1%  8.06 5,55 2.4% 0,15  1.11 3.102 0.156 0,419
35 2.45 5,62 4.4y 0.18 1,74 1,33 3.637 0.043 0,223
36 2.39 3,00 4,58 0.24 0,82  0.30 1,094 3,346 0,020
37 0.5 11.56  3.06 0.25 0,40  1.49 0.006 0,394 1,080
38 1.92 2,76 5,90 4,14 3,39 0.76 0.523 2,863 0,369
39 3.28 5,12 0.76 1,40 0,08 0.18 0,184 0,058 0,005
4o 3.08  1.02 7,96 1.77  3.19  0.19 0,148 0,105 0.078
41 1.08 2,51  9.39 4,36 0,63  2.62 0,809 1.190 0,975
42 1.16  5.87 1,84 1.07  3.27  1.6% 2.178  0.063 0.010
u3 0.74 2,92 5.41 0.20 1,73  0.59 0.239 0,485 0,033
4y 4,00 4,17  3.08 3.65 3.63  0.66 0.248 5.769 0,132
us 0.11  2.5%  3.80 0.85 0,64  5.24% 6,277 0.043 1,059
46 3.81  3.02  2.16 1,35 1.73  0,7s 3.021 1,178 0,659
uy 2.81  8.93  3.00 0.37 2,35 4.72 0.126 0.077 0.179
4 5.08 2,06 3,32 2,15 1.55  6.07 3.291 0,001 0,491

49 4,85  2.16  1.95 1.3 7,40 0.46 0.676 0.685 0,234
50 7.41 2,05  8.50 4,36  0.85 1,47 0.519 3,446 0,754

Table 2 Summary of population parameter values and estima-
tion results.

Gamma population no.

1 2 3
§=05, B =20 §=10, B=20 §=20, =20
Sample no.
Statistic 1 2 3 4 5 6 7 8 9

M 4,000 2,000 1.000
3 3,411 4,972 4.536 2,142  2.342  2.156 £.995 1.176 1.091
f 3.411 4,972 4,536 2.142 2,342 2,156 0.995 1,176 1.091
B 3.411 4,972 4.536 2,142 2,342 2,156 0.995 1.176 1,081
a2 8.000 %,000 2.000
o2 4.808 12.366 6,067 3.008 5,358 3,391 1.727  2.522 1,979
&2 5,437 12,103 6.557 3,662 5,775 4,119 2.257 2,577  2.245
G 5.34% 12,294  6.551 3.655 5.810 4,025 1.846 2.€88 1.965
4 0.500 1.000 2,000

0.413 0.500 0.295 0,655 0,976 0,730 1.784  1.625 1.663
8 0.467 0,490 0.319 0.798 1.05% 0.886 1.905 1.86% 1.648
5 0,453  0.497 0.318 0,796 1.053 0,866 1.864 1.945 2.651
4 2.000 2,000 2.000
R 1,410 2,487 1,338 1.404 2,287 1,573 1.735 2.145 1.81y
8 1.594 2,434  1.u45 1,708 2,468 1,911 2.074 2,191 1,923
K 1.567 2.473  1.444 1,706 2.480 1,867 1.855 2,287 1,801
1Al 0.145 0,195 0,182 0,148 0,139 0,120 0.036 0.093 0,103
141 6.082 0,080 0,089 0,139 0,090 0,078 6.079 0.100 0.061
1Al 0,093 0,080 0.077 0.132 0.089 0.077 0,074 0.086 0,061
1Al 0.097 0.080 0,077 0.132 0,089 0,074 0.073 0.089 0.061

ly completes ML estimation whenever the computed ar-
gument lies within the range of argument values adopted
for the table.
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Figure 1 Estimates from samples of size five for a case in which 8 = 0.5 and 8 = 2.0. Histograms for (a) estimates of §; (b) estimates

of B.

The MM and ML statistics for estimating & and 83 are
denoted by the respective pairs: 8, 8 and §, 8, with an ob-
vious correspondence to the QML estimators. Formulas
for the MM statistics are § = s°/%" and 8 = x §, in which s*
is the sample variance defined according to

(x;— %)*/n

It
M=

i=1

since the method of moments is to be strictly interpreted
herein.

2. Summary of empirical findings

Some numerical examples are cited later in the discus-
sion, data from nine random samples being itemized in
Table 1. The samples were chosen from three chi-squared
populations [special cases of (1)]. The samples were

MARCH 1973

generated by an IBM System/360, Model 40, computer
that was programmed in the light of the following well
known results:

a) Pairs of independent, random observations from a
rectangular (0,1) population are transformed to in-
dependent, random standard normal deviates by
means of formulas due to Box and Muller [14].

b) The sums of the squares of r such deviates may be re-
garded as a single random observation from a chi-
squared population having r degrees of freedom (a
result previously used by Wilk, et al. [12] for similar
purposes).

In Table 2, popular parameter values are shown along

with estimation results from each of three methods: the
MM, ML, and QML methods. The reader will find §,
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Figure 2 Estimated cumulated distribution functions (CDF) versus population CDF. CDF values were computed from Sample 1
data in Table 1 by the formula (i — })/n at population CDF value for x; these values, represented by the large circles, are compared

with estimated values obtained by the MM, ML, and QML methods.

B, 5, B, 8, B, 5, and B as linear titles therein, for example.
Similar notation is adopted to indicate the population
means and variances displayed in lines which are la-
beled u, &, fi, i and o°, ¢°, 6°, 6, respectively. Cal-
culations to obtain those particular entries were in ac-
cordance with textbook formulas. (See, for example, Rao
[15])

Final lines in Table 2 reflect “‘goodness of fit.”” The
Kolmogorov-Smirnov (K-S) goodness of fit statistic,
showing the maximum deviation (absolute value) be-
tween sample and population cumulative distribution
functions (CDF’s), is indicated by |A|. Ordinates for
the sample CDF at x,, i =1, -, n, were taken to be i/n

in the usual way and the population CDF was determined
by known values of the parameters. Using the previous
notational device, the symbols |A|, |A|, and |A] have the
obvious meaning. Corresponding numerical information
provides a means for informal comparison of different
estimation techniques with respect to “goodness of fit.”

Tables of selected percentiles in the distribution for
|A| are generally accessible (see Beyer [21]). Such
tables provide an objective criterion for evaluating the
goodness-of-fit, which is reflected by |A[, |A] and |A].

The nine numerical examples lead to the informal con-
clusion that the QML estimators yield a goodness-of-fit
that is quite comparable to that produced by ML esti-
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mators. Used in conjunction with the criterion implied
in the preceding paragraph, Table 2 gives evidence of a
slight superiority for the QML curve-fitting results. Per-
haps, with samples of this size (50), that finding is not
spurious since both § and g are demonstrably unbiased.

In Section 9, formulas for computing efficiency are
given along with illustrative graphs. They show that
QML estimators are not efficient, a fact that offsets to
some extent the advantages that accrue because those
estimators are unbiased. Some further insight is supplied
by Monte Carlo results displayed in Figs. 1(a) and (b).
Those figures concern a case, 8 = 0.5 and 8 = 2.0, chosen
specifically because it is unfavorable from the standpoint
of QML estimator efficiency. The figures summarize
estimation results from 50 independent random samples
of size five. They support the conjecture that small-
sample ML estimation of § and g leads to biased statis-
tics. The MM estimators also appear to be biased.

In general, the results highlight possible bias and small
variance for the ML statistics in contrast to larger vari-
ance and lack of bias for QML statistics. The author has
calculated, for the data leading to Figs. 1(a) and (b),
approximate 95 percent confidence intervals (assuming
usual conditions are met for applying the Central Limit
Theorem of statistics). Resulting intervals from both the
MM and ML estimations- do not contain the respective
parameter values 8 = 0.5 and 8= 2.0. Hence, the ob-
served deviations of the averages from the respective
known values appear to be significant for the MM and
ML techniques.

3. Probability plots
Figures 2 and 3 are based upon probability plotting tech-
niques that Wilk, et al. [12] have discussed along with
relevant computation formulas and error evaluation.
Suppose, for the sake of illustration, that a function
Fi(8,8) is defined by

Fi(8.8) = f fx)dx,

where f(x) is given by (1). Several estimates of F;(8,8)
are considered for probability plotting, viz., (i —%)/n,
Fi(5.8), Fi(5,8) and Fi(3,8). Figure 2 refers to the first
(left-most) sample in Table 1 and shows each of the
above estimates plotted versus F;(8,8) for i=1,---, n.
Similar graphs for the remaining eight samples could
have been generated, of course.

Figure 3 shows corollary information derived from the
sample. Specifically, values of a function x;(8,8), defined
by the equation

i— % x;(8,8)
=f flx)dx,

n o
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O Sample no. 1
* MM estimates
° ML estimates
v QML estimates

Sample and estimate quantiles
a

Population quantiles

Figure 3 Estimated quantiles versus population quantiles, with
values taken from Sample 1 in Table 1 for comparison.

are estimated by xi, x:(8,8), x:(5,8), and x;(3,8). Figure 3
refers to the first sample in Table 1 and shows each of
the estimates plotted versus x;(5,8).

4. Application of generalized Gamma distribution
The function (1) may be denoted unambiguously by
f(x;B8,e,1) if
lpl”!
flx:Bap) =———exp [-(x/)"), xZ0, (3)
(e P TP
and the definitions of x,a, and 8 are unchanged. Tempo-
rarily, it is convenient to consider p # 0 and to work with
(3) rather than (1), with a promise to set p=1 at a
later time. The logarithm of the likelihood function cor-
responding to (3) is denoted by L, so that
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n
lp|n< xipa—l)
L,=1In l:“,L__

) T -3 e }} @

Suppose that the three first partial derivatives of L, with
respect to the parameters are equated to zero. This
leads to

—npa+p Y (x 18’ =0,

—ny(a) +p 2": In(x,/B) =0, (5)

ﬁ—mmﬁ+aim%—é(mmﬁmwm=

These may be manipulated to yield the equivalent

B=(x,a )", (62)
@) —Ina=n" g Iny,, (6b)
«=[3 (5, -z, (6¢)
where

%zi&m

Yip = %[ 1%, (7

n
— WP »
2= Ypln=x'1 3 x;
=

and y(a) is the digamma function (3/da) In I'{a).

Now consider any special case in which the value of
p is known. The equivalent of Eq. (6¢) would never arise.
Yet, Eq. (6¢) suggests an estimate of o whenever the
value of p is known; and Eq. (6a) suggests a correspond-
ing estimate of 8. Suppose for the moment that ¢, = xi”
for all values of i and that a symbol X is introduced so
that A = B”. The ¢, values may be regarded [13] as a ran-
dom sample from a gamma population defined by (1)
with x replaced by t and B replaced by A. Thus, the case
in which p has a known value other than Unity converts
readily to the case p = 1 provided « and \ are to be esti-
mated instead of a and 8.

5. Independence of x, and the z,

Equation (3) has served its intended purpose and, with
the exception of Section 10, the remaining discussion will
be restricted to the case p = 1. This justifies simpler no-
tation than was adopted in (7), and we define

X=Xy =y and ;= ;.

Convenience is served also by defining

(a1 (8)

and by permitting the symbol x; to play multiple roles,
the specific role being determined according to the con-
text of the discussion. The symbol x; will represent a
sample value, a random variable, or an argument in a
density function as the case demands. Similarly, multiple
roles will be assigned to the symbol z; when no ambiguity
results,

After appealing to the above expedients, the joint dis-
tribution of x,,- -+, x, is found to be

(BT (a)]™" [H 5 exo| - 2 518 9)

from which it can be shown that the set of z; values is in-
dependent of x. One merely transforms (9) by

X, = nxz, fori=1,---,

(1= 5 =)

n—1, and

n-_n-1

noting that the Jacobian is (n x
with the restriction ' z, =< 1,

). The indication is that,

no

[Mﬁmﬁ(m) 7! exp(—m‘clﬁ)]

II:(r(wz; (H z; )(1 — "E_l zl.)a_l

i=1

(10)

gives the joint distribution of ¥ and z,, z,," -+, z,_,- Hence
x and the set of z, variables are statistically independent.

6. Expectations of ¢ and &
The first moment for 6, defined by (8), is obtained after
noting that (fori=1,--,n—1)

E) = B(1 - zz) T fletd, (an
E(z'Inz,) =E(“:—s zis)=~:—sE(zis), (12)
E[(l —E zJ.)s ln(l —21 zj)] =%E(1 —g z,.>s, (13)

where the operator E indicates the mathematical expec-
tation of the quantity that follows it, and the remaining
notation has obvious meaning.

This, along with (8), indicates

n n
E(E z;Inz,— n’ E In zi)
i=1 i=1

_ n[ a% E (zf's)],;:l _ [a% E(zjs)]s_o,

E@®) = (14)

(15)
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where j has any of the values 1, 2,--+, n and z,=1

— 2:: z;. Referring to Eq. (11), we have:
Kl ss _ Tna) T'(a+s) _
5s F@) = T(a) Tlna+s) Wlats) —dlat sl

(16)

The results, (15) and (16), together with the recursive
relation [16]

Wla+ 1) = ¥la) +i, for a > 0, (17)
leads to
E@=""1s (18)

n

It becomes clear that an unbiased estimate of & is ob-
tained by defining & so that

8. (19)

7. Variances of 9 and .
Notions in the preceding section may be extended to ob-
tain the expected value of 6°. Toward that end, let
a2
g(s) = 2 E (z)

_D(na) T'(a+s)

[¥ (@+s) — ¢ (na + 5)

8 t

his,t) =

asat

=F(na) IF'la+ ) '(a+1)
@) T(ra+s+1)
+ {Yla+s)—Plna+s+1)}
X{Wla+1t)—dlna+s+10)}],

[ (na+s+1)

(21)

where ' () is the trigamma function [16]

2

Y =1mr) =3 k7
5% k=0

the right-hand series being particularly useful in Section
8. Thus,

E@) = nE{(z ——) (In z,) }
+n(n—1) E{(zj - %)(zk - i‘)(ln z) (In zk)}

(22)

with j # k in the final expectation.
After it has been recognized that A(0, 1) = h(1, 0),
this equation can be simplified to give

g(0) (0)

E(6°) = ng(2) —2g(1) +——

0 h(0,0
L) Ia 1) atn [y 2 HOD HOD)
+ {Yla+s) —P(na+s5)}°] (20) Details of further simplification are more easily verified
and, for i # j if the terms are reordered and written as Eq. (24):
E@) =2t L [w( R e e T B L ¢(na}]
-1 1
el I SRR INS Tha natq V) T ]
—% [¢'(a+1)—¢'(na+1)+ i -;}z + () — w(na)}]
220l e n+{; - +9(@) = y(na) |
x { —nl—a +¥(a) — ll;(na)}]
Fo W e) = ¥ (1) + (W (@) — p(na) ]
n—1 , _ 2
+ [ — ' (na) + {¢(a) — P (na)}]. (24) 129
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The recursive formula [16]
' , 1
Yiy+D=y¢'(y) —
Y

indicates that each line of (24) can be written to display
' (na) explicitly. It is convenient to note that the ag-
gregate of coefficients outside the squared brackets is
zero. Thus, the right-hand side of (24) clearly may be
written so that both ¢’ (na) and {§(a) — ¥ {na) }* are ab-
sent. With similar motivation, it is noted that linear terms
that involve {{i(a) — ¢ (na)} also vanish, i.e.,

a+1[l 111 ]+
no+1 na+ 1

SPYERR R
n a no
The above development, together with somewhat more
tedious algebra reduces (24) to

o« a+1 na

n—1

PIrrEY) [w'(a) +%]

This is combined with (18) to give the variance of 8 as

E@) = (25)

~ n— no+ 1
var0=——[’a+1)+ ] 26
©® n(na+1) v na’ (26)
The indication is that the variance of & is
2 47
var() = 1 : [1 no ¥ (o + 1)]' 7)
(n—1Da L noe+1

8. Mean and variance for 8
It will be recalled from definitions (2) that

B=2 >

and from (10), that ¥ is independent of the z,’s. Thus §
and x are independent. Accordingly, it is a simple matter

Figure 4 Efficiency of QML estimators versus sample size
and 8. (a) Efficiency of 8; (b) efficiency of g.

0.8 -
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0.6 200 - 200
0.5} . H
0.4+ 1.00 = 1.00
0.3 -
02 0.50 0.50
B - ~
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Sample size n

to obtain the first and second moment of 3. Specifically,
E(B)=Ex) E®)=8
and

EB)=EF) E@®), (28)

the final factor on the right-hand side of the last equation
being obtainable directly from Eqgs. (19)and (25). Thus
the variance of 8 is

B’lo

n—1

var(B) = M+a+a’ ¢ (a+1)]. (29)
It is an easy matter to establish the covariance of § and
B. One merely observes that the product of the estimators
is proportional to %6 so that
2

) E®) E@)

EGR) -58=(

n—1

_ nBlay’(a) +n] B

_(n—l)(na—l-l)—a

no' (e + 1) ]
—-——) .

=B[1+(n—1)(na+1 (30)

9. Some properties of the estimators
The variance of any unbiased estimator of § must be at
least as large as

[na* ' ()17, (31)

which results from application of the Cramer-Rao
theorem [15]. Likewise, the variance of any unbiased
estimator for 8 is at least as large as

B’/na. (32)

Direct comparision of these minimum variances with
(27) and (29) yields the efficiency of each estimator &
and 8. Respectively, these efficiences are

(= Difalt + & ¢+ DI +ﬂ"%§f—”]}<33>

and

(n—D/{n[1+a+" ¢ (a+ 1]}, (34)

whose forms result from applying the usual series ex-
pression for ¢’ (a) and effecting some minor simplifica-
tions. Figure 4(a) shows the expression (33) plotted as
a function of n for several values of «. Similar information
relative to (34) is shown in Fig. 4(b).

It is noted that the joint distribution of the z,’s is
Dirichlet [17] with parameters that are obvious from
Eq. (10). The zs, therefore, are dependent. This makes
it convenient to appeal to the Central Limit Theorem for
dependent variables [18] to indicate that the asymptotic
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distribution of § is normal with mean & and variance as sk = Intervals not investigated
shown by the right-hand side of (27). Likewise, it be- 0.6
comes obvious that 3 is asymptotically normal with mean 0.4 h(—5.300) =0 h(0.247)=0  h(7.604)=0
B and variance as given by the right-hand side of (29). 0.2 \i
"[:he variance of § is a function of @; and the variance _02._-
of B is a function of both o and B. This raises the question —o4l 5p)
of transformations that yield statistics whose variances 0.6k
are nearly independent of nuisance parameters. The -08
Fisher z transformation [3] of the product moment cor- < Ll Ll
relation coefficient and transformations found in Chap- -8 -6 -4 -2 0 2 4 6 8 10
ter 5 of Rao [15], for example, indicate the notion. At )

this writing, no such transformation has been found for
either & or for B; and the problems remain for future re-
search,

10. Miscellany concerning Eqgs. (6)

It is instructive to consider other consequences of
Eq. (6), which stem from the three-parameter generalized
gamma density function (3). The equations admit at
least two distinct solutions provided x, # gfori= 1,
n. Then, the likelihood function based upon (3) has a
smooth local maximum in each of the two parameter
space octants &, 8, p > Oand o, 8,—p > 0.

Rigorous proof of the preceding statements would be
lengthy. Hence, only a heuristic argument is presented.
Assume (0 < x # B8, and consider the behavior of the
function (3) within the indicated octants of the parame-
ter space. It is a straight-forward matter to show that the
function tends to zero when any parameter tends to
infinity or when the point (a,8,p) approaches a boundary
of either octant from within. Furthermore, the function is
a positive, continuous function of its parameters. This
makes it clear that the function (3), and consequently the
likelihood function, has a smooth maximum in each of
the octants defined by (a.8,p > 0) and (a,8,—p > 0).

Numerical solution of Egs. (6) is simple in concept.
One rearranges (6b) so that its right-hand member be-
comes zero, and eliminates « from the result by sub-
stitution from (6c). That yields an equation with a single
unknown, the parameter p. Let this be written A(p) = 0.
Its roots can be found by iterative computer technique.

Figure 5 The function A(p) from ML equations (6).

Figure 6 Detail of 4#(p) near origin.

0.005
h(0.2467) =0

h(p)
—0.005—

-0.010 . .
= = — [nterval not investigated

-03 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Table 3 Summary of maximum likelihood estimation
(Menon’s [19] data for generalized gamma distribution).

Basis of estimates
[Root of h(p) =0]

True ] Sample
Each root leads to a unique, simultaneous solution of all Statistic  value 1 2 3 value
equations in (6). At the present writing, however, there - -
is no way to know when all solutions have been found. Z ?(5)38 “(5)(3)(2)8 gggg 2)(6)(2);
This rather unusual situation is illustrated by applying B 2718 0.001 0.004 61542
the method to a random sample size 20, taken by jA| 0.270 0.910 0.159 0.385
Menon [19] from a population in which p = 0.5, a = 1.00, Zz[[%]} 142;3? 0:)00 : l;;;g 2;;;% 153;‘;;

and 8 = 2.72. Figures 5 and 6 show the graph of h(p) for
the Menon data and indicate the existence of at least
three solutions to the corresponding likelihood equations.
Reading from left to right, these are called root 1, root 2,
and root 3. Table 3, which accompanies the figures, in-
dicates solutions of Eqs. (6) for each root that has been
found, and the corresponding Kolmogorov-Smirnov type

*2/(=5.3) < ~0.029 (see [13]).

maximum deviations, (max |A|) as defined for Table 2.
Solution of Eqgs. (6) has been programmed for an

IBM System/360. The Newton-Raphson root-finding 123

MARCH 1973

QML ESTIMATORS




124

E. W. STACY

algorithm (Grove, [20]) was considered, but abandoned
in favor of an interval halving convergence technique
described in Chapter 1 of [20]. Reference 16 provided
ready access to formulas for computing ¢(a ), as required
in #(p) and for computing the CDF corresponding to (3).
Calculations for the CDF values are similar to those
discussed by Wilk, et al. [12]. Bias correction to the es-
timate of B is attempted by substituting the estimated «
value in the bias correction factor from formula (8) in
Stacy and Mihram [13].

Printout from the program provides a visual com-
parison of the sample histogram and the continuous
curve (3) based upon specific parameter values, e.g. any
solution of (6). Similar comparison of the corresponding
sample and continuous cumulative distributions is also
accommodated. The maximum deviation between these
two cumulative curves is included as a part of the pro-
gram printout. Sample and estimated population per-
centiles are printed upon demand to the computer.
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